fsl-quadspi.c 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>

/* The registers */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_SHIFT	16
#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT		14
#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT	11
#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT	10
#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT	7
#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT	2
#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT	1
#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT	0
#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID_SHIFT	24
#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)

#define QUADSPI_BUF0CR			0x10
#define QUADSPI_BUF1CR			0x14
#define QUADSPI_BUF2CR			0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
#define QUADSPI_BUF3CR_ALLMST		(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT	12
#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT	16
#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT	6
#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT	5
#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT	0
#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)

#define QUADSPI_RBSR			0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT	8
#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT	8
#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)

#define QUADSPI_TBSR			0x150
#define QUADSPI_TBDR			0x154
#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_SHIFT		1
#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT	2
#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		0x1

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR			0x200

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		0x1
#define QUADSPI_LCKER_UNLOCK		0x2

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		(0x1 << 0)

#define QUADSPI_LUT_BASE		0x310

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
#define LUT_READ		7
#define LUT_WRITE		8
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
#define LUT_READ_DDR		14
#define LUT_WRITE_DDR		15
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11

enum fsl_qspi_devtype {
	FSL_QUADSPI_VYBRID,
	FSL_QUADSPI_IMX6SX,
};

struct fsl_qspi_devtype_data {
	enum fsl_qspi_devtype devtype;
	int rxfifo;
	int txfifo;
};

static struct fsl_qspi_devtype_data vybrid_data = {
	.devtype = FSL_QUADSPI_VYBRID,
	.rxfifo = 128,
	.txfifo = 64
};

static struct fsl_qspi_devtype_data imx6sx_data = {
	.devtype = FSL_QUADSPI_IMX6SX,
	.rxfifo = 128,
	.txfifo = 512
};

#define FSL_QSPI_MAX_CHIP	4
struct fsl_qspi {
	struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
	void __iomem *iobase;
	void __iomem *ahb_base; /* Used when read from AHB bus */
	u32 memmap_phy;
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
	struct fsl_qspi_devtype_data *devtype_data;
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
230
	bool has_second_chip;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
};

static inline int is_vybrid_qspi(struct fsl_qspi *q)
{
	return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
}

static inline int is_imx6sx_qspi(struct fsl_qspi *q)
{
	return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
}

/*
 * An IC bug makes us to re-arrange the 32-bit data.
 * The following chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
	return is_vybrid_qspi(q) ? __swab32(a) : a;
}

static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
	writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}

static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
	writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
	reg = readl(q->iobase + QUADSPI_FR);
	writel(reg, q->iobase + QUADSPI_FR);

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
	return IRQ_HANDLED;
}

static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
282
	void __iomem *base = q->iobase;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	int rxfifo = q->devtype_data->rxfifo;
	u32 lut_base;
	u8 cmd, addrlen, dummy;
	int i;

	fsl_qspi_unlock_lut(q);

	/* Clear all the LUT table */
	for (i = 0; i < QUADSPI_LUT_NUM; i++)
		writel(0, base + QUADSPI_LUT_BASE + i * 4);

	/* Quad Read */
	lut_base = SEQID_QUAD_READ * 4;

	if (q->nor_size <= SZ_16M) {
298
		cmd = SPINOR_OP_READ_1_1_4;
299 300 301 302
		addrlen = ADDR24BIT;
		dummy = 8;
	} else {
		/* use the 4-byte address */
303
		cmd = SPINOR_OP_READ_1_1_4;
304 305 306 307 308 309 310 311 312 313 314
		addrlen = ADDR32BIT;
		dummy = 8;
	}

	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));
	writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
			base + QUADSPI_LUT(lut_base + 1));

	/* Write enable */
	lut_base = SEQID_WREN * 4;
315
	writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
316 317 318 319 320

	/* Page Program */
	lut_base = SEQID_PP * 4;

	if (q->nor_size <= SZ_16M) {
321
		cmd = SPINOR_OP_PP;
322 323 324
		addrlen = ADDR24BIT;
	} else {
		/* use the 4-byte address */
325
		cmd = SPINOR_OP_PP;
326 327 328 329 330 331 332 333 334
		addrlen = ADDR32BIT;
	}

	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));
	writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
335
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
336 337 338 339 340 341
			base + QUADSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;

	if (q->nor_size <= SZ_16M) {
342
		cmd = SPINOR_OP_SE;
343 344 345
		addrlen = ADDR24BIT;
	} else {
		/* use the 4-byte address */
346
		cmd = SPINOR_OP_SE;
347 348 349 350 351 352 353 354
		addrlen = ADDR32BIT;
	}

	writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
			base + QUADSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
355
	writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
356 357 358 359
			base + QUADSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
360
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
361 362 363 364
			base + QUADSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
365
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
366 367 368 369
			base + QUADSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
370
	writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
371 372 373 374
			base + QUADSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
375
	writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
376 377 378

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
379
	writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
380 381 382

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
383
	writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
384 385 386 387 388 389 390 391

	fsl_qspi_lock_lut(q);
}

/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
	switch (cmd) {
392
	case SPINOR_OP_READ_1_1_4:
393
		return SEQID_QUAD_READ;
394
	case SPINOR_OP_WREN:
395
		return SEQID_WREN;
396
	case SPINOR_OP_WRDI:
397
		return SEQID_WRDI;
398
	case SPINOR_OP_RDSR:
399
		return SEQID_RDSR;
400
	case SPINOR_OP_SE:
401
		return SEQID_SE;
402
	case SPINOR_OP_CHIP_ERASE:
403
		return SEQID_CHIP_ERASE;
404
	case SPINOR_OP_PP:
405
		return SEQID_PP;
406
	case SPINOR_OP_RDID:
407
		return SEQID_RDID;
408
	case SPINOR_OP_WRSR:
409
		return SEQID_WRSR;
410
	case SPINOR_OP_RDCR:
411
		return SEQID_RDCR;
412
	case SPINOR_OP_EN4B:
413
		return SEQID_EN4B;
414
	case SPINOR_OP_BRWR:
415 416 417 418 419 420 421 422 423 424 425
		return SEQID_BRWR;
	default:
		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
426
	void __iomem *base = q->iobase;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	int seqid;
	u32 reg, reg2;
	int err;

	init_completion(&q->c);
	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			q->chip_base_addr, addr, len, cmd);

	/* save the reg */
	reg = readl(base + QUADSPI_MCR);

	writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
	writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
			base + QUADSPI_RBCT);
	writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);

	do {
		reg2 = readl(base + QUADSPI_SR);
		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
			udelay(1);
			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
			continue;
		}
		break;
	} while (1);

	/* trigger the LUT now */
	seqid = fsl_qspi_get_seqid(q, cmd);
	writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);

	/* Wait for the interrupt. */
	err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
	if (!err) {
		dev_err(q->dev,
			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
			cmd, addr, readl(base + QUADSPI_FR),
			readl(base + QUADSPI_SR));
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	/* restore the MCR */
	writel(reg, base + QUADSPI_MCR);

	return err;
}

/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
	u32 tmp;
	int i = 0;

	while (len > 0) {
		tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
		tmp = fsl_qspi_endian_xchg(q, tmp);
		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
				q->chip_base_addr, tmp);

		if (len >= 4) {
			*((u32 *)rxbuf) = tmp;
			rxbuf += 4;
		} else {
			memcpy(rxbuf, &tmp, len);
			break;
		}

		len -= 4;
		i++;
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
	u32 reg;

	reg = readl(q->iobase + QUADSPI_MCR);
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
	writel(reg, q->iobase + QUADSPI_MCR);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
	writel(reg, q->iobase + QUADSPI_MCR);
}

static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
				u8 opcode, unsigned int to, u32 *txbuf,
				unsigned count, size_t *retlen)
{
	int ret, i, j;
	u32 tmp;

	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
		q->chip_base_addr, to, count);

	/* clear the TX FIFO. */
	tmp = readl(q->iobase + QUADSPI_MCR);
	writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);

	/* fill the TX data to the FIFO */
	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
		tmp = fsl_qspi_endian_xchg(q, *txbuf);
		writel(tmp, q->iobase + QUADSPI_TBDR);
		txbuf++;
	}

	/* Trigger it */
	ret = fsl_qspi_runcmd(q, opcode, to, count);

	if (ret == 0 && retlen)
		*retlen += count;

	return ret;
}

static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
	int nor_size = q->nor_size;
	void __iomem *base = q->iobase;

	writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
	writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
	writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
	writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int seqid;

	/* AHB configuration for access buffer 0/1/2 .*/
	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
	writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
	writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);

	/* We only use the buffer3 */
	writel(0, base + QUADSPI_BUF0IND);
	writel(0, base + QUADSPI_BUF1IND);
	writel(0, base + QUADSPI_BUF2IND);

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
	writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
		q->iobase + QUADSPI_BFGENCR);
}

/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg;
	int ret;

	/* the default frequency, we will change it in the future.*/
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

	/* Init the LUT table. */
	fsl_qspi_init_lut(q);

	/* Disable the module */
	writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
			base + QUADSPI_MCR);

	reg = readl(base + QUADSPI_SMPR);
	writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* Enable the module */
	writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
			base + QUADSPI_MCR);

	/* enable the interrupt */
	writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);

	return 0;
}

static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
	unsigned long rate = q->clk_rate;
	int ret;

	if (is_imx6sx_qspi(q))
		rate *= 4;

	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return ret;

	/* Init the LUT table again. */
	fsl_qspi_init_lut(q);

	/* Init for AHB read */
	fsl_qspi_init_abh_read(q);

	return 0;
}

static struct of_device_id fsl_qspi_dt_ids[] = {
	{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
	q->chip_base_addr = q->nor_size * (nor - q->nor);
}

static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;
	struct fsl_qspi *q = nor->priv;

	ret = fsl_qspi_runcmd(q, opcode, 0, len);
	if (ret)
		return ret;

	fsl_qspi_read_data(q, len, buf);
	return 0;
}

static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
			int write_enable)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
		if (ret)
			return ret;

692
		if (opcode == SPINOR_OP_CHIP_ERASE)
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
			fsl_qspi_invalid(q);

	} else if (len > 0) {
		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
					(u32 *)buf, len, NULL);
	} else {
		dev_err(q->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
		size_t len, size_t *retlen, const u_char *buf)
{
	struct fsl_qspi *q = nor->priv;

	fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
				(u32 *)buf, len, retlen);

	/* invalid the data in the AHB buffer. */
	fsl_qspi_invalid(q);
}

static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
		size_t len, size_t *retlen, u_char *buf)
{
	struct fsl_qspi *q = nor->priv;
	u8 cmd = nor->read_opcode;

	dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
		cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);

	/* Read out the data directly from the AHB buffer.*/
	memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);

	*retlen += len;
	return 0;
}

static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
		nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);

	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_qspi_invalid(q);
	return 0;
}

static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	ret = clk_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_enable(q->clk);
	if (ret) {
		clk_disable(q->clk_en);
		return ret;
	}

	fsl_qspi_set_base_addr(q, nor);
	return 0;
}

static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;

	clk_disable(q->clk);
	clk_disable(q->clk_en);
}

static int fsl_qspi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct mtd_part_parser_data ppdata;
	struct device *dev = &pdev->dev;
	struct fsl_qspi *q;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;
	const struct of_device_id *of_id =
			of_match_device(fsl_qspi_dt_ids, &pdev->dev);

	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	q->nor_num = of_get_child_count(dev->of_node);
	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
		return -ENODEV;

	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(q->iobase)) {
		ret = PTR_ERR(q->iobase);
		goto map_failed;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
	q->ahb_base = devm_ioremap_resource(dev, res);
	if (IS_ERR(q->ahb_base)) {
		ret = PTR_ERR(q->ahb_base);
		goto map_failed;
	}
	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
	if (IS_ERR(q->clk_en)) {
		ret = PTR_ERR(q->clk_en);
		goto map_failed;
	}

	q->clk = devm_clk_get(dev, "qspi");
	if (IS_ERR(q->clk)) {
		ret = PTR_ERR(q->clk);
		goto map_failed;
	}

	ret = clk_prepare_enable(q->clk_en);
	if (ret) {
		dev_err(dev, "can not enable the qspi_en clock\n");
		goto map_failed;
	}

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		dev_err(dev, "can not enable the qspi clock\n");
837
		goto clk_failed;
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "failed to get the irq\n");
		goto irq_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
		dev_err(dev, "failed to request irq.\n");
		goto irq_failed;
	}

	q->dev = dev;
	q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
	platform_set_drvdata(pdev, q);

	ret = fsl_qspi_nor_setup(q);
	if (ret)
		goto irq_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
863
		q->has_second_chip = true;
864 865 866 867 868 869

	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		char modalias[40];

		/* skip the holes */
870
		if (!q->has_second_chip)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
			i *= 2;

		nor = &q->nor[i];
		mtd = &q->mtd[i];

		nor->mtd = mtd;
		nor->dev = dev;
		nor->priv = q;
		mtd->priv = nor;

		/* fill the hooks */
		nor->read_reg = fsl_qspi_read_reg;
		nor->write_reg = fsl_qspi_write_reg;
		nor->read = fsl_qspi_read;
		nor->write = fsl_qspi_write;
		nor->erase = fsl_qspi_erase;

		nor->prepare = fsl_qspi_prep;
		nor->unprepare = fsl_qspi_unprep;

891 892
		ret = of_modalias_node(np, modalias, sizeof(modalias));
		if (ret < 0)
893
			goto irq_failed;
894 895 896 897

		ret = of_property_read_u32(np, "spi-max-frequency",
				&q->clk_rate);
		if (ret < 0)
898
			goto irq_failed;
899 900 901 902

		/* set the chip address for READID */
		fsl_qspi_set_base_addr(q, nor);

903
		ret = spi_nor_scan(nor, modalias, SPI_NOR_QUAD);
904
		if (ret)
905
			goto irq_failed;
906 907 908 909

		ppdata.of_node = np;
		ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
		if (ret)
910
			goto irq_failed;
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

		/* Set the correct NOR size now. */
		if (q->nor_size == 0) {
			q->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_qspi_set_map_addr(q);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > q->devtype_data->txfifo)
			nor->page_size = q->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_qspi_nor_setup_last(q);
	if (ret)
		goto last_init_failed;

	clk_disable(q->clk);
	clk_disable(q->clk_en);
	return 0;

last_init_failed:
945 946 947 948
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
949
		mtd_device_unregister(&q->mtd[i]);
950
	}
951 952
irq_failed:
	clk_disable_unprepare(q->clk);
953
clk_failed:
954 955 956 957 958 959 960 961 962 963
	clk_disable_unprepare(q->clk_en);
map_failed:
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);
	int i;

964 965 966 967
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
968
		mtd_device_unregister(&q->mtd[i]);
969
	}
970 971 972 973 974 975 976 977 978 979

	/* disable the hardware */
	writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	writel(0x0, q->iobase + QUADSPI_RSER);

	clk_unprepare(q->clk);
	clk_unprepare(q->clk_en);
	return 0;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
	return 0;
}

static int fsl_qspi_resume(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);

	fsl_qspi_nor_setup(q);
	fsl_qspi_set_map_addr(q);
	fsl_qspi_nor_setup_last(q);

	return 0;
}

996 997 998 999 1000 1001 1002 1003
static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.bus	= &platform_bus_type,
		.of_match_table = fsl_qspi_dt_ids,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
1004 1005
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
1006 1007 1008 1009 1010 1011
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");