fsl-quadspi.c 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Freescale QuadSPI driver.
 *
 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
29
#include <linux/mutex.h>
30
#include <linux/pm_qos.h>
31
#include <linux/sizes.h>
32

33 34 35 36
/* Controller needs driver to swap endian */
#define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
37 38 39 40 41
/*
 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
 * trigger data transfer even though extern data will not transferred.
 */
#define QUADSPI_QUIRK_TKT253890		(1 << 2)
42 43
/* Controller cannot wake up from wait mode, TKT245618 */
#define QUADSPI_QUIRK_TKT245618         (1 << 3)
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/* The registers */
#define QUADSPI_MCR			0x00
#define QUADSPI_MCR_RESERVED_SHIFT	16
#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT		14
#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT	11
#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT	10
#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT	7
#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT	2
#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT	1
#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT	0
#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)

#define QUADSPI_IPCR			0x08
#define QUADSPI_IPCR_SEQID_SHIFT	24
#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)

#define QUADSPI_BUF0CR			0x10
#define QUADSPI_BUF1CR			0x14
#define QUADSPI_BUF2CR			0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe

#define QUADSPI_BUF3CR			0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
75 76 77
#define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
#define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

#define QUADSPI_BFGENCR			0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT	12
#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)

#define QUADSPI_BUF0IND			0x30
#define QUADSPI_BUF1IND			0x34
#define QUADSPI_BUF2IND			0x38
#define QUADSPI_SFAR			0x100

#define QUADSPI_SMPR			0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT	16
#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT	6
#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT	5
#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT	0
#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)

#define QUADSPI_RBSR			0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT	8
#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)

#define QUADSPI_RBCT			0x110
#define QUADSPI_RBCT_WMRK_MASK		0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT	8
#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)

#define QUADSPI_TBSR			0x150
#define QUADSPI_TBDR			0x154
#define QUADSPI_SR			0x15c
#define QUADSPI_SR_IP_ACC_SHIFT		1
#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT	2
#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)

#define QUADSPI_FR			0x160
#define QUADSPI_FR_TFF_MASK		0x1

#define QUADSPI_SFA1AD			0x180
#define QUADSPI_SFA2AD			0x184
#define QUADSPI_SFB1AD			0x188
#define QUADSPI_SFB2AD			0x18c
#define QUADSPI_RBDR			0x200

#define QUADSPI_LUTKEY			0x300
#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0

#define QUADSPI_LCKCR			0x304
#define QUADSPI_LCKER_LOCK		0x1
#define QUADSPI_LCKER_UNLOCK		0x2

#define QUADSPI_RSER			0x164
#define QUADSPI_RSER_TFIE		(0x1 << 0)

#define QUADSPI_LUT_BASE		0x310

/*
 * The definition of the LUT register shows below:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define OPRND0_SHIFT		0
#define PAD0_SHIFT		8
#define INSTR0_SHIFT		10
#define OPRND1_SHIFT		16

/* Instruction set for the LUT register. */
#define LUT_STOP		0
#define LUT_CMD			1
#define LUT_ADDR		2
#define LUT_DUMMY		3
#define LUT_MODE		4
#define LUT_MODE2		5
#define LUT_MODE4		6
158 159
#define LUT_FSL_READ		7
#define LUT_FSL_WRITE		8
160 161 162 163 164
#define LUT_JMP_ON_CS		9
#define LUT_ADDR_DDR		10
#define LUT_MODE_DDR		11
#define LUT_MODE2_DDR		12
#define LUT_MODE4_DDR		13
165 166
#define LUT_FSL_READ_DDR		14
#define LUT_FSL_WRITE_DDR		15
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define LUT_DATA_LEARN		16

/*
 * The PAD definitions for LUT register.
 *
 * The pad stands for the lines number of IO[0:3].
 * For example, the Quad read need four IO lines, so you should
 * set LUT_PAD4 which means we use four IO lines.
 */
#define LUT_PAD1		0
#define LUT_PAD2		1
#define LUT_PAD4		2

/* Oprands for the LUT register. */
#define ADDR24BIT		0x18
#define ADDR32BIT		0x20

/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr)						\
		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
		((LUT_##ins) << INSTR0_SHIFT))

#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)

/* other macros for LUT register. */
#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM		64

/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ		0
#define SEQID_WREN		1
#define SEQID_WRDI		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_WRSR		8
#define SEQID_RDCR		9
#define SEQID_EN4B		10
#define SEQID_BRWR		11

209 210
#define QUADSPI_MIN_IOMAP SZ_4M

211 212 213
enum fsl_qspi_devtype {
	FSL_QUADSPI_VYBRID,
	FSL_QUADSPI_IMX6SX,
214
	FSL_QUADSPI_IMX7D,
215
	FSL_QUADSPI_IMX6UL,
216 217 218 219 220 221
};

struct fsl_qspi_devtype_data {
	enum fsl_qspi_devtype devtype;
	int rxfifo;
	int txfifo;
222
	int ahb_buf_size;
223
	int driver_data;
224 225 226 227 228
};

static struct fsl_qspi_devtype_data vybrid_data = {
	.devtype = FSL_QUADSPI_VYBRID,
	.rxfifo = 128,
229
	.txfifo = 64,
230 231
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
232 233 234 235 236
};

static struct fsl_qspi_devtype_data imx6sx_data = {
	.devtype = FSL_QUADSPI_IMX6SX,
	.rxfifo = 128,
237
	.txfifo = 512,
238
	.ahb_buf_size = 1024,
239 240
	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
		       | QUADSPI_QUIRK_TKT245618,
241 242
};

243 244 245 246 247 248 249 250 251
static struct fsl_qspi_devtype_data imx7d_data = {
	.devtype = FSL_QUADSPI_IMX7D,
	.rxfifo = 512,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

252 253 254 255 256 257 258 259 260
static struct fsl_qspi_devtype_data imx6ul_data = {
	.devtype = FSL_QUADSPI_IMX6UL,
	.rxfifo = 128,
	.txfifo = 512,
	.ahb_buf_size = 1024,
	.driver_data = QUADSPI_QUIRK_TKT253890
		       | QUADSPI_QUIRK_4X_INT_CLK,
};

261 262 263 264
#define FSL_QSPI_MAX_CHIP	4
struct fsl_qspi {
	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
	void __iomem *iobase;
265
	void __iomem *ahb_addr;
266
	u32 memmap_phy;
267 268
	u32 memmap_offs;
	u32 memmap_len;
269 270 271
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
272
	const struct fsl_qspi_devtype_data *devtype_data;
273 274 275 276
	u32 nor_size;
	u32 nor_num;
	u32 clk_rate;
	unsigned int chip_base_addr; /* We may support two chips. */
277
	bool has_second_chip;
278
	bool big_endian;
279
	struct mutex lock;
280
	struct pm_qos_request pm_qos_req;
281 282
};

283
static inline int needs_swap_endian(struct fsl_qspi *q)
284
{
285
	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
286 287
}

288
static inline int needs_4x_clock(struct fsl_qspi *q)
289
{
290
	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
291 292
}

293 294 295 296 297
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
}

298 299 300 301 302
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
/*
 * R/W functions for big- or little-endian registers:
 * The qSPI controller's endian is independent of the CPU core's endian.
 * So far, although the CPU core is little-endian but the qSPI have two
 * versions for big-endian and little-endian.
 */
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
	if (q->big_endian)
		iowrite32be(val, addr);
	else
		iowrite32(val, addr);
}

static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
	if (q->big_endian)
		return ioread32be(addr);
	else
		return ioread32(addr);
}

325 326 327 328 329 330
/*
 * An IC bug makes us to re-arrange the 32-bit data.
 * The following chips, such as IMX6SLX, have fixed this bug.
 */
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
331
	return needs_swap_endian(q) ? __swab32(a) : a;
332 333 334 335
}

static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
336 337
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
338 339 340 341
}

static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
342 343
	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
344 345 346 347 348 349 350 351
}

static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
	struct fsl_qspi *q = dev_id;
	u32 reg;

	/* clear interrupt */
352 353
	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
354 355 356 357 358 359 360 361 362 363

	if (reg & QUADSPI_FR_TFF_MASK)
		complete(&q->c);

	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
	return IRQ_HANDLED;
}

static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
364
	void __iomem *base = q->iobase;
365 366 367 368 369 370 371 372 373
	int rxfifo = q->devtype_data->rxfifo;
	u32 lut_base;
	u8 cmd, addrlen, dummy;
	int i;

	fsl_qspi_unlock_lut(q);

	/* Clear all the LUT table */
	for (i = 0; i < QUADSPI_LUT_NUM; i++)
374
		qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
375 376 377 378 379

	/* Quad Read */
	lut_base = SEQID_QUAD_READ * 4;

	if (q->nor_size <= SZ_16M) {
380
		cmd = SPINOR_OP_READ_1_1_4;
381 382 383 384
		addrlen = ADDR24BIT;
		dummy = 8;
	} else {
		/* use the 4-byte address */
385
		cmd = SPINOR_OP_READ_1_1_4;
386 387 388 389
		addrlen = ADDR32BIT;
		dummy = 8;
	}

390
	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
391
			base + QUADSPI_LUT(lut_base));
392
	qspi_writel(q, LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
393 394 395 396
			base + QUADSPI_LUT(lut_base + 1));

	/* Write enable */
	lut_base = SEQID_WREN * 4;
397 398
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
			base + QUADSPI_LUT(lut_base));
399 400 401 402 403

	/* Page Program */
	lut_base = SEQID_PP * 4;

	if (q->nor_size <= SZ_16M) {
404
		cmd = SPINOR_OP_PP;
405 406 407
		addrlen = ADDR24BIT;
	} else {
		/* use the 4-byte address */
408
		cmd = SPINOR_OP_PP;
409 410 411
		addrlen = ADDR32BIT;
	}

412
	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
413
			base + QUADSPI_LUT(lut_base));
414 415
	qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
			base + QUADSPI_LUT(lut_base + 1));
416 417 418

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
419 420
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
			LUT1(FSL_READ, PAD1, 0x1),
421 422 423 424 425
			base + QUADSPI_LUT(lut_base));

	/* Erase a sector */
	lut_base = SEQID_SE * 4;

426 427
	cmd = q->nor[0].erase_opcode;
	addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
428

429
	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
430 431 432 433
			base + QUADSPI_LUT(lut_base));

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
434
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
435 436 437 438
			base + QUADSPI_LUT(lut_base));

	/* READ ID */
	lut_base = SEQID_RDID * 4;
439 440
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
			LUT1(FSL_READ, PAD1, 0x8),
441 442 443 444
			base + QUADSPI_LUT(lut_base));

	/* Write Register */
	lut_base = SEQID_WRSR * 4;
445 446
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
			LUT1(FSL_WRITE, PAD1, 0x2),
447 448 449 450
			base + QUADSPI_LUT(lut_base));

	/* Read Configuration Register */
	lut_base = SEQID_RDCR * 4;
451 452
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
			LUT1(FSL_READ, PAD1, 0x1),
453 454 455 456
			base + QUADSPI_LUT(lut_base));

	/* Write disable */
	lut_base = SEQID_WRDI * 4;
457 458
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
			base + QUADSPI_LUT(lut_base));
459 460 461

	/* Enter 4 Byte Mode (Micron) */
	lut_base = SEQID_EN4B * 4;
462 463
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
			base + QUADSPI_LUT(lut_base));
464 465 466

	/* Enter 4 Byte Mode (Spansion) */
	lut_base = SEQID_BRWR * 4;
467 468
	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
			base + QUADSPI_LUT(lut_base));
469 470 471 472 473 474 475 476

	fsl_qspi_lock_lut(q);
}

/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
	switch (cmd) {
477
	case SPINOR_OP_READ_1_1_4:
478
		return SEQID_QUAD_READ;
479
	case SPINOR_OP_WREN:
480
		return SEQID_WREN;
481
	case SPINOR_OP_WRDI:
482
		return SEQID_WRDI;
483
	case SPINOR_OP_RDSR:
484
		return SEQID_RDSR;
485
	case SPINOR_OP_SE:
486
		return SEQID_SE;
487
	case SPINOR_OP_CHIP_ERASE:
488
		return SEQID_CHIP_ERASE;
489
	case SPINOR_OP_PP:
490
		return SEQID_PP;
491
	case SPINOR_OP_RDID:
492
		return SEQID_RDID;
493
	case SPINOR_OP_WRSR:
494
		return SEQID_WRSR;
495
	case SPINOR_OP_RDCR:
496
		return SEQID_RDCR;
497
	case SPINOR_OP_EN4B:
498
		return SEQID_EN4B;
499
	case SPINOR_OP_BRWR:
500 501
		return SEQID_BRWR;
	default:
502 503
		if (cmd == q->nor[0].erase_opcode)
			return SEQID_SE;
504 505 506 507 508 509 510 511 512
		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
		break;
	}
	return -EINVAL;
}

static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
513
	void __iomem *base = q->iobase;
514 515 516 517 518 519 520 521 522
	int seqid;
	u32 reg, reg2;
	int err;

	init_completion(&q->c);
	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
			q->chip_base_addr, addr, len, cmd);

	/* save the reg */
523
	reg = qspi_readl(q, base + QUADSPI_MCR);
524

525 526 527
	qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
			base + QUADSPI_SFAR);
	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
528
			base + QUADSPI_RBCT);
529
	qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
530 531

	do {
532
		reg2 = qspi_readl(q, base + QUADSPI_SR);
533 534 535 536 537 538 539 540 541 542
		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
			udelay(1);
			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
			continue;
		}
		break;
	} while (1);

	/* trigger the LUT now */
	seqid = fsl_qspi_get_seqid(q, cmd);
543 544
	qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
			base + QUADSPI_IPCR);
545 546

	/* Wait for the interrupt. */
547
	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
548 549
		dev_err(q->dev,
			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
550 551
			cmd, addr, qspi_readl(q, base + QUADSPI_FR),
			qspi_readl(q, base + QUADSPI_SR));
552 553 554 555 556 557
		err = -ETIMEDOUT;
	} else {
		err = 0;
	}

	/* restore the MCR */
558
	qspi_writel(q, reg, base + QUADSPI_MCR);
559 560 561 562 563 564 565 566 567 568 569

	return err;
}

/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
	u32 tmp;
	int i = 0;

	while (len > 0) {
570
		tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		tmp = fsl_qspi_endian_xchg(q, tmp);
		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
				q->chip_base_addr, tmp);

		if (len >= 4) {
			*((u32 *)rxbuf) = tmp;
			rxbuf += 4;
		} else {
			memcpy(rxbuf, &tmp, len);
			break;
		}

		len -= 4;
		i++;
	}
}

/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
	u32 reg;

598
	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
599
	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
600
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
601 602 603 604 605 606 607 608

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	udelay(1);

	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
609
	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
610 611 612 613 614 615 616 617 618 619 620 621 622
}

static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
				u8 opcode, unsigned int to, u32 *txbuf,
				unsigned count, size_t *retlen)
{
	int ret, i, j;
	u32 tmp;

	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
		q->chip_base_addr, to, count);

	/* clear the TX FIFO. */
623 624
	tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
	qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
625 626 627 628

	/* fill the TX data to the FIFO */
	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
		tmp = fsl_qspi_endian_xchg(q, *txbuf);
629
		qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
630 631 632
		txbuf++;
	}

633 634 635
	/* fill the TXFIFO upto 16 bytes for i.MX7d */
	if (needs_fill_txfifo(q))
		for (; i < 4; i++)
636
			qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
637

638 639 640 641 642 643 644 645 646 647 648 649 650 651
	/* Trigger it */
	ret = fsl_qspi_runcmd(q, opcode, to, count);

	if (ret == 0 && retlen)
		*retlen += count;

	return ret;
}

static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
	int nor_size = q->nor_size;
	void __iomem *base = q->iobase;

652 653 654 655
	qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
	qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
	qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
	qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	int seqid;

	/* AHB configuration for access buffer 0/1/2 .*/
677 678 679
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
680 681 682 683
	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the
	 * read performance.
	 */
684 685 686 687
	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
			((q->devtype_data->ahb_buf_size / 8)
			<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
			base + QUADSPI_BUF3CR);
688 689

	/* We only use the buffer3 */
690 691 692
	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
693 694 695

	/* Set the default lut sequence for AHB Read. */
	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
696
	qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
697 698 699
		q->iobase + QUADSPI_BFGENCR);
}

700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
/* This function was used to prepare and enable QSPI clock */
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
	int ret;

	ret = clk_prepare_enable(q->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(q->clk);
	if (ret) {
		clk_disable_unprepare(q->clk_en);
		return ret;
	}

715 716 717
	if (needs_wakeup_wait_mode(q))
		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);

718 719 720 721 722 723
	return 0;
}

/* This function was used to disable and unprepare QSPI clock */
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
724 725 726
	if (needs_wakeup_wait_mode(q))
		pm_qos_remove_request(&q->pm_qos_req);

727 728 729 730 731
	clk_disable_unprepare(q->clk);
	clk_disable_unprepare(q->clk_en);

}

732 733 734 735 736 737 738
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
	void __iomem *base = q->iobase;
	u32 reg;
	int ret;

739 740 741 742
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

	/* the default frequency, we will change it in the future. */
743 744 745 746
	ret = clk_set_rate(q->clk, 66000000);
	if (ret)
		return ret;

747 748 749 750
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

751
	/* Reset the module */
752
	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
753 754 755
		base + QUADSPI_MCR);
	udelay(1);

756 757 758 759
	/* Init the LUT table. */
	fsl_qspi_init_lut(q);

	/* Disable the module */
760
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
761 762
			base + QUADSPI_MCR);

763 764
	reg = qspi_readl(q, base + QUADSPI_SMPR);
	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
765 766 767 768 769
			| QUADSPI_SMPR_FSPHS_MASK
			| QUADSPI_SMPR_HSENA_MASK
			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);

	/* Enable the module */
770
	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
771 772
			base + QUADSPI_MCR);

773
	/* clear all interrupt status */
774
	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
775

776
	/* enable the interrupt */
777
	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
778 779 780 781 782 783 784 785 786

	return 0;
}

static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
	unsigned long rate = q->clk_rate;
	int ret;

787
	if (needs_4x_clock(q))
788 789
		rate *= 4;

790 791 792
	/* disable and unprepare clock to avoid glitch pass to controller */
	fsl_qspi_clk_disable_unprep(q);

793 794 795 796
	ret = clk_set_rate(q->clk, rate);
	if (ret)
		return ret;

797 798 799 800
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

801 802 803 804 805 806 807 808 809
	/* Init the LUT table again. */
	fsl_qspi_init_lut(q);

	/* Init for AHB read */
	fsl_qspi_init_abh_read(q);

	return 0;
}

810
static const struct of_device_id fsl_qspi_dt_ids[] = {
811 812
	{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
	{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
813
	{ .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
814
	{ .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);

static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
	q->chip_base_addr = q->nor_size * (nor - q->nor);
}

static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
	int ret;
	struct fsl_qspi *q = nor->priv;

	ret = fsl_qspi_runcmd(q, opcode, 0, len);
	if (ret)
		return ret;

	fsl_qspi_read_data(q, len, buf);
	return 0;
}

837
static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
838 839 840 841 842 843 844 845 846
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	if (!buf) {
		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
		if (ret)
			return ret;

847
		if (opcode == SPINOR_OP_CHIP_ERASE)
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
			fsl_qspi_invalid(q);

	} else if (len > 0) {
		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
					(u32 *)buf, len, NULL);
	} else {
		dev_err(q->dev, "invalid cmd %d\n", opcode);
		ret = -EINVAL;
	}

	return ret;
}

static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
		size_t len, size_t *retlen, const u_char *buf)
{
	struct fsl_qspi *q = nor->priv;

	fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
				(u32 *)buf, len, retlen);

	/* invalid the data in the AHB buffer. */
	fsl_qspi_invalid(q);
}

static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
		size_t len, size_t *retlen, u_char *buf)
{
	struct fsl_qspi *q = nor->priv;
	u8 cmd = nor->read_opcode;

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	/* if necessary,ioremap buffer before AHB read, */
	if (!q->ahb_addr) {
		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;

		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	/* ioremap if the data requested is out of range */
	} else if (q->chip_base_addr + from < q->memmap_offs
			|| q->chip_base_addr + from + len >
			q->memmap_offs + q->memmap_len) {
		iounmap(q->ahb_addr);

		q->memmap_offs = q->chip_base_addr + from;
		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
		q->ahb_addr = ioremap_nocache(
				q->memmap_phy + q->memmap_offs,
				q->memmap_len);
		if (!q->ahb_addr) {
			dev_err(q->dev, "ioremap failed\n");
			return -ENOMEM;
		}
	}

908
	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
909 910
		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
911 912

	/* Read out the data directly from the AHB buffer.*/
913 914
	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
		len);
915 916 917 918 919 920 921 922 923 924 925

	*retlen += len;
	return 0;
}

static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
926
		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
927 928 929 930 931 932 933 934 935 936 937 938 939 940

	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
	if (ret)
		return ret;

	fsl_qspi_invalid(q);
	return 0;
}

static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;
	int ret;

941
	mutex_lock(&q->lock);
942

943
	ret = fsl_qspi_clk_prep_enable(q);
944
	if (ret)
945
		goto err_mutex;
946 947 948

	fsl_qspi_set_base_addr(q, nor);
	return 0;
949 950 951 952

err_mutex:
	mutex_unlock(&q->lock);
	return ret;
953 954 955 956 957 958
}

static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
	struct fsl_qspi *q = nor->priv;

959
	fsl_qspi_clk_disable_unprep(q);
960
	mutex_unlock(&q->lock);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
}

static int fsl_qspi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct fsl_qspi *q;
	struct resource *res;
	struct spi_nor *nor;
	struct mtd_info *mtd;
	int ret, i = 0;

	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
	if (!q)
		return -ENOMEM;

	q->nor_num = of_get_child_count(dev->of_node);
	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
		return -ENODEV;

981
	q->dev = dev;
982 983 984
	q->devtype_data = of_device_get_match_data(dev);
	if (!q->devtype_data)
		return -ENODEV;
985 986
	platform_set_drvdata(pdev, q);

987 988 989
	/* find the resources */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
	q->iobase = devm_ioremap_resource(dev, res);
990 991
	if (IS_ERR(q->iobase))
		return PTR_ERR(q->iobase);
992

993
	q->big_endian = of_property_read_bool(np, "big-endian");
994 995
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
					"QuadSPI-memory");
996 997 998 999 1000
	if (!devm_request_mem_region(dev, res->start, resource_size(res),
				     res->name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return -EBUSY;
	}
1001

1002 1003 1004 1005
	q->memmap_phy = res->start;

	/* find the clocks */
	q->clk_en = devm_clk_get(dev, "qspi_en");
1006 1007
	if (IS_ERR(q->clk_en))
		return PTR_ERR(q->clk_en);
1008 1009

	q->clk = devm_clk_get(dev, "qspi");
1010 1011
	if (IS_ERR(q->clk))
		return PTR_ERR(q->clk);
1012

1013
	ret = fsl_qspi_clk_prep_enable(q);
1014
	if (ret) {
1015
		dev_err(dev, "can not enable the clock\n");
1016
		goto clk_failed;
1017 1018 1019 1020 1021
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
1022
		dev_err(dev, "failed to get the irq: %d\n", ret);
1023 1024 1025 1026 1027 1028
		goto irq_failed;
	}

	ret = devm_request_irq(dev, ret,
			fsl_qspi_irq_handler, 0, pdev->name, q);
	if (ret) {
1029
		dev_err(dev, "failed to request irq: %d\n", ret);
1030 1031 1032 1033 1034 1035 1036 1037
		goto irq_failed;
	}

	ret = fsl_qspi_nor_setup(q);
	if (ret)
		goto irq_failed;

	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1038
		q->has_second_chip = true;
1039

1040 1041
	mutex_init(&q->lock);

1042 1043 1044
	/* iterate the subnodes. */
	for_each_available_child_of_node(dev->of_node, np) {
		/* skip the holes */
1045
		if (!q->has_second_chip)
1046 1047 1048
			i *= 2;

		nor = &q->nor[i];
1049
		mtd = &nor->mtd;
1050 1051

		nor->dev = dev;
1052
		spi_nor_set_flash_node(nor, np);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		nor->priv = q;

		/* fill the hooks */
		nor->read_reg = fsl_qspi_read_reg;
		nor->write_reg = fsl_qspi_write_reg;
		nor->read = fsl_qspi_read;
		nor->write = fsl_qspi_write;
		nor->erase = fsl_qspi_erase;

		nor->prepare = fsl_qspi_prep;
		nor->unprepare = fsl_qspi_unprep;

		ret = of_property_read_u32(np, "spi-max-frequency",
				&q->clk_rate);
		if (ret < 0)
1068
			goto mutex_failed;
1069 1070 1071 1072

		/* set the chip address for READID */
		fsl_qspi_set_base_addr(q, nor);

1073
		ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1074
		if (ret)
1075
			goto mutex_failed;
1076

1077
		ret = mtd_device_register(mtd, NULL, 0);
1078
		if (ret)
1079
			goto mutex_failed;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

		/* Set the correct NOR size now. */
		if (q->nor_size == 0) {
			q->nor_size = mtd->size;

			/* Map the SPI NOR to accessiable address */
			fsl_qspi_set_map_addr(q);
		}

		/*
		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
		 * may writes 265 bytes per time. The write is working in the
		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
		 * size.
		 *
		 * So shrink the spi_nor->page_size if it is larger then the
		 * TX FIFO.
		 */
		if (nor->page_size > q->devtype_data->txfifo)
			nor->page_size = q->devtype_data->txfifo;

		i++;
	}

	/* finish the rest init. */
	ret = fsl_qspi_nor_setup_last(q);
	if (ret)
		goto last_init_failed;

1109
	fsl_qspi_clk_disable_unprep(q);
1110 1111 1112
	return 0;

last_init_failed:
1113 1114 1115 1116
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1117
		mtd_device_unregister(&q->nor[i].mtd);
1118
	}
1119 1120
mutex_failed:
	mutex_destroy(&q->lock);
1121
irq_failed:
1122
	fsl_qspi_clk_disable_unprep(q);
1123
clk_failed:
1124
	dev_err(dev, "Freescale QuadSPI probe failed\n");
1125 1126 1127 1128 1129 1130 1131 1132
	return ret;
}

static int fsl_qspi_remove(struct platform_device *pdev)
{
	struct fsl_qspi *q = platform_get_drvdata(pdev);
	int i;

1133 1134 1135 1136
	for (i = 0; i < q->nor_num; i++) {
		/* skip the holes */
		if (!q->has_second_chip)
			i *= 2;
1137
		mtd_device_unregister(&q->nor[i].mtd);
1138
	}
1139 1140

	/* disable the hardware */
1141 1142
	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1143

1144
	mutex_destroy(&q->lock);
1145 1146 1147 1148

	if (q->ahb_addr)
		iounmap(q->ahb_addr);

1149 1150 1151
	return 0;
}

1152 1153 1154 1155 1156 1157 1158
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
	return 0;
}

static int fsl_qspi_resume(struct platform_device *pdev)
{
1159
	int ret;
1160 1161
	struct fsl_qspi *q = platform_get_drvdata(pdev);

1162 1163 1164 1165
	ret = fsl_qspi_clk_prep_enable(q);
	if (ret)
		return ret;

1166 1167 1168 1169
	fsl_qspi_nor_setup(q);
	fsl_qspi_set_map_addr(q);
	fsl_qspi_nor_setup_last(q);

1170 1171
	fsl_qspi_clk_disable_unprep(q);

1172 1173 1174
	return 0;
}

1175 1176 1177 1178 1179 1180 1181 1182
static struct platform_driver fsl_qspi_driver = {
	.driver = {
		.name	= "fsl-quadspi",
		.bus	= &platform_bus_type,
		.of_match_table = fsl_qspi_dt_ids,
	},
	.probe          = fsl_qspi_probe,
	.remove		= fsl_qspi_remove,
1183 1184
	.suspend	= fsl_qspi_suspend,
	.resume		= fsl_qspi_resume,
1185 1186 1187 1188 1189 1190
};
module_platform_driver(fsl_qspi_driver);

MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");