kvm-s390.c 76.4 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
161 162
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
163 164 165 166 167 168 169 170 171
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

172 173
int kvm_arch_hardware_setup(void)
{
174 175
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
176 177
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
178 179 180 181 182
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
183
	gmap_unregister_ipte_notifier(&gmap_notifier);
184 185
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
186 187 188 189
}

int kvm_arch_init(void *opaque)
{
190 191 192 193 194 195 196 197 198
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

199 200
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
201 202
}

203 204 205 206 207
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

208 209 210 211 212 213 214 215 216
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

217
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
218
{
219 220
	int r;

221
	switch (ext) {
222
	case KVM_CAP_S390_PSW:
223
	case KVM_CAP_S390_GMAP:
224
	case KVM_CAP_SYNC_MMU:
225 226 227
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
228
	case KVM_CAP_ASYNC_PF:
229
	case KVM_CAP_SYNC_REGS:
230
	case KVM_CAP_ONE_REG:
231
	case KVM_CAP_ENABLE_CAP:
232
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
233
	case KVM_CAP_IOEVENTFD:
234
	case KVM_CAP_DEVICE_CTRL:
235
	case KVM_CAP_ENABLE_CAP_VM:
236
	case KVM_CAP_S390_IRQCHIP:
237
	case KVM_CAP_VM_ATTRIBUTES:
238
	case KVM_CAP_MP_STATE:
239
	case KVM_CAP_S390_INJECT_IRQ:
240
	case KVM_CAP_S390_USER_SIGP:
241
	case KVM_CAP_S390_USER_STSI:
242
	case KVM_CAP_S390_SKEYS:
243
	case KVM_CAP_S390_IRQ_STATE:
244 245
		r = 1;
		break;
246 247 248
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
249 250
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
251 252
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
253
		break;
254 255 256
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
257
	case KVM_CAP_S390_COW:
258
		r = MACHINE_HAS_ESOP;
259
		break;
260 261 262
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
263 264 265
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
266
	default:
267
		r = 0;
268
	}
269
	return r;
270 271
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
286 287
		if (fatal_signal_pending(current))
			return;
288
		cond_resched();
289 290 291
	}
}

292
/* Section: vm related */
293 294
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

295 296 297 298 299 300
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
301 302
	int r;
	unsigned long n;
303
	struct kvm_memslots *slots;
304 305 306 307 308 309 310 311 312
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

313 314
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
333 334
}

335 336 337 338 339 340 341 342
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
343
	case KVM_CAP_S390_IRQCHIP:
344
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
345 346 347
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
348
	case KVM_CAP_S390_USER_SIGP:
349
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
350 351 352
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
353
	case KVM_CAP_S390_VECTOR_REGISTERS:
354 355 356 357
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
358 359
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
360 361 362
			r = 0;
		} else
			r = -EINVAL;
363
		mutex_unlock(&kvm->lock);
364 365
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
366
		break;
367 368 369 370 371 372
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
373 374
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
375 376 377 378 379 380
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
381
	case KVM_CAP_S390_USER_STSI:
382
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
383 384 385
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
386 387 388 389 390 391 392
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

393 394 395 396 397 398 399
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
400
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
401 402
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
403 404 405 406 407 408 409 410 411 412
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
413 414 415 416 417
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
418 419 420 421 422
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

423
		ret = -EBUSY;
424
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
425 426 427 428 429 430 431 432
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
433 434 435 436
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

437
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
438 439
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
440
		s390_reset_cmma(kvm->arch.gmap->mm);
441 442 443 444
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
445 446 447 448 449 450 451 452 453
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

454 455
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
456 457
			return -E2BIG;

458 459 460 461 462 463 464
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
481 482 483
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
484 485
		break;
	}
486 487 488 489 490 491 492
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

493 494 495 496 497 498 499
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

500
	if (!test_kvm_facility(kvm, 76))
501 502 503 504 505 506 507 508 509
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
510
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
511 512 513 514 515 516
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
517
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
518 519 520 521 522
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
523
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
524 525 526 527 528
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
529
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
530 531 532 533 534 535 536 537 538 539 540 541 542 543
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

544 545 546 547 548 549 550 551 552 553
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
554
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
555 556 557 558 559 560

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
561
	u64 gtod;
562 563 564 565

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

566
	kvm_s390_set_tod_clock(kvm, gtod);
567
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
599
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
600 601 602 603 604 605

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
606
	u64 gtod;
607

608
	gtod = kvm_s390_get_tod_clock_fast(kvm);
609 610
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
611
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
657
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
691 692
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
711
	mach->ibc = sclp.ibc;
712
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
713
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
714
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
715
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

738 739 740 741 742
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
743
	case KVM_S390_VM_MEM_CTRL:
744
		ret = kvm_s390_set_mem_control(kvm, attr);
745
		break;
746 747 748
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
749 750 751
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
752 753 754
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
755 756 757 758 759 760 761 762 763 764
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
765 766 767 768 769 770
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
771 772 773
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
774 775 776
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
777 778 779 780 781 782
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
783 784 785 786 787 788 789
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
790 791 792 793
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
794
		case KVM_S390_VM_MEM_LIMIT_SIZE:
795 796 797 798 799 800 801
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
802 803 804 805 806 807 808 809 810 811 812
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
813 814 815 816 817 818 819 820 821 822 823
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
824 825 826 827 828 829 830 831 832 833 834 835 836
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
837 838 839 840 841 842 843 844
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
922 923 924
	r = s390_enable_skey();
	if (r)
		goto out;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

949 950 951 952 953
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
954
	struct kvm_device_attr attr;
955 956 957
	int r;

	switch (ioctl) {
958 959 960 961 962 963 964 965 966
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
967 968 969 970 971 972 973 974
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
975 976 977 978 979 980 981
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
982
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
983 984 985
		}
		break;
	}
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1027
	default:
1028
		r = -ENOTTY;
1029 1030 1031 1032 1033
	}

	return r;
}

1034 1035 1036
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1037
	u32 cc = 0;
1038

1039
	memset(config, 0, 128);
1040 1041 1042 1043
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1044
		"0: ipm %0\n"
1045
		"srl %0,28\n"
1046 1047 1048
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1061
	if (test_facility(12)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1083 1084 1085 1086 1087 1088
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1089
static void kvm_s390_crypto_init(struct kvm *kvm)
1090
{
1091
	if (!test_kvm_facility(kvm, 76))
1092
		return;
1093

1094
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1095
	kvm_s390_set_crycb_format(kvm);
1096

1097 1098 1099 1100 1101 1102 1103
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1104 1105
}

1106 1107 1108
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1109
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1110 1111 1112 1113 1114
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1115
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1116
{
1117
	int i, rc;
1118
	char debug_name[16];
1119
	static unsigned long sca_offset;
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1132 1133
	rc = s390_enable_sie();
	if (rc)
1134
		goto out_err;
1135

1136 1137
	rc = -ENOMEM;

1138
	kvm->arch.use_esca = 0; /* start with basic SCA */
1139
	rwlock_init(&kvm->arch.sca_lock);
1140
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1141
	if (!kvm->arch.sca)
1142
		goto out_err;
1143
	spin_lock(&kvm_lock);
1144
	sca_offset += 16;
1145
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1146
		sca_offset = 0;
1147 1148
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1149
	spin_unlock(&kvm_lock);
1150 1151 1152

	sprintf(debug_name, "kvm-%u", current->pid);

1153
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1154
	if (!kvm->arch.dbf)
1155
		goto out_err;
1156

1157 1158 1159
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1160
		goto out_err;
1161

1162
	/* Populate the facility mask initially. */
1163
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1164
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1165 1166
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1167
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1168
		else
1169
			kvm->arch.model.fac_mask[i] = 0UL;
1170 1171
	}

1172
	/* Populate the facility list initially. */
1173 1174
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1175 1176
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1177
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1178
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1179

1180
	kvm_s390_crypto_init(kvm);
1181

1182
	spin_lock_init(&kvm->arch.float_int.lock);
1183 1184
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1185
	init_waitqueue_head(&kvm->arch.ipte_wq);
1186
	mutex_init(&kvm->arch.ipte_mutex);
1187

1188
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1189
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1190

1191 1192
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1193
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1194
	} else {
1195 1196 1197 1198 1199
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1200
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1201
		if (!kvm->arch.gmap)
1202
			goto out_err;
1203
		kvm->arch.gmap->private = kvm;
1204
		kvm->arch.gmap->pfault_enabled = 0;
1205
	}
1206 1207

	kvm->arch.css_support = 0;
1208
	kvm->arch.use_irqchip = 0;
1209
	kvm->arch.epoch = 0;
1210

1211
	spin_lock_init(&kvm->arch.start_stop_lock);
1212
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1213

1214
	return 0;
1215
out_err:
1216
	free_page((unsigned long)kvm->arch.sie_page2);
1217
	debug_unregister(kvm->arch.dbf);
1218
	sca_dispose(kvm);
1219
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1220
	return rc;
1221 1222
}

1223 1224 1225
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1226
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1227
	kvm_s390_clear_local_irqs(vcpu);
1228
	kvm_clear_async_pf_completion_queue(vcpu);
1229
	if (!kvm_is_ucontrol(vcpu->kvm))
1230
		sca_del_vcpu(vcpu);
1231 1232 1233 1234

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1235
	if (vcpu->kvm->arch.use_cmma)
1236
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1237
	free_page((unsigned long)(vcpu->arch.sie_block));
1238

1239
	kvm_vcpu_uninit(vcpu);
1240
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1241 1242 1243 1244 1245
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1246
	struct kvm_vcpu *vcpu;
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1257 1258
}

1259 1260
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1261
	kvm_free_vcpus(kvm);
1262
	sca_dispose(kvm);
1263
	debug_unregister(kvm->arch.dbf);
1264
	free_page((unsigned long)kvm->arch.sie_page2);
1265 1266
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1267
	kvm_s390_destroy_adapters(kvm);
1268
	kvm_s390_clear_float_irqs(kvm);
1269
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1270 1271 1272
}

/* Section: vcpu related */
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1283 1284
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1285
	read_lock(&vcpu->kvm->arch.sca_lock);
1286 1287
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1288

1289
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1290
		sca->cpu[vcpu->vcpu_id].sda = 0;
1291 1292 1293 1294
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1295
		sca->cpu[vcpu->vcpu_id].sda = 0;
1296
	}
1297
	read_unlock(&vcpu->kvm->arch.sca_lock);
1298 1299
}

1300
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1301
{
1302 1303 1304
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1305

1306
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1307 1308
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1309
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1310
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1311
	} else {
1312
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1313

1314
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1315 1316
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1317
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1318
	}
1319
	read_unlock(&vcpu->kvm->arch.sca_lock);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1373 1374
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1375
	return 0;
1376 1377 1378 1379
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1392 1393
}

1394 1395
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1396 1397
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1398 1399
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1400
				    KVM_SYNC_ACRS |
1401 1402 1403
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1404 1405
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1406 1407 1408 1409
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1410
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1411 1412
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1413 1414 1415 1416

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1417 1418 1419
	return 0;
}

1420 1421 1422 1423
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1424
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1425
	vcpu->arch.cputm_start = get_tod_clock_fast();
1426
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1427 1428 1429 1430 1431 1432
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1433
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1434 1435
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1436
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1469 1470 1471
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1472
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1473
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1474 1475
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1476
	vcpu->arch.sie_block->cputm = cputm;
1477
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1478
	preempt_enable();
1479 1480
}

1481
/* update and get the cpu timer - can also be called from other VCPU threads */
1482 1483
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1484
	unsigned int seq;
1485 1486 1487 1488 1489
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1504
	return value;
1505 1506
}

1507 1508
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1509
	/* Save host register state */
1510
	save_fpu_regs();
1511 1512
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1513

1514 1515 1516 1517
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1518
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1519
	if (test_fp_ctl(current->thread.fpu.fpc))
1520
		/* User space provided an invalid FPC, let's clear it */
1521 1522 1523
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1524
	restore_access_regs(vcpu->run->s.regs.acrs);
1525
	gmap_enable(vcpu->arch.gmap);
1526
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1527
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1528
		__start_cpu_timer_accounting(vcpu);
1529
	vcpu->cpu = cpu;
1530 1531 1532 1533
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1534
	vcpu->cpu = -1;
1535
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1536
		__stop_cpu_timer_accounting(vcpu);
1537
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1538
	gmap_disable(vcpu->arch.gmap);
1539

1540
	/* Save guest register state */
1541
	save_fpu_regs();
1542
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1543

1544 1545 1546
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1547 1548

	save_access_regs(vcpu->run->s.regs.acrs);
1549 1550 1551 1552 1553 1554 1555 1556
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1557
	kvm_s390_set_prefix(vcpu, 0);
1558
	kvm_s390_set_cpu_timer(vcpu, 0);
1559 1560 1561 1562 1563
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1564 1565 1566
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1567
	vcpu->arch.sie_block->gbea = 1;
1568
	vcpu->arch.sie_block->pp = 0;
1569 1570
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1571 1572
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1573
	kvm_s390_clear_local_irqs(vcpu);
1574 1575
}

1576
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1577
{
1578
	mutex_lock(&vcpu->kvm->lock);
1579
	preempt_disable();
1580
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1581
	preempt_enable();
1582
	mutex_unlock(&vcpu->kvm->lock);
1583
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1584
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1585
		sca_add_vcpu(vcpu);
1586 1587
	}

1588 1589
}

1590 1591
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1592
	if (!test_kvm_facility(vcpu->kvm, 76))
1593 1594
		return;

1595 1596 1597 1598 1599 1600 1601
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1602 1603 1604
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1622 1623 1624 1625 1626 1627
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
1628
	if (test_kvm_facility(vcpu->kvm, 7))
1629
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1630 1631
}

1632 1633
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1634
	int rc = 0;
1635

1636 1637
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1638 1639
						    CPUSTAT_STOPPED);

1640
	if (test_kvm_facility(vcpu->kvm, 78))
1641
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1642
	else if (test_kvm_facility(vcpu->kvm, 8))
1643
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1644

1645 1646
	kvm_s390_vcpu_setup_model(vcpu);

1647
	vcpu->arch.sie_block->ecb   = 6;
1648
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1649 1650
		vcpu->arch.sie_block->ecb |= 0x10;

1651
	vcpu->arch.sie_block->ecb2  = 8;
1652
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1653
	if (sclp.has_siif)
1654
		vcpu->arch.sie_block->eca |= 1;
1655
	if (sclp.has_sigpif)
1656
		vcpu->arch.sie_block->eca |= 0x10000000U;
1657 1658
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1659
	if (test_kvm_facility(vcpu->kvm, 129)) {
1660 1661 1662
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1663
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1664
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1665

1666
	if (vcpu->kvm->arch.use_cmma) {
1667 1668 1669
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1670
	}
1671
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1672
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1673

1674 1675
	kvm_s390_vcpu_crypto_setup(vcpu);

1676
	return rc;
1677 1678 1679 1680 1681
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1682
	struct kvm_vcpu *vcpu;
1683
	struct sie_page *sie_page;
1684 1685
	int rc = -EINVAL;

1686
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1687 1688 1689
		goto out;

	rc = -ENOMEM;
1690

1691
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1692
	if (!vcpu)
1693
		goto out;
1694

1695 1696
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1697 1698
		goto out_free_cpu;

1699 1700 1701
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1702
	vcpu->arch.sie_block->icpua = id;
1703 1704
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1705
	vcpu->arch.local_int.wq = &vcpu->wq;
1706
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1707
	seqcount_init(&vcpu->arch.cputm_seqcount);
1708

1709 1710
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1711
		goto out_free_sie_block;
1712
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1713
		 vcpu->arch.sie_block);
1714
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1715 1716

	return vcpu;
1717 1718
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1719
out_free_cpu:
1720
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1721
out:
1722 1723 1724 1725 1726
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1727
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1728 1729
}

1730
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1731
{
1732
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1733
	exit_sie(vcpu);
1734 1735
}

1736
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1737
{
1738
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1739 1740
}

1741 1742
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1743
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1744
	exit_sie(vcpu);
1745 1746 1747 1748
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1749
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1750 1751
}

1752 1753 1754 1755 1756 1757
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1758
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1759 1760 1761 1762
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1763 1764
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1765
{
1766 1767
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1778
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1779
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1780
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1781 1782 1783 1784
		}
	}
}

1785 1786 1787 1788 1789 1790 1791
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1792 1793 1794 1795 1796 1797
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1798 1799 1800 1801 1802 1803 1804 1805
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1806
	case KVM_REG_S390_CPU_TIMER:
1807
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1808 1809 1810 1811 1812 1813
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1826 1827 1828 1829
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1830 1831 1832 1833
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
1845
	__u64 val;
1846 1847

	switch (reg->id) {
1848 1849 1850 1851 1852 1853 1854 1855
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1856
	case KVM_REG_S390_CPU_TIMER:
1857 1858 1859
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
1860 1861 1862 1863 1864
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1865 1866 1867
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1868 1869
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1870 1871 1872 1873 1874 1875 1876 1877 1878
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1879 1880 1881 1882
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1883 1884 1885 1886
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1887 1888 1889 1890 1891 1892
	default:
		break;
	}

	return r;
}
1893

1894 1895 1896 1897 1898 1899 1900 1901
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1902
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1903 1904 1905 1906 1907
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1908
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1909 1910 1911 1912 1913 1914
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1915
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1916
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1917
	restore_access_regs(vcpu->run->s.regs.acrs);
1918 1919 1920 1921 1922 1923
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1924
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1925 1926 1927 1928 1929 1930
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1931 1932
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
1933 1934
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1935 1936 1937 1938 1939
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
1940 1941 1942 1943 1944
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1945 1946 1947 1948 1949 1950 1951
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
1952 1953 1954 1955 1956 1957 1958
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1959
	if (!is_vcpu_stopped(vcpu))
1960
		rc = -EBUSY;
1961 1962 1963 1964
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1965 1966 1967 1968 1969 1970 1971 1972 1973
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1974 1975 1976 1977
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1978 1979
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1980
{
1981 1982 1983 1984 1985
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1986
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1987 1988 1989 1990 1991
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1992
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1993 1994 1995 1996

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
1997
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1998 1999 2000 2001 2002 2003
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2004
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2005 2006 2007
	}

	return rc;
2008 2009
}

2010 2011 2012
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2013 2014 2015
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2016 2017 2018 2019 2020
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2041 2042
}

2043 2044 2045 2046 2047
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2048 2049
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2050
retry:
2051
	kvm_s390_vcpu_request_handled(vcpu);
2052 2053
	if (!vcpu->requests)
		return 0;
2054 2055 2056 2057 2058 2059 2060
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2061
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2062 2063
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2064
				      kvm_s390_get_prefix(vcpu),
2065 2066 2067
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2068
		goto retry;
2069
	}
2070

2071 2072 2073 2074 2075
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2076 2077 2078
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2079
			atomic_or(CPUSTAT_IBS,
2080 2081 2082
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2083
	}
2084 2085 2086 2087

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2088
			atomic_andnot(CPUSTAT_IBS,
2089 2090 2091 2092 2093
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2094 2095 2096
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2097 2098 2099
	return 0;
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2127
{
2128 2129
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2130 2131
}

2132 2133 2134 2135
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2136
	struct kvm_s390_irq irq;
2137 2138

	if (start_token) {
2139 2140 2141
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2142 2143
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2144
		inti.parm64 = token;
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2191
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2192 2193 2194 2195 2196 2197
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2198 2199 2200
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2201 2202 2203 2204 2205 2206
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2207
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2208
{
2209
	int rc, cpuflags;
2210

2211 2212 2213 2214 2215 2216 2217
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2218 2219
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2220 2221 2222 2223

	if (need_resched())
		schedule();

2224
	if (test_cpu_flag(CIF_MCCK_PENDING))
2225 2226
		s390_handle_mcck();

2227 2228 2229 2230 2231
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2232

2233 2234 2235 2236
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2237 2238 2239 2240 2241
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2242
	vcpu->arch.sie_block->icptcode = 0;
2243 2244 2245
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2246

2247 2248 2249
	return 0;
}

2250 2251
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2252 2253 2254 2255
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2269
	rc = read_guest_instr(vcpu, &opcode, 1);
2270
	ilen = insn_length(opcode);
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2281 2282 2283
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2284 2285
}

2286 2287
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2288 2289 2290 2291
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2292 2293 2294
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2295 2296
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2311 2312 2313 2314 2315
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2316
		return -EREMOTE;
2317
	} else if (current->thread.gmap_pfault) {
2318
		trace_kvm_s390_major_guest_pfault(vcpu);
2319
		current->thread.gmap_pfault = 0;
2320 2321 2322
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2323
	}
2324
	return vcpu_post_run_fault_in_sie(vcpu);
2325 2326 2327 2328 2329 2330
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2331 2332 2333 2334 2335 2336
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2337 2338 2339 2340
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2341

2342
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2343 2344 2345 2346
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2347 2348
		local_irq_disable();
		__kvm_guest_enter();
2349
		__disable_cpu_timer_accounting(vcpu);
2350
		local_irq_enable();
2351 2352
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2353
		local_irq_disable();
2354
		__enable_cpu_timer_accounting(vcpu);
2355 2356
		__kvm_guest_exit();
		local_irq_enable();
2357
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2358 2359

		rc = vcpu_post_run(vcpu, exit_reason);
2360
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2361

2362
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2363
	return rc;
2364 2365
}

2366 2367 2368 2369 2370 2371 2372 2373
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2374 2375
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2376 2377
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2378
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2379 2380 2381 2382 2383 2384 2385 2386 2387
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2388 2389
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2400
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2401 2402 2403 2404 2405 2406 2407 2408 2409
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2410 2411
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2412
	int rc;
2413 2414
	sigset_t sigsaved;

2415 2416 2417 2418 2419
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2420 2421 2422
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2423 2424 2425
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2426
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2427 2428 2429
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2430

2431
	sync_regs(vcpu, kvm_run);
2432
	enable_cpu_timer_accounting(vcpu);
2433

2434
	might_fault();
2435
	rc = __vcpu_run(vcpu);
2436

2437 2438
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2439
		rc = -EINTR;
2440
	}
2441

2442 2443 2444 2445 2446
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2447
	if (rc == -EREMOTE) {
2448
		/* userspace support is needed, kvm_run has been prepared */
2449 2450
		rc = 0;
	}
2451

2452
	disable_cpu_timer_accounting(vcpu);
2453
	store_regs(vcpu, kvm_run);
2454

2455 2456 2457 2458
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2459
	return rc;
2460 2461 2462 2463 2464 2465 2466 2467
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2468
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2469
{
2470
	unsigned char archmode = 1;
2471
	freg_t fprs[NUM_FPRS];
2472
	unsigned int px;
2473
	u64 clkcomp, cputm;
2474
	int rc;
2475

2476
	px = kvm_s390_get_prefix(vcpu);
2477 2478
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2479
			return -EFAULT;
2480
		gpa = 0;
2481 2482
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2483
			return -EFAULT;
2484 2485 2486
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2487 2488 2489 2490 2491 2492 2493 2494

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, current->thread.fpu.vxrs);
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2495
				     vcpu->run->s.regs.fprs, 128);
2496
	}
2497
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2498
			      vcpu->run->s.regs.gprs, 128);
2499
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2500
			      &vcpu->arch.sie_block->gpsw, 16);
2501
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2502
			      &px, 4);
2503
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2504
			      &vcpu->run->s.regs.fpc, 4);
2505
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2506
			      &vcpu->arch.sie_block->todpr, 4);
2507
	cputm = kvm_s390_get_cpu_timer(vcpu);
2508
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2509
			      &cputm, 8);
2510
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2511
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2512
			      &clkcomp, 8);
2513
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2514
			      &vcpu->run->s.regs.acrs, 64);
2515
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2516 2517
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2518 2519
}

2520 2521 2522 2523 2524 2525 2526
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2527
	save_fpu_regs();
2528
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2529 2530 2531 2532 2533
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2555 2556 2557 2558 2559
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2560
	 */
2561
	save_fpu_regs();
E
Eric Farman 已提交
2562 2563 2564 2565

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2566 2567 2568
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2569
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2585
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2586 2587
}

2588 2589
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2590 2591 2592 2593 2594
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2595
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2596
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2597
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2617
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2618 2619 2620 2621
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2622
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2623
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2624
	return;
2625 2626 2627 2628
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2629 2630 2631 2632 2633 2634
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2635
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2636
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2637
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2638 2639
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2640
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2641
	kvm_s390_clear_stop_irq(vcpu);
2642

2643
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2661
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2662
	return;
2663 2664
}

2665 2666 2667 2668 2669 2670 2671 2672 2673
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2674 2675 2676
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2677
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2678 2679 2680 2681
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2682 2683 2684 2685 2686 2687 2688
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2715 2716
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2727 2728
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2750 2751 2752 2753 2754
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2755
	int idx;
2756
	long r;
2757

2758
	switch (ioctl) {
2759 2760 2761 2762 2763 2764 2765 2766 2767
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2768
	case KVM_S390_INTERRUPT: {
2769
		struct kvm_s390_interrupt s390int;
2770
		struct kvm_s390_irq s390irq;
2771

2772
		r = -EFAULT;
2773
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2774
			break;
2775 2776 2777
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2778
		break;
2779
	}
2780
	case KVM_S390_STORE_STATUS:
2781
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2782
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2783
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2784
		break;
2785 2786 2787
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2788
		r = -EFAULT;
2789
		if (copy_from_user(&psw, argp, sizeof(psw)))
2790 2791 2792
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2793 2794
	}
	case KVM_S390_INITIAL_RESET:
2795 2796
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2845
	case KVM_S390_VCPU_FAULT: {
2846
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2847 2848
		break;
	}
2849 2850 2851 2852 2853 2854 2855 2856 2857
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2858 2859 2860 2861 2862 2863 2864 2865 2866
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2899
	default:
2900
		r = -ENOTTY;
2901
	}
2902
	return r;
2903 2904
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2918 2919
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2920 2921 2922 2923
{
	return 0;
}

2924
/* Section: memory related */
2925 2926
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2927
				   const struct kvm_userspace_memory_region *mem,
2928
				   enum kvm_mr_change change)
2929
{
2930 2931 2932 2933
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2934

2935
	if (mem->userspace_addr & 0xffffful)
2936 2937
		return -EINVAL;

2938
	if (mem->memory_size & 0xffffful)
2939 2940
		return -EINVAL;

2941 2942 2943
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

2944 2945 2946 2947
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2948
				const struct kvm_userspace_memory_region *mem,
2949
				const struct kvm_memory_slot *old,
2950
				const struct kvm_memory_slot *new,
2951
				enum kvm_mr_change change)
2952
{
2953
	int rc;
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2965 2966 2967 2968

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2969
		pr_warn("failed to commit memory region\n");
2970
	return;
2971 2972 2973 2974
}

static int __init kvm_s390_init(void)
{
2975 2976 2977 2978 2979
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

2980
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2981 2982 2983 2984 2985 2986 2987 2988 2989
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2990 2991 2992 2993 2994 2995 2996 2997 2998

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");