intel_ringbuffer.c 60.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32
#include <drm/i915_drm.h>
33

34 35
#include "gem/i915_gem_context.h"

36
#include "i915_drv.h"
37
#include "i915_trace.h"
38
#include "intel_context.h"
39 40
#include "intel_gt.h"
#include "intel_renderstate.h"
41
#include "intel_reset.h"
42
#include "intel_workarounds.h"
43

44 45 46 47 48
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

49
unsigned int intel_ring_update_space(struct intel_ring *ring)
50
{
51 52 53 54 55 56
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
57 58
}

59
static int
60
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
61
{
62
	unsigned int num_store_dw;
63
	u32 cmd, *cs;
64 65

	cmd = MI_FLUSH;
66
	num_store_dw = 0;
67
	if (mode & EMIT_INVALIDATE)
68
		cmd |= MI_READ_FLUSH;
69 70
	if (mode & EMIT_FLUSH)
		num_store_dw = 4;
71

72
	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
73 74
	if (IS_ERR(cs))
		return PTR_ERR(cs);
75

76
	*cs++ = cmd;
77 78
	while (num_store_dw--) {
		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
79 80
		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
						INTEL_GT_SCRATCH_FIELD_DEFAULT);
81 82 83 84
		*cs++ = 0;
	}
	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;

85
	intel_ring_advance(rq, cs);
86 87 88 89 90

	return 0;
}

static int
91
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92
{
93
	u32 cmd, *cs;
94
	int i;
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

124
	cmd = MI_FLUSH;
125
	if (mode & EMIT_INVALIDATE) {
126
		cmd |= MI_EXE_FLUSH;
127
		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
128 129
			cmd |= MI_INVALIDATE_ISP;
	}
130

131 132 133 134 135
	i = 2;
	if (mode & EMIT_INVALIDATE)
		i += 20;

	cs = intel_ring_begin(rq, i);
136 137
	if (IS_ERR(cs))
		return PTR_ERR(cs);
138

139
	*cs++ = cmd;
140 141 142 143 144 145 146 147 148 149 150 151 152

	/*
	 * A random delay to let the CS invalidate take effect? Without this
	 * delay, the GPU relocation path fails as the CS does not see
	 * the updated contents. Just as important, if we apply the flushes
	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
	 * write and before the invalidate on the next batch), the relocations
	 * still fail. This implies that is a delay following invalidation
	 * that is required to reset the caches as opposed to a delay to
	 * ensure the memory is written.
	 */
	if (mode & EMIT_INVALIDATE) {
		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
153 154
		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
155
			PIPE_CONTROL_GLOBAL_GTT;
156 157 158 159 160 161 162
		*cs++ = 0;
		*cs++ = 0;

		for (i = 0; i < 12; i++)
			*cs++ = MI_FLUSH;

		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
163 164
		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
165
			PIPE_CONTROL_GLOBAL_GTT;
166 167 168 169 170 171
		*cs++ = 0;
		*cs++ = 0;
	}

	*cs++ = cmd;

172
	intel_ring_advance(rq, cs);
173 174

	return 0;
175 176
}

177
/*
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
215
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
216
{
217
	u32 scratch_addr =
218 219
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
220 221
	u32 *cs;

222
	cs = intel_ring_begin(rq, 6);
223 224 225 226 227 228 229 230 231
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
232
	intel_ring_advance(rq, cs);
233

234
	cs = intel_ring_begin(rq, 6);
235 236 237 238 239 240 241 242 243
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
244
	intel_ring_advance(rq, cs);
245 246 247 248 249

	return 0;
}

static int
250
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
251
{
252
	u32 scratch_addr =
253 254
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
255
	u32 *cs, flags = 0;
256 257
	int ret;

258
	/* Force SNB workarounds for PIPE_CONTROL flushes */
259
	ret = gen6_emit_post_sync_nonzero_flush(rq);
260 261 262
	if (ret)
		return ret;

263 264 265 266
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
267
	if (mode & EMIT_FLUSH) {
268 269 270 271 272 273
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
274
		flags |= PIPE_CONTROL_CS_STALL;
275
	}
276
	if (mode & EMIT_INVALIDATE) {
277 278 279 280 281 282 283 284 285
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
286
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
287
	}
288

289
	cs = intel_ring_begin(rq, 4);
290 291
	if (IS_ERR(cs))
		return PTR_ERR(cs);
292

293 294 295 296
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
297
	intel_ring_advance(rq, cs);
298 299 300 301

	return 0;
}

302
static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
303 304 305 306 307 308 309 310 311
{
	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_QW_WRITE;
312 313
	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
314
		PIPE_CONTROL_GLOBAL_GTT;
315 316 317 318 319 320 321 322 323
	*cs++ = 0;

	/* Finally we can flush and with it emit the breadcrumb */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_CS_STALL);
324 325 326
	*cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = rq->fence.seqno;

327 328 329 330 331
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
332 333

	return cs;
334 335
}

336
static int
337
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
338
{
339
	u32 *cs;
340

341
	cs = intel_ring_begin(rq, 4);
342 343
	if (IS_ERR(cs))
		return PTR_ERR(cs);
344

345 346 347 348
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
349
	intel_ring_advance(rq, cs);
350 351 352 353

	return 0;
}

354
static int
355
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
356
{
357
	u32 scratch_addr =
358 359
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
360
	u32 *cs, flags = 0;
361

362 363 364 365 366 367 368 369 370 371
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

372 373 374 375
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
376
	if (mode & EMIT_FLUSH) {
377 378
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
379
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
380
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
381
	}
382
	if (mode & EMIT_INVALIDATE) {
383 384 385 386 387 388
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
389
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
390 391 392 393
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
394
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395

396 397
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

398 399 400
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
401
		gen7_render_ring_cs_stall_wa(rq);
402 403
	}

404
	cs = intel_ring_begin(rq, 4);
405 406
	if (IS_ERR(cs))
		return PTR_ERR(cs);
407

408 409 410 411
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
412
	intel_ring_advance(rq, cs);
413 414 415 416

	return 0;
}

417
static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
418 419 420 421 422 423 424 425 426
{
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_GLOBAL_GTT_IVB |
		 PIPE_CONTROL_CS_STALL);
427 428 429
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = rq->fence.seqno;

430 431 432 433 434
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
435 436

	return cs;
437 438
}

439
static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
440
{
441 442 443 444 445 446 447
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

448 449 450 451
	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
452 453

	return cs;
454 455
}

456
#define GEN7_XCS_WA 32
457
static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
458 459 460
{
	int i;

461 462 463 464 465 466 467
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

468 469
	for (i = 0; i < GEN7_XCS_WA; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
470 471
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
472 473 474 475 476 477 478
	}

	*cs++ = MI_FLUSH_DW;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = MI_USER_INTERRUPT;
479
	*cs++ = MI_NOOP;
480 481 482

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
483 484

	return cs;
485 486 487
}
#undef GEN7_XCS_WA

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Keep the render interrupt unmasked as this papers over
	 * lost interrupts following a reset.
	 */
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 6)
			mask &= ~BIT(0);
		else
			mask &= ~I915_USER_INTERRUPT;
	}

	intel_engine_set_hwsp_writemask(engine, mask);
}

static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
505
{
506
	struct drm_i915_private *dev_priv = engine->i915;
507 508
	u32 addr;

509
	addr = lower_32_bits(phys);
510
	if (INTEL_GEN(dev_priv) >= 4)
511 512
		addr |= (phys >> 28) & 0xf0;

513 514 515
	I915_WRITE(HWS_PGA, addr);
}

516
static struct page *status_page(struct intel_engine_cs *engine)
517
{
518
	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
519

520 521 522 523 524 525 526
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	return sg_page(obj->mm.pages->sgl);
}

static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
{
	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
527 528 529 530
	set_hwstam(engine, ~0u);
}

static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
531
{
532
	struct drm_i915_private *dev_priv = engine->i915;
533
	i915_reg_t hwsp;
534

535 536
	/*
	 * The ring status page addresses are no longer next to the rest of
537 538
	 * the ring registers as of gen7.
	 */
539
	if (IS_GEN(dev_priv, 7)) {
540
		switch (engine->id) {
541 542 543 544 545 546
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
547 548
			/* fallthrough */
		case RCS0:
549
			hwsp = RENDER_HWS_PGA_GEN7;
550
			break;
551
		case BCS0:
552
			hwsp = BLT_HWS_PGA_GEN7;
553
			break;
554
		case VCS0:
555
			hwsp = BSD_HWS_PGA_GEN7;
556
			break;
557
		case VECS0:
558
			hwsp = VEBOX_HWS_PGA_GEN7;
559 560
			break;
		}
561
	} else if (IS_GEN(dev_priv, 6)) {
562
		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
563
	} else {
564
		hwsp = RING_HWS_PGA(engine->mmio_base);
565
	}
566

567 568 569
	I915_WRITE(hwsp, offset);
	POSTING_READ(hwsp);
}
570

571 572 573 574 575 576 577 578
static void flush_cs_tlb(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!IS_GEN_RANGE(dev_priv, 6, 7))
		return;

	/* ring should be idle before issuing a sync flush*/
579 580 581 582 583 584 585 586
	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

	ENGINE_WRITE(engine, RING_INSTPM,
		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					INSTPM_SYNC_FLUSH));
	if (intel_wait_for_register(engine->uncore,
				    RING_INSTPM(engine->mmio_base),
				    INSTPM_SYNC_FLUSH, 0,
587 588 589 590
				    1000))
		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
			  engine->name);
}
591

592 593
static void ring_setup_status_page(struct intel_engine_cs *engine)
{
594
	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
595
	set_hwstam(engine, ~0u);
596

597
	flush_cs_tlb(engine);
598 599
}

600
static bool stop_ring(struct intel_engine_cs *engine)
601
{
602
	struct drm_i915_private *dev_priv = engine->i915;
603

604
	if (INTEL_GEN(dev_priv) > 2) {
605 606 607
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
		if (intel_wait_for_register(engine->uncore,
608 609 610 611
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
612 613
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
614 615 616

			/*
			 * Sometimes we observe that the idle flag is not
617 618 619
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
620 621
			if (ENGINE_READ(engine, RING_HEAD) !=
			    ENGINE_READ(engine, RING_TAIL))
622
				return false;
623 624
		}
	}
625

626
	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
627

628 629
	ENGINE_WRITE(engine, RING_HEAD, 0);
	ENGINE_WRITE(engine, RING_TAIL, 0);
630

631
	/* The ring must be empty before it is disabled */
632
	ENGINE_WRITE(engine, RING_CTL, 0);
633

634
	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
635
}
636

637
static int xcs_resume(struct intel_engine_cs *engine)
638
{
639
	struct drm_i915_private *dev_priv = engine->i915;
640
	struct intel_ring *ring = engine->buffer;
641 642
	int ret = 0;

643 644 645
	GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
		  engine->name, ring->head, ring->tail);

646
	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
647

648
	if (!stop_ring(engine)) {
649
		/* G45 ring initialization often fails to reset head to zero */
650 651 652
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
653 654 655 656
				ENGINE_READ(engine, RING_CTL),
				ENGINE_READ(engine, RING_HEAD),
				ENGINE_READ(engine, RING_TAIL),
				ENGINE_READ(engine, RING_START));
657

658
		if (!stop_ring(engine)) {
659 660
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
661
				  engine->name,
662 663 664 665
				  ENGINE_READ(engine, RING_CTL),
				  ENGINE_READ(engine, RING_HEAD),
				  ENGINE_READ(engine, RING_TAIL),
				  ENGINE_READ(engine, RING_START));
666 667
			ret = -EIO;
			goto out;
668
		}
669 670
	}

671
	if (HWS_NEEDS_PHYSICAL(dev_priv))
672
		ring_setup_phys_status_page(engine);
673
	else
674
		ring_setup_status_page(engine);
675

676
	intel_engine_reset_breadcrumbs(engine);
677

678
	/* Enforce ordering by reading HEAD register back */
679
	ENGINE_READ(engine, RING_HEAD);
680

681 682 683 684
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
685
	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
686 687

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
688
	if (ENGINE_READ(engine, RING_HEAD))
689
		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
690
				 engine->name, ENGINE_READ(engine, RING_HEAD));
691

692 693 694
	/* Check that the ring offsets point within the ring! */
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
695
	intel_ring_update_space(ring);
C
Chris Wilson 已提交
696 697

	/* First wake the ring up to an empty/idle ring */
698 699 700
	ENGINE_WRITE(engine, RING_HEAD, ring->head);
	ENGINE_WRITE(engine, RING_TAIL, ring->head);
	ENGINE_POSTING_READ(engine, RING_TAIL);
701

702
	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
703 704

	/* If the head is still not zero, the ring is dead */
705
	if (intel_wait_for_register(engine->uncore,
706
				    RING_CTL(engine->mmio_base),
707 708
				    RING_VALID, RING_VALID,
				    50)) {
709
		DRM_ERROR("%s initialization failed "
710
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
711
			  engine->name,
712 713 714 715 716
			  ENGINE_READ(engine, RING_CTL),
			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
			  ENGINE_READ(engine, RING_HEAD), ring->head,
			  ENGINE_READ(engine, RING_TAIL), ring->tail,
			  ENGINE_READ(engine, RING_START),
717
			  i915_ggtt_offset(ring->vma));
718 719
		ret = -EIO;
		goto out;
720 721
	}

722
	if (INTEL_GEN(dev_priv) > 2)
723 724
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
725

C
Chris Wilson 已提交
726 727
	/* Now awake, let it get started */
	if (ring->tail != ring->head) {
728 729
		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
		ENGINE_POSTING_READ(engine, RING_TAIL);
C
Chris Wilson 已提交
730 731
	}

732
	/* Papering over lost _interrupts_ immediately following the restart */
733
	intel_engine_queue_breadcrumbs(engine);
734
out:
735
	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
736 737

	return ret;
738 739
}

740
static void reset_prepare(struct intel_engine_cs *engine)
741
{
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	struct intel_uncore *uncore = engine->uncore;
	const u32 base = engine->mmio_base;

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
	GEM_TRACE("%s\n", engine->name);

	if (intel_engine_stop_cs(engine))
		GEM_TRACE("%s: timed out on STOP_RING\n", engine->name);

	intel_uncore_write_fw(uncore,
			      RING_HEAD(base),
			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */

	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));

	/* The ring must be empty before it is disabled */
	intel_uncore_write_fw(uncore, RING_CTL(base), 0);

	/* Check acts as a post */
	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
		GEM_TRACE("%s: ring head [%x] not parked\n",
			  engine->name,
			  intel_uncore_read_fw(uncore, RING_HEAD(base)));
781 782
}

783
static void reset_ring(struct intel_engine_cs *engine, bool stalled)
784
{
785 786
	struct i915_request *pos, *rq;
	unsigned long flags;
787
	u32 head;
788

789
	rq = NULL;
790 791
	spin_lock_irqsave(&engine->active.lock, flags);
	list_for_each_entry(pos, &engine->active.requests, sched.link) {
792
		if (!i915_request_completed(pos)) {
793 794 795
			rq = pos;
			break;
		}
796
	}
797 798

	/*
799
	 * The guilty request will get skipped on a hung engine.
800
	 *
801 802 803 804 805 806 807 808 809 810 811 812 813
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
814
	 *
815 816 817
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
818
	 */
819

820
	if (rq) {
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		/*
		 * Try to restore the logical GPU state to match the
		 * continuation of the request queue. If we skip the
		 * context/PD restore, then the next request may try to execute
		 * assuming that its context is valid and loaded on the GPU and
		 * so may try to access invalid memory, prompting repeated GPU
		 * hangs.
		 *
		 * If the request was guilty, we still restore the logical
		 * state in case the next request requires it (e.g. the
		 * aliasing ppgtt), but skip over the hung batch.
		 *
		 * If the request was innocent, we try to replay the request
		 * with the restored context.
		 */
836
		__i915_request_reset(rq, stalled);
837 838 839 840 841

		GEM_BUG_ON(rq->ring != engine->buffer);
		head = rq->head;
	} else {
		head = engine->buffer->tail;
842
	}
843 844
	engine->buffer->head = intel_ring_wrap(engine->buffer, head);

845
	spin_unlock_irqrestore(&engine->active.lock, flags);
846 847
}

848 849 850 851
static void reset_finish(struct intel_engine_cs *engine)
{
}

852
static int intel_rcs_ctx_init(struct i915_request *rq)
853 854 855
{
	int ret;

856
	ret = intel_engine_emit_ctx_wa(rq);
857 858 859
	if (ret != 0)
		return ret;

860
	ret = intel_renderstate_emit(rq);
861
	if (ret)
862
		return ret;
863

864
	return 0;
865 866
}

867
static int rcs_resume(struct intel_engine_cs *engine)
868
{
869
	struct drm_i915_private *dev_priv = engine->i915;
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884
	/*
	 * Disable CONSTANT_BUFFER before it is loaded from the context
	 * image. For as it is loaded, it is executed and the stored
	 * address may no longer be valid, leading to a GPU hang.
	 *
	 * This imposes the requirement that userspace reload their
	 * CONSTANT_BUFFER on every batch, fortunately a requirement
	 * they are already accustomed to from before contexts were
	 * enabled.
	 */
	if (IS_GEN(dev_priv, 4))
		I915_WRITE(ECOSKPD,
			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));

885
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
886
	if (IS_GEN_RANGE(dev_priv, 4, 6))
887
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
888 889 890 891

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
892
	 *
893
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
894
	 */
895
	if (IS_GEN_RANGE(dev_priv, 6, 7))
896 897
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

898
	/* Required for the hardware to program scanline values for waiting */
899
	/* WaEnableFlushTlbInvalidationMode:snb */
900
	if (IS_GEN(dev_priv, 6))
901
		I915_WRITE(GFX_MODE,
902
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
903

904
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
905
	if (IS_GEN(dev_priv, 7))
906
		I915_WRITE(GFX_MODE_GEN7,
907
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
908
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
909

910
	if (IS_GEN(dev_priv, 6)) {
911 912 913 914 915 916
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
917
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
918 919
	}

920
	if (IS_GEN_RANGE(dev_priv, 6, 7))
921
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
922

923
	return xcs_resume(engine);
924 925
}

926 927
static void cancel_requests(struct intel_engine_cs *engine)
{
928
	struct i915_request *request;
929 930
	unsigned long flags;

931
	spin_lock_irqsave(&engine->active.lock, flags);
932 933

	/* Mark all submitted requests as skipped. */
934
	list_for_each_entry(request, &engine->active.requests, sched.link) {
935 936
		if (!i915_request_signaled(request))
			dma_fence_set_error(&request->fence, -EIO);
937

938
		i915_request_mark_complete(request);
939
	}
940

941 942
	/* Remaining _unready_ requests will be nop'ed when submitted */

943
	spin_unlock_irqrestore(&engine->active.lock, flags);
944 945
}

946
static void i9xx_submit_request(struct i915_request *request)
947
{
948
	i915_request_submit(request);
949

950 951
	ENGINE_WRITE(request->engine, RING_TAIL,
		     intel_ring_set_tail(request->ring, request->tail));
952 953
}

954
static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
955
{
956 957 958
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

959 960
	*cs++ = MI_FLUSH;

961 962 963 964
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
	*cs++ = rq->fence.seqno;

965
	*cs++ = MI_USER_INTERRUPT;
966
	*cs++ = MI_NOOP;
967

968 969
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
970 971

	return cs;
972
}
973

974
#define GEN5_WA_STORES 8 /* must be at least 1! */
975
static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
976
{
977 978
	int i;

979 980 981
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

982 983 984 985 986
	*cs++ = MI_FLUSH;

	BUILD_BUG_ON(GEN5_WA_STORES < 1);
	for (i = 0; i < GEN5_WA_STORES; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
987 988
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
989 990 991 992 993 994
	}

	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
995 996

	return cs;
997
}
998
#undef GEN5_WA_STORES
999

1000 1001
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1002
{
1003
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1004 1005 1006
}

static void
1007
gen5_irq_disable(struct intel_engine_cs *engine)
1008
{
1009
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1010 1011
}

1012 1013
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1014
{
1015
	engine->i915->irq_mask &= ~engine->irq_enable_mask;
1016 1017
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
1018 1019
}

1020
static void
1021
i9xx_irq_disable(struct intel_engine_cs *engine)
1022
{
1023
	engine->i915->irq_mask |= engine->irq_enable_mask;
1024
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1025 1026
}

1027 1028
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1029
{
T
Tvrtko Ursulin 已提交
1030
	struct drm_i915_private *i915 = engine->i915;
C
Chris Wilson 已提交
1031

T
Tvrtko Ursulin 已提交
1032 1033 1034
	i915->irq_mask &= ~engine->irq_enable_mask;
	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
	ENGINE_POSTING_READ16(engine, RING_IMR);
C
Chris Wilson 已提交
1035 1036 1037
}

static void
1038
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1039
{
1040
	struct drm_i915_private *i915 = engine->i915;
C
Chris Wilson 已提交
1041

1042 1043
	i915->irq_mask |= engine->irq_enable_mask;
	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
C
Chris Wilson 已提交
1044 1045
}

1046
static int
1047
bsd_ring_flush(struct i915_request *rq, u32 mode)
1048
{
1049
	u32 *cs;
1050

1051
	cs = intel_ring_begin(rq, 2);
1052 1053
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1054

1055 1056
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
1057
	intel_ring_advance(rq, cs);
1058
	return 0;
1059 1060
}

1061 1062
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1063
{
1064 1065
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1066 1067

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1068
	ENGINE_POSTING_READ(engine, RING_IMR);
1069

1070
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1071 1072 1073
}

static void
1074
gen6_irq_disable(struct intel_engine_cs *engine)
1075
{
1076 1077
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1078 1079
}

1080 1081
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1082
{
1083
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1084 1085

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1086
	ENGINE_POSTING_READ(engine, RING_IMR);
1087

1088
	gen6_unmask_pm_irq(engine->gt, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1089 1090 1091
}

static void
1092
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1093
{
1094
	ENGINE_WRITE(engine, RING_IMR, ~0);
1095
	gen6_mask_pm_irq(engine->gt, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1096 1097
}

1098
static int
1099
i965_emit_bb_start(struct i915_request *rq,
1100 1101
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1102
{
1103
	u32 *cs;
1104

1105
	cs = intel_ring_begin(rq, 2);
1106 1107
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1108

1109 1110 1111
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
1112
	intel_ring_advance(rq, cs);
1113

1114 1115 1116
	return 0;
}

1117
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1118
#define I830_BATCH_LIMIT SZ_256K
1119 1120
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1121
static int
1122
i830_emit_bb_start(struct i915_request *rq,
1123 1124
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1125
{
1126 1127 1128
	u32 *cs, cs_offset =
		intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1129

1130
	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1131

1132
	cs = intel_ring_begin(rq, 6);
1133 1134
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1135

1136
	/* Evict the invalid PTE TLBs */
1137 1138 1139 1140 1141 1142
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
1143
	intel_ring_advance(rq, cs);
1144

1145
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1146 1147 1148
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1149
		cs = intel_ring_begin(rq, 6 + 2);
1150 1151
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1152 1153 1154 1155 1156

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1157 1158 1159 1160 1161 1162 1163 1164 1165
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
1166
		intel_ring_advance(rq, cs);
1167 1168

		/* ... and execute it. */
1169
		offset = cs_offset;
1170
	}
1171

1172
	cs = intel_ring_begin(rq, 2);
1173 1174
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1175

1176 1177 1178
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1179
	intel_ring_advance(rq, cs);
1180

1181 1182 1183 1184
	return 0;
}

static int
1185
i915_emit_bb_start(struct i915_request *rq,
1186 1187
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1188
{
1189
	u32 *cs;
1190

1191
	cs = intel_ring_begin(rq, 2);
1192 1193
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1194

1195 1196 1197
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1198
	intel_ring_advance(rq, cs);
1199 1200 1201 1202

	return 0;
}

1203
int intel_ring_pin(struct intel_ring *ring)
1204
{
1205
	struct i915_vma *vma = ring->vma;
1206
	unsigned int flags;
1207
	void *addr;
1208 1209
	int ret;

1210 1211
	if (atomic_fetch_inc(&ring->pin_count))
		return 0;
1212

1213
	ret = intel_timeline_pin(ring->timeline);
1214
	if (ret)
1215
		goto err_unpin;
1216

1217
	flags = PIN_GLOBAL;
1218 1219 1220 1221

	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

1222
	if (vma->obj->stolen)
1223
		flags |= PIN_MAPPABLE;
C
Chris Wilson 已提交
1224 1225
	else
		flags |= PIN_HIGH;
1226

1227
	ret = i915_vma_pin(vma, 0, 0, flags);
1228
	if (unlikely(ret))
1229
		goto err_timeline;
1230

1231
	if (i915_vma_is_map_and_fenceable(vma))
1232 1233
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1234 1235
		addr = i915_gem_object_pin_map(vma->obj,
					       i915_coherent_map_type(vma->vm->i915));
1236 1237
	if (IS_ERR(addr)) {
		ret = PTR_ERR(addr);
1238
		goto err_ring;
1239
	}
1240

1241 1242
	vma->obj->pin_global++;

1243
	GEM_BUG_ON(ring->vaddr);
1244
	ring->vaddr = addr;
1245

1246
	GEM_TRACE("ring:%llx pin\n", ring->timeline->fence_context);
1247
	return 0;
1248

1249
err_ring:
1250
	i915_vma_unpin(vma);
1251
err_timeline:
1252
	intel_timeline_unpin(ring->timeline);
1253 1254
err_unpin:
	atomic_dec(&ring->pin_count);
1255
	return ret;
1256 1257
}

1258 1259
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
1260 1261
	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));

1262 1263 1264 1265 1266 1267
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1268 1269
void intel_ring_unpin(struct intel_ring *ring)
{
1270 1271
	if (!atomic_dec_and_test(&ring->pin_count))
		return;
1272

1273 1274
	GEM_TRACE("ring:%llx unpin\n", ring->timeline->fence_context);

1275 1276 1277
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1278
	GEM_BUG_ON(!ring->vma);
1279
	i915_vma_unset_ggtt_write(ring->vma);
1280
	if (i915_vma_is_map_and_fenceable(ring->vma))
1281
		i915_vma_unpin_iomap(ring->vma);
1282 1283
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1284 1285

	GEM_BUG_ON(!ring->vaddr);
1286 1287
	ring->vaddr = NULL;

1288
	ring->vma->obj->pin_global--;
1289
	i915_vma_unpin(ring->vma);
1290

1291
	intel_timeline_unpin(ring->timeline);
1292 1293
}

1294
static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size)
1295
{
1296 1297
	struct i915_address_space *vm = &ggtt->vm;
	struct drm_i915_private *i915 = vm->i915;
1298
	struct drm_i915_gem_object *obj;
1299
	struct i915_vma *vma;
1300

1301
	obj = i915_gem_object_create_stolen(i915, size);
1302
	if (!obj)
1303
		obj = i915_gem_object_create_internal(i915, size);
1304 1305
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1306

1307 1308 1309 1310 1311
	/*
	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
	 * if supported by the platform's GGTT.
	 */
	if (vm->has_read_only)
1312
		i915_gem_object_set_readonly(obj);
1313

1314
	vma = i915_vma_instance(obj, vm, NULL);
1315 1316 1317 1318
	if (IS_ERR(vma))
		goto err;

	return vma;
1319

1320 1321 1322
err:
	i915_gem_object_put(obj);
	return vma;
1323 1324
}

1325
struct intel_ring *
1326
intel_engine_create_ring(struct intel_engine_cs *engine,
1327
			 struct intel_timeline *timeline,
1328
			 int size)
1329
{
1330
	struct drm_i915_private *i915 = engine->i915;
1331
	struct intel_ring *ring;
1332
	struct i915_vma *vma;
1333

1334
	GEM_BUG_ON(!is_power_of_2(size));
1335
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1336

1337
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1338
	if (!ring)
1339 1340
		return ERR_PTR(-ENOMEM);

1341
	kref_init(&ring->ref);
1342
	INIT_LIST_HEAD(&ring->request_list);
1343
	ring->timeline = intel_timeline_get(timeline);
1344

1345 1346 1347 1348 1349 1350
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1351
	if (IS_I830(i915) || IS_I845G(i915))
1352 1353 1354 1355
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1356
	vma = create_ring_vma(engine->gt->ggtt, size);
1357
	if (IS_ERR(vma)) {
1358
		kfree(ring);
1359
		return ERR_CAST(vma);
1360
	}
1361
	ring->vma = vma;
1362 1363 1364 1365

	return ring;
}

1366
void intel_ring_free(struct kref *ref)
1367
{
1368
	struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1369 1370

	i915_vma_close(ring->vma);
1371
	i915_vma_put(ring->vma);
1372

1373
	intel_timeline_put(ring->timeline);
1374 1375 1376
	kfree(ring);
}

1377 1378 1379 1380 1381
static void __ring_context_fini(struct intel_context *ce)
{
	i915_gem_object_put(ce->state->obj);
}

1382
static void ring_context_destroy(struct kref *ref)
1383
{
1384 1385
	struct intel_context *ce = container_of(ref, typeof(*ce), ref);

1386
	GEM_BUG_ON(intel_context_is_pinned(ce));
1387

1388 1389
	if (ce->state)
		__ring_context_fini(ce);
1390

1391
	intel_context_free(ce);
1392 1393
}

1394 1395
static int __context_pin_ppgtt(struct i915_gem_context *ctx)
{
1396
	struct i915_address_space *vm;
1397 1398
	int err = 0;

1399 1400 1401
	vm = ctx->vm ?: &ctx->i915->mm.aliasing_ppgtt->vm;
	if (vm)
		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1402 1403 1404 1405 1406 1407

	return err;
}

static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
{
1408
	struct i915_address_space *vm;
1409

1410 1411 1412
	vm = ctx->vm ?: &ctx->i915->mm.aliasing_ppgtt->vm;
	if (vm)
		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1413 1414
}

1415
static void ring_context_unpin(struct intel_context *ce)
1416
{
1417
	__context_unpin_ppgtt(ce->gem_context);
1418 1419
}

1420 1421 1422 1423 1424 1425
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1426
	int err;
1427

1428
	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1429 1430 1431
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915))
		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);

1469 1470
		i915_gem_object_flush_map(obj);
		i915_gem_object_unpin_map(obj);
1471 1472
	}

1473
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1474 1475 1476 1477
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1478 1479

	return vma;
1480 1481 1482 1483 1484 1485

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1486 1487
}

1488
static int ring_context_pin(struct intel_context *ce)
1489
{
1490
	struct intel_engine_cs *engine = ce->engine;
1491
	int err;
1492

1493 1494 1495 1496
	/* One ringbuffer to rule them all */
	GEM_BUG_ON(!engine->buffer);
	ce->ring = engine->buffer;

1497
	if (!ce->state && engine->context_size) {
1498 1499 1500
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
1501 1502
		if (IS_ERR(vma))
			return PTR_ERR(vma);
1503 1504 1505 1506

		ce->state = vma;
	}

1507
	err = intel_context_active_acquire(ce);
1508
	if (err)
1509
		return err;
1510

1511 1512
	err = __context_pin_ppgtt(ce->gem_context);
	if (err)
1513
		goto err_active;
1514

1515
	return 0;
1516

1517 1518
err_active:
	intel_context_active_release(ce);
1519
	return err;
1520 1521
}

1522 1523 1524 1525 1526
static void ring_context_reset(struct intel_context *ce)
{
	intel_ring_reset(ce->ring, 0);
}

1527
static const struct intel_context_ops ring_context_ops = {
1528
	.pin = ring_context_pin,
1529
	.unpin = ring_context_unpin,
1530

1531 1532 1533
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1534
	.reset = ring_context_reset,
1535 1536 1537
	.destroy = ring_context_destroy,
};

1538
static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1539 1540 1541 1542 1543 1544 1545 1546 1547
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1548
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1549 1550 1551
	*cs++ = PP_DIR_DCLV_2G;

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1552
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1553
	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1554 1555 1556 1557 1558 1559

	intel_ring_advance(rq, cs);

	return 0;
}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
static int flush_pd_dir(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Stall until the page table load is complete */
	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1571
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1572 1573
	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1574 1575 1576 1577 1578 1579
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);
	return 0;
}

1580
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1581 1582 1583 1584
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
1585 1586
	const int num_engines =
		IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1587
	bool force_restore = false;
1588 1589 1590 1591 1592 1593 1594 1595
	int len;
	u32 *cs;

	flags |= MI_MM_SPACE_GTT;
	if (IS_HASWELL(i915))
		/* These flags are for resource streamer on HSW+ */
		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
	else
1596
		/* We need to save the extended state for powersaving modes */
1597 1598 1599
		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;

	len = 4;
1600
	if (IS_GEN(i915, 7))
1601
		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1602 1603
	else if (IS_GEN(i915, 5))
		len += 2;
1604 1605 1606 1607 1608 1609
	if (flags & MI_FORCE_RESTORE) {
		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
		flags &= ~MI_FORCE_RESTORE;
		force_restore = true;
		len += 2;
	}
1610 1611 1612 1613 1614 1615

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1616
	if (IS_GEN(i915, 7)) {
1617
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1618
		if (num_engines) {
1619 1620
			struct intel_engine_cs *signaller;

1621
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
1632 1633 1634 1635 1636 1637 1638 1639
	} else if (IS_GEN(i915, 5)) {
		/*
		 * This w/a is only listed for pre-production ilk a/b steppings,
		 * but is also mentioned for programming the powerctx. To be
		 * safe, just apply the workaround; we do not use SyncFlush so
		 * this should never take effect and so be a no-op!
		 */
		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1640 1641
	}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	if (force_restore) {
		/*
		 * The HW doesn't handle being told to restore the current
		 * context very well. Quite often it likes goes to go off and
		 * sulk, especially when it is meant to be reloading PP_DIR.
		 * A very simple fix to force the reload is to simply switch
		 * away from the current context and back again.
		 *
		 * Note that the kernel_context will contain random state
		 * following the INHIBIT_RESTORE. We accept this since we
		 * never use the kernel_context state; it is merely a
		 * placeholder we use to flush other contexts.
		 */
		*cs++ = MI_SET_CONTEXT;
1656
		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1657 1658 1659 1660
			MI_MM_SPACE_GTT |
			MI_RESTORE_INHIBIT;
	}

1661 1662
	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
1663
	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1664 1665 1666 1667 1668 1669
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

1670
	if (IS_GEN(i915, 7)) {
1671
		if (num_engines) {
1672 1673 1674
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

1675
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
1689 1690
			*cs++ = intel_gt_scratch_offset(rq->engine->gt,
							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1691 1692 1693
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1694 1695
	} else if (IS_GEN(i915, 5)) {
		*cs++ = MI_SUSPEND_FLUSH;
1696 1697 1698 1699 1700 1701 1702
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1703
static int remap_l3(struct i915_request *rq, int slice)
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1731
static int switch_context(struct i915_request *rq)
1732 1733
{
	struct intel_engine_cs *engine = rq->engine;
1734
	struct i915_gem_context *ctx = rq->gem_context;
1735 1736
	struct i915_address_space *vm =
		ctx->vm ?: &rq->i915->mm.aliasing_ppgtt->vm;
1737
	unsigned int unwind_mm = 0;
1738 1739 1740 1741 1742
	u32 hw_flags = 0;
	int ret, i;

	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));

1743
	if (vm) {
1744
		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		int loops;

		/*
		 * Baytail takes a little more convincing that it really needs
		 * to reload the PD between contexts. It is not just a little
		 * longer, as adding more stalls after the load_pd_dir (i.e.
		 * adding a long loop around flush_pd_dir) is not as effective
		 * as reloading the PD umpteen times. 32 is derived from
		 * experimentation (gem_exec_parallel/fds) and has no good
		 * explanation.
		 */
		loops = 1;
1757
		if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1758 1759 1760 1761 1762 1763 1764
			loops = 32;

		do {
			ret = load_pd_dir(rq, ppgtt);
			if (ret)
				goto err;
		} while (--loops);
1765

1766 1767 1768
		if (ppgtt->pd_dirty_engines & engine->mask) {
			unwind_mm = engine->mask;
			ppgtt->pd_dirty_engines &= ~unwind_mm;
1769 1770
			hw_flags = MI_FORCE_RESTORE;
		}
1771 1772
	}

1773
	if (rq->hw_context->state) {
1774
		GEM_BUG_ON(engine->id != RCS0);
1775 1776 1777 1778 1779 1780 1781 1782

		/*
		 * The kernel context(s) is treated as pure scratch and is not
		 * expected to retain any state (as we sacrifice it during
		 * suspend and on resume it may be corrupted). This is ok,
		 * as nothing actually executes using the kernel context; it
		 * is purely used for flushing user contexts.
		 */
1783
		if (i915_gem_context_is_kernel(ctx))
1784 1785 1786 1787 1788 1789 1790
			hw_flags = MI_RESTORE_INHIBIT;

		ret = mi_set_context(rq, hw_flags);
		if (ret)
			goto err_mm;
	}

1791
	if (vm) {
1792 1793 1794 1795
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

1796 1797 1798
		ret = flush_pd_dir(rq);
		if (ret)
			goto err_mm;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

		/*
		 * Not only do we need a full barrier (post-sync write) after
		 * invalidating the TLBs, but we need to wait a little bit
		 * longer. Whether this is merely delaying us, or the
		 * subsequent flush is a key part of serialising with the
		 * post-sync op, this extra pass appears vital before a
		 * mm switch!
		 */
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

		ret = engine->emit_flush(rq, EMIT_FLUSH);
		if (ret)
			goto err_mm;
1815 1816
	}

1817
	if (ctx->remap_slice) {
1818
		for (i = 0; i < MAX_L3_SLICES; i++) {
1819
			if (!(ctx->remap_slice & BIT(i)))
1820 1821 1822 1823
				continue;

			ret = remap_l3(rq, i);
			if (ret)
1824
				goto err_mm;
1825 1826
		}

1827
		ctx->remap_slice = 0;
1828 1829 1830 1831 1832
	}

	return 0;

err_mm:
1833
	if (unwind_mm)
1834
		i915_vm_to_ppgtt(vm)->pd_dirty_engines |= unwind_mm;
1835 1836 1837 1838
err:
	return ret;
}

1839
static int ring_request_alloc(struct i915_request *request)
1840
{
1841
	int ret;
1842

1843
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1844
	GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1845

1846 1847
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1848 1849 1850
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1851
	request->reserved_space += LEGACY_REQUEST_SIZE;
1852

1853 1854
	/* Unconditionally invalidate GPU caches and TLBs. */
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1855 1856
	if (ret)
		return ret;
1857

1858
	ret = switch_context(request);
1859 1860 1861
	if (ret)
		return ret;

1862
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1863
	return 0;
1864 1865
}

1866
static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1867
{
1868
	struct i915_request *target;
1869 1870
	long timeout;

1871
	if (intel_ring_update_space(ring) >= bytes)
1872 1873
		return 0;

1874
	GEM_BUG_ON(list_empty(&ring->request_list));
1875
	list_for_each_entry(target, &ring->request_list, ring_link) {
1876
		/* Would completion of this request free enough space? */
1877 1878
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1879
			break;
1880
	}
1881

1882
	if (WARN_ON(&target->ring_link == &ring->request_list))
1883 1884
		return -ENOSPC;

1885
	timeout = i915_request_wait(target,
1886
				    I915_WAIT_INTERRUPTIBLE,
1887 1888 1889
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1890

1891
	i915_request_retire_upto(target);
1892 1893 1894 1895

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1896 1897
}

1898
u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
M
Mika Kuoppala 已提交
1899
{
1900
	struct intel_ring *ring = rq->ring;
1901 1902 1903 1904
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1905
	u32 *cs;
1906

1907 1908 1909
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1910
	total_bytes = bytes + rq->reserved_space;
1911
	GEM_BUG_ON(total_bytes > ring->effective_size);
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
1931
			total_bytes = rq->reserved_space + remain_actual;
1932
		}
M
Mika Kuoppala 已提交
1933 1934
	}

1935
	if (unlikely(total_bytes > ring->space)) {
1936 1937 1938 1939 1940 1941 1942 1943 1944
		int ret;

		/*
		 * Space is reserved in the ringbuffer for finalising the
		 * request, as that cannot be allowed to fail. During request
		 * finalisation, reserved_space is set to 0 to stop the
		 * overallocation and the assumption is that then we never need
		 * to wait (which has the risk of failing with EINTR).
		 *
1945
		 * See also i915_request_alloc() and i915_request_add().
1946
		 */
1947
		GEM_BUG_ON(!rq->reserved_space);
1948 1949

		ret = wait_for_space(ring, total_bytes);
M
Mika Kuoppala 已提交
1950
		if (unlikely(ret))
1951
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1952 1953
	}

1954
	if (unlikely(need_wrap)) {
1955 1956 1957
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1958
		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1959

1960
		/* Fill the tail with MI_NOOP */
1961
		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1962
		ring->space -= need_wrap;
1963
		ring->emit = 0;
1964
	}
1965

1966
	GEM_BUG_ON(ring->emit > ring->size - bytes);
1967
	GEM_BUG_ON(ring->space < bytes);
1968
	cs = ring->vaddr + ring->emit;
1969
	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1970
	ring->emit += bytes;
1971
	ring->space -= bytes;
1972 1973

	return cs;
1974
}
1975

1976
/* Align the ring tail to a cacheline boundary */
1977
int intel_ring_cacheline_align(struct i915_request *rq)
1978
{
1979 1980
	int num_dwords;
	void *cs;
1981

1982
	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1983 1984 1985
	if (num_dwords == 0)
		return 0;

1986 1987 1988
	num_dwords = CACHELINE_DWORDS - num_dwords;
	GEM_BUG_ON(num_dwords & 1);

1989
	cs = intel_ring_begin(rq, num_dwords);
1990 1991
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1992

1993
	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1994
	intel_ring_advance(rq, cs);
1995

1996
	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1997 1998 1999
	return 0;
}

2000
static void gen6_bsd_submit_request(struct i915_request *request)
2001
{
2002
	struct intel_uncore *uncore = request->engine->uncore;
2003

2004
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2005

2006
       /* Every tail move must follow the sequence below */
2007 2008 2009 2010

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2011 2012
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2013 2014

	/* Clear the context id. Here be magic! */
2015
	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2016

2017
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2018
	if (__intel_wait_for_register_fw(uncore,
2019 2020 2021 2022
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
2023
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2024

2025
	/* Now that the ring is fully powered up, update the tail */
2026
	i9xx_submit_request(request);
2027 2028 2029 2030

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2031 2032
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2033

2034
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2035 2036
}

2037
static int mi_flush_dw(struct i915_request *rq, u32 flags)
2038
{
2039
	u32 cmd, *cs;
2040

2041
	cs = intel_ring_begin(rq, 4);
2042 2043
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2044

2045
	cmd = MI_FLUSH_DW;
2046

2047 2048
	/*
	 * We always require a command barrier so that subsequent
2049 2050 2051 2052 2053 2054
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2055
	/*
2056
	 * Bspec vol 1c.3 - blitter engine command streamer:
2057 2058 2059 2060
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2061
	cmd |= flags;
2062

2063 2064
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2065
	*cs++ = 0;
2066
	*cs++ = MI_NOOP;
2067

2068
	intel_ring_advance(rq, cs);
2069

2070 2071 2072
	return 0;
}

2073 2074
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
2075
	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2076 2077 2078 2079 2080 2081 2082
}

static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
{
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}

2083
static int
2084
hsw_emit_bb_start(struct i915_request *rq,
2085 2086
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2087
{
2088
	u32 *cs;
2089

2090
	cs = intel_ring_begin(rq, 2);
2091 2092
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2093

2094
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2095
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2096
	/* bit0-7 is the length on GEN6+ */
2097
	*cs++ = offset;
2098
	intel_ring_advance(rq, cs);
2099 2100 2101 2102

	return 0;
}

2103
static int
2104
gen6_emit_bb_start(struct i915_request *rq,
2105 2106
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2107
{
2108
	u32 *cs;
2109

2110
	cs = intel_ring_begin(rq, 2);
2111 2112
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2113

2114 2115
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
2116
	/* bit0-7 is the length on GEN6+ */
2117
	*cs++ = offset;
2118
	intel_ring_advance(rq, cs);
2119

2120
	return 0;
2121 2122
}

2123 2124
/* Blitter support (SandyBridge+) */

2125
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
2126
{
2127
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
Z
Zou Nan hai 已提交
2128 2129
}

2130 2131 2132
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
2133
	engine->cancel_requests = cancel_requests;
2134 2135 2136

	engine->park = NULL;
	engine->unpark = NULL;
2137 2138 2139 2140
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
2141
	i9xx_set_default_submission(engine);
2142 2143 2144
	engine->submit_request = gen6_bsd_submit_request;
}

2145 2146 2147 2148 2149 2150 2151
static void ring_destroy(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

2152 2153
	intel_engine_cleanup_common(engine);

2154 2155 2156 2157 2158 2159
	intel_ring_unpin(engine->buffer);
	intel_ring_put(engine->buffer);

	kfree(engine);
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static void setup_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (INTEL_GEN(i915) >= 6) {
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
	} else if (INTEL_GEN(i915) >= 5) {
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
	} else if (INTEL_GEN(i915) >= 3) {
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
	} else {
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
	}
}

static void setup_common(struct intel_engine_cs *engine)
2180
{
2181 2182
	struct drm_i915_private *i915 = engine->i915;

2183
	/* gen8+ are only supported with execlists */
2184
	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
2185

2186
	setup_irq(engine);
2187

2188 2189
	engine->destroy = ring_destroy;

2190
	engine->resume = xcs_resume;
2191 2192 2193
	engine->reset.prepare = reset_prepare;
	engine->reset.reset = reset_ring;
	engine->reset.finish = reset_finish;
2194

2195
	engine->cops = &ring_context_ops;
2196 2197
	engine->request_alloc = ring_request_alloc;

2198 2199 2200 2201 2202 2203
	/*
	 * Using a global execution timeline; the previous final breadcrumb is
	 * equivalent to our next initial bread so we can elide
	 * engine->emit_init_breadcrumb().
	 */
	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2204
	if (IS_GEN(i915, 5))
2205
		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2206 2207

	engine->set_default_submission = i9xx_set_default_submission;
2208

2209
	if (INTEL_GEN(i915) >= 6)
2210
		engine->emit_bb_start = gen6_emit_bb_start;
2211
	else if (INTEL_GEN(i915) >= 4)
2212
		engine->emit_bb_start = i965_emit_bb_start;
2213
	else if (IS_I830(i915) || IS_I845G(i915))
2214
		engine->emit_bb_start = i830_emit_bb_start;
2215
	else
2216
		engine->emit_bb_start = i915_emit_bb_start;
2217 2218
}

2219
static void setup_rcs(struct intel_engine_cs *engine)
2220
{
2221
	struct drm_i915_private *i915 = engine->i915;
2222

2223
	if (HAS_L3_DPF(i915))
2224
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2225

2226 2227
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

2228
	if (INTEL_GEN(i915) >= 7) {
2229
		engine->init_context = intel_rcs_ctx_init;
2230
		engine->emit_flush = gen7_render_ring_flush;
2231
		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2232
	} else if (IS_GEN(i915, 6)) {
2233 2234
		engine->init_context = intel_rcs_ctx_init;
		engine->emit_flush = gen6_render_ring_flush;
2235
		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2236
	} else if (IS_GEN(i915, 5)) {
2237
		engine->emit_flush = gen4_render_ring_flush;
2238
	} else {
2239
		if (INTEL_GEN(i915) < 4)
2240
			engine->emit_flush = gen2_render_ring_flush;
2241
		else
2242
			engine->emit_flush = gen4_render_ring_flush;
2243
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2244
	}
B
Ben Widawsky 已提交
2245

2246
	if (IS_HASWELL(i915))
2247
		engine->emit_bb_start = hsw_emit_bb_start;
2248

2249
	engine->resume = rcs_resume;
2250 2251
}

2252
static void setup_vcs(struct intel_engine_cs *engine)
2253
{
2254
	struct drm_i915_private *i915 = engine->i915;
2255

2256
	if (INTEL_GEN(i915) >= 6) {
2257
		/* gen6 bsd needs a special wa for tail updates */
2258
		if (IS_GEN(i915, 6))
2259
			engine->set_default_submission = gen6_bsd_set_default_submission;
2260
		engine->emit_flush = gen6_bsd_ring_flush;
2261
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2262

2263
		if (IS_GEN(i915, 6))
2264
			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2265
		else
2266
			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2267
	} else {
2268
		engine->emit_flush = bsd_ring_flush;
2269
		if (IS_GEN(i915, 5))
2270
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2271
		else
2272
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2273
	}
2274
}
2275

2276
static void setup_bcs(struct intel_engine_cs *engine)
2277
{
2278
	struct drm_i915_private *i915 = engine->i915;
2279

2280
	engine->emit_flush = gen6_ring_flush;
2281
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2282

2283
	if (IS_GEN(i915, 6))
2284
		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2285
	else
2286
		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2287
}
2288

2289
static void setup_vecs(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2290
{
2291
	struct drm_i915_private *i915 = engine->i915;
2292

2293
	GEM_BUG_ON(INTEL_GEN(i915) < 7);
2294

2295
	engine->emit_flush = gen6_ring_flush;
2296 2297 2298
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
2299

2300
	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
}

int intel_ring_submission_setup(struct intel_engine_cs *engine)
{
	setup_common(engine);

	switch (engine->class) {
	case RENDER_CLASS:
		setup_rcs(engine);
		break;
	case VIDEO_DECODE_CLASS:
		setup_vcs(engine);
		break;
	case COPY_ENGINE_CLASS:
		setup_bcs(engine);
		break;
	case VIDEO_ENHANCEMENT_CLASS:
		setup_vecs(engine);
		break;
	default:
		MISSING_CASE(engine->class);
		return -ENODEV;
	}

	return 0;
}

int intel_ring_submission_init(struct intel_engine_cs *engine)
{
2330
	struct intel_timeline *timeline;
2331 2332 2333
	struct intel_ring *ring;
	int err;

2334
	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2335 2336 2337 2338 2339 2340 2341
	if (IS_ERR(timeline)) {
		err = PTR_ERR(timeline);
		goto err;
	}
	GEM_BUG_ON(timeline->has_initial_breadcrumb);

	ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
2342
	intel_timeline_put(timeline);
2343 2344 2345 2346 2347 2348 2349 2350
	if (IS_ERR(ring)) {
		err = PTR_ERR(ring);
		goto err;
	}

	err = intel_ring_pin(ring);
	if (err)
		goto err_ring;
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	GEM_BUG_ON(engine->buffer);
	engine->buffer = ring;

	err = intel_engine_init_common(engine);
	if (err)
		goto err_unpin;

	GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);

	return 0;

err_unpin:
	intel_ring_unpin(ring);
err_ring:
	intel_ring_put(ring);
err:
	intel_engine_cleanup_common(engine);
	return err;
B
Ben Widawsky 已提交
2370
}