intel_ringbuffer.c 59.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31

32
#include <drm/i915_drm.h>
33 34 35

#include "i915_drv.h"
#include "i915_gem_render_state.h"
36
#include "i915_trace.h"
37
#include "intel_reset.h"
38
#include "intel_workarounds.h"
39

40 41 42 43 44
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

45
unsigned int intel_ring_update_space(struct intel_ring *ring)
46
{
47 48 49 50 51 52
	unsigned int space;

	space = __intel_ring_space(ring->head, ring->emit, ring->size);

	ring->space = space;
	return space;
53 54
}

55
static int
56
gen2_render_ring_flush(struct i915_request *rq, u32 mode)
57
{
58
	unsigned int num_store_dw;
59
	u32 cmd, *cs;
60 61

	cmd = MI_FLUSH;
62
	num_store_dw = 0;
63
	if (mode & EMIT_INVALIDATE)
64
		cmd |= MI_READ_FLUSH;
65 66
	if (mode & EMIT_FLUSH)
		num_store_dw = 4;
67

68
	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
69 70
	if (IS_ERR(cs))
		return PTR_ERR(cs);
71

72
	*cs++ = cmd;
73 74 75 76 77 78 79
	while (num_store_dw--) {
		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
		*cs++ = i915_scratch_offset(rq->i915);
		*cs++ = 0;
	}
	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;

80
	intel_ring_advance(rq, cs);
81 82 83 84 85

	return 0;
}

static int
86
gen4_render_ring_flush(struct i915_request *rq, u32 mode)
87
{
88
	u32 cmd, *cs;
89
	int i;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122
		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
123 124
			cmd |= MI_INVALIDATE_ISP;
	}
125

126 127 128 129 130
	i = 2;
	if (mode & EMIT_INVALIDATE)
		i += 20;

	cs = intel_ring_begin(rq, i);
131 132
	if (IS_ERR(cs))
		return PTR_ERR(cs);
133

134
	*cs++ = cmd;
135 136 137 138 139 140 141 142 143 144 145 146 147

	/*
	 * A random delay to let the CS invalidate take effect? Without this
	 * delay, the GPU relocation path fails as the CS does not see
	 * the updated contents. Just as important, if we apply the flushes
	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
	 * write and before the invalidate on the next batch), the relocations
	 * still fail. This implies that is a delay following invalidation
	 * that is required to reset the caches as opposed to a delay to
	 * ensure the memory is written.
	 */
	if (mode & EMIT_INVALIDATE) {
		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
148
		*cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
149 150 151 152 153 154 155
		*cs++ = 0;
		*cs++ = 0;

		for (i = 0; i < 12; i++)
			*cs++ = MI_FLUSH;

		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
156
		*cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
157 158 159 160 161 162
		*cs++ = 0;
		*cs++ = 0;
	}

	*cs++ = cmd;

163
	intel_ring_advance(rq, cs);
164 165

	return 0;
166 167
}

168
/*
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
206
gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
207
{
208
	u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
209 210
	u32 *cs;

211
	cs = intel_ring_begin(rq, 6);
212 213 214 215 216 217 218 219 220
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0; /* low dword */
	*cs++ = 0; /* high dword */
	*cs++ = MI_NOOP;
221
	intel_ring_advance(rq, cs);
222

223
	cs = intel_ring_begin(rq, 6);
224 225 226 227 228 229 230 231 232
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = GFX_OP_PIPE_CONTROL(5);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = MI_NOOP;
233
	intel_ring_advance(rq, cs);
234 235 236 237 238

	return 0;
}

static int
239
gen6_render_ring_flush(struct i915_request *rq, u32 mode)
240
{
241
	u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
242
	u32 *cs, flags = 0;
243 244
	int ret;

245
	/* Force SNB workarounds for PIPE_CONTROL flushes */
246
	ret = gen6_emit_post_sync_nonzero_flush(rq);
247 248 249
	if (ret)
		return ret;

250 251 252 253
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
254
	if (mode & EMIT_FLUSH) {
255 256 257 258 259 260
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
261
		flags |= PIPE_CONTROL_CS_STALL;
262
	}
263
	if (mode & EMIT_INVALIDATE) {
264 265 266 267 268 269 270 271 272
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
273
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
274
	}
275

276
	cs = intel_ring_begin(rq, 4);
277 278
	if (IS_ERR(cs))
		return PTR_ERR(cs);
279

280 281 282 283
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;
284
	intel_ring_advance(rq, cs);
285 286 287 288

	return 0;
}

289
static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
{
	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_QW_WRITE;
	*cs++ = i915_scratch_offset(rq->i915) | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = 0;

	/* Finally we can flush and with it emit the breadcrumb */
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_CS_STALL);
309 310 311
	*cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
	*cs++ = rq->fence.seqno;

312
	*cs++ = GFX_OP_PIPE_CONTROL(4);
313 314
	*cs++ = PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_STORE_DATA_INDEX;
	*cs++ = I915_GEM_HWS_HANGCHECK_ADDR | PIPE_CONTROL_GLOBAL_GTT;
315 316
	*cs++ = intel_engine_next_hangcheck_seqno(rq->engine);

317 318 319 320 321
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
322 323

	return cs;
324 325
}

326
static int
327
gen7_render_ring_cs_stall_wa(struct i915_request *rq)
328
{
329
	u32 *cs;
330

331
	cs = intel_ring_begin(rq, 4);
332 333
	if (IS_ERR(cs))
		return PTR_ERR(cs);
334

335 336 337 338
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
	*cs++ = 0;
	*cs++ = 0;
339
	intel_ring_advance(rq, cs);
340 341 342 343

	return 0;
}

344
static int
345
gen7_render_ring_flush(struct i915_request *rq, u32 mode)
346
{
347
	u32 scratch_addr = i915_scratch_offset(rq->i915) + 2 * CACHELINE_BYTES;
348
	u32 *cs, flags = 0;
349

350 351 352 353 354 355 356 357 358 359
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

360 361 362 363
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
364
	if (mode & EMIT_FLUSH) {
365 366
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
367
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
368
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
369
	}
370
	if (mode & EMIT_INVALIDATE) {
371 372 373 374 375 376
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
377
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
378 379 380 381
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
382
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
383

384 385
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

386 387 388
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
389
		gen7_render_ring_cs_stall_wa(rq);
390 391
	}

392
	cs = intel_ring_begin(rq, 4);
393 394
	if (IS_ERR(cs))
		return PTR_ERR(cs);
395

396 397 398 399
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = flags;
	*cs++ = scratch_addr;
	*cs++ = 0;
400
	intel_ring_advance(rq, cs);
401 402 403 404

	return 0;
}

405
static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
406 407 408 409 410 411 412 413 414
{
	*cs++ = GFX_OP_PIPE_CONTROL(4);
	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
		 PIPE_CONTROL_DC_FLUSH_ENABLE |
		 PIPE_CONTROL_FLUSH_ENABLE |
		 PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_GLOBAL_GTT_IVB |
		 PIPE_CONTROL_CS_STALL);
415 416 417
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = rq->fence.seqno;

418
	*cs++ = GFX_OP_PIPE_CONTROL(4);
419 420 421 422
	*cs++ = (PIPE_CONTROL_QW_WRITE |
		 PIPE_CONTROL_STORE_DATA_INDEX |
		 PIPE_CONTROL_GLOBAL_GTT_IVB);
	*cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
423 424
	*cs++ = intel_engine_next_hangcheck_seqno(rq->engine);

425 426 427 428 429
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
430 431

	return cs;
432 433
}

434
static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
435
{
436 437 438 439 440 441 442
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

443 444 445 446
	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = intel_engine_next_hangcheck_seqno(rq->engine);

447
	*cs++ = MI_USER_INTERRUPT;
448
	*cs++ = MI_NOOP;
449 450 451

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
452 453

	return cs;
454 455
}

456
#define GEN7_XCS_WA 32
457
static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
458 459 460
{
	int i;

461 462 463 464 465 466 467
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = rq->fence.seqno;

468 469 470 471
	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
	*cs++ = I915_GEM_HWS_HANGCHECK_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = intel_engine_next_hangcheck_seqno(rq->engine);

472 473
	for (i = 0; i < GEN7_XCS_WA; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
474 475
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
476 477 478 479 480 481 482 483 484 485
	}

	*cs++ = MI_FLUSH_DW;
	*cs++ = 0;
	*cs++ = 0;

	*cs++ = MI_USER_INTERRUPT;

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
486 487

	return cs;
488 489 490
}
#undef GEN7_XCS_WA

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Keep the render interrupt unmasked as this papers over
	 * lost interrupts following a reset.
	 */
	if (engine->class == RENDER_CLASS) {
		if (INTEL_GEN(engine->i915) >= 6)
			mask &= ~BIT(0);
		else
			mask &= ~I915_USER_INTERRUPT;
	}

	intel_engine_set_hwsp_writemask(engine, mask);
}

static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
508
{
509
	struct drm_i915_private *dev_priv = engine->i915;
510 511
	u32 addr;

512
	addr = lower_32_bits(phys);
513
	if (INTEL_GEN(dev_priv) >= 4)
514 515
		addr |= (phys >> 28) & 0xf0;

516 517 518
	I915_WRITE(HWS_PGA, addr);
}

519
static struct page *status_page(struct intel_engine_cs *engine)
520
{
521
	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
522

523 524 525 526 527 528 529
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
	return sg_page(obj->mm.pages->sgl);
}

static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
{
	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
530 531 532 533
	set_hwstam(engine, ~0u);
}

static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
534
{
535
	struct drm_i915_private *dev_priv = engine->i915;
536
	i915_reg_t hwsp;
537

538 539
	/*
	 * The ring status page addresses are no longer next to the rest of
540 541
	 * the ring registers as of gen7.
	 */
542
	if (IS_GEN(dev_priv, 7)) {
543
		switch (engine->id) {
544 545 546 547 548 549
		/*
		 * No more rings exist on Gen7. Default case is only to shut up
		 * gcc switch check warning.
		 */
		default:
			GEM_BUG_ON(engine->id);
550 551
			/* fallthrough */
		case RCS0:
552
			hwsp = RENDER_HWS_PGA_GEN7;
553
			break;
554
		case BCS0:
555
			hwsp = BLT_HWS_PGA_GEN7;
556
			break;
557
		case VCS0:
558
			hwsp = BSD_HWS_PGA_GEN7;
559
			break;
560
		case VECS0:
561
			hwsp = VEBOX_HWS_PGA_GEN7;
562 563
			break;
		}
564
	} else if (IS_GEN(dev_priv, 6)) {
565
		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
566
	} else {
567
		hwsp = RING_HWS_PGA(engine->mmio_base);
568
	}
569

570 571 572
	I915_WRITE(hwsp, offset);
	POSTING_READ(hwsp);
}
573

574 575 576 577 578 579 580 581
static void flush_cs_tlb(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (!IS_GEN_RANGE(dev_priv, 6, 7))
		return;

	/* ring should be idle before issuing a sync flush*/
582 583 584 585 586 587 588 589
	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);

	ENGINE_WRITE(engine, RING_INSTPM,
		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					INSTPM_SYNC_FLUSH));
	if (intel_wait_for_register(engine->uncore,
				    RING_INSTPM(engine->mmio_base),
				    INSTPM_SYNC_FLUSH, 0,
590 591 592 593
				    1000))
		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
			  engine->name);
}
594

595 596
static void ring_setup_status_page(struct intel_engine_cs *engine)
{
597
	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
598
	set_hwstam(engine, ~0u);
599

600
	flush_cs_tlb(engine);
601 602
}

603
static bool stop_ring(struct intel_engine_cs *engine)
604
{
605
	struct drm_i915_private *dev_priv = engine->i915;
606

607
	if (INTEL_GEN(dev_priv) > 2) {
608 609 610
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
		if (intel_wait_for_register(engine->uncore,
611 612 613 614
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
615 616
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
617 618 619

			/*
			 * Sometimes we observe that the idle flag is not
620 621 622
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
623 624
			if (ENGINE_READ(engine, RING_HEAD) !=
			    ENGINE_READ(engine, RING_TAIL))
625
				return false;
626 627
		}
	}
628

629
	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
630

631 632
	ENGINE_WRITE(engine, RING_HEAD, 0);
	ENGINE_WRITE(engine, RING_TAIL, 0);
633

634
	/* The ring must be empty before it is disabled */
635
	ENGINE_WRITE(engine, RING_CTL, 0);
636

637
	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
638
}
639

640
static int init_ring_common(struct intel_engine_cs *engine)
641
{
642
	struct drm_i915_private *dev_priv = engine->i915;
643
	struct intel_ring *ring = engine->buffer;
644 645
	int ret = 0;

646
	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
647

648
	if (!stop_ring(engine)) {
649
		/* G45 ring initialization often fails to reset head to zero */
650 651 652
		DRM_DEBUG_DRIVER("%s head not reset to zero "
				"ctl %08x head %08x tail %08x start %08x\n",
				engine->name,
653 654 655 656
				ENGINE_READ(engine, RING_CTL),
				ENGINE_READ(engine, RING_HEAD),
				ENGINE_READ(engine, RING_TAIL),
				ENGINE_READ(engine, RING_START));
657

658
		if (!stop_ring(engine)) {
659 660
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
661
				  engine->name,
662 663 664 665
				  ENGINE_READ(engine, RING_CTL),
				  ENGINE_READ(engine, RING_HEAD),
				  ENGINE_READ(engine, RING_TAIL),
				  ENGINE_READ(engine, RING_START));
666 667
			ret = -EIO;
			goto out;
668
		}
669 670
	}

671
	if (HWS_NEEDS_PHYSICAL(dev_priv))
672
		ring_setup_phys_status_page(engine);
673
	else
674
		ring_setup_status_page(engine);
675

676
	intel_engine_reset_breadcrumbs(engine);
677

678
	/* Enforce ordering by reading HEAD register back */
679
	ENGINE_READ(engine, RING_HEAD);
680

681 682 683 684
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
685
	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
686 687

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
688
	if (ENGINE_READ(engine, RING_HEAD))
689
		DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
690
				 engine->name, ENGINE_READ(engine, RING_HEAD));
691

692 693 694
	/* Check that the ring offsets point within the ring! */
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
695
	intel_ring_update_space(ring);
C
Chris Wilson 已提交
696 697

	/* First wake the ring up to an empty/idle ring */
698 699 700
	ENGINE_WRITE(engine, RING_HEAD, ring->head);
	ENGINE_WRITE(engine, RING_TAIL, ring->head);
	ENGINE_POSTING_READ(engine, RING_TAIL);
701

702
	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
703 704

	/* If the head is still not zero, the ring is dead */
705
	if (intel_wait_for_register(engine->uncore,
706
				    RING_CTL(engine->mmio_base),
707 708
				    RING_VALID, RING_VALID,
				    50)) {
709
		DRM_ERROR("%s initialization failed "
710
			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
711
			  engine->name,
712 713 714 715 716
			  ENGINE_READ(engine, RING_CTL),
			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
			  ENGINE_READ(engine, RING_HEAD), ring->head,
			  ENGINE_READ(engine, RING_TAIL), ring->tail,
			  ENGINE_READ(engine, RING_START),
717
			  i915_ggtt_offset(ring->vma));
718 719
		ret = -EIO;
		goto out;
720 721
	}

722
	if (INTEL_GEN(dev_priv) > 2)
723 724
		ENGINE_WRITE(engine,
			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
725

C
Chris Wilson 已提交
726 727
	/* Now awake, let it get started */
	if (ring->tail != ring->head) {
728 729
		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
		ENGINE_POSTING_READ(engine, RING_TAIL);
C
Chris Wilson 已提交
730 731
	}

732
	/* Papering over lost _interrupts_ immediately following the restart */
733
	intel_engine_queue_breadcrumbs(engine);
734
out:
735
	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
736 737

	return ret;
738 739
}

740
static void reset_prepare(struct intel_engine_cs *engine)
741
{
742
	intel_engine_stop_cs(engine);
743 744
}

745
static void reset_ring(struct intel_engine_cs *engine, bool stalled)
746
{
747 748 749
	struct i915_timeline *tl = &engine->timeline;
	struct i915_request *pos, *rq;
	unsigned long flags;
750
	u32 head;
751

752 753 754
	rq = NULL;
	spin_lock_irqsave(&tl->lock, flags);
	list_for_each_entry(pos, &tl->requests, link) {
755
		if (!i915_request_completed(pos)) {
756 757 758
			rq = pos;
			break;
		}
759
	}
760 761

	/*
762
	 * The guilty request will get skipped on a hung engine.
763
	 *
764 765 766 767 768 769 770 771 772 773 774 775 776
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
777
	 *
778 779 780
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
781
	 */
782

783
	if (rq) {
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
		/*
		 * Try to restore the logical GPU state to match the
		 * continuation of the request queue. If we skip the
		 * context/PD restore, then the next request may try to execute
		 * assuming that its context is valid and loaded on the GPU and
		 * so may try to access invalid memory, prompting repeated GPU
		 * hangs.
		 *
		 * If the request was guilty, we still restore the logical
		 * state in case the next request requires it (e.g. the
		 * aliasing ppgtt), but skip over the hung batch.
		 *
		 * If the request was innocent, we try to replay the request
		 * with the restored context.
		 */
		i915_reset_request(rq, stalled);

		GEM_BUG_ON(rq->ring != engine->buffer);
		head = rq->head;
	} else {
		head = engine->buffer->tail;
805
	}
806 807 808
	engine->buffer->head = intel_ring_wrap(engine->buffer, head);

	spin_unlock_irqrestore(&tl->lock, flags);
809 810
}

811 812 813 814
static void reset_finish(struct intel_engine_cs *engine)
{
}

815
static int intel_rcs_ctx_init(struct i915_request *rq)
816 817 818
{
	int ret;

819
	ret = intel_engine_emit_ctx_wa(rq);
820 821 822
	if (ret != 0)
		return ret;

823
	ret = i915_gem_render_state_emit(rq);
824
	if (ret)
825
		return ret;
826

827
	return 0;
828 829
}

830
static int init_render_ring(struct intel_engine_cs *engine)
831
{
832
	struct drm_i915_private *dev_priv = engine->i915;
833

834
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
835
	if (IS_GEN_RANGE(dev_priv, 4, 6))
836
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
837 838 839 840

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
841
	 *
842
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
843
	 */
844
	if (IS_GEN_RANGE(dev_priv, 6, 7))
845 846
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

847
	/* Required for the hardware to program scanline values for waiting */
848
	/* WaEnableFlushTlbInvalidationMode:snb */
849
	if (IS_GEN(dev_priv, 6))
850
		I915_WRITE(GFX_MODE,
851
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
852

853
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
854
	if (IS_GEN(dev_priv, 7))
855
		I915_WRITE(GFX_MODE_GEN7,
856
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
857
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
858

859
	if (IS_GEN(dev_priv, 6)) {
860 861 862 863 864 865
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
866
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
867 868
	}

869
	if (IS_GEN_RANGE(dev_priv, 6, 7))
870
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
871

872
	return init_ring_common(engine);
873 874
}

875 876
static void cancel_requests(struct intel_engine_cs *engine)
{
877
	struct i915_request *request;
878 879
	unsigned long flags;

880
	spin_lock_irqsave(&engine->timeline.lock, flags);
881 882

	/* Mark all submitted requests as skipped. */
883
	list_for_each_entry(request, &engine->timeline.requests, link) {
884 885
		if (!i915_request_signaled(request))
			dma_fence_set_error(&request->fence, -EIO);
886

887
		i915_request_mark_complete(request);
888
	}
889

890 891
	/* Remaining _unready_ requests will be nop'ed when submitted */

892
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
893 894
}

895
static void i9xx_submit_request(struct i915_request *request)
896
{
897
	i915_request_submit(request);
898

899 900
	ENGINE_WRITE(request->engine, RING_TAIL,
		     intel_ring_set_tail(request->ring, request->tail));
901 902
}

903
static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
904
{
905 906 907
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

908 909
	*cs++ = MI_FLUSH;

910 911 912 913
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
	*cs++ = rq->fence.seqno;

914 915 916 917
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
	*cs++ = intel_engine_next_hangcheck_seqno(rq->engine);

918
	*cs++ = MI_USER_INTERRUPT;
919

920 921
	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
922 923

	return cs;
924
}
925

926
#define GEN5_WA_STORES 8 /* must be at least 1! */
927
static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
928
{
929 930
	int i;

931 932 933
	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);

934 935
	*cs++ = MI_FLUSH;

936 937 938 939
	*cs++ = MI_STORE_DWORD_INDEX;
	*cs++ = I915_GEM_HWS_HANGCHECK_ADDR;
	*cs++ = intel_engine_next_hangcheck_seqno(rq->engine);

940 941 942
	BUILD_BUG_ON(GEN5_WA_STORES < 1);
	for (i = 0; i < GEN5_WA_STORES; i++) {
		*cs++ = MI_STORE_DWORD_INDEX;
943 944
		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
		*cs++ = rq->fence.seqno;
945 946 947
	}

	*cs++ = MI_USER_INTERRUPT;
948
	*cs++ = MI_NOOP;
949 950 951

	rq->tail = intel_ring_offset(rq, cs);
	assert_ring_tail_valid(rq->ring, rq->tail);
952 953

	return cs;
954
}
955
#undef GEN5_WA_STORES
956

957 958
static void
gen5_irq_enable(struct intel_engine_cs *engine)
959
{
960
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
961 962 963
}

static void
964
gen5_irq_disable(struct intel_engine_cs *engine)
965
{
966
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
967 968
}

969 970
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
971
{
972
	engine->i915->irq_mask &= ~engine->irq_enable_mask;
973 974
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
975 976
}

977
static void
978
i9xx_irq_disable(struct intel_engine_cs *engine)
979
{
980
	engine->i915->irq_mask |= engine->irq_enable_mask;
981
	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
982 983
}

984 985
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
986
{
987
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
988

989
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
990
	I915_WRITE16(GEN2_IMR, dev_priv->irq_mask);
991
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
992 993 994
}

static void
995
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
996
{
997
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
998

999
	dev_priv->irq_mask |= engine->irq_enable_mask;
1000
	I915_WRITE16(GEN2_IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1001 1002
}

1003
static int
1004
bsd_ring_flush(struct i915_request *rq, u32 mode)
1005
{
1006
	u32 *cs;
1007

1008
	cs = intel_ring_begin(rq, 2);
1009 1010
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1011

1012 1013
	*cs++ = MI_FLUSH;
	*cs++ = MI_NOOP;
1014
	intel_ring_advance(rq, cs);
1015
	return 0;
1016 1017
}

1018 1019
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1020
{
1021 1022
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1023 1024

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1025
	ENGINE_POSTING_READ(engine, RING_IMR);
1026

1027
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1028 1029 1030
}

static void
1031
gen6_irq_disable(struct intel_engine_cs *engine)
1032
{
1033 1034
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1035 1036
}

1037 1038
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1039
{
1040
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1041 1042

	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1043
	ENGINE_POSTING_READ(engine, RING_IMR);
1044

1045
	gen6_unmask_pm_irq(engine->i915, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1046 1047 1048
}

static void
1049
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1050
{
1051 1052
	ENGINE_WRITE(engine, RING_IMR, ~0);
	gen6_mask_pm_irq(engine->i915, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1053 1054
}

1055
static int
1056
i965_emit_bb_start(struct i915_request *rq,
1057 1058
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1059
{
1060
	u32 *cs;
1061

1062
	cs = intel_ring_begin(rq, 2);
1063 1064
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1065

1066 1067 1068
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
	*cs++ = offset;
1069
	intel_ring_advance(rq, cs);
1070

1071 1072 1073
	return 0;
}

1074
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1075
#define I830_BATCH_LIMIT SZ_256K
1076 1077
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1078
static int
1079
i830_emit_bb_start(struct i915_request *rq,
1080 1081
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1082
{
1083 1084 1085
	u32 *cs, cs_offset = i915_scratch_offset(rq->i915);

	GEM_BUG_ON(rq->i915->gt.scratch->size < I830_WA_SIZE);
1086

1087
	cs = intel_ring_begin(rq, 6);
1088 1089
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1090

1091
	/* Evict the invalid PTE TLBs */
1092 1093 1094 1095 1096 1097
	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
	*cs++ = cs_offset;
	*cs++ = 0xdeadbeef;
	*cs++ = MI_NOOP;
1098
	intel_ring_advance(rq, cs);
1099

1100
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1101 1102 1103
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1104
		cs = intel_ring_begin(rq, 6 + 2);
1105 1106
		if (IS_ERR(cs))
			return PTR_ERR(cs);
1107 1108 1109 1110 1111

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1112 1113 1114 1115 1116 1117 1118 1119 1120
		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
		*cs++ = cs_offset;
		*cs++ = 4096;
		*cs++ = offset;

		*cs++ = MI_FLUSH;
		*cs++ = MI_NOOP;
1121
		intel_ring_advance(rq, cs);
1122 1123

		/* ... and execute it. */
1124
		offset = cs_offset;
1125
	}
1126

1127
	cs = intel_ring_begin(rq, 2);
1128 1129
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1130

1131 1132 1133
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1134
	intel_ring_advance(rq, cs);
1135

1136 1137 1138 1139
	return 0;
}

static int
1140
i915_emit_bb_start(struct i915_request *rq,
1141 1142
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1143
{
1144
	u32 *cs;
1145

1146
	cs = intel_ring_begin(rq, 2);
1147 1148
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1149

1150 1151 1152
	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
		MI_BATCH_NON_SECURE);
1153
	intel_ring_advance(rq, cs);
1154 1155 1156 1157

	return 0;
}

1158
int intel_ring_pin(struct intel_ring *ring)
1159
{
1160
	struct i915_vma *vma = ring->vma;
1161
	enum i915_map_type map = i915_coherent_map_type(vma->vm->i915);
1162
	unsigned int flags;
1163
	void *addr;
1164 1165
	int ret;

1166
	GEM_BUG_ON(ring->vaddr);
1167

1168 1169 1170 1171
	ret = i915_timeline_pin(ring->timeline);
	if (ret)
		return ret;

1172
	flags = PIN_GLOBAL;
1173 1174 1175 1176

	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

1177
	if (vma->obj->stolen)
1178
		flags |= PIN_MAPPABLE;
C
Chris Wilson 已提交
1179 1180
	else
		flags |= PIN_HIGH;
1181

1182
	ret = i915_vma_pin(vma, 0, 0, flags);
1183
	if (unlikely(ret))
1184
		goto unpin_timeline;
1185

1186
	if (i915_vma_is_map_and_fenceable(vma))
1187 1188
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
1189
		addr = i915_gem_object_pin_map(vma->obj, map);
1190 1191 1192 1193
	if (IS_ERR(addr)) {
		ret = PTR_ERR(addr);
		goto unpin_ring;
	}
1194

1195 1196
	vma->obj->pin_global++;

1197
	ring->vaddr = addr;
1198
	return 0;
1199

1200
unpin_ring:
1201
	i915_vma_unpin(vma);
1202 1203 1204
unpin_timeline:
	i915_timeline_unpin(ring->timeline);
	return ret;
1205 1206
}

1207 1208
void intel_ring_reset(struct intel_ring *ring, u32 tail)
{
1209 1210
	GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));

1211 1212 1213 1214 1215 1216
	ring->tail = tail;
	ring->head = tail;
	ring->emit = tail;
	intel_ring_update_space(ring);
}

1217 1218 1219 1220 1221
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1222 1223 1224
	/* Discard any unused bytes beyond that submitted to hw. */
	intel_ring_reset(ring, ring->tail);

1225
	if (i915_vma_is_map_and_fenceable(ring->vma))
1226
		i915_vma_unpin_iomap(ring->vma);
1227 1228
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1229 1230
	ring->vaddr = NULL;

1231
	ring->vma->obj->pin_global--;
1232
	i915_vma_unpin(ring->vma);
1233 1234

	i915_timeline_unpin(ring->timeline);
1235 1236
}

1237 1238
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1239
{
1240
	struct i915_address_space *vm = &dev_priv->ggtt.vm;
1241
	struct drm_i915_gem_object *obj;
1242
	struct i915_vma *vma;
1243

1244
	obj = i915_gem_object_create_stolen(dev_priv, size);
1245
	if (!obj)
1246
		obj = i915_gem_object_create_internal(dev_priv, size);
1247 1248
	if (IS_ERR(obj))
		return ERR_CAST(obj);
1249

1250 1251 1252 1253 1254
	/*
	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
	 * if supported by the platform's GGTT.
	 */
	if (vm->has_read_only)
1255
		i915_gem_object_set_readonly(obj);
1256

1257
	vma = i915_vma_instance(obj, vm, NULL);
1258 1259 1260 1261
	if (IS_ERR(vma))
		goto err;

	return vma;
1262

1263 1264 1265
err:
	i915_gem_object_put(obj);
	return vma;
1266 1267
}

1268
struct intel_ring *
1269
intel_engine_create_ring(struct intel_engine_cs *engine,
1270
			 struct i915_timeline *timeline,
1271
			 int size)
1272
{
1273
	struct intel_ring *ring;
1274
	struct i915_vma *vma;
1275

1276
	GEM_BUG_ON(!is_power_of_2(size));
1277
	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1278
	GEM_BUG_ON(timeline == &engine->timeline);
1279
	lockdep_assert_held(&engine->i915->drm.struct_mutex);
1280

1281
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1282
	if (!ring)
1283 1284
		return ERR_PTR(-ENOMEM);

1285
	kref_init(&ring->ref);
1286
	INIT_LIST_HEAD(&ring->request_list);
1287
	ring->timeline = i915_timeline_get(timeline);
1288

1289 1290 1291 1292 1293 1294
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
1295
	if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1296 1297 1298 1299
		ring->effective_size -= 2 * CACHELINE_BYTES;

	intel_ring_update_space(ring);

1300 1301
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
1302
		kfree(ring);
1303
		return ERR_CAST(vma);
1304
	}
1305
	ring->vma = vma;
1306 1307 1308 1309

	return ring;
}

1310
void intel_ring_free(struct kref *ref)
1311
{
1312
	struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1313 1314 1315 1316 1317
	struct drm_i915_gem_object *obj = ring->vma->obj;

	i915_vma_close(ring->vma);
	__i915_gem_object_release_unless_active(obj);

1318
	i915_timeline_put(ring->timeline);
1319 1320 1321
	kfree(ring);
}

1322 1323 1324 1325 1326 1327
static void __ring_context_fini(struct intel_context *ce)
{
	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
}

1328
static void ring_context_destroy(struct kref *ref)
1329
{
1330 1331
	struct intel_context *ce = container_of(ref, typeof(*ce), ref);

1332
	GEM_BUG_ON(intel_context_is_pinned(ce));
1333

1334 1335
	if (ce->state)
		__ring_context_fini(ce);
1336

1337
	intel_context_free(ce);
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static int __context_pin_ppgtt(struct i915_gem_context *ctx)
{
	struct i915_hw_ppgtt *ppgtt;
	int err = 0;

	ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
	if (ppgtt)
		err = gen6_ppgtt_pin(ppgtt);

	return err;
}

static void __context_unpin_ppgtt(struct i915_gem_context *ctx)
{
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = ctx->ppgtt ?: ctx->i915->mm.aliasing_ppgtt;
	if (ppgtt)
		gen6_ppgtt_unpin(ppgtt);
}

1361
static int __context_pin(struct intel_context *ce)
1362
{
1363 1364 1365 1366 1367 1368
	struct i915_vma *vma;
	int err;

	vma = ce->state;
	if (!vma)
		return 0;
1369

1370
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1371 1372 1373 1374 1375 1376 1377 1378
	if (err)
		return err;

	/*
	 * And mark is as a globally pinned object to let the shrinker know
	 * it cannot reclaim the object until we release it.
	 */
	vma->obj->pin_global++;
1379
	vma->obj->mm.dirty = true;
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

	return 0;
}

static void __context_unpin(struct intel_context *ce)
{
	struct i915_vma *vma;

	vma = ce->state;
	if (!vma)
		return;

	vma->obj->pin_global--;
	i915_vma_unpin(vma);
}

1396
static void ring_context_unpin(struct intel_context *ce)
1397
{
1398
	__context_unpin_ppgtt(ce->gem_context);
1399
	__context_unpin(ce);
1400 1401
}

1402 1403 1404 1405 1406 1407
static struct i915_vma *
alloc_context_vma(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
1408
	int err;
1409

1410
	obj = i915_gem_object_create(i915, engine->context_size);
1411 1412 1413
	if (IS_ERR(obj))
		return ERR_CAST(obj);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * Try to make the context utilize L3 as well as LLC.
	 *
	 * On VLV we don't have L3 controls in the PTEs so we
	 * shouldn't touch the cache level, especially as that
	 * would make the object snooped which might have a
	 * negative performance impact.
	 *
	 * Snooping is required on non-llc platforms in execlist
	 * mode, but since all GGTT accesses use PAT entry 0 we
	 * get snooping anyway regardless of cache_level.
	 *
	 * This is only applicable for Ivy Bridge devices since
	 * later platforms don't have L3 control bits in the PTE.
	 */
	if (IS_IVYBRIDGE(i915))
		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (engine->default_state) {
		void *defaults, *vaddr;

		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
		if (IS_ERR(vaddr)) {
			err = PTR_ERR(vaddr);
			goto err_obj;
		}

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults)) {
			err = PTR_ERR(defaults);
			goto err_map;
		}

		memcpy(vaddr, defaults, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);

1451 1452
		i915_gem_object_flush_map(obj);
		i915_gem_object_unpin_map(obj);
1453 1454
	}

1455
	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
1456 1457 1458 1459
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err_obj;
	}
1460 1461

	return vma;
1462 1463 1464 1465 1466 1467

err_map:
	i915_gem_object_unpin_map(obj);
err_obj:
	i915_gem_object_put(obj);
	return ERR_PTR(err);
1468 1469
}

1470
static int ring_context_pin(struct intel_context *ce)
1471
{
1472
	struct intel_engine_cs *engine = ce->engine;
1473
	int err;
1474

1475 1476 1477 1478
	/* One ringbuffer to rule them all */
	GEM_BUG_ON(!engine->buffer);
	ce->ring = engine->buffer;

1479
	if (!ce->state && engine->context_size) {
1480 1481 1482
		struct i915_vma *vma;

		vma = alloc_context_vma(engine);
1483 1484
		if (IS_ERR(vma))
			return PTR_ERR(vma);
1485 1486 1487 1488

		ce->state = vma;
	}

1489 1490
	err = __context_pin(ce);
	if (err)
1491
		return err;
1492

1493 1494 1495 1496
	err = __context_pin_ppgtt(ce->gem_context);
	if (err)
		goto err_unpin;

1497
	return 0;
1498

1499 1500
err_unpin:
	__context_unpin(ce);
1501
	return err;
1502 1503
}

1504 1505 1506 1507 1508
static void ring_context_reset(struct intel_context *ce)
{
	intel_ring_reset(ce->ring, 0);
}

1509
static const struct intel_context_ops ring_context_ops = {
1510
	.pin = ring_context_pin,
1511
	.unpin = ring_context_unpin,
1512

1513 1514 1515
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1516
	.reset = ring_context_reset,
1517 1518 1519
	.destroy = ring_context_destroy,
};

1520
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1521
{
1522
	struct i915_timeline *timeline;
1523
	struct intel_ring *ring;
1524
	int err;
1525

1526 1527 1528
	err = intel_engine_setup_common(engine);
	if (err)
		return err;
1529

1530
	timeline = i915_timeline_create(engine->i915, engine->status_page.vma);
1531 1532 1533 1534
	if (IS_ERR(timeline)) {
		err = PTR_ERR(timeline);
		goto err;
	}
1535
	GEM_BUG_ON(timeline->has_initial_breadcrumb);
1536 1537 1538

	ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
	i915_timeline_put(timeline);
1539
	if (IS_ERR(ring)) {
1540
		err = PTR_ERR(ring);
1541
		goto err;
1542 1543
	}

1544
	err = intel_ring_pin(ring);
1545 1546 1547 1548
	if (err)
		goto err_ring;

	GEM_BUG_ON(engine->buffer);
1549
	engine->buffer = ring;
1550

1551 1552
	err = intel_engine_init_common(engine);
	if (err)
1553
		goto err_unpin;
1554

1555 1556
	GEM_BUG_ON(ring->timeline->hwsp_ggtt != engine->status_page.vma);

1557
	return 0;
1558

1559 1560
err_unpin:
	intel_ring_unpin(ring);
1561
err_ring:
1562
	intel_ring_put(ring);
1563 1564 1565
err:
	intel_engine_cleanup_common(engine);
	return err;
1566 1567
}

1568
void intel_engine_cleanup(struct intel_engine_cs *engine)
1569
{
1570
	struct drm_i915_private *dev_priv = engine->i915;
1571

1572
	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1573
		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
1574

1575
	intel_ring_unpin(engine->buffer);
1576
	intel_ring_put(engine->buffer);
1577

1578 1579
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
1580

1581
	intel_engine_cleanup_common(engine);
1582

1583 1584
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1585 1586
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static int load_pd_dir(struct i915_request *rq,
		       const struct i915_hw_ppgtt *ppgtt)
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1598
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1599 1600 1601
	*cs++ = PP_DIR_DCLV_2G;

	*cs++ = MI_LOAD_REGISTER_IMM(1);
1602
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1603 1604 1605 1606 1607 1608 1609
	*cs++ = ppgtt->pd.base.ggtt_offset << 10;

	intel_ring_advance(rq, cs);

	return 0;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static int flush_pd_dir(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	u32 *cs;

	cs = intel_ring_begin(rq, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Stall until the page table load is complete */
	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1621
	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1622
	*cs++ = i915_scratch_offset(rq->i915);
1623 1624 1625 1626 1627 1628
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);
	return 0;
}

1629
static inline int mi_set_context(struct i915_request *rq, u32 flags)
1630 1631 1632 1633
{
	struct drm_i915_private *i915 = rq->i915;
	struct intel_engine_cs *engine = rq->engine;
	enum intel_engine_id id;
1634 1635
	const int num_engines =
		IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1636
	bool force_restore = false;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	int len;
	u32 *cs;

	flags |= MI_MM_SPACE_GTT;
	if (IS_HASWELL(i915))
		/* These flags are for resource streamer on HSW+ */
		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
	else
		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;

	len = 4;
1648
	if (IS_GEN(i915, 7))
1649
		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1650 1651 1652 1653 1654 1655
	if (flags & MI_FORCE_RESTORE) {
		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
		flags &= ~MI_FORCE_RESTORE;
		force_restore = true;
		len += 2;
	}
1656 1657 1658 1659 1660 1661

	cs = intel_ring_begin(rq, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1662
	if (IS_GEN(i915, 7)) {
1663
		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1664
		if (num_engines) {
1665 1666
			struct intel_engine_cs *signaller;

1667
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				*cs++ = i915_mmio_reg_offset(
					   RING_PSMI_CTL(signaller->mmio_base));
				*cs++ = _MASKED_BIT_ENABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}
		}
	}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	if (force_restore) {
		/*
		 * The HW doesn't handle being told to restore the current
		 * context very well. Quite often it likes goes to go off and
		 * sulk, especially when it is meant to be reloading PP_DIR.
		 * A very simple fix to force the reload is to simply switch
		 * away from the current context and back again.
		 *
		 * Note that the kernel_context will contain random state
		 * following the INHIBIT_RESTORE. We accept this since we
		 * never use the kernel_context state; it is merely a
		 * placeholder we use to flush other contexts.
		 */
		*cs++ = MI_SET_CONTEXT;
1694
		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1695 1696 1697 1698
			MI_MM_SPACE_GTT |
			MI_RESTORE_INHIBIT;
	}

1699 1700
	*cs++ = MI_NOOP;
	*cs++ = MI_SET_CONTEXT;
1701
	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1702 1703 1704 1705 1706 1707
	/*
	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
	 * WaMiSetContext_Hang:snb,ivb,vlv
	 */
	*cs++ = MI_NOOP;

1708
	if (IS_GEN(i915, 7)) {
1709
		if (num_engines) {
1710 1711 1712
			struct intel_engine_cs *signaller;
			i915_reg_t last_reg = {}; /* keep gcc quiet */

1713
			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
			for_each_engine(signaller, i915, id) {
				if (signaller == engine)
					continue;

				last_reg = RING_PSMI_CTL(signaller->mmio_base);
				*cs++ = i915_mmio_reg_offset(last_reg);
				*cs++ = _MASKED_BIT_DISABLE(
						GEN6_PSMI_SLEEP_MSG_DISABLE);
			}

			/* Insert a delay before the next switch! */
			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
			*cs++ = i915_mmio_reg_offset(last_reg);
1727
			*cs++ = i915_scratch_offset(rq->i915);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
			*cs++ = MI_NOOP;
		}
		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
	}

	intel_ring_advance(rq, cs);

	return 0;
}

1738
static int remap_l3(struct i915_request *rq, int slice)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
{
	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
	int i;

	if (!remap_info)
		return 0;

	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
		*cs++ = remap_info[i];
	}
	*cs++ = MI_NOOP;
	intel_ring_advance(rq, cs);

	return 0;
}

1766
static int switch_context(struct i915_request *rq)
1767 1768
{
	struct intel_engine_cs *engine = rq->engine;
1769 1770 1771
	struct i915_gem_context *ctx = rq->gem_context;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
	unsigned int unwind_mm = 0;
1772 1773 1774 1775 1776
	u32 hw_flags = 0;
	int ret, i;

	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));

1777
	if (ppgtt) {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		int loops;

		/*
		 * Baytail takes a little more convincing that it really needs
		 * to reload the PD between contexts. It is not just a little
		 * longer, as adding more stalls after the load_pd_dir (i.e.
		 * adding a long loop around flush_pd_dir) is not as effective
		 * as reloading the PD umpteen times. 32 is derived from
		 * experimentation (gem_exec_parallel/fds) and has no good
		 * explanation.
		 */
		loops = 1;
1790
		if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1791 1792 1793 1794 1795 1796 1797
			loops = 32;

		do {
			ret = load_pd_dir(rq, ppgtt);
			if (ret)
				goto err;
		} while (--loops);
1798

1799 1800 1801
		if (ppgtt->pd_dirty_engines & engine->mask) {
			unwind_mm = engine->mask;
			ppgtt->pd_dirty_engines &= ~unwind_mm;
1802 1803
			hw_flags = MI_FORCE_RESTORE;
		}
1804 1805
	}

1806
	if (rq->hw_context->state) {
1807
		GEM_BUG_ON(engine->id != RCS0);
1808 1809 1810 1811 1812 1813 1814 1815

		/*
		 * The kernel context(s) is treated as pure scratch and is not
		 * expected to retain any state (as we sacrifice it during
		 * suspend and on resume it may be corrupted). This is ok,
		 * as nothing actually executes using the kernel context; it
		 * is purely used for flushing user contexts.
		 */
1816
		if (i915_gem_context_is_kernel(ctx))
1817 1818 1819 1820 1821 1822 1823
			hw_flags = MI_RESTORE_INHIBIT;

		ret = mi_set_context(rq, hw_flags);
		if (ret)
			goto err_mm;
	}

1824
	if (ppgtt) {
1825 1826 1827 1828
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

1829 1830 1831
		ret = flush_pd_dir(rq);
		if (ret)
			goto err_mm;
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

		/*
		 * Not only do we need a full barrier (post-sync write) after
		 * invalidating the TLBs, but we need to wait a little bit
		 * longer. Whether this is merely delaying us, or the
		 * subsequent flush is a key part of serialising with the
		 * post-sync op, this extra pass appears vital before a
		 * mm switch!
		 */
		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
		if (ret)
			goto err_mm;

		ret = engine->emit_flush(rq, EMIT_FLUSH);
		if (ret)
			goto err_mm;
1848 1849
	}

1850
	if (ctx->remap_slice) {
1851
		for (i = 0; i < MAX_L3_SLICES; i++) {
1852
			if (!(ctx->remap_slice & BIT(i)))
1853 1854 1855 1856
				continue;

			ret = remap_l3(rq, i);
			if (ret)
1857
				goto err_mm;
1858 1859
		}

1860
		ctx->remap_slice = 0;
1861 1862 1863 1864 1865
	}

	return 0;

err_mm:
1866
	if (unwind_mm)
1867
		ppgtt->pd_dirty_engines |= unwind_mm;
1868 1869 1870 1871
err:
	return ret;
}

1872
static int ring_request_alloc(struct i915_request *request)
1873
{
1874
	int ret;
1875

1876
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1877
	GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1878

1879 1880
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1881 1882 1883
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
1884
	request->reserved_space += LEGACY_REQUEST_SIZE;
1885

1886
	ret = switch_context(request);
1887 1888
	if (ret)
		return ret;
1889

1890 1891
	/* Unconditionally invalidate GPU caches and TLBs. */
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1892 1893 1894
	if (ret)
		return ret;

1895
	request->reserved_space -= LEGACY_REQUEST_SIZE;
1896
	return 0;
1897 1898
}

1899
static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1900
{
1901
	struct i915_request *target;
1902 1903
	long timeout;

1904
	if (intel_ring_update_space(ring) >= bytes)
1905 1906
		return 0;

1907
	GEM_BUG_ON(list_empty(&ring->request_list));
1908
	list_for_each_entry(target, &ring->request_list, ring_link) {
1909
		/* Would completion of this request free enough space? */
1910 1911
		if (bytes <= __intel_ring_space(target->postfix,
						ring->emit, ring->size))
1912
			break;
1913
	}
1914

1915
	if (WARN_ON(&target->ring_link == &ring->request_list))
1916 1917
		return -ENOSPC;

1918
	timeout = i915_request_wait(target,
1919 1920 1921 1922
				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
				    MAX_SCHEDULE_TIMEOUT);
	if (timeout < 0)
		return timeout;
1923

1924
	i915_request_retire_upto(target);
1925 1926 1927 1928

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
1929 1930
}

1931
u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
M
Mika Kuoppala 已提交
1932
{
1933
	struct intel_ring *ring = rq->ring;
1934 1935 1936 1937
	const unsigned int remain_usable = ring->effective_size - ring->emit;
	const unsigned int bytes = num_dwords * sizeof(u32);
	unsigned int need_wrap = 0;
	unsigned int total_bytes;
1938
	u32 *cs;
1939

1940 1941 1942
	/* Packets must be qword aligned. */
	GEM_BUG_ON(num_dwords & 1);

1943
	total_bytes = bytes + rq->reserved_space;
1944
	GEM_BUG_ON(total_bytes > ring->effective_size);
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (unlikely(total_bytes > remain_usable)) {
		const int remain_actual = ring->size - ring->emit;

		if (bytes > remain_usable) {
			/*
			 * Not enough space for the basic request. So need to
			 * flush out the remainder and then wait for
			 * base + reserved.
			 */
			total_bytes += remain_actual;
			need_wrap = remain_actual | 1;
		} else  {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So we don't need an immediate
			 * wrap and only need to effectively wait for the
			 * reserved size from the start of ringbuffer.
			 */
1964
			total_bytes = rq->reserved_space + remain_actual;
1965
		}
M
Mika Kuoppala 已提交
1966 1967
	}

1968
	if (unlikely(total_bytes > ring->space)) {
1969 1970 1971 1972 1973 1974 1975 1976 1977
		int ret;

		/*
		 * Space is reserved in the ringbuffer for finalising the
		 * request, as that cannot be allowed to fail. During request
		 * finalisation, reserved_space is set to 0 to stop the
		 * overallocation and the assumption is that then we never need
		 * to wait (which has the risk of failing with EINTR).
		 *
1978
		 * See also i915_request_alloc() and i915_request_add().
1979
		 */
1980
		GEM_BUG_ON(!rq->reserved_space);
1981 1982

		ret = wait_for_space(ring, total_bytes);
M
Mika Kuoppala 已提交
1983
		if (unlikely(ret))
1984
			return ERR_PTR(ret);
M
Mika Kuoppala 已提交
1985 1986
	}

1987
	if (unlikely(need_wrap)) {
1988 1989 1990
		need_wrap &= ~1;
		GEM_BUG_ON(need_wrap > ring->space);
		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1991
		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1992

1993
		/* Fill the tail with MI_NOOP */
1994
		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1995
		ring->space -= need_wrap;
1996
		ring->emit = 0;
1997
	}
1998

1999
	GEM_BUG_ON(ring->emit > ring->size - bytes);
2000
	GEM_BUG_ON(ring->space < bytes);
2001
	cs = ring->vaddr + ring->emit;
2002
	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
2003
	ring->emit += bytes;
2004
	ring->space -= bytes;
2005 2006

	return cs;
2007
}
2008

2009
/* Align the ring tail to a cacheline boundary */
2010
int intel_ring_cacheline_align(struct i915_request *rq)
2011
{
2012 2013
	int num_dwords;
	void *cs;
2014

2015
	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
2016 2017 2018
	if (num_dwords == 0)
		return 0;

2019 2020 2021
	num_dwords = CACHELINE_DWORDS - num_dwords;
	GEM_BUG_ON(num_dwords & 1);

2022
	cs = intel_ring_begin(rq, num_dwords);
2023 2024
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2025

2026
	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2027
	intel_ring_advance(rq, cs);
2028

2029
	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2030 2031 2032
	return 0;
}

2033
static void gen6_bsd_submit_request(struct i915_request *request)
2034
{
2035
	struct intel_uncore *uncore = request->engine->uncore;
2036

2037
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2038

2039
       /* Every tail move must follow the sequence below */
2040 2041 2042 2043

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2044 2045
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2046 2047

	/* Clear the context id. Here be magic! */
2048
	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2049

2050
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2051
	if (__intel_wait_for_register_fw(uncore,
2052 2053 2054 2055
					 GEN6_BSD_SLEEP_PSMI_CONTROL,
					 GEN6_BSD_SLEEP_INDICATOR,
					 0,
					 1000, 0, NULL))
2056
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2057

2058
	/* Now that the ring is fully powered up, update the tail */
2059
	i9xx_submit_request(request);
2060 2061 2062 2063

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2064 2065
	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2066

2067
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2068 2069
}

2070
static int mi_flush_dw(struct i915_request *rq, u32 flags)
2071
{
2072
	u32 cmd, *cs;
2073

2074
	cs = intel_ring_begin(rq, 4);
2075 2076
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2077

2078
	cmd = MI_FLUSH_DW;
2079

2080 2081
	/*
	 * We always require a command barrier so that subsequent
2082 2083 2084 2085 2086 2087
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2088
	/*
2089
	 * Bspec vol 1c.3 - blitter engine command streamer:
2090 2091 2092 2093
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2094
	cmd |= flags;
2095

2096 2097
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2098
	*cs++ = 0;
2099
	*cs++ = MI_NOOP;
2100

2101
	intel_ring_advance(rq, cs);
2102

2103 2104 2105
	return 0;
}

2106 2107
static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
{
2108
	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2109 2110 2111 2112 2113 2114 2115
}

static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
{
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
}

2116
static int
2117
hsw_emit_bb_start(struct i915_request *rq,
2118 2119
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2120
{
2121
	u32 *cs;
2122

2123
	cs = intel_ring_begin(rq, 2);
2124 2125
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2126

2127
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2128
		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2129
	/* bit0-7 is the length on GEN6+ */
2130
	*cs++ = offset;
2131
	intel_ring_advance(rq, cs);
2132 2133 2134 2135

	return 0;
}

2136
static int
2137
gen6_emit_bb_start(struct i915_request *rq,
2138 2139
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2140
{
2141
	u32 *cs;
2142

2143
	cs = intel_ring_begin(rq, 2);
2144 2145
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2146

2147 2148
	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
		0 : MI_BATCH_NON_SECURE_I965);
2149
	/* bit0-7 is the length on GEN6+ */
2150
	*cs++ = offset;
2151
	intel_ring_advance(rq, cs);
2152

2153
	return 0;
2154 2155
}

2156 2157
/* Blitter support (SandyBridge+) */

2158
static int gen6_ring_flush(struct i915_request *rq, u32 mode)
Z
Zou Nan hai 已提交
2159
{
2160
	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
Z
Zou Nan hai 已提交
2161 2162
}

2163 2164 2165
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2166
	if (INTEL_GEN(dev_priv) >= 6) {
2167 2168
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2169
	} else if (INTEL_GEN(dev_priv) >= 5) {
2170 2171
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2172
	} else if (INTEL_GEN(dev_priv) >= 3) {
2173 2174
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2175
	} else {
2176 2177
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2178 2179 2180
	}
}

2181 2182 2183
static void i9xx_set_default_submission(struct intel_engine_cs *engine)
{
	engine->submit_request = i9xx_submit_request;
2184
	engine->cancel_requests = cancel_requests;
2185 2186 2187

	engine->park = NULL;
	engine->unpark = NULL;
2188 2189 2190 2191
}

static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
{
2192
	i9xx_set_default_submission(engine);
2193 2194 2195
	engine->submit_request = gen6_bsd_submit_request;
}

2196 2197 2198
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2199 2200 2201
	/* gen8+ are only supported with execlists */
	GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);

2202 2203
	intel_ring_init_irq(dev_priv, engine);

2204
	engine->init_hw = init_ring_common;
2205 2206 2207
	engine->reset.prepare = reset_prepare;
	engine->reset.reset = reset_ring;
	engine->reset.finish = reset_finish;
2208

2209
	engine->cops = &ring_context_ops;
2210 2211
	engine->request_alloc = ring_request_alloc;

2212 2213 2214 2215 2216 2217
	/*
	 * Using a global execution timeline; the previous final breadcrumb is
	 * equivalent to our next initial bread so we can elide
	 * engine->emit_init_breadcrumb().
	 */
	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2218
	if (IS_GEN(dev_priv, 5))
2219
		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2220 2221

	engine->set_default_submission = i9xx_set_default_submission;
2222

2223
	if (INTEL_GEN(dev_priv) >= 6)
2224
		engine->emit_bb_start = gen6_emit_bb_start;
2225
	else if (INTEL_GEN(dev_priv) >= 4)
2226
		engine->emit_bb_start = i965_emit_bb_start;
2227
	else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2228
		engine->emit_bb_start = i830_emit_bb_start;
2229
	else
2230
		engine->emit_bb_start = i915_emit_bb_start;
2231 2232
}

2233
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2234
{
2235
	struct drm_i915_private *dev_priv = engine->i915;
2236
	int ret;
2237

2238 2239
	intel_ring_default_vfuncs(dev_priv, engine);

2240 2241
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2242

2243 2244
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;

2245
	if (INTEL_GEN(dev_priv) >= 7) {
2246
		engine->init_context = intel_rcs_ctx_init;
2247
		engine->emit_flush = gen7_render_ring_flush;
2248
		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2249 2250 2251
	} else if (IS_GEN(dev_priv, 6)) {
		engine->init_context = intel_rcs_ctx_init;
		engine->emit_flush = gen6_render_ring_flush;
2252
		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2253
	} else if (IS_GEN(dev_priv, 5)) {
2254
		engine->emit_flush = gen4_render_ring_flush;
2255
	} else {
2256
		if (INTEL_GEN(dev_priv) < 4)
2257
			engine->emit_flush = gen2_render_ring_flush;
2258
		else
2259
			engine->emit_flush = gen4_render_ring_flush;
2260
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2261
	}
B
Ben Widawsky 已提交
2262

2263
	if (IS_HASWELL(dev_priv))
2264
		engine->emit_bb_start = hsw_emit_bb_start;
2265

2266
	engine->init_hw = init_render_ring;
2267

2268
	ret = intel_init_ring_buffer(engine);
2269 2270 2271 2272
	if (ret)
		return ret;

	return 0;
2273 2274
}

2275
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2276
{
2277
	struct drm_i915_private *dev_priv = engine->i915;
2278

2279 2280
	intel_ring_default_vfuncs(dev_priv, engine);

2281
	if (INTEL_GEN(dev_priv) >= 6) {
2282
		/* gen6 bsd needs a special wa for tail updates */
2283
		if (IS_GEN(dev_priv, 6))
2284
			engine->set_default_submission = gen6_bsd_set_default_submission;
2285
		engine->emit_flush = gen6_bsd_ring_flush;
2286
		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2287

2288
		if (IS_GEN(dev_priv, 6))
2289
			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2290
		else
2291
			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2292
	} else {
2293
		engine->emit_flush = bsd_ring_flush;
2294
		if (IS_GEN(dev_priv, 5))
2295
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2296
		else
2297
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2298 2299
	}

2300
	return intel_init_ring_buffer(engine);
2301
}
2302

2303
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2304
{
2305
	struct drm_i915_private *dev_priv = engine->i915;
2306

2307 2308
	GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);

2309 2310
	intel_ring_default_vfuncs(dev_priv, engine);

2311
	engine->emit_flush = gen6_ring_flush;
2312
	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2313

2314
	if (IS_GEN(dev_priv, 6))
2315
		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2316
	else
2317
		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2318

2319
	return intel_init_ring_buffer(engine);
2320
}
2321

2322
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2323
{
2324
	struct drm_i915_private *dev_priv = engine->i915;
2325

2326 2327
	GEM_BUG_ON(INTEL_GEN(dev_priv) < 7);

2328 2329
	intel_ring_default_vfuncs(dev_priv, engine);

2330
	engine->emit_flush = gen6_ring_flush;
2331 2332 2333
	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
	engine->irq_enable = hsw_vebox_irq_enable;
	engine->irq_disable = hsw_vebox_irq_disable;
B
Ben Widawsky 已提交
2334

2335
	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2336

2337
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2338
}