disk-io.c 139.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

C
Chris Mason 已提交
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
C
Chris Mason 已提交
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
S
Stefan Behrens 已提交
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <asm/unaligned.h>
21
#include <crypto/hash.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "volumes.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "check-integrity.h"
33
#include "rcu-string.h"
34
#include "dev-replace.h"
D
David Woodhouse 已提交
35
#include "raid56.h"
36
#include "sysfs.h"
J
Josef Bacik 已提交
37
#include "qgroup.h"
38
#include "compression.h"
39
#include "tree-checker.h"
J
Josef Bacik 已提交
40
#include "ref-verify.h"
41
#include "block-group.h"
42
#include "discard.h"
43
#include "space-info.h"
N
Naohiro Aota 已提交
44
#include "zoned.h"
45
#include "subpage.h"
46

47 48 49 50
#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
51 52
				 BTRFS_SUPER_FLAG_METADUMP |\
				 BTRFS_SUPER_FLAG_METADUMP_V2)
53

54
static void end_workqueue_fn(struct btrfs_work *work);
55
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
L
liubo 已提交
56
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57
				      struct btrfs_fs_info *fs_info);
58
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
60 61
					struct extent_io_tree *dirty_pages,
					int mark);
62
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
L
liubo 已提交
63
				       struct extent_io_tree *pinned_extents);
64 65
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66

C
Chris Mason 已提交
67
/*
68 69
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
C
Chris Mason 已提交
70 71
 * by writes to insert metadata for new file extents after IO is complete.
 */
72
struct btrfs_end_io_wq {
73 74 75 76
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
77
	blk_status_t status;
78
	enum btrfs_wq_endio_type metadata;
79
	struct btrfs_work work;
80
};
81

82 83 84 85 86 87 88
static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
89
					SLAB_MEM_SPREAD,
90 91 92 93 94 95
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

96
void __cold btrfs_end_io_wq_exit(void)
97
{
98
	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 100
}

101 102 103 104 105 106
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
	if (fs_info->csum_shash)
		crypto_free_shash(fs_info->csum_shash);
}

C
Chris Mason 已提交
107 108 109 110 111
/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
112
struct async_submit_bio {
113
	struct inode *inode;
114
	struct bio *bio;
115
	extent_submit_bio_start_t *submit_bio_start;
116
	int mirror_num;
117 118 119

	/* Optional parameter for submit_bio_start used by direct io */
	u64 dio_file_offset;
120
	struct btrfs_work work;
121
	blk_status_t status;
122 123
};

124 125 126 127 128 129 130 131
/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
132 133
 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 * roots have separate keysets.
134
 *
135 136 137
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
138
 *
139 140 141
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
142
 *
143 144 145
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
146 147 148 149 150
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif
151

152 153 154 155 156 157 158 159 160 161 162 163 164
#define DEFINE_LEVEL(stem, level)					\
	.names[level] = "btrfs-" stem "-0" #level,

#define DEFINE_NAME(stem)						\
	DEFINE_LEVEL(stem, 0)						\
	DEFINE_LEVEL(stem, 1)						\
	DEFINE_LEVEL(stem, 2)						\
	DEFINE_LEVEL(stem, 3)						\
	DEFINE_LEVEL(stem, 4)						\
	DEFINE_LEVEL(stem, 5)						\
	DEFINE_LEVEL(stem, 6)						\
	DEFINE_LEVEL(stem, 7)

165 166
static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
167
	/* Longest entry: btrfs-free-space-00 */
168 169
	char			names[BTRFS_MAX_LEVEL][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170
} btrfs_lockdep_keysets[] = {
171 172 173 174 175 176 177 178 179 180 181 182
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
	{ .id = 0,				DEFINE_NAME("tree")	},
183
};
184

185 186
#undef DEFINE_LEVEL
#undef DEFINE_NAME
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

204 205
#endif

C
Chris Mason 已提交
206
/*
207
 * Compute the csum of a btree block and store the result to provided buffer.
C
Chris Mason 已提交
208
 */
209
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210
{
211
	struct btrfs_fs_info *fs_info = buf->fs_info;
212
	const int num_pages = num_extent_pages(buf);
213
	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215
	char *kaddr;
216
	int i;
217 218 219

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
220
	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222
			    first_page_part - BTRFS_CSUM_SIZE);
223

224 225 226
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(buf->pages[i]);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227
	}
228
	memset(result, 0, BTRFS_CSUM_SIZE);
229
	crypto_shash_final(shash, result);
230 231
}

C
Chris Mason 已提交
232 233 234 235 236 237
/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
238
static int verify_parent_transid(struct extent_io_tree *io_tree,
239 240
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
241
{
242
	struct extent_state *cached_state = NULL;
243 244 245 246 247
	int ret;

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

248 249 250
	if (atomic)
		return -EAGAIN;

251
	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252
			 &cached_state);
253
	if (extent_buffer_uptodate(eb) &&
254 255 256 257
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
258 259 260
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
261
			parent_transid, btrfs_header_generation(eb));
262
	ret = 1;
263
	clear_extent_buffer_uptodate(eb);
C
Chris Mason 已提交
264
out:
265
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266
			     &cached_state);
267 268 269
	return ret;
}

270 271 272 273
static bool btrfs_supported_super_csum(u16 csum_type)
{
	switch (csum_type) {
	case BTRFS_CSUM_TYPE_CRC32:
274
	case BTRFS_CSUM_TYPE_XXHASH:
275
	case BTRFS_CSUM_TYPE_SHA256:
276
	case BTRFS_CSUM_TYPE_BLAKE2:
277 278 279 280 281 282
		return true;
	default:
		return false;
	}
}

D
David Sterba 已提交
283 284 285 286
/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
287 288
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
D
David Sterba 已提交
289 290 291
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
292
	char result[BTRFS_CSUM_SIZE];
293 294 295
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);

	shash->tfm = fs_info->csum_shash;
D
David Sterba 已提交
296

297 298 299 300 301
	/*
	 * The super_block structure does not span the whole
	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
	 * filled with zeros and is included in the checksum.
	 */
302 303
	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
D
David Sterba 已提交
304

305
	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306
		return 1;
D
David Sterba 已提交
307

308
	return 0;
D
David Sterba 已提交
309 310
}

311
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312
			   struct btrfs_key *first_key, u64 parent_transid)
313
{
314
	struct btrfs_fs_info *fs_info = eb->fs_info;
315 316 317 318 319 320
	int found_level;
	struct btrfs_key found_key;
	int ret;

	found_level = btrfs_header_level(eb);
	if (found_level != level) {
321 322
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree level check failed\n");
323 324 325 326 327 328 329 330 331
		btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
			  eb->start, level, found_level);
		return -EIO;
	}

	if (!first_key)
		return 0;

332 333 334 335 336 337 338 339
	/*
	 * For live tree block (new tree blocks in current transaction),
	 * we need proper lock context to avoid race, which is impossible here.
	 * So we only checks tree blocks which is read from disk, whose
	 * generation <= fs_info->last_trans_committed.
	 */
	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
		return 0;
340 341 342 343 344 345 346 347 348 349

	/* We have @first_key, so this @eb must have at least one item */
	if (btrfs_header_nritems(eb) == 0) {
		btrfs_err(fs_info,
		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
			  eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return -EUCLEAN;
	}

350 351 352 353 354 355 356
	if (found_level)
		btrfs_node_key_to_cpu(eb, &found_key, 0);
	else
		btrfs_item_key_to_cpu(eb, &found_key, 0);
	ret = btrfs_comp_cpu_keys(first_key, &found_key);

	if (ret) {
357 358
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree first key check failed\n");
359
		btrfs_err(fs_info,
360 361 362 363 364
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
			  eb->start, parent_transid, first_key->objectid,
			  first_key->type, first_key->offset,
			  found_key.objectid, found_key.type,
			  found_key.offset);
365 366 367 368
	}
	return ret;
}

C
Chris Mason 已提交
369 370 371
/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
372 373 374 375
 *
 * @parent_transid:	expected transid, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key of first slot, skip check if NULL
C
Chris Mason 已提交
376
 */
377
static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378 379
					  u64 parent_transid, int level,
					  struct btrfs_key *first_key)
380
{
381
	struct btrfs_fs_info *fs_info = eb->fs_info;
382
	struct extent_io_tree *io_tree;
383
	int failed = 0;
384 385 386
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
387
	int failed_mirror = 0;
388

389
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390
	while (1) {
391
		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392
		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393
		if (!ret) {
394
			if (verify_parent_transid(io_tree, eb,
395
						   parent_transid, 0))
396
				ret = -EIO;
397
			else if (btrfs_verify_level_key(eb, level,
398
						first_key, parent_transid))
399 400 401
				ret = -EUCLEAN;
			else
				break;
402
		}
C
Chris Mason 已提交
403

404
		num_copies = btrfs_num_copies(fs_info,
405
					      eb->start, eb->len);
C
Chris Mason 已提交
406
		if (num_copies == 1)
407
			break;
C
Chris Mason 已提交
408

409 410 411 412 413
		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

414
		mirror_num++;
415 416 417
		if (mirror_num == failed_mirror)
			mirror_num++;

C
Chris Mason 已提交
418
		if (mirror_num > num_copies)
419
			break;
420
	}
421

422
	if (failed && !ret && failed_mirror)
423
		btrfs_repair_eb_io_failure(eb, failed_mirror);
424 425

	return ret;
426
}
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static int csum_one_extent_buffer(struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	u8 result[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
				    offsetof(struct btrfs_header, fsid),
				    BTRFS_FSID_SIZE) == 0);
	csum_tree_block(eb, result);

	if (btrfs_header_level(eb))
		ret = btrfs_check_node(eb);
	else
		ret = btrfs_check_leaf_full(eb);

	if (ret < 0) {
		btrfs_print_tree(eb, 0);
		btrfs_err(fs_info,
			"block=%llu write time tree block corruption detected",
			eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return ret;
	}
	write_extent_buffer(eb, result, 0, fs_info->csum_size);

	return 0;
}

/* Checksum all dirty extent buffers in one bio_vec */
static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
				      struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	u64 bvec_start = page_offset(page) + bvec->bv_offset;
	u64 cur;
	int ret = 0;

	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
	     cur += fs_info->nodesize) {
		struct extent_buffer *eb;
		bool uptodate;

		eb = find_extent_buffer(fs_info, cur);
		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
						       fs_info->nodesize);

		/* A dirty eb shouldn't disappear from buffer_radix */
		if (WARN_ON(!eb))
			return -EUCLEAN;

		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}
		if (WARN_ON(!uptodate)) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}

		ret = csum_one_extent_buffer(eb);
		free_extent_buffer(eb);
		if (ret < 0)
			return ret;
	}
	return ret;
}

C
Chris Mason 已提交
496
/*
497 498 499
 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block.
 * For subpage extent buffers we need bvec to also read the offset in the page.
C
Chris Mason 已提交
500
 */
501
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
502
{
503
	struct page *page = bvec->bv_page;
M
Miao Xie 已提交
504
	u64 start = page_offset(page);
505 506
	u64 found_start;
	struct extent_buffer *eb;
507 508 509

	if (fs_info->sectorsize < PAGE_SIZE)
		return csum_dirty_subpage_buffers(fs_info, bvec);
510

J
Josef Bacik 已提交
511 512 513
	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;
514

515
	found_start = btrfs_header_bytenr(eb);
516 517 518 519 520 521

	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
		WARN_ON(found_start != 0);
		return 0;
	}

522 523 524 525 526 527 528 529 530
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

531
	return csum_one_extent_buffer(eb);
532 533
}

534
static int check_tree_block_fsid(struct extent_buffer *eb)
Y
Yan Zheng 已提交
535
{
536
	struct btrfs_fs_info *fs_info = eb->fs_info;
537
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
538
	u8 fsid[BTRFS_FSID_SIZE];
539
	u8 *metadata_uuid;
Y
Yan Zheng 已提交
540

541 542
	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	/*
	 * Checking the incompat flag is only valid for the current fs. For
	 * seed devices it's forbidden to have their uuid changed so reading
	 * ->fsid in this case is fine
	 */
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
		metadata_uuid = fs_devices->metadata_uuid;
	else
		metadata_uuid = fs_devices->fsid;

	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
		return 0;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
			return 0;

	return 1;
Y
Yan Zheng 已提交
561 562
}

563 564
/* Do basic extent buffer checks at read time */
static int validate_extent_buffer(struct extent_buffer *eb)
565
{
566
	struct btrfs_fs_info *fs_info = eb->fs_info;
567
	u64 found_start;
568 569
	const u32 csum_size = fs_info->csum_size;
	u8 found_level;
570
	u8 result[BTRFS_CSUM_SIZE];
571
	const u8 *header_csum;
572
	int ret = 0;
573

574
	found_start = btrfs_header_bytenr(eb);
575
	if (found_start != eb->start) {
576 577
		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
			     eb->start, found_start);
578
		ret = -EIO;
579
		goto out;
580
	}
581
	if (check_tree_block_fsid(eb)) {
582 583
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
584
		ret = -EIO;
585
		goto out;
586
	}
587
	found_level = btrfs_header_level(eb);
588
	if (found_level >= BTRFS_MAX_LEVEL) {
589 590
		btrfs_err(fs_info, "bad tree block level %d on %llu",
			  (int)btrfs_header_level(eb), eb->start);
591
		ret = -EIO;
592
		goto out;
593
	}
594

595
	csum_tree_block(eb, result);
596 597
	header_csum = page_address(eb->pages[0]) +
		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
598

599
	if (memcmp(result, header_csum, csum_size) != 0) {
600
		btrfs_warn_rl(fs_info,
601 602
	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
			      eb->start,
603
			      CSUM_FMT_VALUE(csum_size, header_csum),
604 605
			      CSUM_FMT_VALUE(csum_size, result),
			      btrfs_header_level(eb));
606
		ret = -EUCLEAN;
607
		goto out;
608 609
	}

610 611 612 613 614
	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
615
	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
616 617 618
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}
619

620
	if (found_level > 0 && btrfs_check_node(eb))
L
Liu Bo 已提交
621 622
		ret = -EIO;

623 624
	if (!ret)
		set_extent_buffer_uptodate(eb);
625 626 627 628
	else
		btrfs_err(fs_info,
			  "block=%llu read time tree block corruption detected",
			  eb->start);
629 630 631 632
out:
	return ret;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	struct extent_buffer *eb;
	bool reads_done;
	int ret = 0;

	/*
	 * We don't allow bio merge for subpage metadata read, so we should
	 * only get one eb for each endio hook.
	 */
	ASSERT(end == start + fs_info->nodesize - 1);
	ASSERT(PagePrivate(page));

	eb = find_extent_buffer(fs_info, start);
	/*
	 * When we are reading one tree block, eb must have been inserted into
	 * the radix tree. If not, something is wrong.
	 */
	ASSERT(eb);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	/* Subpage read must finish in page read */
	ASSERT(reads_done);

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
	if (ret < 0)
		goto err;

	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
		btree_readahead_hook(eb, ret);

	set_extent_buffer_uptodate(eb);

	free_extent_buffer(eb);
	return ret;
err:
	/*
	 * end_bio_extent_readpage decrements io_pages in case of error,
	 * make sure it has something to decrement.
	 */
	atomic_inc(&eb->io_pages);
	clear_extent_buffer_uptodate(eb);
	free_extent_buffer(eb);
	return ret;
}

686
int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
687 688 689 690 691 692 693 694
				   struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct extent_buffer *eb;
	int ret = 0;
	int reads_done;

	ASSERT(page->private);
695 696 697 698

	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return validate_subpage_buffer(page, start, end, mirror);

699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	eb = (struct extent_buffer *)page->private;

	/*
	 * The pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
	atomic_inc(&eb->refs);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	if (!reads_done)
		goto err;

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
717
err:
718 719
	if (reads_done &&
	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
720
		btree_readahead_hook(eb, ret);
A
Arne Jansen 已提交
721

D
David Woodhouse 已提交
722 723 724 725 726 727 728
	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
729
		clear_extent_buffer_uptodate(eb);
D
David Woodhouse 已提交
730
	}
731
	free_extent_buffer(eb);
732

733
	return ret;
734 735
}

736
static void end_workqueue_bio(struct bio *bio)
737
{
738
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
739
	struct btrfs_fs_info *fs_info;
740
	struct btrfs_workqueue *wq;
741 742

	fs_info = end_io_wq->info;
743
	end_io_wq->status = bio->bi_status;
744

745
	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
746
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
747
			wq = fs_info->endio_meta_write_workers;
748
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
749
			wq = fs_info->endio_freespace_worker;
750
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
751
			wq = fs_info->endio_raid56_workers;
752
		else
753
			wq = fs_info->endio_write_workers;
754
	} else {
755
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
756
			wq = fs_info->endio_raid56_workers;
757
		else if (end_io_wq->metadata)
758
			wq = fs_info->endio_meta_workers;
759
		else
760
			wq = fs_info->endio_workers;
761
	}
762

763
	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
764
	btrfs_queue_work(wq, &end_io_wq->work);
765 766
}

767
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
768
			enum btrfs_wq_endio_type metadata)
769
{
770
	struct btrfs_end_io_wq *end_io_wq;
771

772
	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
773
	if (!end_io_wq)
774
		return BLK_STS_RESOURCE;
775 776 777

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
778
	end_io_wq->info = info;
779
	end_io_wq->status = 0;
780
	end_io_wq->bio = bio;
781
	end_io_wq->metadata = metadata;
782 783 784

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
785 786 787
	return 0;
}

C
Chris Mason 已提交
788 789 790
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
791
	blk_status_t ret;
C
Chris Mason 已提交
792 793

	async = container_of(work, struct  async_submit_bio, work);
794 795
	ret = async->submit_bio_start(async->inode, async->bio,
				      async->dio_file_offset);
796
	if (ret)
797
		async->status = ret;
C
Chris Mason 已提交
798 799
}

800 801 802 803 804 805 806 807
/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
C
Chris Mason 已提交
808
static void run_one_async_done(struct btrfs_work *work)
809 810
{
	struct async_submit_bio *async;
811 812
	struct inode *inode;
	blk_status_t ret;
813 814

	async = container_of(work, struct  async_submit_bio, work);
815
	inode = async->inode;
816

817
	/* If an error occurred we just want to clean up the bio and move on */
818 819
	if (async->status) {
		async->bio->bi_status = async->status;
820
		bio_endio(async->bio);
821 822 823
		return;
	}

824 825 826 827 828 829
	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
	 * This changes nothing when cgroups aren't in use.
	 */
	async->bio->bi_opf |= REQ_CGROUP_PUNT;
830
	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
831 832 833 834
	if (ret) {
		async->bio->bi_status = ret;
		bio_endio(async->bio);
	}
C
Chris Mason 已提交
835 836 837 838 839 840 841
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
842 843 844
	kfree(async);
}

845
blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
846
				 int mirror_num, unsigned long bio_flags,
847
				 u64 dio_file_offset,
848
				 extent_submit_bio_start_t *submit_bio_start)
849
{
850
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
851 852 853 854
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
855
		return BLK_STS_RESOURCE;
856

857
	async->inode = inode;
858 859
	async->bio = bio;
	async->mirror_num = mirror_num;
C
Chris Mason 已提交
860 861
	async->submit_bio_start = submit_bio_start;

862 863
	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
C
Chris Mason 已提交
864

865
	async->dio_file_offset = dio_file_offset;
866

867
	async->status = 0;
868

869
	if (op_is_sync(bio->bi_opf))
870
		btrfs_set_work_high_priority(&async->work);
871

872
	btrfs_queue_work(fs_info->workers, &async->work);
873 874 875
	return 0;
}

876
static blk_status_t btree_csum_one_bio(struct bio *bio)
877
{
878
	struct bio_vec *bvec;
879
	struct btrfs_root *root;
880
	int ret = 0;
881
	struct bvec_iter_all iter_all;
882

883
	ASSERT(!bio_flagged(bio, BIO_CLONED));
884
	bio_for_each_segment_all(bvec, bio, iter_all) {
885
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
886
		ret = csum_dirty_buffer(root->fs_info, bvec);
887 888
		if (ret)
			break;
889
	}
890

891
	return errno_to_blk_status(ret);
892 893
}

894
static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
895
					   u64 dio_file_offset)
896
{
897 898
	/*
	 * when we're called for a write, we're already in the async
899
	 * submission context.  Just jump into btrfs_map_bio
900
	 */
901
	return btree_csum_one_bio(bio);
C
Chris Mason 已提交
902
}
903

904
static bool should_async_write(struct btrfs_fs_info *fs_info,
905
			     struct btrfs_inode *bi)
906
{
907
	if (btrfs_is_zoned(fs_info))
908
		return false;
909
	if (atomic_read(&bi->sync_writers))
910
		return false;
911
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
912 913
		return false;
	return true;
914 915
}

916 917
blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
				       int mirror_num, unsigned long bio_flags)
918
{
919
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
920
	blk_status_t ret;
921

922
	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
C
Chris Mason 已提交
923 924 925 926
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
927 928
		ret = btrfs_bio_wq_end_io(fs_info, bio,
					  BTRFS_WQ_ENDIO_METADATA);
929
		if (ret)
930
			goto out_w_error;
931
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
932
	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
933 934
		ret = btree_csum_one_bio(bio);
		if (ret)
935
			goto out_w_error;
936
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
937 938 939 940 941
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
942 943
		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
					  0, btree_submit_bio_start);
944
	}
945

946 947 948 949
	if (ret)
		goto out_w_error;
	return 0;

950
out_w_error:
951
	bio->bi_status = ret;
952
	bio_endio(bio);
953
	return ret;
954 955
}

J
Jan Beulich 已提交
956
#ifdef CONFIG_MIGRATION
957
static int btree_migratepage(struct address_space *mapping,
958 959
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
960 961 962 963 964 965 966 967 968 969 970 971 972 973
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
974
	return migrate_page(mapping, newpage, page, mode);
975
}
J
Jan Beulich 已提交
976
#endif
977

978 979 980 981

static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
982 983 984
	struct btrfs_fs_info *fs_info;
	int ret;

985
	if (wbc->sync_mode == WB_SYNC_NONE) {
986 987 988 989

		if (wbc->for_kupdate)
			return 0;

990
		fs_info = BTRFS_I(mapping->host)->root->fs_info;
991
		/* this is a bit racy, but that's ok */
992 993 994
		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH,
					     fs_info->dirty_metadata_batch);
995
		if (ret < 0)
996 997
			return 0;
	}
998
	return btree_write_cache_pages(mapping, wbc);
999 1000
}

1001
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002
{
1003
	if (PageWriteback(page) || PageDirty(page))
C
Chris Mason 已提交
1004
		return 0;
1005

1006
	return try_release_extent_buffer(page);
1007 1008
}

1009 1010
static void btree_invalidatepage(struct page *page, unsigned int offset,
				 unsigned int length)
1011
{
1012 1013
	struct extent_io_tree *tree;
	tree = &BTRFS_I(page->mapping->host)->io_tree;
1014 1015
	extent_invalidatepage(tree, page, offset);
	btree_releasepage(page, GFP_NOFS);
1016
	if (PagePrivate(page)) {
1017 1018 1019
		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
			   "page private not zero on page %llu",
			   (unsigned long long)page_offset(page));
1020
		detach_page_private(page);
1021
	}
1022 1023
}

1024 1025
static int btree_set_page_dirty(struct page *page)
{
1026
#ifdef DEBUG
1027 1028
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	struct btrfs_subpage *subpage;
1029
	struct extent_buffer *eb;
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	int cur_bit = 0;
	u64 page_start = page_offset(page);

	if (fs_info->sectorsize == PAGE_SIZE) {
		BUG_ON(!PagePrivate(page));
		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		BUG_ON(!atomic_read(&eb->refs));
		btrfs_assert_tree_locked(eb);
		return __set_page_dirty_nobuffers(page);
	}
	ASSERT(PagePrivate(page) && page->private);
	subpage = (struct btrfs_subpage *)page->private;

	ASSERT(subpage->dirty_bitmap);
	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
		unsigned long flags;
		u64 cur;
		u16 tmp = (1 << cur_bit);

		spin_lock_irqsave(&subpage->lock, flags);
		if (!(tmp & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			cur_bit++;
			continue;
		}
		spin_unlock_irqrestore(&subpage->lock, flags);
		cur = page_start + cur_bit * fs_info->sectorsize;
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068
		eb = find_extent_buffer(fs_info, cur);
		ASSERT(eb);
		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		ASSERT(atomic_read(&eb->refs));
		btrfs_assert_tree_locked(eb);
		free_extent_buffer(eb);

		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
	}
1069
#endif
1070 1071 1072
	return __set_page_dirty_nobuffers(page);
}

1073
static const struct address_space_operations btree_aops = {
1074
	.writepages	= btree_writepages,
1075 1076
	.releasepage	= btree_releasepage,
	.invalidatepage = btree_invalidatepage,
1077
#ifdef CONFIG_MIGRATION
1078
	.migratepage	= btree_migratepage,
1079
#endif
1080
	.set_page_dirty = btree_set_page_dirty,
1081 1082
};

1083 1084
struct extent_buffer *btrfs_find_create_tree_block(
						struct btrfs_fs_info *fs_info,
1085 1086
						u64 bytenr, u64 owner_root,
						int level)
1087
{
1088 1089
	if (btrfs_is_testing(fs_info))
		return alloc_test_extent_buffer(fs_info, bytenr);
1090
	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1091 1092
}

1093 1094 1095 1096
/*
 * Read tree block at logical address @bytenr and do variant basic but critical
 * verification.
 *
1097
 * @owner_root:		the objectid of the root owner for this block.
1098 1099 1100 1101
 * @parent_transid:	expected transid of this tree block, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key in slot 0, skip check if NULL
 */
1102
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103 1104
				      u64 owner_root, u64 parent_transid,
				      int level, struct btrfs_key *first_key)
1105 1106 1107 1108
{
	struct extent_buffer *buf = NULL;
	int ret;

1109
	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110 1111
	if (IS_ERR(buf))
		return buf;
1112

1113
	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1114
					     level, first_key);
1115
	if (ret) {
1116
		free_extent_buffer_stale(buf);
1117
		return ERR_PTR(ret);
1118
	}
1119
	return buf;
1120

1121 1122
}

1123
void btrfs_clean_tree_block(struct extent_buffer *buf)
1124
{
1125
	struct btrfs_fs_info *fs_info = buf->fs_info;
1126
	if (btrfs_header_generation(buf) ==
1127
	    fs_info->running_transaction->transid) {
1128
		btrfs_assert_tree_locked(buf);
1129

1130
		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131 1132 1133
			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
						 -buf->len,
						 fs_info->dirty_metadata_batch);
1134 1135
			clear_extent_buffer_dirty(buf);
		}
1136
	}
1137 1138
}

1139
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1140
			 u64 objectid)
1141
{
1142
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1143
	root->fs_info = fs_info;
C
Chris Mason 已提交
1144
	root->node = NULL;
1145
	root->commit_root = NULL;
1146
	root->state = 0;
1147
	root->orphan_cleanup_state = 0;
1148

1149
	root->last_trans = 0;
1150
	root->free_objectid = 0;
1151
	root->nr_delalloc_inodes = 0;
1152
	root->nr_ordered_extents = 0;
1153
	root->inode_tree = RB_ROOT;
1154
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155
	root->block_rsv = NULL;
1156 1157

	INIT_LIST_HEAD(&root->dirty_list);
1158
	INIT_LIST_HEAD(&root->root_list);
1159 1160
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
1161 1162
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
1163
	INIT_LIST_HEAD(&root->reloc_dirty_list);
1164 1165
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
1166
	spin_lock_init(&root->inode_lock);
1167
	spin_lock_init(&root->delalloc_lock);
1168
	spin_lock_init(&root->ordered_extent_lock);
1169
	spin_lock_init(&root->accounting_lock);
1170 1171
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
1172
	spin_lock_init(&root->qgroup_meta_rsv_lock);
1173
	mutex_init(&root->objectid_mutex);
1174
	mutex_init(&root->log_mutex);
1175
	mutex_init(&root->ordered_extent_mutex);
1176
	mutex_init(&root->delalloc_mutex);
1177
	init_waitqueue_head(&root->qgroup_flush_wait);
Y
Yan Zheng 已提交
1178 1179 1180
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
1181 1182
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
Y
Yan Zheng 已提交
1183 1184 1185
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
M
Miao Xie 已提交
1186
	atomic_set(&root->log_batch, 0);
1187
	refcount_set(&root->refs, 1);
1188
	atomic_set(&root->snapshot_force_cow, 0);
1189
	atomic_set(&root->nr_swapfiles, 0);
Y
Yan Zheng 已提交
1190
	root->log_transid = 0;
1191
	root->log_transid_committed = -1;
1192
	root->last_log_commit = 0;
1193
	if (!dummy) {
1194 1195
		extent_io_tree_init(fs_info, &root->dirty_log_pages,
				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196 1197 1198
		extent_io_tree_init(fs_info, &root->log_csum_range,
				    IO_TREE_LOG_CSUM_RANGE, NULL);
	}
C
Chris Mason 已提交
1199

1200 1201
	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
1202
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1203
	root->root_key.objectid = objectid;
1204
	root->anon_dev = 0;
1205

1206
	spin_lock_init(&root->root_item_lock);
1207
	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
J
Josef Bacik 已提交
1208 1209 1210 1211 1212 1213
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&root->leak_list);
	spin_lock(&fs_info->fs_roots_radix_lock);
	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
	spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
1214 1215
}

1216
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1217
					   u64 objectid, gfp_t flags)
A
Al Viro 已提交
1218
{
1219
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
A
Al Viro 已提交
1220
	if (root)
1221
		__setup_root(root, fs_info, objectid);
A
Al Viro 已提交
1222 1223 1224
	return root;
}

1225 1226
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
1227
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1228 1229 1230
{
	struct btrfs_root *root;

1231 1232 1233
	if (!fs_info)
		return ERR_PTR(-EINVAL);

1234
	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1235 1236
	if (!root)
		return ERR_PTR(-ENOMEM);
1237

1238
	/* We don't use the stripesize in selftest, set it as sectorsize */
1239
	root->alloc_bytenr = 0;
1240 1241 1242 1243 1244

	return root;
}
#endif

1245 1246 1247
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     u64 objectid)
{
1248
	struct btrfs_fs_info *fs_info = trans->fs_info;
1249 1250 1251 1252
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
1253
	unsigned int nofs_flag;
1254 1255
	int ret = 0;

1256 1257 1258 1259 1260
	/*
	 * We're holding a transaction handle, so use a NOFS memory allocation
	 * context to avoid deadlock if reclaim happens.
	 */
	nofs_flag = memalloc_nofs_save();
1261
	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1262
	memalloc_nofs_restore(nofs_flag);
1263 1264 1265 1266 1267 1268 1269
	if (!root)
		return ERR_PTR(-ENOMEM);

	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

1270 1271
	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
				      BTRFS_NESTING_NORMAL);
1272 1273
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
1274
		leaf = NULL;
1275
		goto fail_unlock;
1276 1277 1278 1279 1280 1281
	}

	root->node = leaf;
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
1282
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1283

1284 1285
	btrfs_set_root_flags(&root->root_item, 0);
	btrfs_set_root_limit(&root->root_item, 0);
1286 1287 1288 1289 1290 1291 1292
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
1293
	if (is_fstree(objectid))
1294 1295 1296
		generate_random_guid(root->root_item.uuid);
	else
		export_guid(root->root_item.uuid, &guid_null);
1297
	btrfs_set_root_drop_level(&root->root_item, 0);
1298

1299 1300
	btrfs_tree_unlock(leaf);

1301 1302 1303 1304 1305 1306 1307
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

1308 1309
	return root;

1310
fail_unlock:
1311
	if (leaf)
1312
		btrfs_tree_unlock(leaf);
1313
fail:
1314
	btrfs_put_root(root);
1315

1316
	return ERR_PTR(ret);
1317 1318
}

Y
Yan Zheng 已提交
1319 1320
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
1321 1322
{
	struct btrfs_root *root;
1323

1324
	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1325
	if (!root)
Y
Yan Zheng 已提交
1326
		return ERR_PTR(-ENOMEM);
1327 1328 1329 1330

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331

N
Naohiro Aota 已提交
1332 1333 1334 1335 1336 1337 1338 1339
	return root;
}

int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root)
{
	struct extent_buffer *leaf;

Y
Yan Zheng 已提交
1340
	/*
1341
	 * DON'T set SHAREABLE bit for log trees.
1342
	 *
1343 1344 1345 1346 1347
	 * Log trees are not exposed to user space thus can't be snapshotted,
	 * and they go away before a real commit is actually done.
	 *
	 * They do store pointers to file data extents, and those reference
	 * counts still get updated (along with back refs to the log tree).
Y
Yan Zheng 已提交
1348
	 */
1349

1350
	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351
			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
N
Naohiro Aota 已提交
1352 1353
	if (IS_ERR(leaf))
		return PTR_ERR(leaf);
1354

Y
Yan Zheng 已提交
1355
	root->node = leaf;
1356 1357 1358

	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
N
Naohiro Aota 已提交
1359 1360

	return 0;
Y
Yan Zheng 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
N
Naohiro Aota 已提交
1371

1372 1373 1374 1375 1376 1377 1378
	if (!btrfs_is_zoned(fs_info)) {
		int ret = btrfs_alloc_log_tree_node(trans, log_root);

		if (ret) {
			btrfs_put_root(log_root);
			return ret;
		}
N
Naohiro Aota 已提交
1379 1380
	}

Y
Yan Zheng 已提交
1381 1382 1383 1384 1385 1386 1387 1388
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
1389
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan Zheng 已提交
1390 1391
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;
N
Naohiro Aota 已提交
1392
	int ret;
Y
Yan Zheng 已提交
1393

1394
	log_root = alloc_log_tree(trans, fs_info);
Y
Yan Zheng 已提交
1395 1396 1397
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

N
Naohiro Aota 已提交
1398 1399 1400 1401 1402 1403
	ret = btrfs_alloc_log_tree_node(trans, log_root);
	if (ret) {
		btrfs_put_root(log_root);
		return ret;
	}

Y
Yan Zheng 已提交
1404 1405 1406 1407
	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
1408 1409 1410
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
1411
	btrfs_set_stack_inode_nbytes(inode_item,
1412
				     fs_info->nodesize);
1413
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
Y
Yan Zheng 已提交
1414

1415
	btrfs_set_root_node(&log_root->root_item, log_root->node);
Y
Yan Zheng 已提交
1416 1417 1418 1419

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
1420
	root->log_transid_committed = -1;
1421
	root->last_log_commit = 0;
1422 1423 1424
	return 0;
}

1425 1426 1427
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
					      struct btrfs_path *path,
					      struct btrfs_key *key)
1428 1429 1430
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1431
	u64 generation;
1432
	int ret;
1433
	int level;
1434

1435
	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1436 1437
	if (!root)
		return ERR_PTR(-ENOMEM);
1438

1439 1440
	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
1441
	if (ret) {
1442 1443
		if (ret > 0)
			ret = -ENOENT;
1444
		goto fail;
1445
	}
1446

1447
	generation = btrfs_root_generation(&root->root_item);
1448
	level = btrfs_root_level(&root->root_item);
1449 1450
	root->node = read_tree_block(fs_info,
				     btrfs_root_bytenr(&root->root_item),
1451
				     key->objectid, generation, level, NULL);
1452 1453
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
1454
		root->node = NULL;
1455
		goto fail;
1456 1457
	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
		ret = -EIO;
1458
		goto fail;
1459
	}
1460
	root->commit_root = btrfs_root_node(root);
1461
	return root;
1462
fail:
1463
	btrfs_put_root(root);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	return ERR_PTR(ret);
}

struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					struct btrfs_key *key)
{
	struct btrfs_root *root;
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return ERR_PTR(-ENOMEM);
	root = read_tree_root_path(tree_root, path, key);
	btrfs_free_path(path);

	return root;
1480 1481
}

1482 1483 1484 1485 1486 1487
/*
 * Initialize subvolume root in-memory structure
 *
 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
 */
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1488 1489
{
	int ret;
1490
	unsigned int nofs_flag;
1491

1492 1493 1494 1495 1496 1497 1498 1499
	/*
	 * We might be called under a transaction (e.g. indirect backref
	 * resolution) which could deadlock if it triggers memory reclaim
	 */
	nofs_flag = memalloc_nofs_save();
	ret = btrfs_drew_lock_init(&root->snapshot_lock);
	memalloc_nofs_restore(nofs_flag);
	if (ret)
1500 1501
		goto fail;

1502
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1503
	    !btrfs_is_data_reloc_root(root)) {
1504
		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1505 1506 1507
		btrfs_check_and_init_root_item(&root->root_item);
	}

1508 1509 1510 1511 1512 1513
	/*
	 * Don't assign anonymous block device to roots that are not exposed to
	 * userspace, the id pool is limited to 1M
	 */
	if (is_fstree(root->root_key.objectid) &&
	    btrfs_root_refs(&root->root_item) > 0) {
1514 1515 1516 1517 1518 1519 1520
		if (!anon_dev) {
			ret = get_anon_bdev(&root->anon_dev);
			if (ret)
				goto fail;
		} else {
			root->anon_dev = anon_dev;
		}
1521
	}
1522 1523

	mutex_lock(&root->objectid_mutex);
1524
	ret = btrfs_init_root_free_objectid(root);
1525 1526
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
L
Liu Bo 已提交
1527
		goto fail;
1528 1529
	}

1530
	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531 1532 1533

	mutex_unlock(&root->objectid_mutex);

1534 1535
	return 0;
fail:
D
David Sterba 已提交
1536
	/* The caller is responsible to call btrfs_free_fs_root */
1537 1538 1539
	return ret;
}

1540 1541
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					       u64 root_id)
1542 1543 1544 1545 1546 1547
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
1548
	if (root)
1549
		root = btrfs_grab_root(root);
1550 1551 1552 1553
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
						u64 objectid)
{
	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->tree_root);
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->extent_root);
	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->chunk_root);
	if (objectid == BTRFS_DEV_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->dev_root);
	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->csum_root);
	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->quota_root) ?
			fs_info->quota_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_UUID_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->uuid_root) ?
			fs_info->uuid_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->free_space_root) ?
			fs_info->free_space_root : ERR_PTR(-ENOENT);
	return NULL;
}

1579 1580 1581 1582 1583
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

1584
	ret = radix_tree_preload(GFP_NOFS);
1585 1586 1587 1588 1589 1590 1591
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
1592
	if (ret == 0) {
1593
		btrfs_grab_root(root);
1594
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1595
	}
1596 1597 1598 1599 1600 1601
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

J
Josef Bacik 已提交
1602 1603 1604 1605 1606 1607
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
	struct btrfs_root *root;

	while (!list_empty(&fs_info->allocated_roots)) {
J
Josef Bacik 已提交
1608 1609
		char buf[BTRFS_ROOT_NAME_BUF_LEN];

J
Josef Bacik 已提交
1610 1611
		root = list_first_entry(&fs_info->allocated_roots,
					struct btrfs_root, leak_list);
J
Josef Bacik 已提交
1612
		btrfs_err(fs_info, "leaked root %s refcount %d",
1613
			  btrfs_root_name(&root->root_key, buf),
J
Josef Bacik 已提交
1614 1615
			  refcount_read(&root->refs));
		while (refcount_read(&root->refs) > 1)
1616 1617
			btrfs_put_root(root);
		btrfs_put_root(root);
J
Josef Bacik 已提交
1618 1619 1620 1621
	}
#endif
}

1622 1623
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
1624 1625
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
1626
	percpu_counter_destroy(&fs_info->ordered_bytes);
1627 1628 1629 1630
	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
	btrfs_free_csum_hash(fs_info);
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_free_ref_cache(fs_info);
1631 1632
	kfree(fs_info->balance_ctl);
	kfree(fs_info->delayed_root);
1633 1634 1635 1636 1637 1638 1639 1640 1641
	btrfs_put_root(fs_info->extent_root);
	btrfs_put_root(fs_info->tree_root);
	btrfs_put_root(fs_info->chunk_root);
	btrfs_put_root(fs_info->dev_root);
	btrfs_put_root(fs_info->csum_root);
	btrfs_put_root(fs_info->quota_root);
	btrfs_put_root(fs_info->uuid_root);
	btrfs_put_root(fs_info->free_space_root);
	btrfs_put_root(fs_info->fs_root);
1642
	btrfs_put_root(fs_info->data_reloc_root);
J
Josef Bacik 已提交
1643
	btrfs_check_leaked_roots(fs_info);
1644
	btrfs_extent_buffer_leak_debug_check(fs_info);
1645 1646
	kfree(fs_info->super_copy);
	kfree(fs_info->super_for_commit);
1647
	kfree(fs_info->subpage_info);
1648 1649 1650 1651
	kvfree(fs_info);
}


1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/*
 * Get an in-memory reference of a root structure.
 *
 * For essential trees like root/extent tree, we grab it from fs_info directly.
 * For subvolume trees, we check the cached filesystem roots first. If not
 * found, then read it from disk and add it to cached fs roots.
 *
 * Caller should release the root by calling btrfs_put_root() after the usage.
 *
 * NOTE: Reloc and log trees can't be read by this function as they share the
 *	 same root objectid.
 *
 * @objectid:	root id
 * @anon_dev:	preallocated anonymous block device number for new roots,
 * 		pass 0 for new allocation.
 * @check_ref:	whether to check root item references, If true, return -ENOENT
 *		for orphan roots
 */
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
					     u64 objectid, dev_t anon_dev,
					     bool check_ref)
1673 1674
{
	struct btrfs_root *root;
1675
	struct btrfs_path *path;
1676
	struct btrfs_key key;
1677 1678
	int ret;

1679 1680 1681
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;
1682
again:
D
David Sterba 已提交
1683
	root = btrfs_lookup_fs_root(fs_info, objectid);
1684
	if (root) {
1685 1686
		/* Shouldn't get preallocated anon_dev for cached roots */
		ASSERT(!anon_dev);
1687
		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1688
			btrfs_put_root(root);
1689
			return ERR_PTR(-ENOENT);
1690
		}
1691
		return root;
1692
	}
1693

D
David Sterba 已提交
1694 1695 1696 1697
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1698 1699
	if (IS_ERR(root))
		return root;
1700

1701
	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1702
		ret = -ENOENT;
1703
		goto fail;
1704
	}
1705

1706
	ret = btrfs_init_fs_root(root, anon_dev);
1707 1708
	if (ret)
		goto fail;
1709

1710 1711 1712 1713 1714
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
1715 1716
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
D
David Sterba 已提交
1717
	key.offset = objectid;
1718 1719

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1720
	btrfs_free_path(path);
1721 1722 1723
	if (ret < 0)
		goto fail;
	if (ret == 0)
1724
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1725

1726
	ret = btrfs_insert_fs_root(fs_info, root);
1727
	if (ret) {
1728
		btrfs_put_root(root);
1729
		if (ret == -EEXIST)
1730 1731
			goto again;
		goto fail;
1732
	}
1733
	return root;
1734
fail:
1735
	btrfs_put_root(root);
1736
	return ERR_PTR(ret);
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
/*
 * Get in-memory reference of a root structure
 *
 * @objectid:	tree objectid
 * @check_ref:	if set, verify that the tree exists and the item has at least
 *		one reference
 */
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     u64 objectid, bool check_ref)
{
	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
}

/*
 * Get in-memory reference of a root structure, created as new, optionally pass
 * the anonymous block device id
 *
 * @objectid:	tree objectid
 * @anon_dev:	if zero, allocate a new anonymous block device or use the
 *		parameter value
 */
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
					 u64 objectid, dev_t anon_dev)
{
	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/*
 * btrfs_get_fs_root_commit_root - return a root for the given objectid
 * @fs_info:	the fs_info
 * @objectid:	the objectid we need to lookup
 *
 * This is exclusively used for backref walking, and exists specifically because
 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
 * creation time, which means we may have to read the tree_root in order to look
 * up a fs root that is not in memory.  If the root is not in memory we will
 * read the tree root commit root and look up the fs root from there.  This is a
 * temporary root, it will not be inserted into the radix tree as it doesn't
 * have the most uptodate information, it'll simply be discarded once the
 * backref code is finished using the root.
 */
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
						 struct btrfs_path *path,
						 u64 objectid)
{
	struct btrfs_root *root;
	struct btrfs_key key;

	ASSERT(path->search_commit_root && path->skip_locking);

	/*
	 * This can return -ENOENT if we ask for a root that doesn't exist, but
	 * since this is called via the backref walking code we won't be looking
	 * up a root that doesn't exist, unless there's corruption.  So if root
	 * != NULL just return it.
	 */
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;

	root = btrfs_lookup_fs_root(fs_info, objectid);
	if (root)
		return root;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = read_tree_root_path(fs_info->tree_root, path, &key);
	btrfs_release_path(path);

	return root;
}

1812 1813 1814 1815 1816
/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
1817 1818
{
	struct bio *bio;
1819
	struct btrfs_end_io_wq *end_io_wq;
1820

1821
	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1822
	bio = end_io_wq->bio;
1823

1824
	bio->bi_status = end_io_wq->status;
1825 1826
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
1827
	bio_endio(bio);
1828
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1829 1830
}

1831 1832 1833
static int cleaner_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1834
	struct btrfs_fs_info *fs_info = root->fs_info;
1835
	int again;
1836

1837
	while (1) {
1838
		again = 0;
1839

1840 1841
		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);

1842
		/* Make the cleaner go to sleep early. */
1843
		if (btrfs_need_cleaner_sleep(fs_info))
1844 1845
			goto sleep;

1846 1847 1848 1849
		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
1850
		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1851 1852
			goto sleep;

1853
		if (!mutex_trylock(&fs_info->cleaner_mutex))
1854 1855
			goto sleep;

1856 1857 1858 1859
		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
1860
		if (btrfs_need_cleaner_sleep(fs_info)) {
1861
			mutex_unlock(&fs_info->cleaner_mutex);
1862
			goto sleep;
1863
		}
1864

1865
		btrfs_run_delayed_iputs(fs_info);
1866

1867
		again = btrfs_clean_one_deleted_snapshot(root);
1868
		mutex_unlock(&fs_info->cleaner_mutex);
1869 1870

		/*
1871 1872
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
1873
		 */
1874
		btrfs_run_defrag_inodes(fs_info);
1875 1876

		/*
1877
		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1878 1879
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1880
		 * after acquiring fs_info->reclaim_bgs_lock. So we
1881 1882 1883
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
1884
		btrfs_delete_unused_bgs(fs_info);
1885 1886 1887 1888 1889 1890 1891

		/*
		 * Reclaim block groups in the reclaim_bgs list after we deleted
		 * all unused block_groups. This possibly gives us some more free
		 * space.
		 */
		btrfs_reclaim_bgs(fs_info);
1892
sleep:
1893
		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1894 1895 1896 1897
		if (kthread_should_park())
			kthread_parkme();
		if (kthread_should_stop())
			return 0;
1898
		if (!again) {
1899
			set_current_state(TASK_INTERRUPTIBLE);
1900
			schedule();
1901 1902
			__set_current_state(TASK_RUNNING);
		}
1903
	}
1904 1905 1906 1907 1908
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1909
	struct btrfs_fs_info *fs_info = root->fs_info;
1910 1911
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
1912
	u64 transid;
1913
	time64_t delta;
1914
	unsigned long delay;
1915
	bool cannot_commit;
1916 1917

	do {
1918
		cannot_commit = false;
1919
		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1920
		mutex_lock(&fs_info->transaction_kthread_mutex);
1921

1922 1923
		spin_lock(&fs_info->trans_lock);
		cur = fs_info->running_transaction;
1924
		if (!cur) {
1925
			spin_unlock(&fs_info->trans_lock);
1926 1927
			goto sleep;
		}
Y
Yan Zheng 已提交
1928

1929
		delta = ktime_get_seconds() - cur->start_time;
1930
		if (cur->state < TRANS_STATE_COMMIT_START &&
1931
		    delta < fs_info->commit_interval) {
1932
			spin_unlock(&fs_info->trans_lock);
1933 1934 1935
			delay -= msecs_to_jiffies((delta - 1) * 1000);
			delay = min(delay,
				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1936 1937
			goto sleep;
		}
1938
		transid = cur->transid;
1939
		spin_unlock(&fs_info->trans_lock);
1940

1941
		/* If the file system is aborted, this will always fail. */
1942
		trans = btrfs_attach_transaction(root);
1943
		if (IS_ERR(trans)) {
1944 1945
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
1946
			goto sleep;
1947
		}
1948
		if (transid == trans->transid) {
1949
			btrfs_commit_transaction(trans);
1950
		} else {
1951
			btrfs_end_transaction(trans);
1952
		}
1953
sleep:
1954 1955
		wake_up_process(fs_info->cleaner_kthread);
		mutex_unlock(&fs_info->transaction_kthread_mutex);
1956

J
Josef Bacik 已提交
1957
		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1958
				      &fs_info->fs_state)))
1959
			btrfs_cleanup_transaction(fs_info);
1960
		if (!kthread_should_stop() &&
1961
				(!btrfs_transaction_blocked(fs_info) ||
1962
				 cannot_commit))
1963
			schedule_timeout_interruptible(delay);
1964 1965 1966 1967
	} while (!kthread_should_stop());
	return 0;
}

C
Chris Mason 已提交
1968
/*
1969 1970 1971
 * This will find the highest generation in the array of root backups.  The
 * index of the highest array is returned, or -EINVAL if we can't find
 * anything.
C
Chris Mason 已提交
1972 1973 1974 1975 1976
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
1977
static int find_newest_super_backup(struct btrfs_fs_info *info)
C
Chris Mason 已提交
1978
{
1979
	const u64 newest_gen = btrfs_super_generation(info->super_copy);
C
Chris Mason 已提交
1980 1981 1982 1983 1984 1985 1986 1987
	u64 cur;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
1988
			return i;
C
Chris Mason 已提交
1989 1990
	}

1991
	return -EINVAL;
C
Chris Mason 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
2001
	const int next_backup = info->backup_root_index;
C
Chris Mason 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	struct btrfs_root_backup *root_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
	btrfs_set_backup_extent_root_gen(root_backup,
			       btrfs_header_generation(info->extent_root->node));
	btrfs_set_backup_extent_root_level(root_backup,
			       btrfs_header_level(info->extent_root->node));

2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
C
Chris Mason 已提交
2041
			       btrfs_header_generation(info->fs_root->node));
2042
		btrfs_set_backup_fs_root_level(root_backup,
C
Chris Mason 已提交
2043
			       btrfs_header_level(info->fs_root->node));
2044
	}
C
Chris Mason 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
	btrfs_set_backup_csum_root_gen(root_backup,
			       btrfs_header_generation(info->csum_root->node));
	btrfs_set_backup_csum_root_level(root_backup,
			       btrfs_header_level(info->csum_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

N
Nikolay Borisov 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/*
 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 *
 * fs_info - filesystem whose backup roots need to be read
 * priority - priority of backup root required
 *
 * Returns backup root index on success and -EINVAL otherwise.
 */
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
	int backup_index = find_newest_super_backup(fs_info);
	struct btrfs_super_block *super = fs_info->super_copy;
	struct btrfs_root_backup *root_backup;

	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
		if (priority == 0)
			return backup_index;

		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
	} else {
		return -EINVAL;
	}

	root_backup = super->super_roots + backup_index;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * Fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));

	return backup_index;
}

L
Liu Bo 已提交
2118 2119 2120
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
2121
	btrfs_destroy_workqueue(fs_info->fixup_workers);
2122
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2123
	btrfs_destroy_workqueue(fs_info->workers);
2124 2125
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2126
	btrfs_destroy_workqueue(fs_info->rmw_workers);
2127 2128
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2129
	btrfs_destroy_workqueue(fs_info->delayed_workers);
2130
	btrfs_destroy_workqueue(fs_info->caching_workers);
2131
	btrfs_destroy_workqueue(fs_info->readahead_workers);
2132
	btrfs_destroy_workqueue(fs_info->flush_workers);
2133
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2134 2135
	if (fs_info->discard_ctl.discard_workers)
		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2136 2137 2138 2139 2140 2141 2142
	/*
	 * Now that all other work queues are destroyed, we can safely destroy
	 * the queues used for metadata I/O, since tasks from those other work
	 * queues can do metadata I/O operations.
	 */
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
L
Liu Bo 已提交
2143 2144
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

C
Chris Mason 已提交
2155
/* helper to cleanup tree roots */
2156
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
C
Chris Mason 已提交
2157
{
2158
	free_root_extent_buffers(info->tree_root);
2159

2160 2161 2162 2163 2164
	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->extent_root);
	free_root_extent_buffers(info->csum_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
2165
	free_root_extent_buffers(info->fs_root);
2166
	free_root_extent_buffers(info->data_reloc_root);
2167
	if (free_chunk_root)
2168
		free_root_extent_buffers(info->chunk_root);
2169
	free_root_extent_buffers(info->free_space_root);
C
Chris Mason 已提交
2170 2171
}

2172 2173 2174 2175 2176 2177 2178
void btrfs_put_root(struct btrfs_root *root)
{
	if (!root)
		return;

	if (refcount_dec_and_test(&root->refs)) {
		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2179
		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2180 2181 2182
		if (root->anon_dev)
			free_anon_bdev(root->anon_dev);
		btrfs_drew_lock_destroy(&root->snapshot_lock);
2183
		free_root_extent_buffers(root);
2184 2185 2186 2187 2188 2189 2190 2191 2192
#ifdef CONFIG_BTRFS_DEBUG
		spin_lock(&root->fs_info->fs_roots_radix_lock);
		list_del_init(&root->leak_list);
		spin_unlock(&root->fs_info->fs_roots_radix_lock);
#endif
		kfree(root);
	}
}

2193
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

2204
		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2205
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2206
		btrfs_put_root(gang[0]);
2207 2208 2209 2210 2211 2212 2213 2214 2215
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
2216
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2217 2218
	}
}
C
Chris Mason 已提交
2219

2220 2221 2222 2223 2224 2225 2226 2227
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
2228
	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2229 2230
}

2231 2232 2233 2234 2235 2236 2237 2238
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
2239
	atomic_set(&fs_info->reloc_cancel_req, 0);
2240 2241
}

2242
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2243
{
2244 2245 2246 2247
	struct inode *inode = fs_info->btree_inode;

	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(inode, 1);
2248 2249 2250 2251 2252
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
2253 2254
	inode->i_size = OFFSET_MAX;
	inode->i_mapping->a_ops = &btree_aops;
2255

2256
	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2257
	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2258
			    IO_TREE_BTREE_INODE_IO, inode);
2259
	BTRFS_I(inode)->io_tree.track_uptodate = false;
2260
	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2261

2262
	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2263 2264 2265
	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
	btrfs_insert_inode_hash(inode);
2266 2267
}

2268 2269 2270
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2271
	init_rwsem(&fs_info->dev_replace.rwsem);
2272
	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
2283
	fs_info->qgroup_rescan_running = false;
2284 2285 2286
	mutex_init(&fs_info->qgroup_rescan_lock);
}

2287 2288 2289
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
		struct btrfs_fs_devices *fs_devices)
{
2290
	u32 max_active = fs_info->thread_pool_size;
2291
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2292 2293

	fs_info->workers =
2294 2295
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);
2296 2297

	fs_info->delalloc_workers =
2298 2299
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);
2300 2301

	fs_info->flush_workers =
2302 2303
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);
2304 2305

	fs_info->caching_workers =
2306
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2307 2308

	fs_info->fixup_workers =
2309
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2310 2311 2312 2313 2314 2315

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
2316
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2317
	fs_info->endio_meta_workers =
2318 2319
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
2320
	fs_info->endio_meta_write_workers =
2321 2322
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
2323
	fs_info->endio_raid56_workers =
2324 2325
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
2326
	fs_info->rmw_workers =
2327
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2328
	fs_info->endio_write_workers =
2329 2330
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
2331
	fs_info->endio_freespace_worker =
2332 2333
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
2334
	fs_info->delayed_workers =
2335 2336
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
2337
	fs_info->readahead_workers =
2338 2339
		btrfs_alloc_workqueue(fs_info, "readahead", flags,
				      max_active, 2);
2340
	fs_info->qgroup_rescan_workers =
2341
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2342 2343
	fs_info->discard_ctl.discard_workers =
		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2344 2345

	if (!(fs_info->workers && fs_info->delalloc_workers &&
2346
	      fs_info->flush_workers &&
2347 2348 2349 2350 2351 2352
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
	      fs_info->caching_workers && fs_info->readahead_workers &&
	      fs_info->fixup_workers && fs_info->delayed_workers &&
2353 2354
	      fs_info->qgroup_rescan_workers &&
	      fs_info->discard_ctl.discard_workers)) {
2355 2356 2357 2358 2359 2360
		return -ENOMEM;
	}

	return 0;
}

2361 2362 2363
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
	struct crypto_shash *csum_shash;
2364
	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2365

2366
	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2367 2368 2369

	if (IS_ERR(csum_shash)) {
		btrfs_err(fs_info, "error allocating %s hash for checksum",
2370
			  csum_driver);
2371 2372 2373 2374 2375 2376 2377 2378
		return PTR_ERR(csum_shash);
	}

	fs_info->csum_shash = csum_shash;

	return 0;
}

2379 2380 2381 2382 2383 2384 2385
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);
2386
	int level = btrfs_super_log_root_level(disk_super);
2387 2388

	if (fs_devices->rw_devices == 0) {
2389
		btrfs_warn(fs_info, "log replay required on RO media");
2390 2391 2392
		return -EIO;
	}

2393 2394
	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
					 GFP_KERNEL);
2395 2396 2397
	if (!log_tree_root)
		return -ENOMEM;

2398
	log_tree_root->node = read_tree_block(fs_info, bytenr,
2399 2400 2401
					      BTRFS_TREE_LOG_OBJECTID,
					      fs_info->generation + 1, level,
					      NULL);
2402
	if (IS_ERR(log_tree_root->node)) {
2403
		btrfs_warn(fs_info, "failed to read log tree");
2404
		ret = PTR_ERR(log_tree_root->node);
2405
		log_tree_root->node = NULL;
2406
		btrfs_put_root(log_tree_root);
2407
		return ret;
2408
	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2409
		btrfs_err(fs_info, "failed to read log tree");
2410
		btrfs_put_root(log_tree_root);
2411 2412 2413 2414 2415
		return -EIO;
	}
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
2416 2417
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to recover log tree");
2418
		btrfs_put_root(log_tree_root);
2419 2420 2421
		return ret;
	}

2422
	if (sb_rdonly(fs_info->sb)) {
2423
		ret = btrfs_commit_super(fs_info);
2424 2425 2426 2427 2428 2429 2430
		if (ret)
			return ret;
	}

	return 0;
}

2431
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2432
{
2433
	struct btrfs_root *tree_root = fs_info->tree_root;
2434
	struct btrfs_root *root;
2435 2436 2437
	struct btrfs_key location;
	int ret;

2438 2439
	BUG_ON(!fs_info->tree_root);

2440 2441 2442 2443
	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

2444
	root = btrfs_read_tree_root(tree_root, &location);
2445
	if (IS_ERR(root)) {
2446 2447 2448 2449 2450 2451 2452
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->extent_root = root;
2453
	}
2454 2455

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2456
	root = btrfs_read_tree_root(tree_root, &location);
2457
	if (IS_ERR(root)) {
2458 2459 2460 2461 2462 2463 2464
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->dev_root = root;
2465
	}
2466 2467
	/* Initialize fs_info for all devices in any case */
	btrfs_init_devices_late(fs_info);
2468

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
		if (IS_ERR(root)) {
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
				ret = PTR_ERR(root);
				goto out;
			}
		} else {
			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
			fs_info->csum_root = root;
2481
		}
2482
	}
2483

2484 2485 2486 2487
	/*
	 * This tree can share blocks with some other fs tree during relocation
	 * and we need a proper setup by btrfs_get_fs_root
	 */
D
David Sterba 已提交
2488 2489
	root = btrfs_get_fs_root(tree_root->fs_info,
				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2490
	if (IS_ERR(root)) {
2491 2492 2493 2494 2495 2496 2497
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->data_reloc_root = root;
2498 2499
	}

2500
	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2501 2502 2503
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2504
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2505
		fs_info->quota_root = root;
2506 2507 2508
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2509 2510
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
2511 2512 2513 2514 2515
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			if (ret != -ENOENT)
				goto out;
		}
2516
	} else {
2517 2518
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
2519 2520
	}

2521 2522 2523
	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
2524
		if (IS_ERR(root)) {
2525 2526 2527 2528 2529 2530 2531
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
				ret = PTR_ERR(root);
				goto out;
			}
		}  else {
			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
			fs_info->free_space_root = root;
2532
		}
2533 2534
	}

2535
	return 0;
2536 2537 2538 2539
out:
	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
		   location.objectid, ret);
	return ret;
2540 2541
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
/*
 * Real super block validation
 * NOTE: super csum type and incompat features will not be checked here.
 *
 * @sb:		super block to check
 * @mirror_num:	the super block number to check its bytenr:
 * 		0	the primary (1st) sb
 * 		1, 2	2nd and 3rd backup copy
 * 	       -1	skip bytenr check
 */
static int validate_super(struct btrfs_fs_info *fs_info,
			    struct btrfs_super_block *sb, int mirror_num)
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
{
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
		ret = -EINVAL;
	}
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
2593 2594 2595 2596 2597 2598 2599 2600 2601

	/*
	 * For 4K page size, we only support 4K sector size.
	 * For 64K page size, we support read-write for 64K sector size, and
	 * read-only for 4K sector size.
	 */
	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
				     sectorsize != SZ_64K))) {
2602
		btrfs_err(fs_info,
2603
			"sectorsize %llu not yet supported for page size %lu",
2604 2605 2606
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
		   BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
		ret = -EINVAL;
	}

	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
	    memcmp(fs_info->fs_devices->metadata_uuid,
		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
			fs_info->super_copy->metadata_uuid,
			fs_info->fs_devices->metadata_uuid);
		ret = -EINVAL;
	}

2654
	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2655
		   BTRFS_FSID_SIZE) != 0) {
2656
		btrfs_err(fs_info,
2657
			"dev_item UUID does not match metadata fsid: %pU != %pU",
2658
			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

2684 2685
	if (mirror_num >= 0 &&
	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/*
 * Validation of super block at mount time.
 * Some checks already done early at mount time, like csum type and incompat
 * flags will be skipped.
 */
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
	return validate_super(fs_info, fs_info->super_copy, 0);
}

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
/*
 * Validation of super block at write time.
 * Some checks like bytenr check will be skipped as their values will be
 * overwritten soon.
 * Extra checks like csum type and incompat flags will be done here.
 */
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
				      struct btrfs_super_block *sb)
{
	int ret;

	ret = validate_super(fs_info, sb, -1);
	if (ret < 0)
		goto out;
2753
	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		ret = -EUCLEAN;
		btrfs_err(fs_info, "invalid csum type, has %u want %u",
			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
		goto out;
	}
	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
		ret = -EUCLEAN;
		btrfs_err(fs_info,
		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
			  btrfs_super_incompat_flags(sb),
			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
		goto out;
	}
out:
	if (ret < 0)
		btrfs_err(fs_info,
		"super block corruption detected before writing it to disk");
	return ret;
}

2774
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2775
{
2776
	int backup_index = find_newest_super_backup(fs_info);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	struct btrfs_super_block *sb = fs_info->super_copy;
	struct btrfs_root *tree_root = fs_info->tree_root;
	bool handle_error = false;
	int ret = 0;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		u64 generation;
		int level;

		if (handle_error) {
			if (!IS_ERR(tree_root->node))
				free_extent_buffer(tree_root->node);
			tree_root->node = NULL;

			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
				break;

			free_root_pointers(fs_info, 0);

			/*
			 * Don't use the log in recovery mode, it won't be
			 * valid
			 */
			btrfs_set_super_log_root(sb, 0);

			/* We can't trust the free space cache either */
			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

			ret = read_backup_root(fs_info, i);
2807
			backup_index = ret;
2808 2809 2810 2811 2812 2813
			if (ret < 0)
				return ret;
		}
		generation = btrfs_super_generation(sb);
		level = btrfs_super_root_level(sb);
		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2814
						  BTRFS_ROOT_TREE_OBJECTID,
2815
						  generation, level, NULL);
2816
		if (IS_ERR(tree_root->node)) {
2817
			handle_error = true;
2818 2819 2820 2821
			ret = PTR_ERR(tree_root->node);
			tree_root->node = NULL;
			btrfs_warn(fs_info, "couldn't read tree root");
			continue;
2822

2823 2824 2825 2826
		} else if (!extent_buffer_uptodate(tree_root->node)) {
			handle_error = true;
			ret = -EIO;
			btrfs_warn(fs_info, "error while reading tree root");
2827 2828 2829 2830 2831 2832 2833
			continue;
		}

		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
		tree_root->commit_root = btrfs_root_node(tree_root);
		btrfs_set_root_refs(&tree_root->root_item, 1);

2834 2835 2836 2837
		/*
		 * No need to hold btrfs_root::objectid_mutex since the fs
		 * hasn't been fully initialised and we are the only user
		 */
2838
		ret = btrfs_init_root_free_objectid(tree_root);
2839 2840 2841 2842 2843
		if (ret < 0) {
			handle_error = true;
			continue;
		}

2844
		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854

		ret = btrfs_read_roots(fs_info);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		/* All successful */
		fs_info->generation = generation;
		fs_info->last_trans_committed = generation;
2855 2856 2857 2858 2859 2860 2861 2862

		/* Always begin writing backup roots after the one being used */
		if (backup_index < 0) {
			fs_info->backup_root_index = 0;
		} else {
			fs_info->backup_root_index = backup_index + 1;
			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
		}
2863 2864 2865 2866 2867 2868
		break;
	}

	return ret;
}

2869
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2870
{
2871
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2872
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
C
Chris Mason 已提交
2873
	INIT_LIST_HEAD(&fs_info->trans_list);
2874
	INIT_LIST_HEAD(&fs_info->dead_roots);
Y
Yan, Zheng 已提交
2875
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2876
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2877
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2878
	spin_lock_init(&fs_info->delalloc_root_lock);
J
Josef Bacik 已提交
2879
	spin_lock_init(&fs_info->trans_lock);
2880
	spin_lock_init(&fs_info->fs_roots_radix_lock);
Y
Yan, Zheng 已提交
2881
	spin_lock_init(&fs_info->delayed_iput_lock);
C
Chris Mason 已提交
2882
	spin_lock_init(&fs_info->defrag_inodes_lock);
2883
	spin_lock_init(&fs_info->super_lock);
2884
	spin_lock_init(&fs_info->buffer_lock);
2885
	spin_lock_init(&fs_info->unused_bgs_lock);
2886
	spin_lock_init(&fs_info->treelog_bg_lock);
2887
	spin_lock_init(&fs_info->zone_active_bgs_lock);
2888
	spin_lock_init(&fs_info->relocation_bg_lock);
J
Jan Schmidt 已提交
2889
	rwlock_init(&fs_info->tree_mod_log_lock);
2890
	mutex_init(&fs_info->unused_bg_unpin_mutex);
2891
	mutex_init(&fs_info->reclaim_bgs_lock);
C
Chris Mason 已提交
2892
	mutex_init(&fs_info->reloc_mutex);
2893
	mutex_init(&fs_info->delalloc_root_mutex);
2894
	mutex_init(&fs_info->zoned_meta_io_lock);
2895
	seqlock_init(&fs_info->profiles_lock);
2896

2897
	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2898
	INIT_LIST_HEAD(&fs_info->space_info);
J
Jan Schmidt 已提交
2899
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2900
	INIT_LIST_HEAD(&fs_info->unused_bgs);
2901
	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2902
	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
J
Josef Bacik 已提交
2903 2904
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&fs_info->allocated_roots);
2905 2906
	INIT_LIST_HEAD(&fs_info->allocated_ebs);
	spin_lock_init(&fs_info->eb_leak_lock);
J
Josef Bacik 已提交
2907
#endif
2908
	extent_map_tree_init(&fs_info->mapping_tree);
2909 2910 2911 2912 2913 2914 2915
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
J
Josef Bacik 已提交
2916 2917 2918
	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
			     BTRFS_BLOCK_RSV_DELREFS);

2919
	atomic_set(&fs_info->async_delalloc_pages, 0);
C
Chris Mason 已提交
2920
	atomic_set(&fs_info->defrag_running, 0);
Z
Zhao Lei 已提交
2921
	atomic_set(&fs_info->reada_works_cnt, 0);
2922
	atomic_set(&fs_info->nr_delayed_iputs, 0);
2923
	atomic64_set(&fs_info->tree_mod_seq, 0);
2924
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
J
Josef Bacik 已提交
2925
	fs_info->metadata_ratio = 0;
C
Chris Mason 已提交
2926
	fs_info->defrag_inodes = RB_ROOT;
2927
	atomic64_set(&fs_info->free_chunk_space, 0);
J
Jan Schmidt 已提交
2928
	fs_info->tree_mod_log = RB_ROOT;
2929
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2930
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2931
	/* readahead state */
2932
	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2933
	spin_lock_init(&fs_info->reada_lock);
J
Josef Bacik 已提交
2934
	btrfs_init_ref_verify(fs_info);
C
Chris Mason 已提交
2935

2936 2937
	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);
2938

2939 2940
	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
2941

2942
	btrfs_init_scrub(fs_info);
2943 2944 2945
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
2946
	btrfs_init_balance(fs_info);
2947
	btrfs_init_async_reclaim_work(fs_info);
A
Arne Jansen 已提交
2948

J
Josef Bacik 已提交
2949
	spin_lock_init(&fs_info->block_group_cache_lock);
2950
	fs_info->block_group_cache_tree = RB_ROOT;
2951
	fs_info->first_logical_byte = (u64)-1;
J
Josef Bacik 已提交
2952

2953 2954
	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2955
	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
C
Chris Mason 已提交
2956

2957
	mutex_init(&fs_info->ordered_operations_mutex);
2958
	mutex_init(&fs_info->tree_log_mutex);
2959
	mutex_init(&fs_info->chunk_mutex);
2960 2961
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
2962
	mutex_init(&fs_info->ro_block_group_mutex);
2963
	init_rwsem(&fs_info->commit_root_sem);
2964
	init_rwsem(&fs_info->cleanup_work_sem);
2965
	init_rwsem(&fs_info->subvol_sem);
S
Stefan Behrens 已提交
2966
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2967

2968
	btrfs_init_dev_replace_locks(fs_info);
2969
	btrfs_init_qgroup(fs_info);
2970
	btrfs_discard_init(fs_info);
2971

2972 2973 2974
	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

2975
	init_waitqueue_head(&fs_info->transaction_throttle);
2976
	init_waitqueue_head(&fs_info->transaction_wait);
S
Sage Weil 已提交
2977
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2978
	init_waitqueue_head(&fs_info->async_submit_wait);
2979
	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2980

2981 2982 2983
	/* Usable values until the real ones are cached from the superblock */
	fs_info->nodesize = 4096;
	fs_info->sectorsize = 4096;
2984
	fs_info->sectorsize_bits = ilog2(4096);
2985 2986
	fs_info->stripesize = 4096;

2987 2988 2989
	spin_lock_init(&fs_info->swapfile_pins_lock);
	fs_info->swapfile_pins = RB_ROOT;

2990
	spin_lock_init(&fs_info->send_reloc_lock);
2991
	fs_info->send_in_progress = 0;
2992 2993 2994

	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2995 2996 2997 2998 2999 3000 3001 3002 3003
}

static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
	int ret;

	fs_info->sb = sb;
	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3004

3005
	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3006
	if (ret)
J
Josef Bacik 已提交
3007
		return ret;
3008 3009 3010

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3011
		return ret;
3012 3013 3014 3015 3016 3017

	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3018
		return ret;
3019 3020 3021 3022

	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
			GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3023
		return ret;
3024 3025 3026

	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
J
Josef Bacik 已提交
3027 3028
	if (!fs_info->delayed_root)
		return -ENOMEM;
3029 3030
	btrfs_init_delayed_root(fs_info->delayed_root);

3031 3032 3033
	if (sb_rdonly(sb))
		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);

J
Josef Bacik 已提交
3034
	return btrfs_alloc_stripe_hash_table(fs_info);
3035 3036
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
static int btrfs_uuid_rescan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info);
	if (ret < 0) {
3049 3050 3051
		if (ret != -EINTR)
			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
				   ret);
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

3074 3075 3076 3077 3078 3079 3080 3081
/*
 * Some options only have meaning at mount time and shouldn't persist across
 * remounts, or be displayed. Clear these at the end of mount and remount
 * code paths.
 */
void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
{
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3082
	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3083 3084
}

3085 3086 3087 3088 3089 3090 3091
/*
 * Mounting logic specific to read-write file systems. Shared by open_ctree
 * and btrfs_remount when remounting from read-only to read-write.
 */
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
	int ret;
3092
	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	bool clear_free_space_tree = false;

	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		clear_free_space_tree = true;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = true;
	}

	if (clear_free_space_tree) {
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
			goto out;
		}
	}
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	/*
	 * btrfs_find_orphan_roots() is responsible for finding all the dead
	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
	 * them into the fs_info->fs_roots_radix tree. This must be done before
	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
	 * item before the root's tree is deleted - this means that if we unmount
	 * or crash before the deletion completes, on the next mount we will not
	 * delete what remains of the tree because the orphan item does not
	 * exists anymore, which is what tells us we have a pending deletion.
	 */
	ret = btrfs_find_orphan_roots(fs_info);
	if (ret)
		goto out;

3129 3130 3131 3132
	ret = btrfs_cleanup_fs_roots(fs_info);
	if (ret)
		goto out;

3133 3134 3135 3136 3137 3138 3139 3140
	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
		up_read(&fs_info->cleanup_work_sem);
		goto out;
	}
	up_read(&fs_info->cleanup_work_sem);

3141 3142 3143 3144 3145 3146 3147 3148
	mutex_lock(&fs_info->cleaner_mutex);
	ret = btrfs_recover_relocation(fs_info->tree_root);
	mutex_unlock(&fs_info->cleaner_mutex);
	if (ret < 0) {
		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
		goto out;
	}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		btrfs_info(fs_info, "creating free space tree");
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
			goto out;
		}
	}

3160 3161 3162 3163 3164 3165
	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
		if (ret)
			goto out;
	}

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	ret = btrfs_resume_balance_async(fs_info);
	if (ret)
		goto out;

	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume dev_replace");
		goto out;
	}

	btrfs_qgroup_rescan_resume(fs_info);

	if (!fs_info->uuid_root) {
		btrfs_info(fs_info, "creating UUID tree");
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to create the UUID tree %d", ret);
			goto out;
		}
	}

out:
	return ret;
}

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
		      char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	u16 csum_type;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int level;

3209
	ret = init_mount_fs_info(fs_info, sb);
D
David Woodhouse 已提交
3210
	if (ret) {
3211
		err = ret;
3212
		goto fail;
D
David Woodhouse 已提交
3213 3214
	}

3215 3216 3217 3218 3219 3220 3221 3222 3223
	/* These need to be init'ed before we start creating inodes and such. */
	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
				     GFP_KERNEL);
	fs_info->tree_root = tree_root;
	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
				      GFP_KERNEL);
	fs_info->chunk_root = chunk_root;
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3224
		goto fail;
3225 3226 3227 3228 3229
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3230
		goto fail;
3231 3232 3233 3234
	}
	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
	btrfs_init_btree_inode(fs_info);

3235
	invalidate_bdev(fs_devices->latest_dev->bdev);
D
David Sterba 已提交
3236 3237 3238 3239

	/*
	 * Read super block and check the signature bytes only
	 */
3240
	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3241 3242
	if (IS_ERR(disk_super)) {
		err = PTR_ERR(disk_super);
3243
		goto fail_alloc;
3244
	}
C
Chris Mason 已提交
3245

3246
	/*
3247
	 * Verify the type first, if that or the checksum value are
3248 3249
	 * corrupted, we'll find out
	 */
3250
	csum_type = btrfs_super_csum_type(disk_super);
3251
	if (!btrfs_supported_super_csum(csum_type)) {
3252
		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3253
			  csum_type);
3254
		err = -EINVAL;
3255
		btrfs_release_disk_super(disk_super);
3256 3257 3258
		goto fail_alloc;
	}

3259 3260
	fs_info->csum_size = btrfs_super_csum_size(disk_super);

3261 3262 3263
	ret = btrfs_init_csum_hash(fs_info, csum_type);
	if (ret) {
		err = ret;
3264
		btrfs_release_disk_super(disk_super);
3265 3266 3267
		goto fail_alloc;
	}

D
David Sterba 已提交
3268 3269 3270 3271
	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
3272
	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3273
		btrfs_err(fs_info, "superblock checksum mismatch");
D
David Sterba 已提交
3274
		err = -EINVAL;
3275
		btrfs_release_disk_super(disk_super);
3276
		goto fail_alloc;
D
David Sterba 已提交
3277 3278 3279 3280 3281 3282 3283
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
3284 3285
	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
	btrfs_release_disk_super(disk_super);
3286

3287 3288
	disk_super = fs_info->super_copy;

3289

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
	features = btrfs_super_flags(disk_super);
	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
		btrfs_set_super_flags(disk_super, features);
		btrfs_info(fs_info,
			"found metadata UUID change in progress flag, clearing");
	}

	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
3300

3301
	ret = btrfs_validate_mount_super(fs_info);
D
David Sterba 已提交
3302
	if (ret) {
3303
		btrfs_err(fs_info, "superblock contains fatal errors");
D
David Sterba 已提交
3304
		err = -EINVAL;
3305
		goto fail_alloc;
D
David Sterba 已提交
3306 3307
	}

3308
	if (!btrfs_super_root(disk_super))
3309
		goto fail_alloc;
3310

L
liubo 已提交
3311
	/* check FS state, whether FS is broken. */
3312 3313
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
L
liubo 已提交
3314

3315 3316 3317 3318 3319 3320
	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	/*
	 * Flag our filesystem as having big metadata blocks if they are bigger
	 * than the page size.
	 */
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

	/* Set up fs_info before parsing mount options */
	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
	stripesize = sectorsize;
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));

	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;
	fs_info->sectorsize_bits = ilog2(sectorsize);
	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
	fs_info->stripesize = stripesize;

3345
	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
Y
Yan Zheng 已提交
3346 3347
	if (ret) {
		err = ret;
3348
		goto fail_alloc;
Y
Yan Zheng 已提交
3349
	}
3350

3351 3352 3353
	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
3354 3355 3356
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
3357
		err = -EINVAL;
3358
		goto fail_alloc;
3359 3360
	}

3361
	features = btrfs_super_incompat_flags(disk_super);
L
Li Zefan 已提交
3362
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3363
	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
L
Li Zefan 已提交
3364
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
N
Nick Terrell 已提交
3365 3366
	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3367

3368
	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3369
		btrfs_info(fs_info, "has skinny extents");
3370

3371 3372 3373 3374 3375
	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3376
	    (sectorsize != nodesize)) {
3377 3378 3379
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
3380
		goto fail_alloc;
3381 3382
	}

3383 3384 3385 3386
	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
L
Li Zefan 已提交
3387
	btrfs_set_super_incompat_flags(disk_super, features);
3388

3389 3390
	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3391
	if (!sb_rdonly(sb) && features) {
3392 3393
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
3394
		       features);
3395
		err = -EINVAL;
3396
		goto fail_alloc;
3397
	}
3398

3399 3400 3401
	if (sectorsize < PAGE_SIZE) {
		struct btrfs_subpage_info *subpage_info;

3402 3403 3404
		btrfs_warn(fs_info,
		"read-write for sector size %u with page size %lu is experimental",
			   sectorsize, PAGE_SIZE);
3405 3406 3407 3408 3409 3410 3411 3412
		if (btrfs_super_incompat_flags(fs_info->super_copy) &
			BTRFS_FEATURE_INCOMPAT_RAID56) {
			btrfs_err(fs_info,
		"RAID56 is not yet supported for sector size %u with page size %lu",
				sectorsize, PAGE_SIZE);
			err = -EINVAL;
			goto fail_alloc;
		}
3413 3414 3415 3416 3417
		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
		if (!subpage_info)
			goto fail_alloc;
		btrfs_init_subpage_info(subpage_info, sectorsize);
		fs_info->subpage_info = subpage_info;
3418
	}
3419

3420 3421 3422
	ret = btrfs_init_workqueues(fs_info, fs_devices);
	if (ret) {
		err = ret;
3423 3424
		goto fail_sb_buffer;
	}
3425

3426 3427
	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3428

3429 3430
	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);
3431
	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3432

3433
	mutex_lock(&fs_info->chunk_mutex);
3434
	ret = btrfs_read_sys_array(fs_info);
3435
	mutex_unlock(&fs_info->chunk_mutex);
3436
	if (ret) {
3437
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3438
		goto fail_sb_buffer;
3439
	}
3440

3441
	generation = btrfs_super_chunk_root_generation(disk_super);
3442
	level = btrfs_super_chunk_root_level(disk_super);
3443

3444
	chunk_root->node = read_tree_block(fs_info,
3445
					   btrfs_super_chunk_root(disk_super),
3446
					   BTRFS_CHUNK_TREE_OBJECTID,
3447
					   generation, level, NULL);
3448 3449
	if (IS_ERR(chunk_root->node) ||
	    !extent_buffer_uptodate(chunk_root->node)) {
3450
		btrfs_err(fs_info, "failed to read chunk root");
3451 3452
		if (!IS_ERR(chunk_root->node))
			free_extent_buffer(chunk_root->node);
3453
		chunk_root->node = NULL;
C
Chris Mason 已提交
3454
		goto fail_tree_roots;
3455
	}
3456 3457
	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
	chunk_root->commit_root = btrfs_root_node(chunk_root);
3458

3459
	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3460 3461
			   offsetof(struct btrfs_header, chunk_tree_uuid),
			   BTRFS_UUID_SIZE);
3462

3463
	ret = btrfs_read_chunk_tree(fs_info);
Y
Yan Zheng 已提交
3464
	if (ret) {
3465
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
C
Chris Mason 已提交
3466
		goto fail_tree_roots;
Y
Yan Zheng 已提交
3467
	}
3468

3469
	/*
3470 3471 3472
	 * At this point we know all the devices that make this filesystem,
	 * including the seed devices but we don't know yet if the replace
	 * target is required. So free devices that are not part of this
D
David Sterba 已提交
3473
	 * filesystem but skip the replace target device which is checked
3474
	 * below in btrfs_init_dev_replace().
3475
	 */
3476
	btrfs_free_extra_devids(fs_devices);
3477
	if (!fs_devices->latest_dev->bdev) {
3478
		btrfs_err(fs_info, "failed to read devices");
3479 3480 3481
		goto fail_tree_roots;
	}

3482
	ret = init_tree_roots(fs_info);
3483
	if (ret)
3484
		goto fail_tree_roots;
3485

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	/*
	 * Get zone type information of zoned block devices. This will also
	 * handle emulation of a zoned filesystem if a regular device has the
	 * zoned incompat feature flag set.
	 */
	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "zoned: failed to read device zone info: %d",
			  ret);
		goto fail_block_groups;
	}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	/*
	 * If we have a uuid root and we're not being told to rescan we need to
	 * check the generation here so we can set the
	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
	 * transaction during a balance or the log replay without updating the
	 * uuid generation, and then if we crash we would rescan the uuid tree,
	 * even though it was perfectly fine.
	 */
	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);

3511 3512 3513 3514 3515 3516 3517
	ret = btrfs_verify_dev_extents(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "failed to verify dev extents against chunks: %d",
			  ret);
		goto fail_block_groups;
	}
3518 3519
	ret = btrfs_recover_balance(fs_info);
	if (ret) {
3520
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3521 3522 3523
		goto fail_block_groups;
	}

3524 3525
	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
3526
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3527 3528 3529
		goto fail_block_groups;
	}

3530 3531
	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
3532
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3533 3534 3535
		goto fail_block_groups;
	}

N
Naohiro Aota 已提交
3536 3537 3538 3539 3540 3541 3542
	ret = btrfs_check_zoned_mode(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
			  ret);
		goto fail_block_groups;
	}

3543
	ret = btrfs_sysfs_add_fsid(fs_devices);
3544
	if (ret) {
3545 3546
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
3547 3548 3549
		goto fail_block_groups;
	}

3550
	ret = btrfs_sysfs_add_mounted(fs_info);
3551
	if (ret) {
3552
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3553
		goto fail_fsdev_sysfs;
3554 3555 3556 3557
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
3558
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3559
		goto fail_sysfs;
3560 3561
	}

3562
	ret = btrfs_read_block_groups(fs_info);
3563
	if (ret) {
3564
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3565
		goto fail_sysfs;
3566
	}
3567

3568
	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3569
		btrfs_warn(fs_info,
3570
		"writable mount is not allowed due to too many missing devices");
3571
		goto fail_sysfs;
3572
	}
C
Chris Mason 已提交
3573

3574 3575
	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
					       "btrfs-cleaner");
3576
	if (IS_ERR(fs_info->cleaner_kthread))
3577
		goto fail_sysfs;
3578 3579 3580 3581

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
3582
	if (IS_ERR(fs_info->transaction_kthread))
3583
		goto fail_cleaner;
3584

3585
	if (!btrfs_test_opt(fs_info, NOSSD) &&
C
Chris Mason 已提交
3586
	    !fs_info->fs_devices->rotating) {
3587
		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
C
Chris Mason 已提交
3588 3589
	}

3590
	/*
3591
	 * Mount does not set all options immediately, we can do it now and do
3592 3593 3594
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);
3595

3596
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3597
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3598
		ret = btrfsic_mount(fs_info, fs_devices,
3599
				    btrfs_test_opt(fs_info,
3600
					CHECK_INTEGRITY_DATA) ? 1 : 0,
3601 3602
				    fs_info->check_integrity_print_mask);
		if (ret)
3603 3604 3605
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
3606 3607
	}
#endif
3608 3609 3610
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;
3611

J
Josef Bacik 已提交
3612 3613 3614
	if (btrfs_build_ref_tree(fs_info))
		btrfs_err(fs_info, "couldn't build ref tree");

3615 3616
	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
3617
	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3618
		btrfs_info(fs_info, "start tree-log replay");
3619
		ret = btrfs_replay_log(fs_info, fs_devices);
3620
		if (ret) {
3621
			err = ret;
3622
			goto fail_qgroup;
3623
		}
3624
	}
Z
Zheng Yan 已提交
3625

D
David Sterba 已提交
3626
	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3627 3628
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
3629
		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3630
		fs_info->fs_root = NULL;
3631
		goto fail_qgroup;
3632
	}
C
Chris Mason 已提交
3633

3634
	if (sb_rdonly(sb))
3635
		goto clear_oneshot;
I
Ilya Dryomov 已提交
3636

3637
	ret = btrfs_start_pre_rw_mount(fs_info);
3638
	if (ret) {
3639
		close_ctree(fs_info);
3640
		return ret;
3641
	}
3642
	btrfs_discard_resume(fs_info);
3643

3644 3645 3646
	if (fs_info->uuid_root &&
	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3647
		btrfs_info(fs_info, "checking UUID tree");
3648 3649
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
3650 3651
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
3652
			close_ctree(fs_info);
3653 3654
			return ret;
		}
3655
	}
3656

3657
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3658

3659 3660
clear_oneshot:
	btrfs_clear_oneshot_options(fs_info);
A
Al Viro 已提交
3661
	return 0;
C
Chris Mason 已提交
3662

3663 3664
fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
3665 3666
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
3667
	btrfs_cleanup_transaction(fs_info);
3668
	btrfs_free_fs_roots(fs_info);
3669
fail_cleaner:
3670
	kthread_stop(fs_info->cleaner_kthread);
3671 3672 3673 3674 3675 3676 3677

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

3678
fail_sysfs:
3679
	btrfs_sysfs_remove_mounted(fs_info);
3680

3681 3682 3683
fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

3684
fail_block_groups:
J
Josef Bacik 已提交
3685
	btrfs_put_block_group_cache(fs_info);
C
Chris Mason 已提交
3686 3687

fail_tree_roots:
3688 3689
	if (fs_info->data_reloc_root)
		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3690
	free_root_pointers(fs_info, true);
3691
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
C
Chris Mason 已提交
3692

C
Chris Mason 已提交
3693
fail_sb_buffer:
L
Liu Bo 已提交
3694
	btrfs_stop_all_workers(fs_info);
3695
	btrfs_free_block_groups(fs_info);
3696
fail_alloc:
3697 3698
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

3699
	iput(fs_info->btree_inode);
3700
fail:
3701
	btrfs_close_devices(fs_info->fs_devices);
A
Al Viro 已提交
3702
	return err;
3703
}
3704
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3705

3706
static void btrfs_end_super_write(struct bio *bio)
3707
{
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	struct btrfs_device *device = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;
	struct page *page;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		page = bvec->bv_page;

		if (bio->bi_status) {
			btrfs_warn_rl_in_rcu(device->fs_info,
				"lost page write due to IO error on %s (%d)",
				rcu_str_deref(device->name),
				blk_status_to_errno(bio->bi_status));
			ClearPageUptodate(page);
			SetPageError(page);
			btrfs_dev_stat_inc_and_print(device,
						     BTRFS_DEV_STAT_WRITE_ERRS);
		} else {
			SetPageUptodate(page);
		}

		put_page(page);
		unlock_page(page);
3731
	}
3732 3733

	bio_put(bio);
3734 3735
}

3736 3737
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
						   int copy_num)
3738 3739
{
	struct btrfs_super_block *super;
3740
	struct page *page;
3741
	u64 bytenr, bytenr_orig;
3742
	struct address_space *mapping = bdev->bd_inode->i_mapping;
3743 3744 3745 3746 3747 3748 3749 3750
	int ret;

	bytenr_orig = btrfs_sb_offset(copy_num);
	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
	if (ret == -ENOENT)
		return ERR_PTR(-EINVAL);
	else if (ret)
		return ERR_PTR(ret);
3751 3752

	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3753
		return ERR_PTR(-EINVAL);
3754

3755 3756 3757
	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
	if (IS_ERR(page))
		return ERR_CAST(page);
3758

3759
	super = page_address(page);
3760 3761 3762 3763 3764
	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
		btrfs_release_disk_super(super);
		return ERR_PTR(-ENODATA);
	}

3765
	if (btrfs_super_bytenr(super) != bytenr_orig) {
3766 3767
		btrfs_release_disk_super(super);
		return ERR_PTR(-EINVAL);
3768 3769
	}

3770
	return super;
3771 3772 3773
}


3774
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Y
Yan Zheng 已提交
3775
{
3776
	struct btrfs_super_block *super, *latest = NULL;
Y
Yan Zheng 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785
	int i;
	u64 transid = 0;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
3786 3787
		super = btrfs_read_dev_one_super(bdev, i);
		if (IS_ERR(super))
Y
Yan Zheng 已提交
3788 3789 3790
			continue;

		if (!latest || btrfs_super_generation(super) > transid) {
3791 3792 3793 3794
			if (latest)
				btrfs_release_disk_super(super);

			latest = super;
Y
Yan Zheng 已提交
3795 3796 3797
			transid = btrfs_super_generation(super);
		}
	}
3798

3799
	return super;
Y
Yan Zheng 已提交
3800 3801
}

3802
/*
3803
 * Write superblock @sb to the @device. Do not wait for completion, all the
3804
 * pages we use for writing are locked.
3805
 *
3806 3807 3808
 * Write @max_mirrors copies of the superblock, where 0 means default that fit
 * the expected device size at commit time. Note that max_mirrors must be
 * same for write and wait phases.
3809
 *
3810
 * Return number of errors when page is not found or submission fails.
3811
 */
Y
Yan Zheng 已提交
3812
static int write_dev_supers(struct btrfs_device *device,
3813
			    struct btrfs_super_block *sb, int max_mirrors)
Y
Yan Zheng 已提交
3814
{
3815
	struct btrfs_fs_info *fs_info = device->fs_info;
3816
	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3817
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Y
Yan Zheng 已提交
3818 3819
	int i;
	int errors = 0;
3820 3821
	int ret;
	u64 bytenr, bytenr_orig;
Y
Yan Zheng 已提交
3822 3823 3824 3825

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

3826 3827
	shash->tfm = fs_info->csum_shash;

Y
Yan Zheng 已提交
3828
	for (i = 0; i < max_mirrors; i++) {
3829 3830 3831 3832
		struct page *page;
		struct bio *bio;
		struct btrfs_super_block *disk_super;

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
		bytenr_orig = btrfs_sb_offset(i);
		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
		if (ret == -ENOENT) {
			continue;
		} else if (ret < 0) {
			btrfs_err(device->fs_info,
				"couldn't get super block location for mirror %d",
				i);
			errors++;
			continue;
		}
3844 3845
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
Y
Yan Zheng 已提交
3846 3847
			break;

3848
		btrfs_set_super_bytenr(sb, bytenr_orig);
3849

3850 3851 3852
		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
				    sb->csum);
3853

3854 3855 3856
		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
					   GFP_NOFS);
		if (!page) {
3857
			btrfs_err(device->fs_info,
3858
			    "couldn't get super block page for bytenr %llu",
3859 3860
			    bytenr);
			errors++;
3861
			continue;
3862
		}
3863

3864 3865
		/* Bump the refcount for wait_dev_supers() */
		get_page(page);
Y
Yan Zheng 已提交
3866

3867 3868
		disk_super = page_address(page);
		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3869

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		/*
		 * Directly use bios here instead of relying on the page cache
		 * to do I/O, so we don't lose the ability to do integrity
		 * checking.
		 */
		bio = bio_alloc(GFP_NOFS, 1);
		bio_set_dev(bio, device->bdev);
		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
		bio->bi_private = device;
		bio->bi_end_io = btrfs_end_super_write;
		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
			       offset_in_page(bytenr));
Y
Yan Zheng 已提交
3882

C
Chris Mason 已提交
3883
		/*
3884 3885 3886
		 * We FUA only the first super block.  The others we allow to
		 * go down lazy and there's a short window where the on-disk
		 * copies might still contain the older version.
C
Chris Mason 已提交
3887
		 */
3888
		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3889
		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3890 3891 3892
			bio->bi_opf |= REQ_FUA;

		btrfsic_submit_bio(bio);
3893 3894 3895

		if (btrfs_advance_sb_log(device, i))
			errors++;
Y
Yan Zheng 已提交
3896 3897 3898 3899
	}
	return errors < i ? 0 : -1;
}

3900 3901 3902 3903
/*
 * Wait for write completion of superblocks done by write_dev_supers,
 * @max_mirrors same for write and wait phases.
 *
3904
 * Return number of errors when page is not found or not marked up to
3905 3906 3907 3908 3909 3910
 * date.
 */
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
	int i;
	int errors = 0;
3911
	bool primary_failed = false;
3912
	int ret;
3913 3914 3915 3916 3917 3918
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
3919 3920
		struct page *page;

3921 3922 3923 3924 3925 3926 3927 3928 3929
		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
		if (ret == -ENOENT) {
			break;
		} else if (ret < 0) {
			errors++;
			if (i == 0)
				primary_failed = true;
			continue;
		}
3930 3931 3932 3933
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

3934 3935 3936
		page = find_get_page(device->bdev->bd_inode->i_mapping,
				     bytenr >> PAGE_SHIFT);
		if (!page) {
3937
			errors++;
3938 3939
			if (i == 0)
				primary_failed = true;
3940 3941
			continue;
		}
3942 3943 3944
		/* Page is submitted locked and unlocked once the IO completes */
		wait_on_page_locked(page);
		if (PageError(page)) {
3945
			errors++;
3946 3947 3948
			if (i == 0)
				primary_failed = true;
		}
3949

3950 3951
		/* Drop our reference */
		put_page(page);
3952

3953 3954
		/* Drop the reference from the writing run */
		put_page(page);
3955 3956
	}

3957 3958 3959 3960 3961 3962 3963
	/* log error, force error return */
	if (primary_failed) {
		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
			  device->devid);
		return -1;
	}

3964 3965 3966
	return errors < i ? 0 : -1;
}

C
Chris Mason 已提交
3967 3968 3969 3970
/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
3971
static void btrfs_end_empty_barrier(struct bio *bio)
C
Chris Mason 已提交
3972
{
3973
	complete(bio->bi_private);
C
Chris Mason 已提交
3974 3975 3976
}

/*
3977 3978
 * Submit a flush request to the device if it supports it. Error handling is
 * done in the waiting counterpart.
C
Chris Mason 已提交
3979
 */
3980
static void write_dev_flush(struct btrfs_device *device)
C
Chris Mason 已提交
3981
{
3982
	struct request_queue *q = bdev_get_queue(device->bdev);
3983
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
3984

3985
	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3986
		return;
C
Chris Mason 已提交
3987

3988
	bio_reset(bio);
C
Chris Mason 已提交
3989
	bio->bi_end_io = btrfs_end_empty_barrier;
3990
	bio_set_dev(bio, device->bdev);
3991
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
C
Chris Mason 已提交
3992 3993 3994
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;

3995
	btrfsic_submit_bio(bio);
3996
	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3997
}
C
Chris Mason 已提交
3998

3999 4000 4001
/*
 * If the flush bio has been submitted by write_dev_flush, wait for it.
 */
4002
static blk_status_t wait_dev_flush(struct btrfs_device *device)
4003 4004
{
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
4005

4006
	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4007
		return BLK_STS_OK;
C
Chris Mason 已提交
4008

4009
	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4010
	wait_for_completion_io(&device->flush_wait);
C
Chris Mason 已提交
4011

4012
	return bio->bi_status;
C
Chris Mason 已提交
4013 4014
}

4015
static int check_barrier_error(struct btrfs_fs_info *fs_info)
4016
{
4017
	if (!btrfs_check_rw_degradable(fs_info, NULL))
4018
		return -EIO;
C
Chris Mason 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
4030
	int errors_wait = 0;
4031
	blk_status_t ret;
C
Chris Mason 已提交
4032

4033
	lockdep_assert_held(&info->fs_devices->device_list_mutex);
C
Chris Mason 已提交
4034 4035
	/* send down all the barriers */
	head = &info->fs_devices->devices;
4036
	list_for_each_entry(dev, head, dev_list) {
4037
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4038
			continue;
4039
		if (!dev->bdev)
C
Chris Mason 已提交
4040
			continue;
4041
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4042
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4043 4044
			continue;

4045
		write_dev_flush(dev);
4046
		dev->last_flush_error = BLK_STS_OK;
C
Chris Mason 已提交
4047 4048 4049
	}

	/* wait for all the barriers */
4050
	list_for_each_entry(dev, head, dev_list) {
4051
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4052
			continue;
C
Chris Mason 已提交
4053
		if (!dev->bdev) {
4054
			errors_wait++;
C
Chris Mason 已提交
4055 4056
			continue;
		}
4057
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4058
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4059 4060
			continue;

4061
		ret = wait_dev_flush(dev);
4062 4063
		if (ret) {
			dev->last_flush_error = ret;
4064 4065
			btrfs_dev_stat_inc_and_print(dev,
					BTRFS_DEV_STAT_FLUSH_ERRS);
4066
			errors_wait++;
4067 4068 4069
		}
	}

4070
	if (errors_wait) {
4071 4072 4073 4074 4075
		/*
		 * At some point we need the status of all disks
		 * to arrive at the volume status. So error checking
		 * is being pushed to a separate loop.
		 */
4076
		return check_barrier_error(info);
C
Chris Mason 已提交
4077 4078 4079 4080
	}
	return 0;
}

4081 4082
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
4083 4084
	int raid_type;
	int min_tolerated = INT_MAX;
4085

4086 4087
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4088
		min_tolerated = min_t(int, min_tolerated,
4089 4090
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);
4091

4092 4093 4094
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
4095
		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4096
			continue;
4097
		min_tolerated = min_t(int, min_tolerated,
4098 4099 4100
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}
4101

4102
	if (min_tolerated == INT_MAX) {
4103
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4104 4105 4106 4107
		min_tolerated = 0;
	}

	return min_tolerated;
4108 4109
}

4110
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4111
{
4112
	struct list_head *head;
4113
	struct btrfs_device *dev;
4114
	struct btrfs_super_block *sb;
4115 4116 4117
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
4118 4119
	int max_errors;
	int total_errors = 0;
4120
	u64 flags;
4121

4122
	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4123 4124 4125 4126 4127 4128 4129 4130

	/*
	 * max_mirrors == 0 indicates we're from commit_transaction,
	 * not from fsync where the tree roots in fs_info have not
	 * been consistent on disk.
	 */
	if (max_mirrors == 0)
		backup_super_roots(fs_info);
4131

4132
	sb = fs_info->super_for_commit;
4133
	dev_item = &sb->dev_item;
4134

4135 4136 4137
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	head = &fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
C
Chris Mason 已提交
4138

4139
	if (do_barriers) {
4140
		ret = barrier_all_devices(fs_info);
4141 4142
		if (ret) {
			mutex_unlock(
4143 4144 4145
				&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, ret,
					      "errors while submitting device barriers.");
4146 4147 4148
			return ret;
		}
	}
C
Chris Mason 已提交
4149

4150
	list_for_each_entry(dev, head, dev_list) {
4151 4152 4153 4154
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
4155
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4156
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4157 4158
			continue;

Y
Yan Zheng 已提交
4159
		btrfs_set_stack_device_generation(dev_item, 0);
4160 4161
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
4162
		btrfs_set_stack_device_total_bytes(dev_item,
4163
						   dev->commit_total_bytes);
4164 4165
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
4166 4167 4168 4169
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4170 4171
		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
		       BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
4172

4173 4174 4175
		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

4176 4177 4178 4179 4180 4181 4182 4183
		ret = btrfs_validate_write_super(fs_info, sb);
		if (ret < 0) {
			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, -EUCLEAN,
				"unexpected superblock corruption detected");
			return -EUCLEAN;
		}

4184
		ret = write_dev_supers(dev, sb, max_mirrors);
4185 4186
		if (ret)
			total_errors++;
4187
	}
4188
	if (total_errors > max_errors) {
4189 4190 4191
		btrfs_err(fs_info, "%d errors while writing supers",
			  total_errors);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4192

4193
		/* FUA is masked off if unsupported and can't be the reason */
4194 4195 4196
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4197
		return -EIO;
4198
	}
4199

Y
Yan Zheng 已提交
4200
	total_errors = 0;
4201
	list_for_each_entry(dev, head, dev_list) {
4202 4203
		if (!dev->bdev)
			continue;
4204
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4205
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4206 4207
			continue;

4208
		ret = wait_dev_supers(dev, max_mirrors);
Y
Yan Zheng 已提交
4209 4210
		if (ret)
			total_errors++;
4211
	}
4212
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4213
	if (total_errors > max_errors) {
4214 4215 4216
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4217
		return -EIO;
4218
	}
4219 4220 4221
	return 0;
}

4222 4223 4224
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
C
Chris Mason 已提交
4225
{
4226 4227
	bool drop_ref = false;

4228
	spin_lock(&fs_info->fs_roots_radix_lock);
C
Chris Mason 已提交
4229 4230
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
4231
	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4232
		drop_ref = true;
4233
	spin_unlock(&fs_info->fs_roots_radix_lock);
4234

L
Liu Bo 已提交
4235
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4236
		ASSERT(root->log_root == NULL);
L
Liu Bo 已提交
4237
		if (root->reloc_root) {
4238
			btrfs_put_root(root->reloc_root);
L
Liu Bo 已提交
4239 4240 4241
			root->reloc_root = NULL;
		}
	}
L
Liu Bo 已提交
4242

4243 4244
	if (drop_ref)
		btrfs_put_root(root);
C
Chris Mason 已提交
4245 4246
}

Y
Yan Zheng 已提交
4247
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4248
{
Y
Yan Zheng 已提交
4249 4250
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
4251 4252 4253
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
4254

Y
Yan Zheng 已提交
4255
	while (1) {
4256
		spin_lock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4257 4258 4259
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
4260
		if (!ret) {
4261
			spin_unlock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4262
			break;
4263
		}
4264
		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4265

Y
Yan Zheng 已提交
4266
		for (i = 0; i < ret; i++) {
4267 4268 4269 4270 4271 4272
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
4273
			gang[i] = btrfs_grab_root(gang[i]);
4274
		}
4275
		spin_unlock(&fs_info->fs_roots_radix_lock);
4276

4277 4278 4279
		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
Y
Yan Zheng 已提交
4280
			root_objectid = gang[i]->root_key.objectid;
4281 4282
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
4283
				break;
4284
			btrfs_put_root(gang[i]);
Y
Yan Zheng 已提交
4285 4286 4287
		}
		root_objectid++;
	}
4288 4289 4290 4291

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
4292
			btrfs_put_root(gang[i]);
4293 4294
	}
	return err;
Y
Yan Zheng 已提交
4295
}
4296

4297
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4298
{
4299
	struct btrfs_root *root = fs_info->tree_root;
Y
Yan Zheng 已提交
4300
	struct btrfs_trans_handle *trans;
4301

4302
	mutex_lock(&fs_info->cleaner_mutex);
4303
	btrfs_run_delayed_iputs(fs_info);
4304 4305
	mutex_unlock(&fs_info->cleaner_mutex);
	wake_up_process(fs_info->cleaner_kthread);
4306 4307

	/* wait until ongoing cleanup work done */
4308 4309
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
4310

4311
	trans = btrfs_join_transaction(root);
4312 4313
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4314
	return btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
4315 4316
}

4317
void __cold close_ctree(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4318 4319 4320
{
	int ret;

4321
	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4322 4323 4324 4325 4326 4327 4328
	/*
	 * We don't want the cleaner to start new transactions, add more delayed
	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
	 * because that frees the task_struct, and the transaction kthread might
	 * still try to wake up the cleaner.
	 */
	kthread_park(fs_info->cleaner_kthread);
Y
Yan Zheng 已提交
4329

4330
	/* wait for the qgroup rescan worker to stop */
4331
	btrfs_qgroup_wait_for_completion(fs_info, false);
4332

S
Stefan Behrens 已提交
4333 4334 4335 4336 4337
	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

4338
	/* pause restriper - we want to resume on mount */
4339
	btrfs_pause_balance(fs_info);
4340

4341 4342
	btrfs_dev_replace_suspend_for_unmount(fs_info);

4343
	btrfs_scrub_cancel(fs_info);
C
Chris Mason 已提交
4344 4345 4346 4347 4348 4349

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
4350
	btrfs_cleanup_defrag_inodes(fs_info);
C
Chris Mason 已提交
4351

4352
	cancel_work_sync(&fs_info->async_reclaim_work);
4353
	cancel_work_sync(&fs_info->async_data_reclaim_work);
4354
	cancel_work_sync(&fs_info->preempt_reclaim_work);
4355

4356 4357
	cancel_work_sync(&fs_info->reclaim_bgs_work);

4358 4359 4360
	/* Cancel or finish ongoing discard work */
	btrfs_discard_cleanup(fs_info);

4361
	if (!sb_rdonly(fs_info->sb)) {
4362
		/*
4363 4364
		 * The cleaner kthread is stopped, so do one final pass over
		 * unused block groups.
4365
		 */
4366
		btrfs_delete_unused_bgs(fs_info);
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		/*
		 * There might be existing delayed inode workers still running
		 * and holding an empty delayed inode item. We must wait for
		 * them to complete first because they can create a transaction.
		 * This happens when someone calls btrfs_balance_delayed_items()
		 * and then a transaction commit runs the same delayed nodes
		 * before any delayed worker has done something with the nodes.
		 * We must wait for any worker here and not at transaction
		 * commit time since that could cause a deadlock.
		 * This is a very rare case.
		 */
		btrfs_flush_workqueue(fs_info->delayed_workers);

4381
		ret = btrfs_commit_super(fs_info);
L
liubo 已提交
4382
		if (ret)
4383
			btrfs_err(fs_info, "commit super ret %d", ret);
L
liubo 已提交
4384 4385
	}

4386 4387
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4388
		btrfs_error_commit_super(fs_info);
4389

A
Al Viro 已提交
4390 4391
	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);
4392

4393
	ASSERT(list_empty(&fs_info->delayed_iputs));
4394
	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4395

4396 4397 4398 4399 4400
	if (btrfs_check_quota_leak(fs_info)) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		btrfs_err(fs_info, "qgroup reserved space leaked");
	}

4401
	btrfs_free_qgroup_config(fs_info);
4402
	ASSERT(list_empty(&fs_info->delalloc_roots));
4403

4404
	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4405
		btrfs_info(fs_info, "at unmount delalloc count %lld",
4406
		       percpu_counter_sum(&fs_info->delalloc_bytes));
C
Chris Mason 已提交
4407
	}
4408

4409
	if (percpu_counter_sum(&fs_info->ordered_bytes))
J
Josef Bacik 已提交
4410
		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4411
			   percpu_counter_sum(&fs_info->ordered_bytes));
J
Josef Bacik 已提交
4412

4413
	btrfs_sysfs_remove_mounted(fs_info);
4414
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4415

4416 4417
	btrfs_put_block_group_cache(fs_info);

4418 4419 4420 4421 4422
	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4423 4424
	btrfs_stop_all_workers(fs_info);

4425 4426 4427
	/* We shouldn't have any transaction open at this point */
	ASSERT(list_empty(&fs_info->trans_list));

4428
	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4429
	free_root_pointers(fs_info, true);
4430
	btrfs_free_fs_roots(fs_info);
4431

4432 4433 4434 4435 4436 4437 4438 4439 4440
	/*
	 * We must free the block groups after dropping the fs_roots as we could
	 * have had an IO error and have left over tree log blocks that aren't
	 * cleaned up until the fs roots are freed.  This makes the block group
	 * accounting appear to be wrong because there's pending reserved bytes,
	 * so make sure we do the block group cleanup afterwards.
	 */
	btrfs_free_block_groups(fs_info);

4441
	iput(fs_info->btree_inode);
4442

4443
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4444
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4445
		btrfsic_unmount(fs_info->fs_devices);
4446 4447
#endif

4448
	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4449
	btrfs_close_devices(fs_info->fs_devices);
4450 4451
}

4452 4453
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
4454
{
4455
	int ret;
4456
	struct inode *btree_inode = buf->pages[0]->mapping->host;
4457

4458
	ret = extent_buffer_uptodate(buf);
4459 4460 4461 4462
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4463 4464 4465
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
4466
	return !ret;
4467 4468 4469 4470
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
4471
	struct btrfs_fs_info *fs_info = buf->fs_info;
4472
	u64 transid = btrfs_header_generation(buf);
4473
	int was_dirty;
4474

4475 4476 4477
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
4478
	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4479 4480
	 * outside of the sanity tests.
	 */
4481
	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4482 4483
		return;
#endif
4484
	btrfs_assert_tree_locked(buf);
4485
	if (transid != fs_info->generation)
J
Jeff Mahoney 已提交
4486
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4487
			buf->start, transid, fs_info->generation);
4488
	was_dirty = set_extent_buffer_dirty(buf);
4489
	if (!was_dirty)
4490 4491 4492
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 buf->len,
					 fs_info->dirty_metadata_batch);
4493
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4494 4495 4496 4497 4498 4499
	/*
	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
	 * but item data not updated.
	 * So here we should only check item pointers, not item data.
	 */
	if (btrfs_header_level(buf) == 0 &&
4500
	    btrfs_check_leaf_relaxed(buf)) {
4501
		btrfs_print_leaf(buf);
4502 4503 4504
		ASSERT(0);
	}
#endif
4505 4506
}

4507
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4508
					int flush_delayed)
4509 4510 4511 4512 4513
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
4514
	int ret;
4515 4516 4517 4518

	if (current->flags & PF_MEMALLOC)
		return;

4519
	if (flush_delayed)
4520
		btrfs_balance_delayed_items(fs_info);
4521

4522 4523 4524
	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH,
				     fs_info->dirty_metadata_batch);
4525
	if (ret > 0) {
4526
		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4527 4528 4529
	}
}

4530
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4531
{
4532
	__btrfs_btree_balance_dirty(fs_info, 1);
4533
}
4534

4535
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4536
{
4537
	__btrfs_btree_balance_dirty(fs_info, 0);
C
Chris Mason 已提交
4538
}
4539

4540 4541
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
		      struct btrfs_key *first_key)
4542
{
4543
	return btree_read_extent_buffer_pages(buf, parent_transid,
4544
					      level, first_key);
4545
}
4546

4547
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4548
{
4549 4550 4551
	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(fs_info);

4552
	mutex_lock(&fs_info->cleaner_mutex);
4553
	btrfs_run_delayed_iputs(fs_info);
4554
	mutex_unlock(&fs_info->cleaner_mutex);
L
liubo 已提交
4555

4556 4557
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
L
liubo 已提交
4558 4559
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *gang[8];
	u64 root_objectid = 0;
	int ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang))) != 0) {
		int i;

		for (i = 0; i < ret; i++)
			gang[i] = btrfs_grab_root(gang[i]);
		spin_unlock(&fs_info->fs_roots_radix_lock);

		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
			root_objectid = gang[i]->root_key.objectid;
			btrfs_free_log(NULL, gang[i]);
			btrfs_put_root(gang[i]);
		}
		root_objectid++;
		spin_lock(&fs_info->fs_roots_radix_lock);
	}
	spin_unlock(&fs_info->fs_roots_radix_lock);
	btrfs_free_log_root_tree(NULL, fs_info);
}

4590
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
L
liubo 已提交
4591 4592 4593
{
	struct btrfs_ordered_extent *ordered;

4594
	spin_lock(&root->ordered_extent_lock);
4595 4596 4597 4598
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
4599
	list_for_each_entry(ordered, &root->ordered_extents,
4600 4601
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
4617 4618
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
4619

4620
		spin_unlock(&fs_info->ordered_root_lock);
4621 4622
		btrfs_destroy_ordered_extents(root);

4623 4624
		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
4625 4626
	}
	spin_unlock(&fs_info->ordered_root_lock);
4627 4628 4629 4630 4631 4632 4633 4634

	/*
	 * We need this here because if we've been flipped read-only we won't
	 * get sync() from the umount, so we need to make sure any ordered
	 * extents that haven't had their dirty pages IO start writeout yet
	 * actually get run and error out properly.
	 */
	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
L
liubo 已提交
4635 4636
}

4637
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4638
				      struct btrfs_fs_info *fs_info)
L
liubo 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
4648
	if (atomic_read(&delayed_refs->num_entries) == 0) {
4649
		spin_unlock(&delayed_refs->lock);
4650
		btrfs_debug(fs_info, "delayed_refs has NO entry");
L
liubo 已提交
4651 4652 4653
		return ret;
	}

4654
	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4655
		struct btrfs_delayed_ref_head *head;
4656
		struct rb_node *n;
4657
		bool pin_bytes = false;
L
liubo 已提交
4658

4659 4660
		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
4661
		if (btrfs_delayed_ref_lock(delayed_refs, head))
4662
			continue;
4663

4664
		spin_lock(&head->lock);
4665
		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4666 4667
			ref = rb_entry(n, struct btrfs_delayed_ref_node,
				       ref_node);
4668
			ref->in_tree = 0;
4669
			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4670
			RB_CLEAR_NODE(&ref->ref_node);
4671 4672
			if (!list_empty(&ref->add_list))
				list_del(&ref->add_list);
4673 4674
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
4675
		}
4676 4677 4678
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
4679
		btrfs_delete_ref_head(delayed_refs, head);
4680 4681 4682
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);
L
liubo 已提交
4683

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
		if (pin_bytes) {
			struct btrfs_block_group *cache;

			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
			BUG_ON(!cache);

			spin_lock(&cache->space_info->lock);
			spin_lock(&cache->lock);
			cache->pinned += head->num_bytes;
			btrfs_space_info_update_bytes_pinned(fs_info,
				cache->space_info, head->num_bytes);
			cache->reserved -= head->num_bytes;
			cache->space_info->bytes_reserved -= head->num_bytes;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);

			btrfs_put_block_group(cache);

			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
				head->bytenr + head->num_bytes - 1);
		}
4705
		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4706
		btrfs_put_delayed_ref_head(head);
L
liubo 已提交
4707 4708 4709
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}
4710
	btrfs_qgroup_destroy_extent_records(trans);
L
liubo 已提交
4711 4712 4713 4714 4715 4716

	spin_unlock(&delayed_refs->lock);

	return ret;
}

4717
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
L
liubo 已提交
4718 4719 4720 4721 4722 4723
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

4724 4725
	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);
L
liubo 已提交
4726 4727

	while (!list_empty(&splice)) {
4728
		struct inode *inode = NULL;
4729 4730
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);
4731
		__btrfs_del_delalloc_inode(root, btrfs_inode);
4732
		spin_unlock(&root->delalloc_lock);
L
liubo 已提交
4733

4734 4735 4736 4737 4738 4739 4740 4741 4742
		/*
		 * Make sure we get a live inode and that it'll not disappear
		 * meanwhile.
		 */
		inode = igrab(&btrfs_inode->vfs_inode);
		if (inode) {
			invalidate_inode_pages2(inode->i_mapping);
			iput(inode);
		}
4743
		spin_lock(&root->delalloc_lock);
L
liubo 已提交
4744
	}
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
4760
		root = btrfs_grab_root(root);
4761 4762 4763 4764
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
4765
		btrfs_put_root(root);
4766 4767 4768 4769

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
L
liubo 已提交
4770 4771
}

4772
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4783
					    mark, NULL);
L
liubo 已提交
4784 4785 4786
		if (ret)
			break;

4787
		clear_extent_bits(dirty_pages, start, end, mark);
L
liubo 已提交
4788
		while (start <= end) {
4789 4790
			eb = find_extent_buffer(fs_info, start);
			start += fs_info->nodesize;
4791
			if (!eb)
L
liubo 已提交
4792
				continue;
4793
			wait_on_extent_buffer_writeback(eb);
L
liubo 已提交
4794

4795 4796 4797 4798
			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
L
liubo 已提交
4799 4800 4801 4802 4803 4804
		}
	}

	return ret;
}

4805
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4806
				       struct extent_io_tree *unpin)
L
liubo 已提交
4807 4808 4809 4810 4811 4812
{
	u64 start;
	u64 end;
	int ret;

	while (1) {
4813 4814
		struct extent_state *cached_state = NULL;

4815 4816 4817 4818 4819 4820 4821
		/*
		 * The btrfs_finish_extent_commit() may get the same range as
		 * ours between find_first_extent_bit and clear_extent_dirty.
		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
		 * the same extent range.
		 */
		mutex_lock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4822
		ret = find_first_extent_bit(unpin, 0, &start, &end,
4823
					    EXTENT_DIRTY, &cached_state);
4824 4825
		if (ret) {
			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4826
			break;
4827
		}
L
liubo 已提交
4828

4829 4830
		clear_extent_dirty(unpin, start, end, &cached_state);
		free_extent_state(cached_state);
4831
		btrfs_error_unpin_extent_range(fs_info, start, end);
4832
		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4833 4834 4835 4836 4837 4838
		cond_resched();
	}

	return 0;
}

4839
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
4850
	ASSERT(cache->io_ctl.pages == NULL);
4851 4852 4853 4854
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4855
			     struct btrfs_fs_info *fs_info)
4856
{
4857
	struct btrfs_block_group *cache;
4858 4859 4860 4861

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
4862
					 struct btrfs_block_group,
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
					 dirty_list);

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
J
Josef Bacik 已提交
4879
		btrfs_delayed_refs_rsv_release(fs_info, 1);
4880 4881 4882 4883
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

4884 4885 4886 4887
	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
4888 4889
	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
4890
					 struct btrfs_block_group,
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
					 io_list);

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

4901
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4902
				   struct btrfs_fs_info *fs_info)
4903
{
4904 4905
	struct btrfs_device *dev, *tmp;

4906
	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4907 4908 4909
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

4910 4911 4912 4913 4914
	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&dev->post_commit_list);
	}

4915
	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4916

4917
	cur_trans->state = TRANS_STATE_COMMIT_START;
4918
	wake_up(&fs_info->transaction_blocked_wait);
4919

4920
	cur_trans->state = TRANS_STATE_UNBLOCKED;
4921
	wake_up(&fs_info->transaction_wait);
4922

4923
	btrfs_destroy_delayed_inodes(fs_info);
4924

4925
	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4926
				     EXTENT_DIRTY);
4927
	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4928

4929 4930
	btrfs_free_redirty_list(cur_trans);

4931 4932
	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);
4933 4934
}

4935
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4936 4937 4938
{
	struct btrfs_transaction *t;

4939
	mutex_lock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
4940

4941 4942 4943
	spin_lock(&fs_info->trans_lock);
	while (!list_empty(&fs_info->trans_list)) {
		t = list_first_entry(&fs_info->trans_list,
4944 4945
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
4946
			refcount_inc(&t->use_count);
4947
			spin_unlock(&fs_info->trans_lock);
4948
			btrfs_wait_for_commit(fs_info, t->transid);
4949
			btrfs_put_transaction(t);
4950
			spin_lock(&fs_info->trans_lock);
4951 4952
			continue;
		}
4953
		if (t == fs_info->running_transaction) {
4954
			t->state = TRANS_STATE_COMMIT_DOING;
4955
			spin_unlock(&fs_info->trans_lock);
4956 4957 4958 4959 4960 4961 4962
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
4963
			spin_unlock(&fs_info->trans_lock);
4964
		}
4965
		btrfs_cleanup_one_transaction(t, fs_info);
4966

4967 4968 4969
		spin_lock(&fs_info->trans_lock);
		if (t == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
L
liubo 已提交
4970
		list_del_init(&t->list);
4971
		spin_unlock(&fs_info->trans_lock);
L
liubo 已提交
4972

4973
		btrfs_put_transaction(t);
4974
		trace_btrfs_transaction_commit(fs_info->tree_root);
4975
		spin_lock(&fs_info->trans_lock);
4976
	}
4977 4978
	spin_unlock(&fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(fs_info);
4979 4980
	btrfs_destroy_delayed_inodes(fs_info);
	btrfs_assert_delayed_root_empty(fs_info);
4981
	btrfs_destroy_all_delalloc_inodes(fs_info);
4982
	btrfs_drop_all_logs(fs_info);
4983
	mutex_unlock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
4984 4985 4986

	return 0;
}
4987

4988
int btrfs_init_root_free_objectid(struct btrfs_root *root)
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
{
	struct btrfs_path *path;
	int ret;
	struct extent_buffer *l;
	struct btrfs_key search_key;
	struct btrfs_key found_key;
	int slot;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
	search_key.type = -1;
	search_key.offset = (u64)-1;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto error;
	BUG_ON(ret == 0); /* Corruption */
	if (path->slots[0] > 0) {
		slot = path->slots[0] - 1;
		l = path->nodes[0];
		btrfs_item_key_to_cpu(l, &found_key, slot);
5012 5013
		root->free_objectid = max_t(u64, found_key.objectid + 1,
					    BTRFS_FIRST_FREE_OBJECTID);
5014
	} else {
5015
		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5016 5017 5018 5019 5020 5021 5022
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

5023
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5024 5025 5026 5027
{
	int ret;
	mutex_lock(&root->objectid_mutex);

5028
	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5029 5030 5031 5032 5033 5034 5035
		btrfs_warn(root->fs_info,
			   "the objectid of root %llu reaches its highest value",
			   root->root_key.objectid);
		ret = -ENOSPC;
		goto out;
	}

5036
	*objectid = root->free_objectid++;
5037 5038 5039 5040 5041
	ret = 0;
out:
	mutex_unlock(&root->objectid_mutex);
	return ret;
}