disk-io.c 139.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

C
Chris Mason 已提交
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
C
Chris Mason 已提交
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
S
Stefan Behrens 已提交
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <asm/unaligned.h>
21
#include <crypto/hash.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "volumes.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "check-integrity.h"
33
#include "rcu-string.h"
34
#include "dev-replace.h"
D
David Woodhouse 已提交
35
#include "raid56.h"
36
#include "sysfs.h"
J
Josef Bacik 已提交
37
#include "qgroup.h"
38
#include "compression.h"
39
#include "tree-checker.h"
J
Josef Bacik 已提交
40
#include "ref-verify.h"
41
#include "block-group.h"
42
#include "discard.h"
43
#include "space-info.h"
N
Naohiro Aota 已提交
44
#include "zoned.h"
45
#include "subpage.h"
46

47 48 49 50
#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
51 52
				 BTRFS_SUPER_FLAG_METADUMP |\
				 BTRFS_SUPER_FLAG_METADUMP_V2)
53

54
static void end_workqueue_fn(struct btrfs_work *work);
55
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
L
liubo 已提交
56
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57
				      struct btrfs_fs_info *fs_info);
58
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
60 61
					struct extent_io_tree *dirty_pages,
					int mark);
62
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
L
liubo 已提交
63
				       struct extent_io_tree *pinned_extents);
64 65
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66

C
Chris Mason 已提交
67
/*
68 69
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
C
Chris Mason 已提交
70 71
 * by writes to insert metadata for new file extents after IO is complete.
 */
72
struct btrfs_end_io_wq {
73 74 75 76
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
77
	blk_status_t status;
78
	enum btrfs_wq_endio_type metadata;
79
	struct btrfs_work work;
80
};
81

82 83 84 85 86 87 88
static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
89
					SLAB_MEM_SPREAD,
90 91 92 93 94 95
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

96
void __cold btrfs_end_io_wq_exit(void)
97
{
98
	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 100
}

101 102 103 104 105 106
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
	if (fs_info->csum_shash)
		crypto_free_shash(fs_info->csum_shash);
}

C
Chris Mason 已提交
107 108 109 110 111
/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
112
struct async_submit_bio {
113
	struct inode *inode;
114
	struct bio *bio;
115
	extent_submit_bio_start_t *submit_bio_start;
116
	int mirror_num;
117 118 119

	/* Optional parameter for submit_bio_start used by direct io */
	u64 dio_file_offset;
120
	struct btrfs_work work;
121
	blk_status_t status;
122 123
};

124 125 126 127 128 129 130 131
/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
132 133
 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 * roots have separate keysets.
134
 *
135 136 137
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
138
 *
139 140 141
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
142
 *
143 144 145
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
146 147 148 149 150
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif
151

152 153 154 155 156 157 158 159 160 161 162 163 164
#define DEFINE_LEVEL(stem, level)					\
	.names[level] = "btrfs-" stem "-0" #level,

#define DEFINE_NAME(stem)						\
	DEFINE_LEVEL(stem, 0)						\
	DEFINE_LEVEL(stem, 1)						\
	DEFINE_LEVEL(stem, 2)						\
	DEFINE_LEVEL(stem, 3)						\
	DEFINE_LEVEL(stem, 4)						\
	DEFINE_LEVEL(stem, 5)						\
	DEFINE_LEVEL(stem, 6)						\
	DEFINE_LEVEL(stem, 7)

165 166
static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
167
	/* Longest entry: btrfs-free-space-00 */
168 169
	char			names[BTRFS_MAX_LEVEL][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170
} btrfs_lockdep_keysets[] = {
171 172 173 174 175 176 177 178 179 180 181 182
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
	{ .id = 0,				DEFINE_NAME("tree")	},
183
};
184

185 186
#undef DEFINE_LEVEL
#undef DEFINE_NAME
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

204 205
#endif

C
Chris Mason 已提交
206
/*
207
 * Compute the csum of a btree block and store the result to provided buffer.
C
Chris Mason 已提交
208
 */
209
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210
{
211
	struct btrfs_fs_info *fs_info = buf->fs_info;
212
	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213
	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215
	char *kaddr;
216
	int i;
217 218 219

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
220
	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222
			    first_page_part - BTRFS_CSUM_SIZE);
223

224 225 226
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(buf->pages[i]);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227
	}
228
	memset(result, 0, BTRFS_CSUM_SIZE);
229
	crypto_shash_final(shash, result);
230 231
}

C
Chris Mason 已提交
232 233 234 235 236 237
/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
238
static int verify_parent_transid(struct extent_io_tree *io_tree,
239 240
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
241
{
242
	struct extent_state *cached_state = NULL;
243
	int ret;
244
	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
245 246 247 248

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

249 250 251
	if (atomic)
		return -EAGAIN;

252
	if (need_lock)
253 254
		btrfs_tree_read_lock(eb);

255
	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
256
			 &cached_state);
257
	if (extent_buffer_uptodate(eb) &&
258 259 260 261
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
262 263 264
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
265
			parent_transid, btrfs_header_generation(eb));
266
	ret = 1;
267 268 269 270

	/*
	 * Things reading via commit roots that don't have normal protection,
	 * like send, can have a really old block in cache that may point at a
271
	 * block that has been freed and re-allocated.  So don't clear uptodate
272 273 274 275 276 277
	 * if we find an eb that is under IO (dirty/writeback) because we could
	 * end up reading in the stale data and then writing it back out and
	 * making everybody very sad.
	 */
	if (!extent_buffer_under_io(eb))
		clear_extent_buffer_uptodate(eb);
C
Chris Mason 已提交
278
out:
279
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
280
			     &cached_state);
281
	if (need_lock)
282
		btrfs_tree_read_unlock(eb);
283 284 285
	return ret;
}

286 287 288 289
static bool btrfs_supported_super_csum(u16 csum_type)
{
	switch (csum_type) {
	case BTRFS_CSUM_TYPE_CRC32:
290
	case BTRFS_CSUM_TYPE_XXHASH:
291
	case BTRFS_CSUM_TYPE_SHA256:
292
	case BTRFS_CSUM_TYPE_BLAKE2:
293 294 295 296 297 298
		return true;
	default:
		return false;
	}
}

D
David Sterba 已提交
299 300 301 302
/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
303 304
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
D
David Sterba 已提交
305 306 307
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
308
	char result[BTRFS_CSUM_SIZE];
309 310 311
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);

	shash->tfm = fs_info->csum_shash;
D
David Sterba 已提交
312

313 314 315 316 317
	/*
	 * The super_block structure does not span the whole
	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
	 * filled with zeros and is included in the checksum.
	 */
318 319
	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
D
David Sterba 已提交
320

321
	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
322
		return 1;
D
David Sterba 已提交
323

324
	return 0;
D
David Sterba 已提交
325 326
}

327
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
328
			   struct btrfs_key *first_key, u64 parent_transid)
329
{
330
	struct btrfs_fs_info *fs_info = eb->fs_info;
331 332 333 334 335 336
	int found_level;
	struct btrfs_key found_key;
	int ret;

	found_level = btrfs_header_level(eb);
	if (found_level != level) {
337 338
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree level check failed\n");
339 340 341 342 343 344 345 346 347
		btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
			  eb->start, level, found_level);
		return -EIO;
	}

	if (!first_key)
		return 0;

348 349 350 351 352 353 354 355
	/*
	 * For live tree block (new tree blocks in current transaction),
	 * we need proper lock context to avoid race, which is impossible here.
	 * So we only checks tree blocks which is read from disk, whose
	 * generation <= fs_info->last_trans_committed.
	 */
	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
		return 0;
356 357 358 359 360 361 362 363 364 365

	/* We have @first_key, so this @eb must have at least one item */
	if (btrfs_header_nritems(eb) == 0) {
		btrfs_err(fs_info,
		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
			  eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return -EUCLEAN;
	}

366 367 368 369 370 371 372
	if (found_level)
		btrfs_node_key_to_cpu(eb, &found_key, 0);
	else
		btrfs_item_key_to_cpu(eb, &found_key, 0);
	ret = btrfs_comp_cpu_keys(first_key, &found_key);

	if (ret) {
373 374
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree first key check failed\n");
375
		btrfs_err(fs_info,
376 377 378 379 380
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
			  eb->start, parent_transid, first_key->objectid,
			  first_key->type, first_key->offset,
			  found_key.objectid, found_key.type,
			  found_key.offset);
381 382 383 384
	}
	return ret;
}

C
Chris Mason 已提交
385 386 387
/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
388 389 390 391
 *
 * @parent_transid:	expected transid, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key of first slot, skip check if NULL
C
Chris Mason 已提交
392
 */
393
static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
394 395
					  u64 parent_transid, int level,
					  struct btrfs_key *first_key)
396
{
397
	struct btrfs_fs_info *fs_info = eb->fs_info;
398
	struct extent_io_tree *io_tree;
399
	int failed = 0;
400 401 402
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
403
	int failed_mirror = 0;
404

405
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
406
	while (1) {
407
		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
408
		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
409
		if (!ret) {
410
			if (verify_parent_transid(io_tree, eb,
411
						   parent_transid, 0))
412
				ret = -EIO;
413
			else if (btrfs_verify_level_key(eb, level,
414
						first_key, parent_transid))
415 416 417
				ret = -EUCLEAN;
			else
				break;
418
		}
C
Chris Mason 已提交
419

420
		num_copies = btrfs_num_copies(fs_info,
421
					      eb->start, eb->len);
C
Chris Mason 已提交
422
		if (num_copies == 1)
423
			break;
C
Chris Mason 已提交
424

425 426 427 428 429
		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

430
		mirror_num++;
431 432 433
		if (mirror_num == failed_mirror)
			mirror_num++;

C
Chris Mason 已提交
434
		if (mirror_num > num_copies)
435
			break;
436
	}
437

438
	if (failed && !ret && failed_mirror)
439
		btrfs_repair_eb_io_failure(eb, failed_mirror);
440 441

	return ret;
442
}
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static int csum_one_extent_buffer(struct extent_buffer *eb)
{
	struct btrfs_fs_info *fs_info = eb->fs_info;
	u8 result[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
				    offsetof(struct btrfs_header, fsid),
				    BTRFS_FSID_SIZE) == 0);
	csum_tree_block(eb, result);

	if (btrfs_header_level(eb))
		ret = btrfs_check_node(eb);
	else
		ret = btrfs_check_leaf_full(eb);

	if (ret < 0) {
		btrfs_print_tree(eb, 0);
		btrfs_err(fs_info,
			"block=%llu write time tree block corruption detected",
			eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return ret;
	}
	write_extent_buffer(eb, result, 0, fs_info->csum_size);

	return 0;
}

/* Checksum all dirty extent buffers in one bio_vec */
static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
				      struct bio_vec *bvec)
{
	struct page *page = bvec->bv_page;
	u64 bvec_start = page_offset(page) + bvec->bv_offset;
	u64 cur;
	int ret = 0;

	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
	     cur += fs_info->nodesize) {
		struct extent_buffer *eb;
		bool uptodate;

		eb = find_extent_buffer(fs_info, cur);
		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
						       fs_info->nodesize);

		/* A dirty eb shouldn't disappear from buffer_radix */
		if (WARN_ON(!eb))
			return -EUCLEAN;

		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}
		if (WARN_ON(!uptodate)) {
			free_extent_buffer(eb);
			return -EUCLEAN;
		}

		ret = csum_one_extent_buffer(eb);
		free_extent_buffer(eb);
		if (ret < 0)
			return ret;
	}
	return ret;
}

C
Chris Mason 已提交
512
/*
513 514 515
 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block.
 * For subpage extent buffers we need bvec to also read the offset in the page.
C
Chris Mason 已提交
516
 */
517
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
518
{
519
	struct page *page = bvec->bv_page;
M
Miao Xie 已提交
520
	u64 start = page_offset(page);
521 522
	u64 found_start;
	struct extent_buffer *eb;
523 524 525

	if (fs_info->sectorsize < PAGE_SIZE)
		return csum_dirty_subpage_buffers(fs_info, bvec);
526

J
Josef Bacik 已提交
527 528 529
	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;
530

531
	found_start = btrfs_header_bytenr(eb);
532 533 534 535 536 537

	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
		WARN_ON(found_start != 0);
		return 0;
	}

538 539 540 541 542 543 544 545 546
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

547
	return csum_one_extent_buffer(eb);
548 549
}

550
static int check_tree_block_fsid(struct extent_buffer *eb)
Y
Yan Zheng 已提交
551
{
552
	struct btrfs_fs_info *fs_info = eb->fs_info;
553
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
554
	u8 fsid[BTRFS_FSID_SIZE];
555
	u8 *metadata_uuid;
Y
Yan Zheng 已提交
556

557 558
	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	/*
	 * Checking the incompat flag is only valid for the current fs. For
	 * seed devices it's forbidden to have their uuid changed so reading
	 * ->fsid in this case is fine
	 */
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
		metadata_uuid = fs_devices->metadata_uuid;
	else
		metadata_uuid = fs_devices->fsid;

	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
		return 0;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
			return 0;

	return 1;
Y
Yan Zheng 已提交
577 578
}

579 580
/* Do basic extent buffer checks at read time */
static int validate_extent_buffer(struct extent_buffer *eb)
581
{
582
	struct btrfs_fs_info *fs_info = eb->fs_info;
583
	u64 found_start;
584 585
	const u32 csum_size = fs_info->csum_size;
	u8 found_level;
586
	u8 result[BTRFS_CSUM_SIZE];
587
	int ret = 0;
588

589
	found_start = btrfs_header_bytenr(eb);
590
	if (found_start != eb->start) {
591 592
		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
			     eb->start, found_start);
593
		ret = -EIO;
594
		goto out;
595
	}
596
	if (check_tree_block_fsid(eb)) {
597 598
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
599
		ret = -EIO;
600
		goto out;
601
	}
602
	found_level = btrfs_header_level(eb);
603
	if (found_level >= BTRFS_MAX_LEVEL) {
604 605
		btrfs_err(fs_info, "bad tree block level %d on %llu",
			  (int)btrfs_header_level(eb), eb->start);
606
		ret = -EIO;
607
		goto out;
608
	}
609

610
	csum_tree_block(eb, result);
611

612
	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
613
		u8 val[BTRFS_CSUM_SIZE] = { 0 };
614 615 616

		read_extent_buffer(eb, &val, 0, csum_size);
		btrfs_warn_rl(fs_info,
617
	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
618
			      fs_info->sb->s_id, eb->start,
619 620 621
			      CSUM_FMT_VALUE(csum_size, val),
			      CSUM_FMT_VALUE(csum_size, result),
			      btrfs_header_level(eb));
622
		ret = -EUCLEAN;
623
		goto out;
624 625
	}

626 627 628 629 630
	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
631
	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
632 633 634
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}
635

636
	if (found_level > 0 && btrfs_check_node(eb))
L
Liu Bo 已提交
637 638
		ret = -EIO;

639 640
	if (!ret)
		set_extent_buffer_uptodate(eb);
641 642 643 644
	else
		btrfs_err(fs_info,
			  "block=%llu read time tree block corruption detected",
			  eb->start);
645 646 647 648
out:
	return ret;
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	struct extent_buffer *eb;
	bool reads_done;
	int ret = 0;

	/*
	 * We don't allow bio merge for subpage metadata read, so we should
	 * only get one eb for each endio hook.
	 */
	ASSERT(end == start + fs_info->nodesize - 1);
	ASSERT(PagePrivate(page));

	eb = find_extent_buffer(fs_info, start);
	/*
	 * When we are reading one tree block, eb must have been inserted into
	 * the radix tree. If not, something is wrong.
	 */
	ASSERT(eb);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	/* Subpage read must finish in page read */
	ASSERT(reads_done);

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
	if (ret < 0)
		goto err;

	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
		btree_readahead_hook(eb, ret);

	set_extent_buffer_uptodate(eb);

	free_extent_buffer(eb);
	return ret;
err:
	/*
	 * end_bio_extent_readpage decrements io_pages in case of error,
	 * make sure it has something to decrement.
	 */
	atomic_inc(&eb->io_pages);
	clear_extent_buffer_uptodate(eb);
	free_extent_buffer(eb);
	return ret;
}

702
int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
703 704 705 706 707 708 709 710
				   struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct extent_buffer *eb;
	int ret = 0;
	int reads_done;

	ASSERT(page->private);
711 712 713 714

	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
		return validate_subpage_buffer(page, start, end, mirror);

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	eb = (struct extent_buffer *)page->private;

	/*
	 * The pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
	atomic_inc(&eb->refs);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	if (!reads_done)
		goto err;

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
733
err:
734 735
	if (reads_done &&
	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
736
		btree_readahead_hook(eb, ret);
A
Arne Jansen 已提交
737

D
David Woodhouse 已提交
738 739 740 741 742 743 744
	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
745
		clear_extent_buffer_uptodate(eb);
D
David Woodhouse 已提交
746
	}
747
	free_extent_buffer(eb);
748

749
	return ret;
750 751
}

752
static void end_workqueue_bio(struct bio *bio)
753
{
754
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
755
	struct btrfs_fs_info *fs_info;
756
	struct btrfs_workqueue *wq;
757 758

	fs_info = end_io_wq->info;
759
	end_io_wq->status = bio->bi_status;
760

761
	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
762
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
763
			wq = fs_info->endio_meta_write_workers;
764
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
765
			wq = fs_info->endio_freespace_worker;
766
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
767
			wq = fs_info->endio_raid56_workers;
768
		else
769
			wq = fs_info->endio_write_workers;
770
	} else {
771
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
772
			wq = fs_info->endio_raid56_workers;
773
		else if (end_io_wq->metadata)
774
			wq = fs_info->endio_meta_workers;
775
		else
776
			wq = fs_info->endio_workers;
777
	}
778

779
	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
780
	btrfs_queue_work(wq, &end_io_wq->work);
781 782
}

783
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
784
			enum btrfs_wq_endio_type metadata)
785
{
786
	struct btrfs_end_io_wq *end_io_wq;
787

788
	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
789
	if (!end_io_wq)
790
		return BLK_STS_RESOURCE;
791 792 793

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
794
	end_io_wq->info = info;
795
	end_io_wq->status = 0;
796
	end_io_wq->bio = bio;
797
	end_io_wq->metadata = metadata;
798 799 800

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
801 802 803
	return 0;
}

C
Chris Mason 已提交
804 805 806
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
807
	blk_status_t ret;
C
Chris Mason 已提交
808 809

	async = container_of(work, struct  async_submit_bio, work);
810 811
	ret = async->submit_bio_start(async->inode, async->bio,
				      async->dio_file_offset);
812
	if (ret)
813
		async->status = ret;
C
Chris Mason 已提交
814 815
}

816 817 818 819 820 821 822 823
/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
C
Chris Mason 已提交
824
static void run_one_async_done(struct btrfs_work *work)
825 826
{
	struct async_submit_bio *async;
827 828
	struct inode *inode;
	blk_status_t ret;
829 830

	async = container_of(work, struct  async_submit_bio, work);
831
	inode = async->inode;
832

833
	/* If an error occurred we just want to clean up the bio and move on */
834 835
	if (async->status) {
		async->bio->bi_status = async->status;
836
		bio_endio(async->bio);
837 838 839
		return;
	}

840 841 842 843 844 845
	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
	 * This changes nothing when cgroups aren't in use.
	 */
	async->bio->bi_opf |= REQ_CGROUP_PUNT;
846
	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
847 848 849 850
	if (ret) {
		async->bio->bi_status = ret;
		bio_endio(async->bio);
	}
C
Chris Mason 已提交
851 852 853 854 855 856 857
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
858 859 860
	kfree(async);
}

861
blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
862
				 int mirror_num, unsigned long bio_flags,
863
				 u64 dio_file_offset,
864
				 extent_submit_bio_start_t *submit_bio_start)
865
{
866
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
867 868 869 870
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
871
		return BLK_STS_RESOURCE;
872

873
	async->inode = inode;
874 875
	async->bio = bio;
	async->mirror_num = mirror_num;
C
Chris Mason 已提交
876 877
	async->submit_bio_start = submit_bio_start;

878 879
	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
C
Chris Mason 已提交
880

881
	async->dio_file_offset = dio_file_offset;
882

883
	async->status = 0;
884

885
	if (op_is_sync(bio->bi_opf))
886
		btrfs_set_work_high_priority(&async->work);
887

888
	btrfs_queue_work(fs_info->workers, &async->work);
889 890 891
	return 0;
}

892
static blk_status_t btree_csum_one_bio(struct bio *bio)
893
{
894
	struct bio_vec *bvec;
895
	struct btrfs_root *root;
896
	int ret = 0;
897
	struct bvec_iter_all iter_all;
898

899
	ASSERT(!bio_flagged(bio, BIO_CLONED));
900
	bio_for_each_segment_all(bvec, bio, iter_all) {
901
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
902
		ret = csum_dirty_buffer(root->fs_info, bvec);
903 904
		if (ret)
			break;
905
	}
906

907
	return errno_to_blk_status(ret);
908 909
}

910
static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
911
					   u64 dio_file_offset)
912
{
913 914
	/*
	 * when we're called for a write, we're already in the async
915
	 * submission context.  Just jump into btrfs_map_bio
916
	 */
917
	return btree_csum_one_bio(bio);
C
Chris Mason 已提交
918
}
919

920 921
static int check_async_write(struct btrfs_fs_info *fs_info,
			     struct btrfs_inode *bi)
922
{
923 924
	if (btrfs_is_zoned(fs_info))
		return 0;
925 926
	if (atomic_read(&bi->sync_writers))
		return 0;
927
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
928 929 930 931
		return 0;
	return 1;
}

932 933
blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
				       int mirror_num, unsigned long bio_flags)
934
{
935
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
936
	int async = check_async_write(fs_info, BTRFS_I(inode));
937
	blk_status_t ret;
938

939
	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
C
Chris Mason 已提交
940 941 942 943
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
944 945
		ret = btrfs_bio_wq_end_io(fs_info, bio,
					  BTRFS_WQ_ENDIO_METADATA);
946
		if (ret)
947
			goto out_w_error;
948
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
949 950 951
	} else if (!async) {
		ret = btree_csum_one_bio(bio);
		if (ret)
952
			goto out_w_error;
953
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
954 955 956 957 958
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
959 960
		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
					  0, btree_submit_bio_start);
961
	}
962

963 964 965 966
	if (ret)
		goto out_w_error;
	return 0;

967
out_w_error:
968
	bio->bi_status = ret;
969
	bio_endio(bio);
970
	return ret;
971 972
}

J
Jan Beulich 已提交
973
#ifdef CONFIG_MIGRATION
974
static int btree_migratepage(struct address_space *mapping,
975 976
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
991
	return migrate_page(mapping, newpage, page, mode);
992
}
J
Jan Beulich 已提交
993
#endif
994

995 996 997 998

static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
999 1000 1001
	struct btrfs_fs_info *fs_info;
	int ret;

1002
	if (wbc->sync_mode == WB_SYNC_NONE) {
1003 1004 1005 1006

		if (wbc->for_kupdate)
			return 0;

1007
		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1008
		/* this is a bit racy, but that's ok */
1009 1010 1011
		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH,
					     fs_info->dirty_metadata_batch);
1012
		if (ret < 0)
1013 1014
			return 0;
	}
1015
	return btree_write_cache_pages(mapping, wbc);
1016 1017
}

1018
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1019
{
1020
	if (PageWriteback(page) || PageDirty(page))
C
Chris Mason 已提交
1021
		return 0;
1022

1023
	return try_release_extent_buffer(page);
1024 1025
}

1026 1027
static void btree_invalidatepage(struct page *page, unsigned int offset,
				 unsigned int length)
1028
{
1029 1030
	struct extent_io_tree *tree;
	tree = &BTRFS_I(page->mapping->host)->io_tree;
1031 1032
	extent_invalidatepage(tree, page, offset);
	btree_releasepage(page, GFP_NOFS);
1033
	if (PagePrivate(page)) {
1034 1035 1036
		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
			   "page private not zero on page %llu",
			   (unsigned long long)page_offset(page));
1037
		detach_page_private(page);
1038
	}
1039 1040
}

1041 1042
static int btree_set_page_dirty(struct page *page)
{
1043
#ifdef DEBUG
1044 1045
	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
	struct btrfs_subpage *subpage;
1046
	struct extent_buffer *eb;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	int cur_bit = 0;
	u64 page_start = page_offset(page);

	if (fs_info->sectorsize == PAGE_SIZE) {
		BUG_ON(!PagePrivate(page));
		eb = (struct extent_buffer *)page->private;
		BUG_ON(!eb);
		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		BUG_ON(!atomic_read(&eb->refs));
		btrfs_assert_tree_locked(eb);
		return __set_page_dirty_nobuffers(page);
	}
	ASSERT(PagePrivate(page) && page->private);
	subpage = (struct btrfs_subpage *)page->private;

	ASSERT(subpage->dirty_bitmap);
	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
		unsigned long flags;
		u64 cur;
		u16 tmp = (1 << cur_bit);

		spin_lock_irqsave(&subpage->lock, flags);
		if (!(tmp & subpage->dirty_bitmap)) {
			spin_unlock_irqrestore(&subpage->lock, flags);
			cur_bit++;
			continue;
		}
		spin_unlock_irqrestore(&subpage->lock, flags);
		cur = page_start + cur_bit * fs_info->sectorsize;
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085
		eb = find_extent_buffer(fs_info, cur);
		ASSERT(eb);
		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
		ASSERT(atomic_read(&eb->refs));
		btrfs_assert_tree_locked(eb);
		free_extent_buffer(eb);

		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
	}
1086
#endif
1087 1088 1089
	return __set_page_dirty_nobuffers(page);
}

1090
static const struct address_space_operations btree_aops = {
1091
	.writepages	= btree_writepages,
1092 1093
	.releasepage	= btree_releasepage,
	.invalidatepage = btree_invalidatepage,
1094
#ifdef CONFIG_MIGRATION
1095
	.migratepage	= btree_migratepage,
1096
#endif
1097
	.set_page_dirty = btree_set_page_dirty,
1098 1099
};

1100 1101
struct extent_buffer *btrfs_find_create_tree_block(
						struct btrfs_fs_info *fs_info,
1102 1103
						u64 bytenr, u64 owner_root,
						int level)
1104
{
1105 1106
	if (btrfs_is_testing(fs_info))
		return alloc_test_extent_buffer(fs_info, bytenr);
1107
	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1108 1109
}

1110 1111 1112 1113
/*
 * Read tree block at logical address @bytenr and do variant basic but critical
 * verification.
 *
1114
 * @owner_root:		the objectid of the root owner for this block.
1115 1116 1117 1118
 * @parent_transid:	expected transid of this tree block, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key in slot 0, skip check if NULL
 */
1119
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1120 1121
				      u64 owner_root, u64 parent_transid,
				      int level, struct btrfs_key *first_key)
1122 1123 1124 1125
{
	struct extent_buffer *buf = NULL;
	int ret;

1126
	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1127 1128
	if (IS_ERR(buf))
		return buf;
1129

1130
	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1131
					     level, first_key);
1132
	if (ret) {
1133
		free_extent_buffer_stale(buf);
1134
		return ERR_PTR(ret);
1135
	}
1136
	return buf;
1137

1138 1139
}

1140
void btrfs_clean_tree_block(struct extent_buffer *buf)
1141
{
1142
	struct btrfs_fs_info *fs_info = buf->fs_info;
1143
	if (btrfs_header_generation(buf) ==
1144
	    fs_info->running_transaction->transid) {
1145
		btrfs_assert_tree_locked(buf);
1146

1147
		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1148 1149 1150
			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
						 -buf->len,
						 fs_info->dirty_metadata_batch);
1151 1152
			clear_extent_buffer_dirty(buf);
		}
1153
	}
1154 1155
}

1156
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1157
			 u64 objectid)
1158
{
1159
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1160
	root->fs_info = fs_info;
C
Chris Mason 已提交
1161
	root->node = NULL;
1162
	root->commit_root = NULL;
1163
	root->state = 0;
1164
	root->orphan_cleanup_state = 0;
1165

1166
	root->last_trans = 0;
1167
	root->free_objectid = 0;
1168
	root->nr_delalloc_inodes = 0;
1169
	root->nr_ordered_extents = 0;
1170
	root->inode_tree = RB_ROOT;
1171
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1172
	root->block_rsv = NULL;
1173 1174

	INIT_LIST_HEAD(&root->dirty_list);
1175
	INIT_LIST_HEAD(&root->root_list);
1176 1177
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
1178 1179
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
1180
	INIT_LIST_HEAD(&root->reloc_dirty_list);
1181 1182
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
1183
	spin_lock_init(&root->inode_lock);
1184
	spin_lock_init(&root->delalloc_lock);
1185
	spin_lock_init(&root->ordered_extent_lock);
1186
	spin_lock_init(&root->accounting_lock);
1187 1188
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
1189
	spin_lock_init(&root->qgroup_meta_rsv_lock);
1190
	mutex_init(&root->objectid_mutex);
1191
	mutex_init(&root->log_mutex);
1192
	mutex_init(&root->ordered_extent_mutex);
1193
	mutex_init(&root->delalloc_mutex);
1194
	init_waitqueue_head(&root->qgroup_flush_wait);
Y
Yan Zheng 已提交
1195 1196 1197
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
1198 1199
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
Y
Yan Zheng 已提交
1200 1201 1202
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
M
Miao Xie 已提交
1203
	atomic_set(&root->log_batch, 0);
1204
	refcount_set(&root->refs, 1);
1205
	atomic_set(&root->snapshot_force_cow, 0);
1206
	atomic_set(&root->nr_swapfiles, 0);
Y
Yan Zheng 已提交
1207
	root->log_transid = 0;
1208
	root->log_transid_committed = -1;
1209
	root->last_log_commit = 0;
1210
	if (!dummy) {
1211 1212
		extent_io_tree_init(fs_info, &root->dirty_log_pages,
				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1213 1214 1215
		extent_io_tree_init(fs_info, &root->log_csum_range,
				    IO_TREE_LOG_CSUM_RANGE, NULL);
	}
C
Chris Mason 已提交
1216

1217 1218
	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
1219
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1220
	root->root_key.objectid = objectid;
1221
	root->anon_dev = 0;
1222

1223
	spin_lock_init(&root->root_item_lock);
1224
	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
J
Josef Bacik 已提交
1225 1226 1227 1228 1229 1230
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&root->leak_list);
	spin_lock(&fs_info->fs_roots_radix_lock);
	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
	spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
1231 1232
}

1233
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1234
					   u64 objectid, gfp_t flags)
A
Al Viro 已提交
1235
{
1236
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
A
Al Viro 已提交
1237
	if (root)
1238
		__setup_root(root, fs_info, objectid);
A
Al Viro 已提交
1239 1240 1241
	return root;
}

1242 1243
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
1244
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1245 1246 1247
{
	struct btrfs_root *root;

1248 1249 1250
	if (!fs_info)
		return ERR_PTR(-EINVAL);

1251
	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1252 1253
	if (!root)
		return ERR_PTR(-ENOMEM);
1254

1255
	/* We don't use the stripesize in selftest, set it as sectorsize */
1256
	root->alloc_bytenr = 0;
1257 1258 1259 1260 1261

	return root;
}
#endif

1262 1263 1264
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     u64 objectid)
{
1265
	struct btrfs_fs_info *fs_info = trans->fs_info;
1266 1267 1268 1269
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
1270
	unsigned int nofs_flag;
1271 1272
	int ret = 0;

1273 1274 1275 1276 1277
	/*
	 * We're holding a transaction handle, so use a NOFS memory allocation
	 * context to avoid deadlock if reclaim happens.
	 */
	nofs_flag = memalloc_nofs_save();
1278
	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1279
	memalloc_nofs_restore(nofs_flag);
1280 1281 1282 1283 1284 1285 1286
	if (!root)
		return ERR_PTR(-ENOMEM);

	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

1287 1288
	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
				      BTRFS_NESTING_NORMAL);
1289 1290
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
1291
		leaf = NULL;
1292
		goto fail_unlock;
1293 1294 1295 1296 1297 1298
	}

	root->node = leaf;
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
1299
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1300

1301 1302
	btrfs_set_root_flags(&root->root_item, 0);
	btrfs_set_root_limit(&root->root_item, 0);
1303 1304 1305 1306 1307 1308 1309
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
1310
	if (is_fstree(objectid))
1311 1312 1313
		generate_random_guid(root->root_item.uuid);
	else
		export_guid(root->root_item.uuid, &guid_null);
1314
	btrfs_set_root_drop_level(&root->root_item, 0);
1315

1316 1317
	btrfs_tree_unlock(leaf);

1318 1319 1320 1321 1322 1323 1324
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

1325 1326
	return root;

1327
fail_unlock:
1328
	if (leaf)
1329
		btrfs_tree_unlock(leaf);
1330
fail:
1331
	btrfs_put_root(root);
1332

1333
	return ERR_PTR(ret);
1334 1335
}

Y
Yan Zheng 已提交
1336 1337
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
1338 1339
{
	struct btrfs_root *root;
1340

1341
	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1342
	if (!root)
Y
Yan Zheng 已提交
1343
		return ERR_PTR(-ENOMEM);
1344 1345 1346 1347

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1348

N
Naohiro Aota 已提交
1349 1350 1351 1352 1353 1354 1355 1356
	return root;
}

int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root)
{
	struct extent_buffer *leaf;

Y
Yan Zheng 已提交
1357
	/*
1358
	 * DON'T set SHAREABLE bit for log trees.
1359
	 *
1360 1361 1362 1363 1364
	 * Log trees are not exposed to user space thus can't be snapshotted,
	 * and they go away before a real commit is actually done.
	 *
	 * They do store pointers to file data extents, and those reference
	 * counts still get updated (along with back refs to the log tree).
Y
Yan Zheng 已提交
1365
	 */
1366

1367
	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1368
			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
N
Naohiro Aota 已提交
1369 1370
	if (IS_ERR(leaf))
		return PTR_ERR(leaf);
1371

Y
Yan Zheng 已提交
1372
	root->node = leaf;
1373 1374 1375

	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
N
Naohiro Aota 已提交
1376 1377

	return 0;
Y
Yan Zheng 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
N
Naohiro Aota 已提交
1388

1389 1390 1391 1392 1393 1394 1395
	if (!btrfs_is_zoned(fs_info)) {
		int ret = btrfs_alloc_log_tree_node(trans, log_root);

		if (ret) {
			btrfs_put_root(log_root);
			return ret;
		}
N
Naohiro Aota 已提交
1396 1397
	}

Y
Yan Zheng 已提交
1398 1399 1400 1401 1402 1403 1404 1405
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
1406
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan Zheng 已提交
1407 1408
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;
N
Naohiro Aota 已提交
1409
	int ret;
Y
Yan Zheng 已提交
1410

1411
	log_root = alloc_log_tree(trans, fs_info);
Y
Yan Zheng 已提交
1412 1413 1414
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

N
Naohiro Aota 已提交
1415 1416 1417 1418 1419 1420
	ret = btrfs_alloc_log_tree_node(trans, log_root);
	if (ret) {
		btrfs_put_root(log_root);
		return ret;
	}

Y
Yan Zheng 已提交
1421 1422 1423 1424
	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
1425 1426 1427
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
1428
	btrfs_set_stack_inode_nbytes(inode_item,
1429
				     fs_info->nodesize);
1430
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
Y
Yan Zheng 已提交
1431

1432
	btrfs_set_root_node(&log_root->root_item, log_root->node);
Y
Yan Zheng 已提交
1433 1434 1435 1436

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
1437
	root->log_transid_committed = -1;
1438
	root->last_log_commit = 0;
1439 1440 1441
	return 0;
}

1442 1443 1444
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
					      struct btrfs_path *path,
					      struct btrfs_key *key)
1445 1446 1447
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1448
	u64 generation;
1449
	int ret;
1450
	int level;
1451

1452
	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1453 1454
	if (!root)
		return ERR_PTR(-ENOMEM);
1455

1456 1457
	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
1458
	if (ret) {
1459 1460
		if (ret > 0)
			ret = -ENOENT;
1461
		goto fail;
1462
	}
1463

1464
	generation = btrfs_root_generation(&root->root_item);
1465
	level = btrfs_root_level(&root->root_item);
1466 1467
	root->node = read_tree_block(fs_info,
				     btrfs_root_bytenr(&root->root_item),
1468
				     key->objectid, generation, level, NULL);
1469 1470
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
1471
		root->node = NULL;
1472
		goto fail;
1473 1474
	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
		ret = -EIO;
1475
		goto fail;
1476
	}
1477
	root->commit_root = btrfs_root_node(root);
1478
	return root;
1479
fail:
1480
	btrfs_put_root(root);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	return ERR_PTR(ret);
}

struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					struct btrfs_key *key)
{
	struct btrfs_root *root;
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return ERR_PTR(-ENOMEM);
	root = read_tree_root_path(tree_root, path, key);
	btrfs_free_path(path);

	return root;
1497 1498
}

1499 1500 1501 1502 1503 1504
/*
 * Initialize subvolume root in-memory structure
 *
 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
 */
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1505 1506
{
	int ret;
1507
	unsigned int nofs_flag;
1508

1509 1510 1511 1512 1513 1514 1515 1516
	/*
	 * We might be called under a transaction (e.g. indirect backref
	 * resolution) which could deadlock if it triggers memory reclaim
	 */
	nofs_flag = memalloc_nofs_save();
	ret = btrfs_drew_lock_init(&root->snapshot_lock);
	memalloc_nofs_restore(nofs_flag);
	if (ret)
1517 1518
		goto fail;

1519 1520
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1521
		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1522 1523 1524
		btrfs_check_and_init_root_item(&root->root_item);
	}

1525 1526 1527 1528 1529 1530
	/*
	 * Don't assign anonymous block device to roots that are not exposed to
	 * userspace, the id pool is limited to 1M
	 */
	if (is_fstree(root->root_key.objectid) &&
	    btrfs_root_refs(&root->root_item) > 0) {
1531 1532 1533 1534 1535 1536 1537
		if (!anon_dev) {
			ret = get_anon_bdev(&root->anon_dev);
			if (ret)
				goto fail;
		} else {
			root->anon_dev = anon_dev;
		}
1538
	}
1539 1540

	mutex_lock(&root->objectid_mutex);
1541
	ret = btrfs_init_root_free_objectid(root);
1542 1543
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
L
Liu Bo 已提交
1544
		goto fail;
1545 1546
	}

1547
	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1548 1549 1550

	mutex_unlock(&root->objectid_mutex);

1551 1552
	return 0;
fail:
D
David Sterba 已提交
1553
	/* The caller is responsible to call btrfs_free_fs_root */
1554 1555 1556
	return ret;
}

1557 1558
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					       u64 root_id)
1559 1560 1561 1562 1563 1564
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
1565
	if (root)
1566
		root = btrfs_grab_root(root);
1567 1568 1569 1570
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
						u64 objectid)
{
	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->tree_root);
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->extent_root);
	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->chunk_root);
	if (objectid == BTRFS_DEV_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->dev_root);
	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->csum_root);
	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->quota_root) ?
			fs_info->quota_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_UUID_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->uuid_root) ?
			fs_info->uuid_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->free_space_root) ?
			fs_info->free_space_root : ERR_PTR(-ENOENT);
	return NULL;
}

1596 1597 1598 1599 1600
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

1601
	ret = radix_tree_preload(GFP_NOFS);
1602 1603 1604 1605 1606 1607 1608
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
1609
	if (ret == 0) {
1610
		btrfs_grab_root(root);
1611
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1612
	}
1613 1614 1615 1616 1617 1618
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

J
Josef Bacik 已提交
1619 1620 1621 1622 1623 1624
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
	struct btrfs_root *root;

	while (!list_empty(&fs_info->allocated_roots)) {
J
Josef Bacik 已提交
1625 1626
		char buf[BTRFS_ROOT_NAME_BUF_LEN];

J
Josef Bacik 已提交
1627 1628
		root = list_first_entry(&fs_info->allocated_roots,
					struct btrfs_root, leak_list);
J
Josef Bacik 已提交
1629
		btrfs_err(fs_info, "leaked root %s refcount %d",
1630
			  btrfs_root_name(&root->root_key, buf),
J
Josef Bacik 已提交
1631 1632
			  refcount_read(&root->refs));
		while (refcount_read(&root->refs) > 1)
1633 1634
			btrfs_put_root(root);
		btrfs_put_root(root);
J
Josef Bacik 已提交
1635 1636 1637 1638
	}
#endif
}

1639 1640
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
1641 1642
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
1643
	percpu_counter_destroy(&fs_info->ordered_bytes);
1644 1645 1646 1647
	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
	btrfs_free_csum_hash(fs_info);
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_free_ref_cache(fs_info);
1648 1649
	kfree(fs_info->balance_ctl);
	kfree(fs_info->delayed_root);
1650 1651 1652 1653 1654 1655 1656 1657 1658
	btrfs_put_root(fs_info->extent_root);
	btrfs_put_root(fs_info->tree_root);
	btrfs_put_root(fs_info->chunk_root);
	btrfs_put_root(fs_info->dev_root);
	btrfs_put_root(fs_info->csum_root);
	btrfs_put_root(fs_info->quota_root);
	btrfs_put_root(fs_info->uuid_root);
	btrfs_put_root(fs_info->free_space_root);
	btrfs_put_root(fs_info->fs_root);
1659
	btrfs_put_root(fs_info->data_reloc_root);
J
Josef Bacik 已提交
1660
	btrfs_check_leaked_roots(fs_info);
1661
	btrfs_extent_buffer_leak_debug_check(fs_info);
1662 1663 1664 1665 1666 1667
	kfree(fs_info->super_copy);
	kfree(fs_info->super_for_commit);
	kvfree(fs_info);
}


1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/*
 * Get an in-memory reference of a root structure.
 *
 * For essential trees like root/extent tree, we grab it from fs_info directly.
 * For subvolume trees, we check the cached filesystem roots first. If not
 * found, then read it from disk and add it to cached fs roots.
 *
 * Caller should release the root by calling btrfs_put_root() after the usage.
 *
 * NOTE: Reloc and log trees can't be read by this function as they share the
 *	 same root objectid.
 *
 * @objectid:	root id
 * @anon_dev:	preallocated anonymous block device number for new roots,
 * 		pass 0 for new allocation.
 * @check_ref:	whether to check root item references, If true, return -ENOENT
 *		for orphan roots
 */
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
					     u64 objectid, dev_t anon_dev,
					     bool check_ref)
1689 1690
{
	struct btrfs_root *root;
1691
	struct btrfs_path *path;
1692
	struct btrfs_key key;
1693 1694
	int ret;

1695 1696 1697
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;
1698
again:
D
David Sterba 已提交
1699
	root = btrfs_lookup_fs_root(fs_info, objectid);
1700
	if (root) {
1701 1702
		/* Shouldn't get preallocated anon_dev for cached roots */
		ASSERT(!anon_dev);
1703
		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1704
			btrfs_put_root(root);
1705
			return ERR_PTR(-ENOENT);
1706
		}
1707
		return root;
1708
	}
1709

D
David Sterba 已提交
1710 1711 1712 1713
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1714 1715
	if (IS_ERR(root))
		return root;
1716

1717
	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1718
		ret = -ENOENT;
1719
		goto fail;
1720
	}
1721

1722
	ret = btrfs_init_fs_root(root, anon_dev);
1723 1724
	if (ret)
		goto fail;
1725

1726 1727 1728 1729 1730
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
1731 1732
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
D
David Sterba 已提交
1733
	key.offset = objectid;
1734 1735

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1736
	btrfs_free_path(path);
1737 1738 1739
	if (ret < 0)
		goto fail;
	if (ret == 0)
1740
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1741

1742
	ret = btrfs_insert_fs_root(fs_info, root);
1743
	if (ret) {
1744
		btrfs_put_root(root);
1745
		if (ret == -EEXIST)
1746 1747
			goto again;
		goto fail;
1748
	}
1749
	return root;
1750
fail:
1751
	btrfs_put_root(root);
1752
	return ERR_PTR(ret);
1753 1754
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
/*
 * Get in-memory reference of a root structure
 *
 * @objectid:	tree objectid
 * @check_ref:	if set, verify that the tree exists and the item has at least
 *		one reference
 */
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     u64 objectid, bool check_ref)
{
	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
}

/*
 * Get in-memory reference of a root structure, created as new, optionally pass
 * the anonymous block device id
 *
 * @objectid:	tree objectid
 * @anon_dev:	if zero, allocate a new anonymous block device or use the
 *		parameter value
 */
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
					 u64 objectid, dev_t anon_dev)
{
	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/*
 * btrfs_get_fs_root_commit_root - return a root for the given objectid
 * @fs_info:	the fs_info
 * @objectid:	the objectid we need to lookup
 *
 * This is exclusively used for backref walking, and exists specifically because
 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
 * creation time, which means we may have to read the tree_root in order to look
 * up a fs root that is not in memory.  If the root is not in memory we will
 * read the tree root commit root and look up the fs root from there.  This is a
 * temporary root, it will not be inserted into the radix tree as it doesn't
 * have the most uptodate information, it'll simply be discarded once the
 * backref code is finished using the root.
 */
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
						 struct btrfs_path *path,
						 u64 objectid)
{
	struct btrfs_root *root;
	struct btrfs_key key;

	ASSERT(path->search_commit_root && path->skip_locking);

	/*
	 * This can return -ENOENT if we ask for a root that doesn't exist, but
	 * since this is called via the backref walking code we won't be looking
	 * up a root that doesn't exist, unless there's corruption.  So if root
	 * != NULL just return it.
	 */
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;

	root = btrfs_lookup_fs_root(fs_info, objectid);
	if (root)
		return root;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = read_tree_root_path(fs_info->tree_root, path, &key);
	btrfs_release_path(path);

	return root;
}

1828 1829 1830 1831 1832
/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
1833 1834
{
	struct bio *bio;
1835
	struct btrfs_end_io_wq *end_io_wq;
1836

1837
	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838
	bio = end_io_wq->bio;
1839

1840
	bio->bi_status = end_io_wq->status;
1841 1842
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
1843
	bio_endio(bio);
1844
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845 1846
}

1847 1848 1849
static int cleaner_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1850
	struct btrfs_fs_info *fs_info = root->fs_info;
1851
	int again;
1852

1853
	while (1) {
1854
		again = 0;
1855

1856 1857
		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);

1858
		/* Make the cleaner go to sleep early. */
1859
		if (btrfs_need_cleaner_sleep(fs_info))
1860 1861
			goto sleep;

1862 1863 1864 1865
		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
1866
		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1867 1868
			goto sleep;

1869
		if (!mutex_trylock(&fs_info->cleaner_mutex))
1870 1871
			goto sleep;

1872 1873 1874 1875
		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
1876
		if (btrfs_need_cleaner_sleep(fs_info)) {
1877
			mutex_unlock(&fs_info->cleaner_mutex);
1878
			goto sleep;
1879
		}
1880

1881
		btrfs_run_delayed_iputs(fs_info);
1882

1883
		again = btrfs_clean_one_deleted_snapshot(root);
1884
		mutex_unlock(&fs_info->cleaner_mutex);
1885 1886

		/*
1887 1888
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
1889
		 */
1890
		btrfs_run_defrag_inodes(fs_info);
1891 1892

		/*
1893
		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1894 1895
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1896
		 * after acquiring fs_info->reclaim_bgs_lock. So we
1897 1898 1899
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
1900
		btrfs_delete_unused_bgs(fs_info);
1901 1902 1903 1904 1905 1906 1907

		/*
		 * Reclaim block groups in the reclaim_bgs list after we deleted
		 * all unused block_groups. This possibly gives us some more free
		 * space.
		 */
		btrfs_reclaim_bgs(fs_info);
1908
sleep:
1909
		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1910 1911 1912 1913
		if (kthread_should_park())
			kthread_parkme();
		if (kthread_should_stop())
			return 0;
1914
		if (!again) {
1915
			set_current_state(TASK_INTERRUPTIBLE);
1916
			schedule();
1917 1918
			__set_current_state(TASK_RUNNING);
		}
1919
	}
1920 1921 1922 1923 1924
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1925
	struct btrfs_fs_info *fs_info = root->fs_info;
1926 1927
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
1928
	u64 transid;
1929
	time64_t delta;
1930
	unsigned long delay;
1931
	bool cannot_commit;
1932 1933

	do {
1934
		cannot_commit = false;
1935
		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1936
		mutex_lock(&fs_info->transaction_kthread_mutex);
1937

1938 1939
		spin_lock(&fs_info->trans_lock);
		cur = fs_info->running_transaction;
1940
		if (!cur) {
1941
			spin_unlock(&fs_info->trans_lock);
1942 1943
			goto sleep;
		}
Y
Yan Zheng 已提交
1944

1945
		delta = ktime_get_seconds() - cur->start_time;
1946
		if (cur->state < TRANS_STATE_COMMIT_START &&
1947
		    delta < fs_info->commit_interval) {
1948
			spin_unlock(&fs_info->trans_lock);
1949 1950 1951
			delay -= msecs_to_jiffies((delta - 1) * 1000);
			delay = min(delay,
				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1952 1953
			goto sleep;
		}
1954
		transid = cur->transid;
1955
		spin_unlock(&fs_info->trans_lock);
1956

1957
		/* If the file system is aborted, this will always fail. */
1958
		trans = btrfs_attach_transaction(root);
1959
		if (IS_ERR(trans)) {
1960 1961
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
1962
			goto sleep;
1963
		}
1964
		if (transid == trans->transid) {
1965
			btrfs_commit_transaction(trans);
1966
		} else {
1967
			btrfs_end_transaction(trans);
1968
		}
1969
sleep:
1970 1971
		wake_up_process(fs_info->cleaner_kthread);
		mutex_unlock(&fs_info->transaction_kthread_mutex);
1972

J
Josef Bacik 已提交
1973
		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1974
				      &fs_info->fs_state)))
1975
			btrfs_cleanup_transaction(fs_info);
1976
		if (!kthread_should_stop() &&
1977
				(!btrfs_transaction_blocked(fs_info) ||
1978
				 cannot_commit))
1979
			schedule_timeout_interruptible(delay);
1980 1981 1982 1983
	} while (!kthread_should_stop());
	return 0;
}

C
Chris Mason 已提交
1984
/*
1985 1986 1987
 * This will find the highest generation in the array of root backups.  The
 * index of the highest array is returned, or -EINVAL if we can't find
 * anything.
C
Chris Mason 已提交
1988 1989 1990 1991 1992
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
1993
static int find_newest_super_backup(struct btrfs_fs_info *info)
C
Chris Mason 已提交
1994
{
1995
	const u64 newest_gen = btrfs_super_generation(info->super_copy);
C
Chris Mason 已提交
1996 1997 1998 1999 2000 2001 2002 2003
	u64 cur;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
2004
			return i;
C
Chris Mason 已提交
2005 2006
	}

2007
	return -EINVAL;
C
Chris Mason 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
2017
	const int next_backup = info->backup_root_index;
C
Chris Mason 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	struct btrfs_root_backup *root_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
	btrfs_set_backup_extent_root_gen(root_backup,
			       btrfs_header_generation(info->extent_root->node));
	btrfs_set_backup_extent_root_level(root_backup,
			       btrfs_header_level(info->extent_root->node));

2049 2050 2051 2052 2053 2054 2055 2056
	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
C
Chris Mason 已提交
2057
			       btrfs_header_generation(info->fs_root->node));
2058
		btrfs_set_backup_fs_root_level(root_backup,
C
Chris Mason 已提交
2059
			       btrfs_header_level(info->fs_root->node));
2060
	}
C
Chris Mason 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
	btrfs_set_backup_csum_root_gen(root_backup,
			       btrfs_header_generation(info->csum_root->node));
	btrfs_set_backup_csum_root_level(root_backup,
			       btrfs_header_level(info->csum_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

N
Nikolay Borisov 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/*
 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 *
 * fs_info - filesystem whose backup roots need to be read
 * priority - priority of backup root required
 *
 * Returns backup root index on success and -EINVAL otherwise.
 */
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
	int backup_index = find_newest_super_backup(fs_info);
	struct btrfs_super_block *super = fs_info->super_copy;
	struct btrfs_root_backup *root_backup;

	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
		if (priority == 0)
			return backup_index;

		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
	} else {
		return -EINVAL;
	}

	root_backup = super->super_roots + backup_index;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * Fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));

	return backup_index;
}

L
Liu Bo 已提交
2134 2135 2136
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
2137
	btrfs_destroy_workqueue(fs_info->fixup_workers);
2138
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2139
	btrfs_destroy_workqueue(fs_info->workers);
2140 2141
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2142
	btrfs_destroy_workqueue(fs_info->rmw_workers);
2143 2144
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2145
	btrfs_destroy_workqueue(fs_info->delayed_workers);
2146
	btrfs_destroy_workqueue(fs_info->caching_workers);
2147
	btrfs_destroy_workqueue(fs_info->readahead_workers);
2148
	btrfs_destroy_workqueue(fs_info->flush_workers);
2149
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2150 2151
	if (fs_info->discard_ctl.discard_workers)
		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2152 2153 2154 2155 2156 2157 2158
	/*
	 * Now that all other work queues are destroyed, we can safely destroy
	 * the queues used for metadata I/O, since tasks from those other work
	 * queues can do metadata I/O operations.
	 */
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
L
Liu Bo 已提交
2159 2160
}

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

C
Chris Mason 已提交
2171
/* helper to cleanup tree roots */
2172
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
C
Chris Mason 已提交
2173
{
2174
	free_root_extent_buffers(info->tree_root);
2175

2176 2177 2178 2179 2180
	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->extent_root);
	free_root_extent_buffers(info->csum_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
2181
	free_root_extent_buffers(info->fs_root);
2182
	free_root_extent_buffers(info->data_reloc_root);
2183
	if (free_chunk_root)
2184
		free_root_extent_buffers(info->chunk_root);
2185
	free_root_extent_buffers(info->free_space_root);
C
Chris Mason 已提交
2186 2187
}

2188 2189 2190 2191 2192 2193 2194
void btrfs_put_root(struct btrfs_root *root)
{
	if (!root)
		return;

	if (refcount_dec_and_test(&root->refs)) {
		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2195
		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2196 2197 2198
		if (root->anon_dev)
			free_anon_bdev(root->anon_dev);
		btrfs_drew_lock_destroy(&root->snapshot_lock);
2199
		free_root_extent_buffers(root);
2200 2201 2202 2203 2204 2205 2206 2207 2208
#ifdef CONFIG_BTRFS_DEBUG
		spin_lock(&root->fs_info->fs_roots_radix_lock);
		list_del_init(&root->leak_list);
		spin_unlock(&root->fs_info->fs_roots_radix_lock);
#endif
		kfree(root);
	}
}

2209
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

2220
		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2221
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2222
		btrfs_put_root(gang[0]);
2223 2224 2225 2226 2227 2228 2229 2230 2231
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
2232
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2233 2234
	}
}
C
Chris Mason 已提交
2235

2236 2237 2238 2239 2240 2241 2242 2243
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
2244
	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2245 2246
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
}

2257
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2258
{
2259 2260 2261 2262
	struct inode *inode = fs_info->btree_inode;

	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(inode, 1);
2263 2264 2265 2266 2267
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
2268 2269
	inode->i_size = OFFSET_MAX;
	inode->i_mapping->a_ops = &btree_aops;
2270

2271
	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2272
	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2273
			    IO_TREE_BTREE_INODE_IO, inode);
2274
	BTRFS_I(inode)->io_tree.track_uptodate = false;
2275
	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2276

2277
	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2278 2279 2280
	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
	btrfs_insert_inode_hash(inode);
2281 2282
}

2283 2284 2285
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2286
	init_rwsem(&fs_info->dev_replace.rwsem);
2287
	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2288 2289
}

2290 2291 2292 2293 2294 2295 2296 2297
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
2298
	fs_info->qgroup_rescan_running = false;
2299 2300 2301
	mutex_init(&fs_info->qgroup_rescan_lock);
}

2302 2303 2304
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
		struct btrfs_fs_devices *fs_devices)
{
2305
	u32 max_active = fs_info->thread_pool_size;
2306
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307 2308

	fs_info->workers =
2309 2310
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);
2311 2312

	fs_info->delalloc_workers =
2313 2314
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);
2315 2316

	fs_info->flush_workers =
2317 2318
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);
2319 2320

	fs_info->caching_workers =
2321
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2322 2323

	fs_info->fixup_workers =
2324
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2325 2326 2327 2328 2329 2330

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
2331
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2332
	fs_info->endio_meta_workers =
2333 2334
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
2335
	fs_info->endio_meta_write_workers =
2336 2337
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
2338
	fs_info->endio_raid56_workers =
2339 2340
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
2341
	fs_info->rmw_workers =
2342
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2343
	fs_info->endio_write_workers =
2344 2345
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
2346
	fs_info->endio_freespace_worker =
2347 2348
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
2349
	fs_info->delayed_workers =
2350 2351
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
2352
	fs_info->readahead_workers =
2353 2354
		btrfs_alloc_workqueue(fs_info, "readahead", flags,
				      max_active, 2);
2355
	fs_info->qgroup_rescan_workers =
2356
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2357 2358
	fs_info->discard_ctl.discard_workers =
		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2359 2360

	if (!(fs_info->workers && fs_info->delalloc_workers &&
2361
	      fs_info->flush_workers &&
2362 2363 2364 2365 2366 2367
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
	      fs_info->caching_workers && fs_info->readahead_workers &&
	      fs_info->fixup_workers && fs_info->delayed_workers &&
2368 2369
	      fs_info->qgroup_rescan_workers &&
	      fs_info->discard_ctl.discard_workers)) {
2370 2371 2372 2373 2374 2375
		return -ENOMEM;
	}

	return 0;
}

2376 2377 2378
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
	struct crypto_shash *csum_shash;
2379
	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2380

2381
	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2382 2383 2384

	if (IS_ERR(csum_shash)) {
		btrfs_err(fs_info, "error allocating %s hash for checksum",
2385
			  csum_driver);
2386 2387 2388 2389 2390 2391 2392 2393
		return PTR_ERR(csum_shash);
	}

	fs_info->csum_shash = csum_shash;

	return 0;
}

2394 2395 2396 2397 2398 2399 2400
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);
2401
	int level = btrfs_super_log_root_level(disk_super);
2402 2403

	if (fs_devices->rw_devices == 0) {
2404
		btrfs_warn(fs_info, "log replay required on RO media");
2405 2406 2407
		return -EIO;
	}

2408 2409
	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
					 GFP_KERNEL);
2410 2411 2412
	if (!log_tree_root)
		return -ENOMEM;

2413
	log_tree_root->node = read_tree_block(fs_info, bytenr,
2414 2415 2416
					      BTRFS_TREE_LOG_OBJECTID,
					      fs_info->generation + 1, level,
					      NULL);
2417
	if (IS_ERR(log_tree_root->node)) {
2418
		btrfs_warn(fs_info, "failed to read log tree");
2419
		ret = PTR_ERR(log_tree_root->node);
2420
		log_tree_root->node = NULL;
2421
		btrfs_put_root(log_tree_root);
2422
		return ret;
2423
	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2424
		btrfs_err(fs_info, "failed to read log tree");
2425
		btrfs_put_root(log_tree_root);
2426 2427 2428 2429 2430
		return -EIO;
	}
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
2431 2432
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to recover log tree");
2433
		btrfs_put_root(log_tree_root);
2434 2435 2436
		return ret;
	}

2437
	if (sb_rdonly(fs_info->sb)) {
2438
		ret = btrfs_commit_super(fs_info);
2439 2440 2441 2442 2443 2444 2445
		if (ret)
			return ret;
	}

	return 0;
}

2446
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2447
{
2448
	struct btrfs_root *tree_root = fs_info->tree_root;
2449
	struct btrfs_root *root;
2450 2451 2452
	struct btrfs_key location;
	int ret;

2453 2454
	BUG_ON(!fs_info->tree_root);

2455 2456 2457 2458
	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

2459
	root = btrfs_read_tree_root(tree_root, &location);
2460
	if (IS_ERR(root)) {
2461 2462 2463 2464 2465 2466 2467
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->extent_root = root;
2468
	}
2469 2470

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2471
	root = btrfs_read_tree_root(tree_root, &location);
2472
	if (IS_ERR(root)) {
2473 2474 2475 2476 2477 2478 2479
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->dev_root = root;
2480
	}
2481 2482
	/* Initialize fs_info for all devices in any case */
	btrfs_init_devices_late(fs_info);
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
		if (IS_ERR(root)) {
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
				ret = PTR_ERR(root);
				goto out;
			}
		} else {
			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
			fs_info->csum_root = root;
2496
		}
2497
	}
2498

2499 2500 2501 2502
	/*
	 * This tree can share blocks with some other fs tree during relocation
	 * and we need a proper setup by btrfs_get_fs_root
	 */
D
David Sterba 已提交
2503 2504
	root = btrfs_get_fs_root(tree_root->fs_info,
				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2505
	if (IS_ERR(root)) {
2506 2507 2508 2509 2510 2511 2512
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->data_reloc_root = root;
2513 2514
	}

2515
	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2516 2517 2518
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2519
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2520
		fs_info->quota_root = root;
2521 2522 2523
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2524 2525
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
2526 2527 2528 2529 2530
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			if (ret != -ENOENT)
				goto out;
		}
2531
	} else {
2532 2533
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
2534 2535
	}

2536 2537 2538
	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
2539
		if (IS_ERR(root)) {
2540 2541 2542 2543 2544 2545 2546
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
				ret = PTR_ERR(root);
				goto out;
			}
		}  else {
			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
			fs_info->free_space_root = root;
2547
		}
2548 2549
	}

2550
	return 0;
2551 2552 2553 2554
out:
	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
		   location.objectid, ret);
	return ret;
2555 2556
}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/*
 * Real super block validation
 * NOTE: super csum type and incompat features will not be checked here.
 *
 * @sb:		super block to check
 * @mirror_num:	the super block number to check its bytenr:
 * 		0	the primary (1st) sb
 * 		1, 2	2nd and 3rd backup copy
 * 	       -1	skip bytenr check
 */
static int validate_super(struct btrfs_fs_info *fs_info,
			    struct btrfs_super_block *sb, int mirror_num)
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
{
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
		ret = -EINVAL;
	}
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
2608 2609 2610 2611 2612 2613 2614 2615 2616

	/*
	 * For 4K page size, we only support 4K sector size.
	 * For 64K page size, we support read-write for 64K sector size, and
	 * read-only for 4K sector size.
	 */
	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
				     sectorsize != SZ_64K))) {
2617
		btrfs_err(fs_info,
2618
			"sectorsize %llu not yet supported for page size %lu",
2619 2620 2621
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
2622

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
		   BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
		ret = -EINVAL;
	}

	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
	    memcmp(fs_info->fs_devices->metadata_uuid,
		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
		btrfs_err(fs_info,
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
			fs_info->super_copy->metadata_uuid,
			fs_info->fs_devices->metadata_uuid);
		ret = -EINVAL;
	}

2669
	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2670
		   BTRFS_FSID_SIZE) != 0) {
2671
		btrfs_err(fs_info,
2672
			"dev_item UUID does not match metadata fsid: %pU != %pU",
2673
			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

2699 2700
	if (mirror_num >= 0 &&
	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
/*
 * Validation of super block at mount time.
 * Some checks already done early at mount time, like csum type and incompat
 * flags will be skipped.
 */
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
	return validate_super(fs_info, fs_info->super_copy, 0);
}

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/*
 * Validation of super block at write time.
 * Some checks like bytenr check will be skipped as their values will be
 * overwritten soon.
 * Extra checks like csum type and incompat flags will be done here.
 */
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
				      struct btrfs_super_block *sb)
{
	int ret;

	ret = validate_super(fs_info, sb, -1);
	if (ret < 0)
		goto out;
2768
	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		ret = -EUCLEAN;
		btrfs_err(fs_info, "invalid csum type, has %u want %u",
			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
		goto out;
	}
	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
		ret = -EUCLEAN;
		btrfs_err(fs_info,
		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
			  btrfs_super_incompat_flags(sb),
			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
		goto out;
	}
out:
	if (ret < 0)
		btrfs_err(fs_info,
		"super block corruption detected before writing it to disk");
	return ret;
}

2789
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2790
{
2791
	int backup_index = find_newest_super_backup(fs_info);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	struct btrfs_super_block *sb = fs_info->super_copy;
	struct btrfs_root *tree_root = fs_info->tree_root;
	bool handle_error = false;
	int ret = 0;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		u64 generation;
		int level;

		if (handle_error) {
			if (!IS_ERR(tree_root->node))
				free_extent_buffer(tree_root->node);
			tree_root->node = NULL;

			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
				break;

			free_root_pointers(fs_info, 0);

			/*
			 * Don't use the log in recovery mode, it won't be
			 * valid
			 */
			btrfs_set_super_log_root(sb, 0);

			/* We can't trust the free space cache either */
			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

			ret = read_backup_root(fs_info, i);
2822
			backup_index = ret;
2823 2824 2825 2826 2827 2828
			if (ret < 0)
				return ret;
		}
		generation = btrfs_super_generation(sb);
		level = btrfs_super_root_level(sb);
		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2829
						  BTRFS_ROOT_TREE_OBJECTID,
2830
						  generation, level, NULL);
2831
		if (IS_ERR(tree_root->node)) {
2832
			handle_error = true;
2833 2834 2835 2836
			ret = PTR_ERR(tree_root->node);
			tree_root->node = NULL;
			btrfs_warn(fs_info, "couldn't read tree root");
			continue;
2837

2838 2839 2840 2841
		} else if (!extent_buffer_uptodate(tree_root->node)) {
			handle_error = true;
			ret = -EIO;
			btrfs_warn(fs_info, "error while reading tree root");
2842 2843 2844 2845 2846 2847 2848
			continue;
		}

		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
		tree_root->commit_root = btrfs_root_node(tree_root);
		btrfs_set_root_refs(&tree_root->root_item, 1);

2849 2850 2851 2852
		/*
		 * No need to hold btrfs_root::objectid_mutex since the fs
		 * hasn't been fully initialised and we are the only user
		 */
2853
		ret = btrfs_init_root_free_objectid(tree_root);
2854 2855 2856 2857 2858
		if (ret < 0) {
			handle_error = true;
			continue;
		}

2859
		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

		ret = btrfs_read_roots(fs_info);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		/* All successful */
		fs_info->generation = generation;
		fs_info->last_trans_committed = generation;
2870 2871 2872 2873 2874 2875 2876 2877

		/* Always begin writing backup roots after the one being used */
		if (backup_index < 0) {
			fs_info->backup_root_index = 0;
		} else {
			fs_info->backup_root_index = backup_index + 1;
			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
		}
2878 2879 2880 2881 2882 2883
		break;
	}

	return ret;
}

2884
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2885
{
2886
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2887
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
C
Chris Mason 已提交
2888
	INIT_LIST_HEAD(&fs_info->trans_list);
2889
	INIT_LIST_HEAD(&fs_info->dead_roots);
Y
Yan, Zheng 已提交
2890
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2891
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2892
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2893
	spin_lock_init(&fs_info->delalloc_root_lock);
J
Josef Bacik 已提交
2894
	spin_lock_init(&fs_info->trans_lock);
2895
	spin_lock_init(&fs_info->fs_roots_radix_lock);
Y
Yan, Zheng 已提交
2896
	spin_lock_init(&fs_info->delayed_iput_lock);
C
Chris Mason 已提交
2897
	spin_lock_init(&fs_info->defrag_inodes_lock);
2898
	spin_lock_init(&fs_info->super_lock);
2899
	spin_lock_init(&fs_info->buffer_lock);
2900
	spin_lock_init(&fs_info->unused_bgs_lock);
2901
	spin_lock_init(&fs_info->treelog_bg_lock);
J
Jan Schmidt 已提交
2902
	rwlock_init(&fs_info->tree_mod_log_lock);
2903
	mutex_init(&fs_info->unused_bg_unpin_mutex);
2904
	mutex_init(&fs_info->reclaim_bgs_lock);
C
Chris Mason 已提交
2905
	mutex_init(&fs_info->reloc_mutex);
2906
	mutex_init(&fs_info->delalloc_root_mutex);
2907
	mutex_init(&fs_info->zoned_meta_io_lock);
2908
	seqlock_init(&fs_info->profiles_lock);
2909

2910
	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2911
	INIT_LIST_HEAD(&fs_info->space_info);
J
Jan Schmidt 已提交
2912
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2913
	INIT_LIST_HEAD(&fs_info->unused_bgs);
2914
	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
J
Josef Bacik 已提交
2915 2916
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&fs_info->allocated_roots);
2917 2918
	INIT_LIST_HEAD(&fs_info->allocated_ebs);
	spin_lock_init(&fs_info->eb_leak_lock);
J
Josef Bacik 已提交
2919
#endif
2920
	extent_map_tree_init(&fs_info->mapping_tree);
2921 2922 2923 2924 2925 2926 2927
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
J
Josef Bacik 已提交
2928 2929 2930
	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
			     BTRFS_BLOCK_RSV_DELREFS);

2931
	atomic_set(&fs_info->async_delalloc_pages, 0);
C
Chris Mason 已提交
2932
	atomic_set(&fs_info->defrag_running, 0);
Z
Zhao Lei 已提交
2933
	atomic_set(&fs_info->reada_works_cnt, 0);
2934
	atomic_set(&fs_info->nr_delayed_iputs, 0);
2935
	atomic64_set(&fs_info->tree_mod_seq, 0);
2936
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
J
Josef Bacik 已提交
2937
	fs_info->metadata_ratio = 0;
C
Chris Mason 已提交
2938
	fs_info->defrag_inodes = RB_ROOT;
2939
	atomic64_set(&fs_info->free_chunk_space, 0);
J
Jan Schmidt 已提交
2940
	fs_info->tree_mod_log = RB_ROOT;
2941
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2942
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2943
	/* readahead state */
2944
	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2945
	spin_lock_init(&fs_info->reada_lock);
J
Josef Bacik 已提交
2946
	btrfs_init_ref_verify(fs_info);
C
Chris Mason 已提交
2947

2948 2949
	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);
2950

2951 2952
	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
2953

2954
	btrfs_init_scrub(fs_info);
2955 2956 2957
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
2958
	btrfs_init_balance(fs_info);
2959
	btrfs_init_async_reclaim_work(fs_info);
A
Arne Jansen 已提交
2960

J
Josef Bacik 已提交
2961
	spin_lock_init(&fs_info->block_group_cache_lock);
2962
	fs_info->block_group_cache_tree = RB_ROOT;
2963
	fs_info->first_logical_byte = (u64)-1;
J
Josef Bacik 已提交
2964

2965 2966
	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2967
	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
C
Chris Mason 已提交
2968

2969
	mutex_init(&fs_info->ordered_operations_mutex);
2970
	mutex_init(&fs_info->tree_log_mutex);
2971
	mutex_init(&fs_info->chunk_mutex);
2972 2973
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
2974
	mutex_init(&fs_info->ro_block_group_mutex);
2975
	init_rwsem(&fs_info->commit_root_sem);
2976
	init_rwsem(&fs_info->cleanup_work_sem);
2977
	init_rwsem(&fs_info->subvol_sem);
S
Stefan Behrens 已提交
2978
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2979

2980
	btrfs_init_dev_replace_locks(fs_info);
2981
	btrfs_init_qgroup(fs_info);
2982
	btrfs_discard_init(fs_info);
2983

2984 2985 2986
	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

2987
	init_waitqueue_head(&fs_info->transaction_throttle);
2988
	init_waitqueue_head(&fs_info->transaction_wait);
S
Sage Weil 已提交
2989
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2990
	init_waitqueue_head(&fs_info->async_submit_wait);
2991
	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2992

2993 2994 2995
	/* Usable values until the real ones are cached from the superblock */
	fs_info->nodesize = 4096;
	fs_info->sectorsize = 4096;
2996
	fs_info->sectorsize_bits = ilog2(4096);
2997 2998
	fs_info->stripesize = 4096;

2999 3000 3001
	spin_lock_init(&fs_info->swapfile_pins_lock);
	fs_info->swapfile_pins = RB_ROOT;

3002
	fs_info->send_in_progress = 0;
3003 3004 3005

	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3006 3007 3008 3009 3010 3011 3012 3013 3014
}

static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
	int ret;

	fs_info->sb = sb;
	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3015

3016
	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3017
	if (ret)
J
Josef Bacik 已提交
3018
		return ret;
3019 3020 3021

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3022
		return ret;
3023 3024 3025 3026 3027 3028

	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3029
		return ret;
3030 3031 3032 3033

	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
			GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
3034
		return ret;
3035 3036 3037

	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
J
Josef Bacik 已提交
3038 3039
	if (!fs_info->delayed_root)
		return -ENOMEM;
3040 3041
	btrfs_init_delayed_root(fs_info->delayed_root);

3042 3043 3044
	if (sb_rdonly(sb))
		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);

J
Josef Bacik 已提交
3045
	return btrfs_alloc_stripe_hash_table(fs_info);
3046 3047
}

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
static int btrfs_uuid_rescan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info);
	if (ret < 0) {
3060 3061 3062
		if (ret != -EINTR)
			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
				   ret);
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

3085 3086 3087 3088 3089 3090 3091 3092
/*
 * Some options only have meaning at mount time and shouldn't persist across
 * remounts, or be displayed. Clear these at the end of mount and remount
 * code paths.
 */
void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
{
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3093
	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3094 3095
}

3096 3097 3098 3099 3100 3101 3102
/*
 * Mounting logic specific to read-write file systems. Shared by open_ctree
 * and btrfs_remount when remounting from read-only to read-write.
 */
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
	int ret;
3103
	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	bool clear_free_space_tree = false;

	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		clear_free_space_tree = true;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = true;
	}

	if (clear_free_space_tree) {
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
			goto out;
		}
	}
3124

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	/*
	 * btrfs_find_orphan_roots() is responsible for finding all the dead
	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
	 * them into the fs_info->fs_roots_radix tree. This must be done before
	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
	 * item before the root's tree is deleted - this means that if we unmount
	 * or crash before the deletion completes, on the next mount we will not
	 * delete what remains of the tree because the orphan item does not
	 * exists anymore, which is what tells us we have a pending deletion.
	 */
	ret = btrfs_find_orphan_roots(fs_info);
	if (ret)
		goto out;

3140 3141 3142 3143
	ret = btrfs_cleanup_fs_roots(fs_info);
	if (ret)
		goto out;

3144 3145 3146 3147 3148 3149 3150 3151
	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
		up_read(&fs_info->cleanup_work_sem);
		goto out;
	}
	up_read(&fs_info->cleanup_work_sem);

3152 3153 3154 3155 3156 3157 3158 3159
	mutex_lock(&fs_info->cleaner_mutex);
	ret = btrfs_recover_relocation(fs_info->tree_root);
	mutex_unlock(&fs_info->cleaner_mutex);
	if (ret < 0) {
		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
		goto out;
	}

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		btrfs_info(fs_info, "creating free space tree");
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
			goto out;
		}
	}

3171 3172 3173 3174 3175 3176
	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
		if (ret)
			goto out;
	}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	ret = btrfs_resume_balance_async(fs_info);
	if (ret)
		goto out;

	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume dev_replace");
		goto out;
	}

	btrfs_qgroup_rescan_resume(fs_info);

	if (!fs_info->uuid_root) {
		btrfs_info(fs_info, "creating UUID tree");
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to create the UUID tree %d", ret);
			goto out;
		}
	}

out:
	return ret;
}

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
		      char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	u16 csum_type;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int level;

3220
	ret = init_mount_fs_info(fs_info, sb);
D
David Woodhouse 已提交
3221
	if (ret) {
3222
		err = ret;
3223
		goto fail;
D
David Woodhouse 已提交
3224 3225
	}

3226 3227 3228 3229 3230 3231 3232 3233 3234
	/* These need to be init'ed before we start creating inodes and such. */
	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
				     GFP_KERNEL);
	fs_info->tree_root = tree_root;
	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
				      GFP_KERNEL);
	fs_info->chunk_root = chunk_root;
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3235
		goto fail;
3236 3237 3238 3239 3240
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3241
		goto fail;
3242 3243 3244 3245
	}
	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
	btrfs_init_btree_inode(fs_info);

3246
	invalidate_bdev(fs_devices->latest_bdev);
D
David Sterba 已提交
3247 3248 3249 3250

	/*
	 * Read super block and check the signature bytes only
	 */
3251 3252 3253
	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
	if (IS_ERR(disk_super)) {
		err = PTR_ERR(disk_super);
3254
		goto fail_alloc;
3255
	}
C
Chris Mason 已提交
3256

3257
	/*
3258
	 * Verify the type first, if that or the checksum value are
3259 3260
	 * corrupted, we'll find out
	 */
3261
	csum_type = btrfs_super_csum_type(disk_super);
3262
	if (!btrfs_supported_super_csum(csum_type)) {
3263
		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3264
			  csum_type);
3265
		err = -EINVAL;
3266
		btrfs_release_disk_super(disk_super);
3267 3268 3269
		goto fail_alloc;
	}

3270 3271
	fs_info->csum_size = btrfs_super_csum_size(disk_super);

3272 3273 3274
	ret = btrfs_init_csum_hash(fs_info, csum_type);
	if (ret) {
		err = ret;
3275
		btrfs_release_disk_super(disk_super);
3276 3277 3278
		goto fail_alloc;
	}

D
David Sterba 已提交
3279 3280 3281 3282
	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
3283
	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3284
		btrfs_err(fs_info, "superblock checksum mismatch");
D
David Sterba 已提交
3285
		err = -EINVAL;
3286
		btrfs_release_disk_super(disk_super);
3287
		goto fail_alloc;
D
David Sterba 已提交
3288 3289 3290 3291 3292 3293 3294
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
3295 3296
	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
	btrfs_release_disk_super(disk_super);
3297

3298 3299
	disk_super = fs_info->super_copy;

3300

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
	features = btrfs_super_flags(disk_super);
	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
		btrfs_set_super_flags(disk_super, features);
		btrfs_info(fs_info,
			"found metadata UUID change in progress flag, clearing");
	}

	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
3311

3312
	ret = btrfs_validate_mount_super(fs_info);
D
David Sterba 已提交
3313
	if (ret) {
3314
		btrfs_err(fs_info, "superblock contains fatal errors");
D
David Sterba 已提交
3315
		err = -EINVAL;
3316
		goto fail_alloc;
D
David Sterba 已提交
3317 3318
	}

3319
	if (!btrfs_super_root(disk_super))
3320
		goto fail_alloc;
3321

L
liubo 已提交
3322
	/* check FS state, whether FS is broken. */
3323 3324
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
L
liubo 已提交
3325

3326 3327 3328 3329 3330 3331
	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

3332
	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
Y
Yan Zheng 已提交
3333 3334
	if (ret) {
		err = ret;
3335
		goto fail_alloc;
Y
Yan Zheng 已提交
3336
	}
3337

3338 3339 3340
	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
3341 3342 3343
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
3344
		err = -EINVAL;
3345
		goto fail_alloc;
3346 3347
	}

3348
	features = btrfs_super_incompat_flags(disk_super);
L
Li Zefan 已提交
3349
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3350
	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
L
Li Zefan 已提交
3351
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
N
Nick Terrell 已提交
3352 3353
	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3354

3355
	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3356
		btrfs_info(fs_info, "has skinny extents");
3357

3358 3359 3360 3361
	/*
	 * flag our filesystem as having big metadata blocks if
	 * they are bigger than the page size
	 */
3362
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3363
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3364 3365
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
3366 3367 3368
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

3369 3370
	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
3371
	stripesize = sectorsize;
3372
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3373
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3374

3375 3376 3377
	/* Cache block sizes */
	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;
3378
	fs_info->sectorsize_bits = ilog2(sectorsize);
3379
	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3380 3381
	fs_info->stripesize = stripesize;

3382 3383 3384 3385 3386
	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3387
	    (sectorsize != nodesize)) {
3388 3389 3390
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
3391
		goto fail_alloc;
3392 3393
	}

3394 3395 3396 3397
	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
L
Li Zefan 已提交
3398
	btrfs_set_super_incompat_flags(disk_super, features);
3399

3400 3401
	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3402
	if (!sb_rdonly(sb) && features) {
3403 3404
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
3405
		       features);
3406
		err = -EINVAL;
3407
		goto fail_alloc;
3408
	}
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	/* For 4K sector size support, it's only read-only */
	if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
		if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
			btrfs_err(fs_info,
	"subpage sectorsize %u only supported read-only for page size %lu",
				sectorsize, PAGE_SIZE);
			err = -EINVAL;
			goto fail_alloc;
		}
	}

3421 3422 3423
	ret = btrfs_init_workqueues(fs_info, fs_devices);
	if (ret) {
		err = ret;
3424 3425
		goto fail_sb_buffer;
	}
3426

3427 3428
	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3429

3430 3431
	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);
3432
	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3433

3434
	mutex_lock(&fs_info->chunk_mutex);
3435
	ret = btrfs_read_sys_array(fs_info);
3436
	mutex_unlock(&fs_info->chunk_mutex);
3437
	if (ret) {
3438
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3439
		goto fail_sb_buffer;
3440
	}
3441

3442
	generation = btrfs_super_chunk_root_generation(disk_super);
3443
	level = btrfs_super_chunk_root_level(disk_super);
3444

3445
	chunk_root->node = read_tree_block(fs_info,
3446
					   btrfs_super_chunk_root(disk_super),
3447
					   BTRFS_CHUNK_TREE_OBJECTID,
3448
					   generation, level, NULL);
3449 3450
	if (IS_ERR(chunk_root->node) ||
	    !extent_buffer_uptodate(chunk_root->node)) {
3451
		btrfs_err(fs_info, "failed to read chunk root");
3452 3453
		if (!IS_ERR(chunk_root->node))
			free_extent_buffer(chunk_root->node);
3454
		chunk_root->node = NULL;
C
Chris Mason 已提交
3455
		goto fail_tree_roots;
3456
	}
3457 3458
	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
	chunk_root->commit_root = btrfs_root_node(chunk_root);
3459

3460
	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3461 3462
			   offsetof(struct btrfs_header, chunk_tree_uuid),
			   BTRFS_UUID_SIZE);
3463

3464
	ret = btrfs_read_chunk_tree(fs_info);
Y
Yan Zheng 已提交
3465
	if (ret) {
3466
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
C
Chris Mason 已提交
3467
		goto fail_tree_roots;
Y
Yan Zheng 已提交
3468
	}
3469

3470
	/*
3471 3472 3473 3474 3475
	 * At this point we know all the devices that make this filesystem,
	 * including the seed devices but we don't know yet if the replace
	 * target is required. So free devices that are not part of this
	 * filesystem but skip the replace traget device which is checked
	 * below in btrfs_init_dev_replace().
3476
	 */
3477
	btrfs_free_extra_devids(fs_devices);
3478
	if (!fs_devices->latest_bdev) {
3479
		btrfs_err(fs_info, "failed to read devices");
3480 3481 3482
		goto fail_tree_roots;
	}

3483
	ret = init_tree_roots(fs_info);
3484
	if (ret)
3485
		goto fail_tree_roots;
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	/*
	 * Get zone type information of zoned block devices. This will also
	 * handle emulation of a zoned filesystem if a regular device has the
	 * zoned incompat feature flag set.
	 */
	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "zoned: failed to read device zone info: %d",
			  ret);
		goto fail_block_groups;
	}

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	/*
	 * If we have a uuid root and we're not being told to rescan we need to
	 * check the generation here so we can set the
	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
	 * transaction during a balance or the log replay without updating the
	 * uuid generation, and then if we crash we would rescan the uuid tree,
	 * even though it was perfectly fine.
	 */
	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);

3512 3513 3514 3515 3516 3517 3518
	ret = btrfs_verify_dev_extents(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "failed to verify dev extents against chunks: %d",
			  ret);
		goto fail_block_groups;
	}
3519 3520
	ret = btrfs_recover_balance(fs_info);
	if (ret) {
3521
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3522 3523 3524
		goto fail_block_groups;
	}

3525 3526
	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
3527
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3528 3529 3530
		goto fail_block_groups;
	}

3531 3532
	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
3533
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3534 3535 3536
		goto fail_block_groups;
	}

N
Naohiro Aota 已提交
3537 3538 3539 3540 3541 3542 3543
	ret = btrfs_check_zoned_mode(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
			  ret);
		goto fail_block_groups;
	}

3544
	ret = btrfs_sysfs_add_fsid(fs_devices);
3545
	if (ret) {
3546 3547
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
3548 3549 3550
		goto fail_block_groups;
	}

3551
	ret = btrfs_sysfs_add_mounted(fs_info);
3552
	if (ret) {
3553
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3554
		goto fail_fsdev_sysfs;
3555 3556 3557 3558
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
3559
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3560
		goto fail_sysfs;
3561 3562
	}

3563
	ret = btrfs_read_block_groups(fs_info);
3564
	if (ret) {
3565
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3566
		goto fail_sysfs;
3567
	}
3568

3569
	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3570
		btrfs_warn(fs_info,
3571
		"writable mount is not allowed due to too many missing devices");
3572
		goto fail_sysfs;
3573
	}
C
Chris Mason 已提交
3574

3575 3576
	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
					       "btrfs-cleaner");
3577
	if (IS_ERR(fs_info->cleaner_kthread))
3578
		goto fail_sysfs;
3579 3580 3581 3582

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
3583
	if (IS_ERR(fs_info->transaction_kthread))
3584
		goto fail_cleaner;
3585

3586
	if (!btrfs_test_opt(fs_info, NOSSD) &&
C
Chris Mason 已提交
3587
	    !fs_info->fs_devices->rotating) {
3588
		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
C
Chris Mason 已提交
3589 3590
	}

3591
	/*
3592
	 * Mount does not set all options immediately, we can do it now and do
3593 3594 3595
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);
3596

3597
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3598
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3599
		ret = btrfsic_mount(fs_info, fs_devices,
3600
				    btrfs_test_opt(fs_info,
3601 3602 3603 3604
					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
				    1 : 0,
				    fs_info->check_integrity_print_mask);
		if (ret)
3605 3606 3607
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
3608 3609
	}
#endif
3610 3611 3612
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;
3613

J
Josef Bacik 已提交
3614 3615 3616
	if (btrfs_build_ref_tree(fs_info))
		btrfs_err(fs_info, "couldn't build ref tree");

3617 3618
	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
3619
	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3620
		btrfs_info(fs_info, "start tree-log replay");
3621
		ret = btrfs_replay_log(fs_info, fs_devices);
3622
		if (ret) {
3623
			err = ret;
3624
			goto fail_qgroup;
3625
		}
3626
	}
Z
Zheng Yan 已提交
3627

D
David Sterba 已提交
3628
	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3629 3630
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
3631
		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3632
		fs_info->fs_root = NULL;
3633
		goto fail_qgroup;
3634
	}
C
Chris Mason 已提交
3635

3636
	if (sb_rdonly(sb))
3637
		goto clear_oneshot;
I
Ilya Dryomov 已提交
3638

3639
	ret = btrfs_start_pre_rw_mount(fs_info);
3640
	if (ret) {
3641
		close_ctree(fs_info);
3642
		return ret;
3643
	}
3644
	btrfs_discard_resume(fs_info);
3645

3646 3647 3648
	if (fs_info->uuid_root &&
	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3649
		btrfs_info(fs_info, "checking UUID tree");
3650 3651
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
3652 3653
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
3654
			close_ctree(fs_info);
3655 3656
			return ret;
		}
3657
	}
3658

3659
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3660

3661 3662
clear_oneshot:
	btrfs_clear_oneshot_options(fs_info);
A
Al Viro 已提交
3663
	return 0;
C
Chris Mason 已提交
3664

3665 3666
fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
3667 3668
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
3669
	btrfs_cleanup_transaction(fs_info);
3670
	btrfs_free_fs_roots(fs_info);
3671
fail_cleaner:
3672
	kthread_stop(fs_info->cleaner_kthread);
3673 3674 3675 3676 3677 3678 3679

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

3680
fail_sysfs:
3681
	btrfs_sysfs_remove_mounted(fs_info);
3682

3683 3684 3685
fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

3686
fail_block_groups:
J
Josef Bacik 已提交
3687
	btrfs_put_block_group_cache(fs_info);
C
Chris Mason 已提交
3688 3689

fail_tree_roots:
3690 3691
	if (fs_info->data_reloc_root)
		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3692
	free_root_pointers(fs_info, true);
3693
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
C
Chris Mason 已提交
3694

C
Chris Mason 已提交
3695
fail_sb_buffer:
L
Liu Bo 已提交
3696
	btrfs_stop_all_workers(fs_info);
3697
	btrfs_free_block_groups(fs_info);
3698
fail_alloc:
3699 3700
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

3701
	iput(fs_info->btree_inode);
3702
fail:
3703
	btrfs_close_devices(fs_info->fs_devices);
A
Al Viro 已提交
3704
	return err;
3705
}
3706
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3707

3708
static void btrfs_end_super_write(struct bio *bio)
3709
{
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
	struct btrfs_device *device = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;
	struct page *page;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		page = bvec->bv_page;

		if (bio->bi_status) {
			btrfs_warn_rl_in_rcu(device->fs_info,
				"lost page write due to IO error on %s (%d)",
				rcu_str_deref(device->name),
				blk_status_to_errno(bio->bi_status));
			ClearPageUptodate(page);
			SetPageError(page);
			btrfs_dev_stat_inc_and_print(device,
						     BTRFS_DEV_STAT_WRITE_ERRS);
		} else {
			SetPageUptodate(page);
		}

		put_page(page);
		unlock_page(page);
3733
	}
3734 3735

	bio_put(bio);
3736 3737
}

3738 3739
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
						   int copy_num)
3740 3741
{
	struct btrfs_super_block *super;
3742
	struct page *page;
3743
	u64 bytenr, bytenr_orig;
3744
	struct address_space *mapping = bdev->bd_inode->i_mapping;
3745 3746 3747 3748 3749 3750 3751 3752
	int ret;

	bytenr_orig = btrfs_sb_offset(copy_num);
	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
	if (ret == -ENOENT)
		return ERR_PTR(-EINVAL);
	else if (ret)
		return ERR_PTR(ret);
3753 3754

	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3755
		return ERR_PTR(-EINVAL);
3756

3757 3758 3759
	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
	if (IS_ERR(page))
		return ERR_CAST(page);
3760

3761
	super = page_address(page);
3762 3763 3764 3765 3766
	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
		btrfs_release_disk_super(super);
		return ERR_PTR(-ENODATA);
	}

3767
	if (btrfs_super_bytenr(super) != bytenr_orig) {
3768 3769
		btrfs_release_disk_super(super);
		return ERR_PTR(-EINVAL);
3770 3771
	}

3772
	return super;
3773 3774 3775
}


3776
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Y
Yan Zheng 已提交
3777
{
3778
	struct btrfs_super_block *super, *latest = NULL;
Y
Yan Zheng 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787
	int i;
	u64 transid = 0;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
3788 3789
		super = btrfs_read_dev_one_super(bdev, i);
		if (IS_ERR(super))
Y
Yan Zheng 已提交
3790 3791 3792
			continue;

		if (!latest || btrfs_super_generation(super) > transid) {
3793 3794 3795 3796
			if (latest)
				btrfs_release_disk_super(super);

			latest = super;
Y
Yan Zheng 已提交
3797 3798 3799
			transid = btrfs_super_generation(super);
		}
	}
3800

3801
	return super;
Y
Yan Zheng 已提交
3802 3803
}

3804
/*
3805
 * Write superblock @sb to the @device. Do not wait for completion, all the
3806
 * pages we use for writing are locked.
3807
 *
3808 3809 3810
 * Write @max_mirrors copies of the superblock, where 0 means default that fit
 * the expected device size at commit time. Note that max_mirrors must be
 * same for write and wait phases.
3811
 *
3812
 * Return number of errors when page is not found or submission fails.
3813
 */
Y
Yan Zheng 已提交
3814
static int write_dev_supers(struct btrfs_device *device,
3815
			    struct btrfs_super_block *sb, int max_mirrors)
Y
Yan Zheng 已提交
3816
{
3817
	struct btrfs_fs_info *fs_info = device->fs_info;
3818
	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3819
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Y
Yan Zheng 已提交
3820 3821
	int i;
	int errors = 0;
3822 3823
	int ret;
	u64 bytenr, bytenr_orig;
Y
Yan Zheng 已提交
3824 3825 3826 3827

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

3828 3829
	shash->tfm = fs_info->csum_shash;

Y
Yan Zheng 已提交
3830
	for (i = 0; i < max_mirrors; i++) {
3831 3832 3833 3834
		struct page *page;
		struct bio *bio;
		struct btrfs_super_block *disk_super;

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
		bytenr_orig = btrfs_sb_offset(i);
		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
		if (ret == -ENOENT) {
			continue;
		} else if (ret < 0) {
			btrfs_err(device->fs_info,
				"couldn't get super block location for mirror %d",
				i);
			errors++;
			continue;
		}
3846 3847
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
Y
Yan Zheng 已提交
3848 3849
			break;

3850
		btrfs_set_super_bytenr(sb, bytenr_orig);
3851

3852 3853 3854
		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
				    sb->csum);
3855

3856 3857 3858
		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
					   GFP_NOFS);
		if (!page) {
3859
			btrfs_err(device->fs_info,
3860
			    "couldn't get super block page for bytenr %llu",
3861 3862
			    bytenr);
			errors++;
3863
			continue;
3864
		}
3865

3866 3867
		/* Bump the refcount for wait_dev_supers() */
		get_page(page);
Y
Yan Zheng 已提交
3868

3869 3870
		disk_super = page_address(page);
		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3871

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		/*
		 * Directly use bios here instead of relying on the page cache
		 * to do I/O, so we don't lose the ability to do integrity
		 * checking.
		 */
		bio = bio_alloc(GFP_NOFS, 1);
		bio_set_dev(bio, device->bdev);
		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
		bio->bi_private = device;
		bio->bi_end_io = btrfs_end_super_write;
		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
			       offset_in_page(bytenr));
Y
Yan Zheng 已提交
3884

C
Chris Mason 已提交
3885
		/*
3886 3887 3888
		 * We FUA only the first super block.  The others we allow to
		 * go down lazy and there's a short window where the on-disk
		 * copies might still contain the older version.
C
Chris Mason 已提交
3889
		 */
3890
		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3891
		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3892 3893 3894
			bio->bi_opf |= REQ_FUA;

		btrfsic_submit_bio(bio);
3895
		btrfs_advance_sb_log(device, i);
Y
Yan Zheng 已提交
3896 3897 3898 3899
	}
	return errors < i ? 0 : -1;
}

3900 3901 3902 3903
/*
 * Wait for write completion of superblocks done by write_dev_supers,
 * @max_mirrors same for write and wait phases.
 *
3904
 * Return number of errors when page is not found or not marked up to
3905 3906 3907 3908 3909 3910
 * date.
 */
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
	int i;
	int errors = 0;
3911
	bool primary_failed = false;
3912
	int ret;
3913 3914 3915 3916 3917 3918
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
3919 3920
		struct page *page;

3921 3922 3923 3924 3925 3926 3927 3928 3929
		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
		if (ret == -ENOENT) {
			break;
		} else if (ret < 0) {
			errors++;
			if (i == 0)
				primary_failed = true;
			continue;
		}
3930 3931 3932 3933
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

3934 3935 3936
		page = find_get_page(device->bdev->bd_inode->i_mapping,
				     bytenr >> PAGE_SHIFT);
		if (!page) {
3937
			errors++;
3938 3939
			if (i == 0)
				primary_failed = true;
3940 3941
			continue;
		}
3942 3943 3944
		/* Page is submitted locked and unlocked once the IO completes */
		wait_on_page_locked(page);
		if (PageError(page)) {
3945
			errors++;
3946 3947 3948
			if (i == 0)
				primary_failed = true;
		}
3949

3950 3951
		/* Drop our reference */
		put_page(page);
3952

3953 3954
		/* Drop the reference from the writing run */
		put_page(page);
3955 3956
	}

3957 3958 3959 3960 3961 3962 3963
	/* log error, force error return */
	if (primary_failed) {
		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
			  device->devid);
		return -1;
	}

3964 3965 3966
	return errors < i ? 0 : -1;
}

C
Chris Mason 已提交
3967 3968 3969 3970
/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
3971
static void btrfs_end_empty_barrier(struct bio *bio)
C
Chris Mason 已提交
3972
{
3973
	complete(bio->bi_private);
C
Chris Mason 已提交
3974 3975 3976
}

/*
3977 3978
 * Submit a flush request to the device if it supports it. Error handling is
 * done in the waiting counterpart.
C
Chris Mason 已提交
3979
 */
3980
static void write_dev_flush(struct btrfs_device *device)
C
Chris Mason 已提交
3981
{
3982
	struct request_queue *q = bdev_get_queue(device->bdev);
3983
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
3984

3985
	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3986
		return;
C
Chris Mason 已提交
3987

3988
	bio_reset(bio);
C
Chris Mason 已提交
3989
	bio->bi_end_io = btrfs_end_empty_barrier;
3990
	bio_set_dev(bio, device->bdev);
3991
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
C
Chris Mason 已提交
3992 3993 3994
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;

3995
	btrfsic_submit_bio(bio);
3996
	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3997
}
C
Chris Mason 已提交
3998

3999 4000 4001
/*
 * If the flush bio has been submitted by write_dev_flush, wait for it.
 */
4002
static blk_status_t wait_dev_flush(struct btrfs_device *device)
4003 4004
{
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
4005

4006
	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4007
		return BLK_STS_OK;
C
Chris Mason 已提交
4008

4009
	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4010
	wait_for_completion_io(&device->flush_wait);
C
Chris Mason 已提交
4011

4012
	return bio->bi_status;
C
Chris Mason 已提交
4013 4014
}

4015
static int check_barrier_error(struct btrfs_fs_info *fs_info)
4016
{
4017
	if (!btrfs_check_rw_degradable(fs_info, NULL))
4018
		return -EIO;
C
Chris Mason 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
4030
	int errors_wait = 0;
4031
	blk_status_t ret;
C
Chris Mason 已提交
4032

4033
	lockdep_assert_held(&info->fs_devices->device_list_mutex);
C
Chris Mason 已提交
4034 4035
	/* send down all the barriers */
	head = &info->fs_devices->devices;
4036
	list_for_each_entry(dev, head, dev_list) {
4037
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4038
			continue;
4039
		if (!dev->bdev)
C
Chris Mason 已提交
4040
			continue;
4041
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4042
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4043 4044
			continue;

4045
		write_dev_flush(dev);
4046
		dev->last_flush_error = BLK_STS_OK;
C
Chris Mason 已提交
4047 4048 4049
	}

	/* wait for all the barriers */
4050
	list_for_each_entry(dev, head, dev_list) {
4051
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4052
			continue;
C
Chris Mason 已提交
4053
		if (!dev->bdev) {
4054
			errors_wait++;
C
Chris Mason 已提交
4055 4056
			continue;
		}
4057
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4058
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
4059 4060
			continue;

4061
		ret = wait_dev_flush(dev);
4062 4063
		if (ret) {
			dev->last_flush_error = ret;
4064 4065
			btrfs_dev_stat_inc_and_print(dev,
					BTRFS_DEV_STAT_FLUSH_ERRS);
4066
			errors_wait++;
4067 4068 4069
		}
	}

4070
	if (errors_wait) {
4071 4072 4073 4074 4075
		/*
		 * At some point we need the status of all disks
		 * to arrive at the volume status. So error checking
		 * is being pushed to a separate loop.
		 */
4076
		return check_barrier_error(info);
C
Chris Mason 已提交
4077 4078 4079 4080
	}
	return 0;
}

4081 4082
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
4083 4084
	int raid_type;
	int min_tolerated = INT_MAX;
4085

4086 4087
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4088
		min_tolerated = min_t(int, min_tolerated,
4089 4090
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);
4091

4092 4093 4094
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
4095
		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4096
			continue;
4097
		min_tolerated = min_t(int, min_tolerated,
4098 4099 4100
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}
4101

4102
	if (min_tolerated == INT_MAX) {
4103
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4104 4105 4106 4107
		min_tolerated = 0;
	}

	return min_tolerated;
4108 4109
}

4110
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4111
{
4112
	struct list_head *head;
4113
	struct btrfs_device *dev;
4114
	struct btrfs_super_block *sb;
4115 4116 4117
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
4118 4119
	int max_errors;
	int total_errors = 0;
4120
	u64 flags;
4121

4122
	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4123 4124 4125 4126 4127 4128 4129 4130

	/*
	 * max_mirrors == 0 indicates we're from commit_transaction,
	 * not from fsync where the tree roots in fs_info have not
	 * been consistent on disk.
	 */
	if (max_mirrors == 0)
		backup_super_roots(fs_info);
4131

4132
	sb = fs_info->super_for_commit;
4133
	dev_item = &sb->dev_item;
4134

4135 4136 4137
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	head = &fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
C
Chris Mason 已提交
4138

4139
	if (do_barriers) {
4140
		ret = barrier_all_devices(fs_info);
4141 4142
		if (ret) {
			mutex_unlock(
4143 4144 4145
				&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, ret,
					      "errors while submitting device barriers.");
4146 4147 4148
			return ret;
		}
	}
C
Chris Mason 已提交
4149

4150
	list_for_each_entry(dev, head, dev_list) {
4151 4152 4153 4154
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
4155
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4156
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4157 4158
			continue;

Y
Yan Zheng 已提交
4159
		btrfs_set_stack_device_generation(dev_item, 0);
4160 4161
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
4162
		btrfs_set_stack_device_total_bytes(dev_item,
4163
						   dev->commit_total_bytes);
4164 4165
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
4166 4167 4168 4169
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4170 4171
		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
		       BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
4172

4173 4174 4175
		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

4176 4177 4178 4179 4180 4181 4182 4183
		ret = btrfs_validate_write_super(fs_info, sb);
		if (ret < 0) {
			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, -EUCLEAN,
				"unexpected superblock corruption detected");
			return -EUCLEAN;
		}

4184
		ret = write_dev_supers(dev, sb, max_mirrors);
4185 4186
		if (ret)
			total_errors++;
4187
	}
4188
	if (total_errors > max_errors) {
4189 4190 4191
		btrfs_err(fs_info, "%d errors while writing supers",
			  total_errors);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4192

4193
		/* FUA is masked off if unsupported and can't be the reason */
4194 4195 4196
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4197
		return -EIO;
4198
	}
4199

Y
Yan Zheng 已提交
4200
	total_errors = 0;
4201
	list_for_each_entry(dev, head, dev_list) {
4202 4203
		if (!dev->bdev)
			continue;
4204
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4205
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4206 4207
			continue;

4208
		ret = wait_dev_supers(dev, max_mirrors);
Y
Yan Zheng 已提交
4209 4210
		if (ret)
			total_errors++;
4211
	}
4212
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4213
	if (total_errors > max_errors) {
4214 4215 4216
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
4217
		return -EIO;
4218
	}
4219 4220 4221
	return 0;
}

4222 4223 4224
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
C
Chris Mason 已提交
4225
{
4226 4227
	bool drop_ref = false;

4228
	spin_lock(&fs_info->fs_roots_radix_lock);
C
Chris Mason 已提交
4229 4230
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
4231
	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4232
		drop_ref = true;
4233
	spin_unlock(&fs_info->fs_roots_radix_lock);
4234

L
Liu Bo 已提交
4235
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4236
		ASSERT(root->log_root == NULL);
L
Liu Bo 已提交
4237
		if (root->reloc_root) {
4238
			btrfs_put_root(root->reloc_root);
L
Liu Bo 已提交
4239 4240 4241
			root->reloc_root = NULL;
		}
	}
L
Liu Bo 已提交
4242

4243 4244
	if (drop_ref)
		btrfs_put_root(root);
C
Chris Mason 已提交
4245 4246
}

Y
Yan Zheng 已提交
4247
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4248
{
Y
Yan Zheng 已提交
4249 4250
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
4251 4252 4253
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
4254

Y
Yan Zheng 已提交
4255
	while (1) {
4256
		spin_lock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4257 4258 4259
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
4260
		if (!ret) {
4261
			spin_unlock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4262
			break;
4263
		}
4264
		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4265

Y
Yan Zheng 已提交
4266
		for (i = 0; i < ret; i++) {
4267 4268 4269 4270 4271 4272
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
4273
			gang[i] = btrfs_grab_root(gang[i]);
4274
		}
4275
		spin_unlock(&fs_info->fs_roots_radix_lock);
4276

4277 4278 4279
		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
Y
Yan Zheng 已提交
4280
			root_objectid = gang[i]->root_key.objectid;
4281 4282
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
4283
				break;
4284
			btrfs_put_root(gang[i]);
Y
Yan Zheng 已提交
4285 4286 4287
		}
		root_objectid++;
	}
4288 4289 4290 4291

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
4292
			btrfs_put_root(gang[i]);
4293 4294
	}
	return err;
Y
Yan Zheng 已提交
4295
}
4296

4297
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4298
{
4299
	struct btrfs_root *root = fs_info->tree_root;
Y
Yan Zheng 已提交
4300
	struct btrfs_trans_handle *trans;
4301

4302
	mutex_lock(&fs_info->cleaner_mutex);
4303
	btrfs_run_delayed_iputs(fs_info);
4304 4305
	mutex_unlock(&fs_info->cleaner_mutex);
	wake_up_process(fs_info->cleaner_kthread);
4306 4307

	/* wait until ongoing cleanup work done */
4308 4309
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
4310

4311
	trans = btrfs_join_transaction(root);
4312 4313
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4314
	return btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
4315 4316
}

4317
void __cold close_ctree(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4318 4319 4320
{
	int ret;

4321
	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4322 4323 4324 4325 4326 4327 4328
	/*
	 * We don't want the cleaner to start new transactions, add more delayed
	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
	 * because that frees the task_struct, and the transaction kthread might
	 * still try to wake up the cleaner.
	 */
	kthread_park(fs_info->cleaner_kthread);
Y
Yan Zheng 已提交
4329

4330
	/* wait for the qgroup rescan worker to stop */
4331
	btrfs_qgroup_wait_for_completion(fs_info, false);
4332

S
Stefan Behrens 已提交
4333 4334 4335 4336 4337
	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

4338
	/* pause restriper - we want to resume on mount */
4339
	btrfs_pause_balance(fs_info);
4340

4341 4342
	btrfs_dev_replace_suspend_for_unmount(fs_info);

4343
	btrfs_scrub_cancel(fs_info);
C
Chris Mason 已提交
4344 4345 4346 4347 4348 4349

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
4350
	btrfs_cleanup_defrag_inodes(fs_info);
C
Chris Mason 已提交
4351

4352
	cancel_work_sync(&fs_info->async_reclaim_work);
4353
	cancel_work_sync(&fs_info->async_data_reclaim_work);
4354
	cancel_work_sync(&fs_info->preempt_reclaim_work);
4355

4356 4357
	cancel_work_sync(&fs_info->reclaim_bgs_work);

4358 4359 4360
	/* Cancel or finish ongoing discard work */
	btrfs_discard_cleanup(fs_info);

4361
	if (!sb_rdonly(fs_info->sb)) {
4362
		/*
4363 4364
		 * The cleaner kthread is stopped, so do one final pass over
		 * unused block groups.
4365
		 */
4366
		btrfs_delete_unused_bgs(fs_info);
4367

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		/*
		 * There might be existing delayed inode workers still running
		 * and holding an empty delayed inode item. We must wait for
		 * them to complete first because they can create a transaction.
		 * This happens when someone calls btrfs_balance_delayed_items()
		 * and then a transaction commit runs the same delayed nodes
		 * before any delayed worker has done something with the nodes.
		 * We must wait for any worker here and not at transaction
		 * commit time since that could cause a deadlock.
		 * This is a very rare case.
		 */
		btrfs_flush_workqueue(fs_info->delayed_workers);

4381
		ret = btrfs_commit_super(fs_info);
L
liubo 已提交
4382
		if (ret)
4383
			btrfs_err(fs_info, "commit super ret %d", ret);
L
liubo 已提交
4384 4385
	}

4386 4387
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4388
		btrfs_error_commit_super(fs_info);
4389

A
Al Viro 已提交
4390 4391
	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);
4392

4393
	ASSERT(list_empty(&fs_info->delayed_iputs));
4394
	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4395

4396 4397 4398 4399 4400
	if (btrfs_check_quota_leak(fs_info)) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		btrfs_err(fs_info, "qgroup reserved space leaked");
	}

4401
	btrfs_free_qgroup_config(fs_info);
4402
	ASSERT(list_empty(&fs_info->delalloc_roots));
4403

4404
	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4405
		btrfs_info(fs_info, "at unmount delalloc count %lld",
4406
		       percpu_counter_sum(&fs_info->delalloc_bytes));
C
Chris Mason 已提交
4407
	}
4408

4409
	if (percpu_counter_sum(&fs_info->ordered_bytes))
J
Josef Bacik 已提交
4410
		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4411
			   percpu_counter_sum(&fs_info->ordered_bytes));
J
Josef Bacik 已提交
4412

4413
	btrfs_sysfs_remove_mounted(fs_info);
4414
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4415

4416 4417
	btrfs_put_block_group_cache(fs_info);

4418 4419 4420 4421 4422
	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4423 4424
	btrfs_stop_all_workers(fs_info);

4425 4426 4427
	/* We shouldn't have any transaction open at this point */
	ASSERT(list_empty(&fs_info->trans_list));

4428
	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4429
	free_root_pointers(fs_info, true);
4430
	btrfs_free_fs_roots(fs_info);
4431

4432 4433 4434 4435 4436 4437 4438 4439 4440
	/*
	 * We must free the block groups after dropping the fs_roots as we could
	 * have had an IO error and have left over tree log blocks that aren't
	 * cleaned up until the fs roots are freed.  This makes the block group
	 * accounting appear to be wrong because there's pending reserved bytes,
	 * so make sure we do the block group cleanup afterwards.
	 */
	btrfs_free_block_groups(fs_info);

4441
	iput(fs_info->btree_inode);
4442

4443
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4444
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4445
		btrfsic_unmount(fs_info->fs_devices);
4446 4447
#endif

4448
	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4449
	btrfs_close_devices(fs_info->fs_devices);
4450 4451
}

4452 4453
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
4454
{
4455
	int ret;
4456
	struct inode *btree_inode = buf->pages[0]->mapping->host;
4457

4458
	ret = extent_buffer_uptodate(buf);
4459 4460 4461 4462
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4463 4464 4465
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
4466
	return !ret;
4467 4468 4469 4470
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
4471
	struct btrfs_fs_info *fs_info = buf->fs_info;
4472
	u64 transid = btrfs_header_generation(buf);
4473
	int was_dirty;
4474

4475 4476 4477
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
4478
	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4479 4480
	 * outside of the sanity tests.
	 */
4481
	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4482 4483
		return;
#endif
4484
	btrfs_assert_tree_locked(buf);
4485
	if (transid != fs_info->generation)
J
Jeff Mahoney 已提交
4486
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4487
			buf->start, transid, fs_info->generation);
4488
	was_dirty = set_extent_buffer_dirty(buf);
4489
	if (!was_dirty)
4490 4491 4492
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 buf->len,
					 fs_info->dirty_metadata_batch);
4493
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4494 4495 4496 4497 4498 4499
	/*
	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
	 * but item data not updated.
	 * So here we should only check item pointers, not item data.
	 */
	if (btrfs_header_level(buf) == 0 &&
4500
	    btrfs_check_leaf_relaxed(buf)) {
4501
		btrfs_print_leaf(buf);
4502 4503 4504
		ASSERT(0);
	}
#endif
4505 4506
}

4507
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4508
					int flush_delayed)
4509 4510 4511 4512 4513
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
4514
	int ret;
4515 4516 4517 4518

	if (current->flags & PF_MEMALLOC)
		return;

4519
	if (flush_delayed)
4520
		btrfs_balance_delayed_items(fs_info);
4521

4522 4523 4524
	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH,
				     fs_info->dirty_metadata_batch);
4525
	if (ret > 0) {
4526
		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4527 4528 4529
	}
}

4530
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4531
{
4532
	__btrfs_btree_balance_dirty(fs_info, 1);
4533
}
4534

4535
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4536
{
4537
	__btrfs_btree_balance_dirty(fs_info, 0);
C
Chris Mason 已提交
4538
}
4539

4540 4541
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
		      struct btrfs_key *first_key)
4542
{
4543
	return btree_read_extent_buffer_pages(buf, parent_transid,
4544
					      level, first_key);
4545
}
4546

4547
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4548
{
4549 4550 4551
	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(fs_info);

4552
	mutex_lock(&fs_info->cleaner_mutex);
4553
	btrfs_run_delayed_iputs(fs_info);
4554
	mutex_unlock(&fs_info->cleaner_mutex);
L
liubo 已提交
4555

4556 4557
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
L
liubo 已提交
4558 4559
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *gang[8];
	u64 root_objectid = 0;
	int ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang))) != 0) {
		int i;

		for (i = 0; i < ret; i++)
			gang[i] = btrfs_grab_root(gang[i]);
		spin_unlock(&fs_info->fs_roots_radix_lock);

		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
			root_objectid = gang[i]->root_key.objectid;
			btrfs_free_log(NULL, gang[i]);
			btrfs_put_root(gang[i]);
		}
		root_objectid++;
		spin_lock(&fs_info->fs_roots_radix_lock);
	}
	spin_unlock(&fs_info->fs_roots_radix_lock);
	btrfs_free_log_root_tree(NULL, fs_info);
}

4590
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
L
liubo 已提交
4591 4592 4593
{
	struct btrfs_ordered_extent *ordered;

4594
	spin_lock(&root->ordered_extent_lock);
4595 4596 4597 4598
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
4599
	list_for_each_entry(ordered, &root->ordered_extents,
4600 4601
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
4617 4618
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
4619

4620
		spin_unlock(&fs_info->ordered_root_lock);
4621 4622
		btrfs_destroy_ordered_extents(root);

4623 4624
		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
4625 4626
	}
	spin_unlock(&fs_info->ordered_root_lock);
4627 4628 4629 4630 4631 4632 4633 4634

	/*
	 * We need this here because if we've been flipped read-only we won't
	 * get sync() from the umount, so we need to make sure any ordered
	 * extents that haven't had their dirty pages IO start writeout yet
	 * actually get run and error out properly.
	 */
	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
L
liubo 已提交
4635 4636
}

4637
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4638
				      struct btrfs_fs_info *fs_info)
L
liubo 已提交
4639 4640 4641 4642 4643 4644 4645 4646 4647
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
4648
	if (atomic_read(&delayed_refs->num_entries) == 0) {
4649
		spin_unlock(&delayed_refs->lock);
4650
		btrfs_debug(fs_info, "delayed_refs has NO entry");
L
liubo 已提交
4651 4652 4653
		return ret;
	}

4654
	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4655
		struct btrfs_delayed_ref_head *head;
4656
		struct rb_node *n;
4657
		bool pin_bytes = false;
L
liubo 已提交
4658

4659 4660
		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
4661
		if (btrfs_delayed_ref_lock(delayed_refs, head))
4662
			continue;
4663

4664
		spin_lock(&head->lock);
4665
		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4666 4667
			ref = rb_entry(n, struct btrfs_delayed_ref_node,
				       ref_node);
4668
			ref->in_tree = 0;
4669
			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4670
			RB_CLEAR_NODE(&ref->ref_node);
4671 4672
			if (!list_empty(&ref->add_list))
				list_del(&ref->add_list);
4673 4674
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
4675
		}
4676 4677 4678
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
4679
		btrfs_delete_ref_head(delayed_refs, head);
4680 4681 4682
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);
L
liubo 已提交
4683

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
		if (pin_bytes) {
			struct btrfs_block_group *cache;

			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
			BUG_ON(!cache);

			spin_lock(&cache->space_info->lock);
			spin_lock(&cache->lock);
			cache->pinned += head->num_bytes;
			btrfs_space_info_update_bytes_pinned(fs_info,
				cache->space_info, head->num_bytes);
			cache->reserved -= head->num_bytes;
			cache->space_info->bytes_reserved -= head->num_bytes;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);
			percpu_counter_add_batch(
				&cache->space_info->total_bytes_pinned,
				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);

			btrfs_put_block_group(cache);

			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
				head->bytenr + head->num_bytes - 1);
		}
4708
		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4709
		btrfs_put_delayed_ref_head(head);
L
liubo 已提交
4710 4711 4712
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}
4713
	btrfs_qgroup_destroy_extent_records(trans);
L
liubo 已提交
4714 4715 4716 4717 4718 4719

	spin_unlock(&delayed_refs->lock);

	return ret;
}

4720
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
L
liubo 已提交
4721 4722 4723 4724 4725 4726
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

4727 4728
	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);
L
liubo 已提交
4729 4730

	while (!list_empty(&splice)) {
4731
		struct inode *inode = NULL;
4732 4733
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);
4734
		__btrfs_del_delalloc_inode(root, btrfs_inode);
4735
		spin_unlock(&root->delalloc_lock);
L
liubo 已提交
4736

4737 4738 4739 4740 4741 4742 4743 4744 4745
		/*
		 * Make sure we get a live inode and that it'll not disappear
		 * meanwhile.
		 */
		inode = igrab(&btrfs_inode->vfs_inode);
		if (inode) {
			invalidate_inode_pages2(inode->i_mapping);
			iput(inode);
		}
4746
		spin_lock(&root->delalloc_lock);
L
liubo 已提交
4747
	}
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
4763
		root = btrfs_grab_root(root);
4764 4765 4766 4767
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
4768
		btrfs_put_root(root);
4769 4770 4771 4772

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
L
liubo 已提交
4773 4774
}

4775
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4786
					    mark, NULL);
L
liubo 已提交
4787 4788 4789
		if (ret)
			break;

4790
		clear_extent_bits(dirty_pages, start, end, mark);
L
liubo 已提交
4791
		while (start <= end) {
4792 4793
			eb = find_extent_buffer(fs_info, start);
			start += fs_info->nodesize;
4794
			if (!eb)
L
liubo 已提交
4795
				continue;
4796
			wait_on_extent_buffer_writeback(eb);
L
liubo 已提交
4797

4798 4799 4800 4801
			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
L
liubo 已提交
4802 4803 4804 4805 4806 4807
		}
	}

	return ret;
}

4808
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4809
				       struct extent_io_tree *unpin)
L
liubo 已提交
4810 4811 4812 4813 4814 4815
{
	u64 start;
	u64 end;
	int ret;

	while (1) {
4816 4817
		struct extent_state *cached_state = NULL;

4818 4819 4820 4821 4822 4823 4824
		/*
		 * The btrfs_finish_extent_commit() may get the same range as
		 * ours between find_first_extent_bit and clear_extent_dirty.
		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
		 * the same extent range.
		 */
		mutex_lock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4825
		ret = find_first_extent_bit(unpin, 0, &start, &end,
4826
					    EXTENT_DIRTY, &cached_state);
4827 4828
		if (ret) {
			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4829
			break;
4830
		}
L
liubo 已提交
4831

4832 4833
		clear_extent_dirty(unpin, start, end, &cached_state);
		free_extent_state(cached_state);
4834
		btrfs_error_unpin_extent_range(fs_info, start, end);
4835
		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4836 4837 4838 4839 4840 4841
		cond_resched();
	}

	return 0;
}

4842
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
4853
	ASSERT(cache->io_ctl.pages == NULL);
4854 4855 4856 4857
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4858
			     struct btrfs_fs_info *fs_info)
4859
{
4860
	struct btrfs_block_group *cache;
4861 4862 4863 4864

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
4865
					 struct btrfs_block_group,
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
					 dirty_list);

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
J
Josef Bacik 已提交
4882
		btrfs_delayed_refs_rsv_release(fs_info, 1);
4883 4884 4885 4886
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

4887 4888 4889 4890
	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
4891 4892
	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
4893
					 struct btrfs_block_group,
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
					 io_list);

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

4904
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4905
				   struct btrfs_fs_info *fs_info)
4906
{
4907 4908
	struct btrfs_device *dev, *tmp;

4909
	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4910 4911 4912
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

4913 4914 4915 4916 4917
	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&dev->post_commit_list);
	}

4918
	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4919

4920
	cur_trans->state = TRANS_STATE_COMMIT_START;
4921
	wake_up(&fs_info->transaction_blocked_wait);
4922

4923
	cur_trans->state = TRANS_STATE_UNBLOCKED;
4924
	wake_up(&fs_info->transaction_wait);
4925

4926
	btrfs_destroy_delayed_inodes(fs_info);
4927

4928
	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4929
				     EXTENT_DIRTY);
4930
	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4931

4932 4933
	btrfs_free_redirty_list(cur_trans);

4934 4935
	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);
4936 4937
}

4938
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4939 4940 4941
{
	struct btrfs_transaction *t;

4942
	mutex_lock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
4943

4944 4945 4946
	spin_lock(&fs_info->trans_lock);
	while (!list_empty(&fs_info->trans_list)) {
		t = list_first_entry(&fs_info->trans_list,
4947 4948
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
4949
			refcount_inc(&t->use_count);
4950
			spin_unlock(&fs_info->trans_lock);
4951
			btrfs_wait_for_commit(fs_info, t->transid);
4952
			btrfs_put_transaction(t);
4953
			spin_lock(&fs_info->trans_lock);
4954 4955
			continue;
		}
4956
		if (t == fs_info->running_transaction) {
4957
			t->state = TRANS_STATE_COMMIT_DOING;
4958
			spin_unlock(&fs_info->trans_lock);
4959 4960 4961 4962 4963 4964 4965
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
4966
			spin_unlock(&fs_info->trans_lock);
4967
		}
4968
		btrfs_cleanup_one_transaction(t, fs_info);
4969

4970 4971 4972
		spin_lock(&fs_info->trans_lock);
		if (t == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
L
liubo 已提交
4973
		list_del_init(&t->list);
4974
		spin_unlock(&fs_info->trans_lock);
L
liubo 已提交
4975

4976
		btrfs_put_transaction(t);
4977
		trace_btrfs_transaction_commit(fs_info->tree_root);
4978
		spin_lock(&fs_info->trans_lock);
4979
	}
4980 4981
	spin_unlock(&fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(fs_info);
4982 4983
	btrfs_destroy_delayed_inodes(fs_info);
	btrfs_assert_delayed_root_empty(fs_info);
4984
	btrfs_destroy_all_delalloc_inodes(fs_info);
4985
	btrfs_drop_all_logs(fs_info);
4986
	mutex_unlock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
4987 4988 4989

	return 0;
}
4990

4991
int btrfs_init_root_free_objectid(struct btrfs_root *root)
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
{
	struct btrfs_path *path;
	int ret;
	struct extent_buffer *l;
	struct btrfs_key search_key;
	struct btrfs_key found_key;
	int slot;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
	search_key.type = -1;
	search_key.offset = (u64)-1;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto error;
	BUG_ON(ret == 0); /* Corruption */
	if (path->slots[0] > 0) {
		slot = path->slots[0] - 1;
		l = path->nodes[0];
		btrfs_item_key_to_cpu(l, &found_key, slot);
5015 5016
		root->free_objectid = max_t(u64, found_key.objectid + 1,
					    BTRFS_FIRST_FREE_OBJECTID);
5017
	} else {
5018
		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5019 5020 5021 5022 5023 5024 5025
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

5026
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5027 5028 5029 5030
{
	int ret;
	mutex_lock(&root->objectid_mutex);

5031
	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5032 5033 5034 5035 5036 5037 5038
		btrfs_warn(root->fs_info,
			   "the objectid of root %llu reaches its highest value",
			   root->root_key.objectid);
		ret = -ENOSPC;
		goto out;
	}

5039
	*objectid = root->free_objectid++;
5040 5041 5042 5043 5044
	ret = 0;
out:
	mutex_unlock(&root->objectid_mutex);
	return ret;
}