disk-io.c 132.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

C
Chris Mason 已提交
6
#include <linux/fs.h>
7
#include <linux/blkdev.h>
8
#include <linux/radix-tree.h>
C
Chris Mason 已提交
9
#include <linux/writeback.h>
10
#include <linux/workqueue.h>
11
#include <linux/kthread.h>
12
#include <linux/slab.h>
13
#include <linux/migrate.h>
14
#include <linux/ratelimit.h>
15
#include <linux/uuid.h>
S
Stefan Behrens 已提交
16
#include <linux/semaphore.h>
17
#include <linux/error-injection.h>
18
#include <linux/crc32c.h>
19
#include <linux/sched/mm.h>
20
#include <asm/unaligned.h>
21
#include <crypto/hash.h>
22 23
#include "ctree.h"
#include "disk-io.h"
24
#include "transaction.h"
25
#include "btrfs_inode.h"
26
#include "volumes.h"
27
#include "print-tree.h"
28
#include "locking.h"
29
#include "tree-log.h"
30
#include "free-space-cache.h"
31
#include "free-space-tree.h"
32
#include "check-integrity.h"
33
#include "rcu-string.h"
34
#include "dev-replace.h"
D
David Woodhouse 已提交
35
#include "raid56.h"
36
#include "sysfs.h"
J
Josef Bacik 已提交
37
#include "qgroup.h"
38
#include "compression.h"
39
#include "tree-checker.h"
J
Josef Bacik 已提交
40
#include "ref-verify.h"
41
#include "block-group.h"
42
#include "discard.h"
43
#include "space-info.h"
N
Naohiro Aota 已提交
44
#include "zoned.h"
45

46 47 48 49
#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
				 BTRFS_HEADER_FLAG_RELOC |\
				 BTRFS_SUPER_FLAG_ERROR |\
				 BTRFS_SUPER_FLAG_SEEDING |\
50 51
				 BTRFS_SUPER_FLAG_METADUMP |\
				 BTRFS_SUPER_FLAG_METADUMP_V2)
52

53
static void end_workqueue_fn(struct btrfs_work *work);
54
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
L
liubo 已提交
55
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56
				      struct btrfs_fs_info *fs_info);
57
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
59 60
					struct extent_io_tree *dirty_pages,
					int mark);
61
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
L
liubo 已提交
62
				       struct extent_io_tree *pinned_extents);
63 64
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65

C
Chris Mason 已提交
66
/*
67 68
 * btrfs_end_io_wq structs are used to do processing in task context when an IO
 * is complete.  This is used during reads to verify checksums, and it is used
C
Chris Mason 已提交
69 70
 * by writes to insert metadata for new file extents after IO is complete.
 */
71
struct btrfs_end_io_wq {
72 73 74 75
	struct bio *bio;
	bio_end_io_t *end_io;
	void *private;
	struct btrfs_fs_info *info;
76
	blk_status_t status;
77
	enum btrfs_wq_endio_type metadata;
78
	struct btrfs_work work;
79
};
80

81 82 83 84 85 86 87
static struct kmem_cache *btrfs_end_io_wq_cache;

int __init btrfs_end_io_wq_init(void)
{
	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
					sizeof(struct btrfs_end_io_wq),
					0,
88
					SLAB_MEM_SPREAD,
89 90 91 92 93 94
					NULL);
	if (!btrfs_end_io_wq_cache)
		return -ENOMEM;
	return 0;
}

95
void __cold btrfs_end_io_wq_exit(void)
96
{
97
	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 99
}

100 101 102 103 104 105
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
	if (fs_info->csum_shash)
		crypto_free_shash(fs_info->csum_shash);
}

C
Chris Mason 已提交
106 107 108 109 110
/*
 * async submit bios are used to offload expensive checksumming
 * onto the worker threads.  They checksum file and metadata bios
 * just before they are sent down the IO stack.
 */
111
struct async_submit_bio {
112
	struct inode *inode;
113
	struct bio *bio;
114
	extent_submit_bio_start_t *submit_bio_start;
115
	int mirror_num;
116 117 118 119 120
	/*
	 * bio_offset is optional, can be used if the pages in the bio
	 * can't tell us where in the file the bio should go
	 */
	u64 bio_offset;
121
	struct btrfs_work work;
122
	blk_status_t status;
123 124
};

125 126 127 128 129 130 131 132
/*
 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 * the level the eb occupies in the tree.
 *
 * Different roots are used for different purposes and may nest inside each
 * other and they require separate keysets.  As lockdep keys should be
 * static, assign keysets according to the purpose of the root as indicated
133 134
 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 * roots have separate keysets.
135
 *
136 137 138
 * Lock-nesting across peer nodes is always done with the immediate parent
 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 * subclass to avoid triggering lockdep warning in such cases.
139
 *
140 141 142
 * The key is set by the readpage_end_io_hook after the buffer has passed
 * csum validation but before the pages are unlocked.  It is also set by
 * btrfs_init_new_buffer on freshly allocated blocks.
143
 *
144 145 146
 * We also add a check to make sure the highest level of the tree is the
 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 * needs update as well.
147 148 149 150 151
 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
#  error
# endif
152

153 154 155 156 157 158 159 160 161 162 163 164 165
#define DEFINE_LEVEL(stem, level)					\
	.names[level] = "btrfs-" stem "-0" #level,

#define DEFINE_NAME(stem)						\
	DEFINE_LEVEL(stem, 0)						\
	DEFINE_LEVEL(stem, 1)						\
	DEFINE_LEVEL(stem, 2)						\
	DEFINE_LEVEL(stem, 3)						\
	DEFINE_LEVEL(stem, 4)						\
	DEFINE_LEVEL(stem, 5)						\
	DEFINE_LEVEL(stem, 6)						\
	DEFINE_LEVEL(stem, 7)

166 167
static struct btrfs_lockdep_keyset {
	u64			id;		/* root objectid */
168
	/* Longest entry: btrfs-free-space-00 */
169 170
	char			names[BTRFS_MAX_LEVEL][20];
	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
171
} btrfs_lockdep_keysets[] = {
172 173 174 175 176 177 178 179 180 181 182 183
	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
	{ .id = 0,				DEFINE_NAME("tree")	},
184
};
185

186 187
#undef DEFINE_LEVEL
#undef DEFINE_NAME
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
				    int level)
{
	struct btrfs_lockdep_keyset *ks;

	BUG_ON(level >= ARRAY_SIZE(ks->keys));

	/* find the matching keyset, id 0 is the default entry */
	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
		if (ks->id == objectid)
			break;

	lockdep_set_class_and_name(&eb->lock,
				   &ks->keys[level], ks->names[level]);
}

205 206
#endif

C
Chris Mason 已提交
207
/*
208
 * Compute the csum of a btree block and store the result to provided buffer.
C
Chris Mason 已提交
209
 */
210
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
211
{
212
	struct btrfs_fs_info *fs_info = buf->fs_info;
213
	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
214
	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
215
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
216
	char *kaddr;
217
	int i;
218 219 220

	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
221
	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
222
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
223
			    first_page_part - BTRFS_CSUM_SIZE);
224

225 226 227
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(buf->pages[i]);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
228
	}
229
	memset(result, 0, BTRFS_CSUM_SIZE);
230
	crypto_shash_final(shash, result);
231 232
}

C
Chris Mason 已提交
233 234 235 236 237 238
/*
 * we can't consider a given block up to date unless the transid of the
 * block matches the transid in the parent node's pointer.  This is how we
 * detect blocks that either didn't get written at all or got written
 * in the wrong place.
 */
239
static int verify_parent_transid(struct extent_io_tree *io_tree,
240 241
				 struct extent_buffer *eb, u64 parent_transid,
				 int atomic)
242
{
243
	struct extent_state *cached_state = NULL;
244
	int ret;
245
	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
246 247 248 249

	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
		return 0;

250 251 252
	if (atomic)
		return -EAGAIN;

253
	if (need_lock)
254 255
		btrfs_tree_read_lock(eb);

256
	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257
			 &cached_state);
258
	if (extent_buffer_uptodate(eb) &&
259 260 261 262
	    btrfs_header_generation(eb) == parent_transid) {
		ret = 0;
		goto out;
	}
263 264 265
	btrfs_err_rl(eb->fs_info,
		"parent transid verify failed on %llu wanted %llu found %llu",
			eb->start,
266
			parent_transid, btrfs_header_generation(eb));
267
	ret = 1;
268 269 270 271

	/*
	 * Things reading via commit roots that don't have normal protection,
	 * like send, can have a really old block in cache that may point at a
272
	 * block that has been freed and re-allocated.  So don't clear uptodate
273 274 275 276 277 278
	 * if we find an eb that is under IO (dirty/writeback) because we could
	 * end up reading in the stale data and then writing it back out and
	 * making everybody very sad.
	 */
	if (!extent_buffer_under_io(eb))
		clear_extent_buffer_uptodate(eb);
C
Chris Mason 已提交
279
out:
280
	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281
			     &cached_state);
282
	if (need_lock)
283
		btrfs_tree_read_unlock(eb);
284 285 286
	return ret;
}

287 288 289 290
static bool btrfs_supported_super_csum(u16 csum_type)
{
	switch (csum_type) {
	case BTRFS_CSUM_TYPE_CRC32:
291
	case BTRFS_CSUM_TYPE_XXHASH:
292
	case BTRFS_CSUM_TYPE_SHA256:
293
	case BTRFS_CSUM_TYPE_BLAKE2:
294 295 296 297 298 299
		return true;
	default:
		return false;
	}
}

D
David Sterba 已提交
300 301 302 303
/*
 * Return 0 if the superblock checksum type matches the checksum value of that
 * algorithm. Pass the raw disk superblock data.
 */
304 305
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
				  char *raw_disk_sb)
D
David Sterba 已提交
306 307 308
{
	struct btrfs_super_block *disk_sb =
		(struct btrfs_super_block *)raw_disk_sb;
309
	char result[BTRFS_CSUM_SIZE];
310 311 312
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);

	shash->tfm = fs_info->csum_shash;
D
David Sterba 已提交
313

314 315 316 317 318
	/*
	 * The super_block structure does not span the whole
	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
	 * filled with zeros and is included in the checksum.
	 */
319 320
	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
D
David Sterba 已提交
321

322
	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
323
		return 1;
D
David Sterba 已提交
324

325
	return 0;
D
David Sterba 已提交
326 327
}

328
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329
			   struct btrfs_key *first_key, u64 parent_transid)
330
{
331
	struct btrfs_fs_info *fs_info = eb->fs_info;
332 333 334 335 336 337
	int found_level;
	struct btrfs_key found_key;
	int ret;

	found_level = btrfs_header_level(eb);
	if (found_level != level) {
338 339
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree level check failed\n");
340 341 342 343 344 345 346 347 348
		btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
			  eb->start, level, found_level);
		return -EIO;
	}

	if (!first_key)
		return 0;

349 350 351 352 353 354 355 356
	/*
	 * For live tree block (new tree blocks in current transaction),
	 * we need proper lock context to avoid race, which is impossible here.
	 * So we only checks tree blocks which is read from disk, whose
	 * generation <= fs_info->last_trans_committed.
	 */
	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
		return 0;
357 358 359 360 361 362 363 364 365 366

	/* We have @first_key, so this @eb must have at least one item */
	if (btrfs_header_nritems(eb) == 0) {
		btrfs_err(fs_info,
		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
			  eb->start);
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		return -EUCLEAN;
	}

367 368 369 370 371 372 373
	if (found_level)
		btrfs_node_key_to_cpu(eb, &found_key, 0);
	else
		btrfs_item_key_to_cpu(eb, &found_key, 0);
	ret = btrfs_comp_cpu_keys(first_key, &found_key);

	if (ret) {
374 375
		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
		     KERN_ERR "BTRFS: tree first key check failed\n");
376
		btrfs_err(fs_info,
377 378 379 380 381
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
			  eb->start, parent_transid, first_key->objectid,
			  first_key->type, first_key->offset,
			  found_key.objectid, found_key.type,
			  found_key.offset);
382 383 384 385
	}
	return ret;
}

C
Chris Mason 已提交
386 387 388
/*
 * helper to read a given tree block, doing retries as required when
 * the checksums don't match and we have alternate mirrors to try.
389 390 391 392
 *
 * @parent_transid:	expected transid, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key of first slot, skip check if NULL
C
Chris Mason 已提交
393
 */
394
static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 396
					  u64 parent_transid, int level,
					  struct btrfs_key *first_key)
397
{
398
	struct btrfs_fs_info *fs_info = eb->fs_info;
399
	struct extent_io_tree *io_tree;
400
	int failed = 0;
401 402 403
	int ret;
	int num_copies = 0;
	int mirror_num = 0;
404
	int failed_mirror = 0;
405

406
	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407
	while (1) {
408
		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409
		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410
		if (!ret) {
411
			if (verify_parent_transid(io_tree, eb,
412
						   parent_transid, 0))
413
				ret = -EIO;
414
			else if (btrfs_verify_level_key(eb, level,
415
						first_key, parent_transid))
416 417 418
				ret = -EUCLEAN;
			else
				break;
419
		}
C
Chris Mason 已提交
420

421
		num_copies = btrfs_num_copies(fs_info,
422
					      eb->start, eb->len);
C
Chris Mason 已提交
423
		if (num_copies == 1)
424
			break;
C
Chris Mason 已提交
425

426 427 428 429 430
		if (!failed_mirror) {
			failed = 1;
			failed_mirror = eb->read_mirror;
		}

431
		mirror_num++;
432 433 434
		if (mirror_num == failed_mirror)
			mirror_num++;

C
Chris Mason 已提交
435
		if (mirror_num > num_copies)
436
			break;
437
	}
438

439
	if (failed && !ret && failed_mirror)
440
		btrfs_repair_eb_io_failure(eb, failed_mirror);
441 442

	return ret;
443
}
444

C
Chris Mason 已提交
445
/*
446 447 448
 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 * we only fill in the checksum field in the first page of a multi-page block.
 * For subpage extent buffers we need bvec to also read the offset in the page.
C
Chris Mason 已提交
449
 */
450
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
451
{
452
	struct page *page = bvec->bv_page;
M
Miao Xie 已提交
453
	u64 start = page_offset(page);
454
	u64 found_start;
455
	u8 result[BTRFS_CSUM_SIZE];
456
	struct extent_buffer *eb;
457
	int ret;
458

J
Josef Bacik 已提交
459 460 461
	eb = (struct extent_buffer *)page->private;
	if (page != eb->pages[0])
		return 0;
462

463
	found_start = btrfs_header_bytenr(eb);
464 465 466 467 468 469 470 471 472
	/*
	 * Please do not consolidate these warnings into a single if.
	 * It is useful to know what went wrong.
	 */
	if (WARN_ON(found_start != start))
		return -EUCLEAN;
	if (WARN_ON(!PageUptodate(page)))
		return -EUCLEAN;

473
	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 475
				    offsetof(struct btrfs_header, fsid),
				    BTRFS_FSID_SIZE) == 0);
476

477
	csum_tree_block(eb, result);
478

479 480 481 482 483 484
	if (btrfs_header_level(eb))
		ret = btrfs_check_node(eb);
	else
		ret = btrfs_check_leaf_full(eb);

	if (ret < 0) {
485
		btrfs_print_tree(eb, 0);
486 487 488
		btrfs_err(fs_info,
		"block=%llu write time tree block corruption detected",
			  eb->start);
489
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 491
		return ret;
	}
492
	write_extent_buffer(eb, result, 0, fs_info->csum_size);
493

494
	return 0;
495 496
}

497
static int check_tree_block_fsid(struct extent_buffer *eb)
Y
Yan Zheng 已提交
498
{
499
	struct btrfs_fs_info *fs_info = eb->fs_info;
500
	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501
	u8 fsid[BTRFS_FSID_SIZE];
502
	u8 *metadata_uuid;
Y
Yan Zheng 已提交
503

504 505
	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
			   BTRFS_FSID_SIZE);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	/*
	 * Checking the incompat flag is only valid for the current fs. For
	 * seed devices it's forbidden to have their uuid changed so reading
	 * ->fsid in this case is fine
	 */
	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
		metadata_uuid = fs_devices->metadata_uuid;
	else
		metadata_uuid = fs_devices->fsid;

	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
		return 0;

	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
			return 0;

	return 1;
Y
Yan Zheng 已提交
524 525
}

526 527
/* Do basic extent buffer checks at read time */
static int validate_extent_buffer(struct extent_buffer *eb)
528
{
529
	struct btrfs_fs_info *fs_info = eb->fs_info;
530
	u64 found_start;
531 532
	const u32 csum_size = fs_info->csum_size;
	u8 found_level;
533
	u8 result[BTRFS_CSUM_SIZE];
534
	int ret = 0;
535

536
	found_start = btrfs_header_bytenr(eb);
537
	if (found_start != eb->start) {
538 539
		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
			     eb->start, found_start);
540
		ret = -EIO;
541
		goto out;
542
	}
543
	if (check_tree_block_fsid(eb)) {
544 545
		btrfs_err_rl(fs_info, "bad fsid on block %llu",
			     eb->start);
546
		ret = -EIO;
547
		goto out;
548
	}
549
	found_level = btrfs_header_level(eb);
550
	if (found_level >= BTRFS_MAX_LEVEL) {
551 552
		btrfs_err(fs_info, "bad tree block level %d on %llu",
			  (int)btrfs_header_level(eb), eb->start);
553
		ret = -EIO;
554
		goto out;
555
	}
556

557
	csum_tree_block(eb, result);
558

559
	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
560
		u8 val[BTRFS_CSUM_SIZE] = { 0 };
561 562 563

		read_extent_buffer(eb, &val, 0, csum_size);
		btrfs_warn_rl(fs_info,
564
	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
565
			      fs_info->sb->s_id, eb->start,
566 567 568
			      CSUM_FMT_VALUE(csum_size, val),
			      CSUM_FMT_VALUE(csum_size, result),
			      btrfs_header_level(eb));
569
		ret = -EUCLEAN;
570
		goto out;
571 572
	}

573 574 575 576 577
	/*
	 * If this is a leaf block and it is corrupt, set the corrupt bit so
	 * that we don't try and read the other copies of this block, just
	 * return -EIO.
	 */
578
	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
579 580 581
		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
		ret = -EIO;
	}
582

583
	if (found_level > 0 && btrfs_check_node(eb))
L
Liu Bo 已提交
584 585
		ret = -EIO;

586 587
	if (!ret)
		set_extent_buffer_uptodate(eb);
588 589 590 591
	else
		btrfs_err(fs_info,
			  "block=%llu read time tree block corruption detected",
			  eb->start);
592 593 594 595
out:
	return ret;
}

596
int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
				   struct page *page, u64 start, u64 end,
				   int mirror)
{
	struct extent_buffer *eb;
	int ret = 0;
	int reads_done;

	ASSERT(page->private);
	eb = (struct extent_buffer *)page->private;

	/*
	 * The pending IO might have been the only thing that kept this buffer
	 * in memory.  Make sure we have a ref for all this other checks
	 */
	atomic_inc(&eb->refs);

	reads_done = atomic_dec_and_test(&eb->io_pages);
	if (!reads_done)
		goto err;

	eb->read_mirror = mirror;
	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
		ret = -EIO;
		goto err;
	}
	ret = validate_extent_buffer(eb);
623
err:
624 625
	if (reads_done &&
	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
626
		btree_readahead_hook(eb, ret);
A
Arne Jansen 已提交
627

D
David Woodhouse 已提交
628 629 630 631 632 633 634
	if (ret) {
		/*
		 * our io error hook is going to dec the io pages
		 * again, we have to make sure it has something
		 * to decrement
		 */
		atomic_inc(&eb->io_pages);
635
		clear_extent_buffer_uptodate(eb);
D
David Woodhouse 已提交
636
	}
637
	free_extent_buffer(eb);
638

639
	return ret;
640 641
}

642
static void end_workqueue_bio(struct bio *bio)
643
{
644
	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
645
	struct btrfs_fs_info *fs_info;
646
	struct btrfs_workqueue *wq;
647 648

	fs_info = end_io_wq->info;
649
	end_io_wq->status = bio->bi_status;
650

M
Mike Christie 已提交
651
	if (bio_op(bio) == REQ_OP_WRITE) {
652
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
653
			wq = fs_info->endio_meta_write_workers;
654
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
655
			wq = fs_info->endio_freespace_worker;
656
		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
657
			wq = fs_info->endio_raid56_workers;
658
		else
659
			wq = fs_info->endio_write_workers;
660
	} else {
661
		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
662
			wq = fs_info->endio_raid56_workers;
663
		else if (end_io_wq->metadata)
664
			wq = fs_info->endio_meta_workers;
665
		else
666
			wq = fs_info->endio_workers;
667
	}
668

669
	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
670
	btrfs_queue_work(wq, &end_io_wq->work);
671 672
}

673
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
674
			enum btrfs_wq_endio_type metadata)
675
{
676
	struct btrfs_end_io_wq *end_io_wq;
677

678
	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
679
	if (!end_io_wq)
680
		return BLK_STS_RESOURCE;
681 682 683

	end_io_wq->private = bio->bi_private;
	end_io_wq->end_io = bio->bi_end_io;
684
	end_io_wq->info = info;
685
	end_io_wq->status = 0;
686
	end_io_wq->bio = bio;
687
	end_io_wq->metadata = metadata;
688 689 690

	bio->bi_private = end_io_wq;
	bio->bi_end_io = end_workqueue_bio;
691 692 693
	return 0;
}

C
Chris Mason 已提交
694 695 696
static void run_one_async_start(struct btrfs_work *work)
{
	struct async_submit_bio *async;
697
	blk_status_t ret;
C
Chris Mason 已提交
698 699

	async = container_of(work, struct  async_submit_bio, work);
700
	ret = async->submit_bio_start(async->inode, async->bio, async->bio_offset);
701
	if (ret)
702
		async->status = ret;
C
Chris Mason 已提交
703 704
}

705 706 707 708 709 710 711 712
/*
 * In order to insert checksums into the metadata in large chunks, we wait
 * until bio submission time.   All the pages in the bio are checksummed and
 * sums are attached onto the ordered extent record.
 *
 * At IO completion time the csums attached on the ordered extent record are
 * inserted into the tree.
 */
C
Chris Mason 已提交
713
static void run_one_async_done(struct btrfs_work *work)
714 715
{
	struct async_submit_bio *async;
716 717
	struct inode *inode;
	blk_status_t ret;
718 719

	async = container_of(work, struct  async_submit_bio, work);
720
	inode = async->inode;
721

722
	/* If an error occurred we just want to clean up the bio and move on */
723 724
	if (async->status) {
		async->bio->bi_status = async->status;
725
		bio_endio(async->bio);
726 727 728
		return;
	}

729 730 731 732 733 734
	/*
	 * All of the bios that pass through here are from async helpers.
	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
	 * This changes nothing when cgroups aren't in use.
	 */
	async->bio->bi_opf |= REQ_CGROUP_PUNT;
735
	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
736 737 738 739
	if (ret) {
		async->bio->bi_status = ret;
		bio_endio(async->bio);
	}
C
Chris Mason 已提交
740 741 742 743 744 745 746
}

static void run_one_async_free(struct btrfs_work *work)
{
	struct async_submit_bio *async;

	async = container_of(work, struct  async_submit_bio, work);
747 748 749
	kfree(async);
}

750
blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
751
				 int mirror_num, unsigned long bio_flags,
752
				 u64 bio_offset,
753
				 extent_submit_bio_start_t *submit_bio_start)
754
{
755
	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
756 757 758 759
	struct async_submit_bio *async;

	async = kmalloc(sizeof(*async), GFP_NOFS);
	if (!async)
760
		return BLK_STS_RESOURCE;
761

762
	async->inode = inode;
763 764
	async->bio = bio;
	async->mirror_num = mirror_num;
C
Chris Mason 已提交
765 766
	async->submit_bio_start = submit_bio_start;

767 768
	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
			run_one_async_free);
C
Chris Mason 已提交
769

770
	async->bio_offset = bio_offset;
771

772
	async->status = 0;
773

774
	if (op_is_sync(bio->bi_opf))
775
		btrfs_set_work_high_priority(&async->work);
776

777
	btrfs_queue_work(fs_info->workers, &async->work);
778 779 780
	return 0;
}

781
static blk_status_t btree_csum_one_bio(struct bio *bio)
782
{
783
	struct bio_vec *bvec;
784
	struct btrfs_root *root;
785
	int ret = 0;
786
	struct bvec_iter_all iter_all;
787

788
	ASSERT(!bio_flagged(bio, BIO_CLONED));
789
	bio_for_each_segment_all(bvec, bio, iter_all) {
790
		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
791
		ret = csum_dirty_buffer(root->fs_info, bvec);
792 793
		if (ret)
			break;
794
	}
795

796
	return errno_to_blk_status(ret);
797 798
}

799 800
static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
					   u64 bio_offset)
801
{
802 803
	/*
	 * when we're called for a write, we're already in the async
804
	 * submission context.  Just jump into btrfs_map_bio
805
	 */
806
	return btree_csum_one_bio(bio);
C
Chris Mason 已提交
807
}
808

809 810
static int check_async_write(struct btrfs_fs_info *fs_info,
			     struct btrfs_inode *bi)
811
{
812 813
	if (atomic_read(&bi->sync_writers))
		return 0;
814
	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
815 816 817 818
		return 0;
	return 1;
}

819 820
blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
				       int mirror_num, unsigned long bio_flags)
821
{
822
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
823
	int async = check_async_write(fs_info, BTRFS_I(inode));
824
	blk_status_t ret;
825

M
Mike Christie 已提交
826
	if (bio_op(bio) != REQ_OP_WRITE) {
C
Chris Mason 已提交
827 828 829 830
		/*
		 * called for a read, do the setup so that checksum validation
		 * can happen in the async kernel threads
		 */
831 832
		ret = btrfs_bio_wq_end_io(fs_info, bio,
					  BTRFS_WQ_ENDIO_METADATA);
833
		if (ret)
834
			goto out_w_error;
835
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
836 837 838
	} else if (!async) {
		ret = btree_csum_one_bio(bio);
		if (ret)
839
			goto out_w_error;
840
		ret = btrfs_map_bio(fs_info, bio, mirror_num);
841 842 843 844 845
	} else {
		/*
		 * kthread helpers are used to submit writes so that
		 * checksumming can happen in parallel across all CPUs
		 */
846 847
		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
					  0, btree_submit_bio_start);
848
	}
849

850 851 852 853
	if (ret)
		goto out_w_error;
	return 0;

854
out_w_error:
855
	bio->bi_status = ret;
856
	bio_endio(bio);
857
	return ret;
858 859
}

J
Jan Beulich 已提交
860
#ifdef CONFIG_MIGRATION
861
static int btree_migratepage(struct address_space *mapping,
862 863
			struct page *newpage, struct page *page,
			enum migrate_mode mode)
864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
	/*
	 * we can't safely write a btree page from here,
	 * we haven't done the locking hook
	 */
	if (PageDirty(page))
		return -EAGAIN;
	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
	if (page_has_private(page) &&
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;
878
	return migrate_page(mapping, newpage, page, mode);
879
}
J
Jan Beulich 已提交
880
#endif
881

882 883 884 885

static int btree_writepages(struct address_space *mapping,
			    struct writeback_control *wbc)
{
886 887 888
	struct btrfs_fs_info *fs_info;
	int ret;

889
	if (wbc->sync_mode == WB_SYNC_NONE) {
890 891 892 893

		if (wbc->for_kupdate)
			return 0;

894
		fs_info = BTRFS_I(mapping->host)->root->fs_info;
895
		/* this is a bit racy, but that's ok */
896 897 898
		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
					     BTRFS_DIRTY_METADATA_THRESH,
					     fs_info->dirty_metadata_batch);
899
		if (ret < 0)
900 901
			return 0;
	}
902
	return btree_write_cache_pages(mapping, wbc);
903 904
}

905
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
906
{
907
	if (PageWriteback(page) || PageDirty(page))
C
Chris Mason 已提交
908
		return 0;
909

910
	return try_release_extent_buffer(page);
911 912
}

913 914
static void btree_invalidatepage(struct page *page, unsigned int offset,
				 unsigned int length)
915
{
916 917
	struct extent_io_tree *tree;
	tree = &BTRFS_I(page->mapping->host)->io_tree;
918 919
	extent_invalidatepage(tree, page, offset);
	btree_releasepage(page, GFP_NOFS);
920
	if (PagePrivate(page)) {
921 922 923
		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
			   "page private not zero on page %llu",
			   (unsigned long long)page_offset(page));
924
		detach_page_private(page);
925
	}
926 927
}

928 929
static int btree_set_page_dirty(struct page *page)
{
930
#ifdef DEBUG
931 932 933 934 935 936 937 938
	struct extent_buffer *eb;

	BUG_ON(!PagePrivate(page));
	eb = (struct extent_buffer *)page->private;
	BUG_ON(!eb);
	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
	BUG_ON(!atomic_read(&eb->refs));
	btrfs_assert_tree_locked(eb);
939
#endif
940 941 942
	return __set_page_dirty_nobuffers(page);
}

943
static const struct address_space_operations btree_aops = {
944
	.writepages	= btree_writepages,
945 946
	.releasepage	= btree_releasepage,
	.invalidatepage = btree_invalidatepage,
947
#ifdef CONFIG_MIGRATION
948
	.migratepage	= btree_migratepage,
949
#endif
950
	.set_page_dirty = btree_set_page_dirty,
951 952
};

953 954
struct extent_buffer *btrfs_find_create_tree_block(
						struct btrfs_fs_info *fs_info,
955 956
						u64 bytenr, u64 owner_root,
						int level)
957
{
958 959
	if (btrfs_is_testing(fs_info))
		return alloc_test_extent_buffer(fs_info, bytenr);
960
	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
961 962
}

963 964 965 966
/*
 * Read tree block at logical address @bytenr and do variant basic but critical
 * verification.
 *
967
 * @owner_root:		the objectid of the root owner for this block.
968 969 970 971
 * @parent_transid:	expected transid of this tree block, skip check if 0
 * @level:		expected level, mandatory check
 * @first_key:		expected key in slot 0, skip check if NULL
 */
972
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
973 974
				      u64 owner_root, u64 parent_transid,
				      int level, struct btrfs_key *first_key)
975 976 977 978
{
	struct extent_buffer *buf = NULL;
	int ret;

979
	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
980 981
	if (IS_ERR(buf))
		return buf;
982

983
	ret = btree_read_extent_buffer_pages(buf, parent_transid,
984
					     level, first_key);
985
	if (ret) {
986
		free_extent_buffer_stale(buf);
987
		return ERR_PTR(ret);
988
	}
989
	return buf;
990

991 992
}

993
void btrfs_clean_tree_block(struct extent_buffer *buf)
994
{
995
	struct btrfs_fs_info *fs_info = buf->fs_info;
996
	if (btrfs_header_generation(buf) ==
997
	    fs_info->running_transaction->transid) {
998
		btrfs_assert_tree_locked(buf);
999

1000
		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1001 1002 1003
			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
						 -buf->len,
						 fs_info->dirty_metadata_batch);
1004 1005
			clear_extent_buffer_dirty(buf);
		}
1006
	}
1007 1008
}

1009
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1010
			 u64 objectid)
1011
{
1012
	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1013
	root->fs_info = fs_info;
C
Chris Mason 已提交
1014
	root->node = NULL;
1015
	root->commit_root = NULL;
1016
	root->state = 0;
1017
	root->orphan_cleanup_state = 0;
1018

1019
	root->last_trans = 0;
1020
	root->highest_objectid = 0;
1021
	root->nr_delalloc_inodes = 0;
1022
	root->nr_ordered_extents = 0;
1023
	root->inode_tree = RB_ROOT;
1024
	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1025
	root->block_rsv = NULL;
1026 1027

	INIT_LIST_HEAD(&root->dirty_list);
1028
	INIT_LIST_HEAD(&root->root_list);
1029 1030
	INIT_LIST_HEAD(&root->delalloc_inodes);
	INIT_LIST_HEAD(&root->delalloc_root);
1031 1032
	INIT_LIST_HEAD(&root->ordered_extents);
	INIT_LIST_HEAD(&root->ordered_root);
1033
	INIT_LIST_HEAD(&root->reloc_dirty_list);
1034 1035
	INIT_LIST_HEAD(&root->logged_list[0]);
	INIT_LIST_HEAD(&root->logged_list[1]);
1036
	spin_lock_init(&root->inode_lock);
1037
	spin_lock_init(&root->delalloc_lock);
1038
	spin_lock_init(&root->ordered_extent_lock);
1039
	spin_lock_init(&root->accounting_lock);
1040 1041
	spin_lock_init(&root->log_extents_lock[0]);
	spin_lock_init(&root->log_extents_lock[1]);
1042
	spin_lock_init(&root->qgroup_meta_rsv_lock);
1043
	mutex_init(&root->objectid_mutex);
1044
	mutex_init(&root->log_mutex);
1045
	mutex_init(&root->ordered_extent_mutex);
1046
	mutex_init(&root->delalloc_mutex);
1047
	init_waitqueue_head(&root->qgroup_flush_wait);
Y
Yan Zheng 已提交
1048 1049 1050
	init_waitqueue_head(&root->log_writer_wait);
	init_waitqueue_head(&root->log_commit_wait[0]);
	init_waitqueue_head(&root->log_commit_wait[1]);
1051 1052
	INIT_LIST_HEAD(&root->log_ctxs[0]);
	INIT_LIST_HEAD(&root->log_ctxs[1]);
Y
Yan Zheng 已提交
1053 1054 1055
	atomic_set(&root->log_commit[0], 0);
	atomic_set(&root->log_commit[1], 0);
	atomic_set(&root->log_writers, 0);
M
Miao Xie 已提交
1056
	atomic_set(&root->log_batch, 0);
1057
	refcount_set(&root->refs, 1);
1058
	atomic_set(&root->snapshot_force_cow, 0);
1059
	atomic_set(&root->nr_swapfiles, 0);
Y
Yan Zheng 已提交
1060
	root->log_transid = 0;
1061
	root->log_transid_committed = -1;
1062
	root->last_log_commit = 0;
1063
	if (!dummy) {
1064 1065
		extent_io_tree_init(fs_info, &root->dirty_log_pages,
				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1066 1067 1068
		extent_io_tree_init(fs_info, &root->log_csum_range,
				    IO_TREE_LOG_CSUM_RANGE, NULL);
	}
C
Chris Mason 已提交
1069

1070 1071
	memset(&root->root_key, 0, sizeof(root->root_key));
	memset(&root->root_item, 0, sizeof(root->root_item));
1072
	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1073
	root->root_key.objectid = objectid;
1074
	root->anon_dev = 0;
1075

1076
	spin_lock_init(&root->root_item_lock);
1077
	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
J
Josef Bacik 已提交
1078 1079 1080 1081 1082 1083
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&root->leak_list);
	spin_lock(&fs_info->fs_roots_radix_lock);
	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
	spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
1084 1085
}

1086
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1087
					   u64 objectid, gfp_t flags)
A
Al Viro 已提交
1088
{
1089
	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
A
Al Viro 已提交
1090
	if (root)
1091
		__setup_root(root, fs_info, objectid);
A
Al Viro 已提交
1092 1093 1094
	return root;
}

1095 1096
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
1097
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1098 1099 1100
{
	struct btrfs_root *root;

1101 1102 1103
	if (!fs_info)
		return ERR_PTR(-EINVAL);

1104
	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1105 1106
	if (!root)
		return ERR_PTR(-ENOMEM);
1107

1108
	/* We don't use the stripesize in selftest, set it as sectorsize */
1109
	root->alloc_bytenr = 0;
1110 1111 1112 1113 1114

	return root;
}
#endif

1115 1116 1117
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
				     u64 objectid)
{
1118
	struct btrfs_fs_info *fs_info = trans->fs_info;
1119 1120 1121 1122
	struct extent_buffer *leaf;
	struct btrfs_root *tree_root = fs_info->tree_root;
	struct btrfs_root *root;
	struct btrfs_key key;
1123
	unsigned int nofs_flag;
1124 1125
	int ret = 0;

1126 1127 1128 1129 1130
	/*
	 * We're holding a transaction handle, so use a NOFS memory allocation
	 * context to avoid deadlock if reclaim happens.
	 */
	nofs_flag = memalloc_nofs_save();
1131
	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1132
	memalloc_nofs_restore(nofs_flag);
1133 1134 1135 1136 1137 1138 1139
	if (!root)
		return ERR_PTR(-ENOMEM);

	root->root_key.objectid = objectid;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = 0;

1140 1141
	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
				      BTRFS_NESTING_NORMAL);
1142 1143
	if (IS_ERR(leaf)) {
		ret = PTR_ERR(leaf);
1144
		leaf = NULL;
1145 1146 1147 1148 1149 1150 1151
		goto fail;
	}

	root->node = leaf;
	btrfs_mark_buffer_dirty(leaf);

	root->commit_root = btrfs_root_node(root);
1152
	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1153

1154 1155
	btrfs_set_root_flags(&root->root_item, 0);
	btrfs_set_root_limit(&root->root_item, 0);
1156 1157 1158 1159 1160 1161 1162
	btrfs_set_root_bytenr(&root->root_item, leaf->start);
	btrfs_set_root_generation(&root->root_item, trans->transid);
	btrfs_set_root_level(&root->root_item, 0);
	btrfs_set_root_refs(&root->root_item, 1);
	btrfs_set_root_used(&root->root_item, leaf->len);
	btrfs_set_root_last_snapshot(&root->root_item, 0);
	btrfs_set_root_dirid(&root->root_item, 0);
1163
	if (is_fstree(objectid))
1164 1165 1166
		generate_random_guid(root->root_item.uuid);
	else
		export_guid(root->root_item.uuid, &guid_null);
1167
	btrfs_set_root_drop_level(&root->root_item, 0);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
	if (ret)
		goto fail;

	btrfs_tree_unlock(leaf);

1178 1179
	return root;

1180
fail:
1181
	if (leaf)
1182
		btrfs_tree_unlock(leaf);
1183
	btrfs_put_root(root);
1184

1185
	return ERR_PTR(ret);
1186 1187
}

Y
Yan Zheng 已提交
1188 1189
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
					 struct btrfs_fs_info *fs_info)
1190 1191
{
	struct btrfs_root *root;
Y
Yan Zheng 已提交
1192
	struct extent_buffer *leaf;
1193

1194
	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1195
	if (!root)
Y
Yan Zheng 已提交
1196
		return ERR_PTR(-ENOMEM);
1197 1198 1199 1200

	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1201

Y
Yan Zheng 已提交
1202
	/*
1203
	 * DON'T set SHAREABLE bit for log trees.
1204
	 *
1205 1206 1207 1208 1209
	 * Log trees are not exposed to user space thus can't be snapshotted,
	 * and they go away before a real commit is actually done.
	 *
	 * They do store pointers to file data extents, and those reference
	 * counts still get updated (along with back refs to the log tree).
Y
Yan Zheng 已提交
1210
	 */
1211

1212
	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1213
			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
Y
Yan Zheng 已提交
1214
	if (IS_ERR(leaf)) {
1215
		btrfs_put_root(root);
Y
Yan Zheng 已提交
1216 1217
		return ERR_CAST(leaf);
	}
1218

Y
Yan Zheng 已提交
1219
	root->node = leaf;
1220 1221 1222

	btrfs_mark_buffer_dirty(root->node);
	btrfs_tree_unlock(root->node);
Y
Yan Zheng 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	return root;
}

int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *log_root;

	log_root = alloc_log_tree(trans, fs_info);
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);
	WARN_ON(fs_info->log_root_tree);
	fs_info->log_root_tree = log_root;
	return 0;
}

int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root)
{
1242
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan Zheng 已提交
1243 1244 1245
	struct btrfs_root *log_root;
	struct btrfs_inode_item *inode_item;

1246
	log_root = alloc_log_tree(trans, fs_info);
Y
Yan Zheng 已提交
1247 1248 1249 1250 1251 1252 1253
	if (IS_ERR(log_root))
		return PTR_ERR(log_root);

	log_root->last_trans = trans->transid;
	log_root->root_key.offset = root->root_key.objectid;

	inode_item = &log_root->root_item.inode;
1254 1255 1256
	btrfs_set_stack_inode_generation(inode_item, 1);
	btrfs_set_stack_inode_size(inode_item, 3);
	btrfs_set_stack_inode_nlink(inode_item, 1);
1257
	btrfs_set_stack_inode_nbytes(inode_item,
1258
				     fs_info->nodesize);
1259
	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
Y
Yan Zheng 已提交
1260

1261
	btrfs_set_root_node(&log_root->root_item, log_root->node);
Y
Yan Zheng 已提交
1262 1263 1264 1265

	WARN_ON(root->log_root);
	root->log_root = log_root;
	root->log_transid = 0;
1266
	root->log_transid_committed = -1;
1267
	root->last_log_commit = 0;
1268 1269 1270
	return 0;
}

1271 1272 1273
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
					      struct btrfs_path *path,
					      struct btrfs_key *key)
1274 1275 1276
{
	struct btrfs_root *root;
	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1277
	u64 generation;
1278
	int ret;
1279
	int level;
1280

1281
	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1282 1283
	if (!root)
		return ERR_PTR(-ENOMEM);
1284

1285 1286
	ret = btrfs_find_root(tree_root, key, path,
			      &root->root_item, &root->root_key);
1287
	if (ret) {
1288 1289
		if (ret > 0)
			ret = -ENOENT;
1290
		goto fail;
1291
	}
1292

1293
	generation = btrfs_root_generation(&root->root_item);
1294
	level = btrfs_root_level(&root->root_item);
1295 1296
	root->node = read_tree_block(fs_info,
				     btrfs_root_bytenr(&root->root_item),
1297
				     key->objectid, generation, level, NULL);
1298 1299
	if (IS_ERR(root->node)) {
		ret = PTR_ERR(root->node);
1300
		root->node = NULL;
1301
		goto fail;
1302 1303
	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
		ret = -EIO;
1304
		goto fail;
1305
	}
1306
	root->commit_root = btrfs_root_node(root);
1307
	return root;
1308
fail:
1309
	btrfs_put_root(root);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	return ERR_PTR(ret);
}

struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
					struct btrfs_key *key)
{
	struct btrfs_root *root;
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return ERR_PTR(-ENOMEM);
	root = read_tree_root_path(tree_root, path, key);
	btrfs_free_path(path);

	return root;
1326 1327
}

1328 1329 1330 1331 1332 1333
/*
 * Initialize subvolume root in-memory structure
 *
 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
 */
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1334 1335
{
	int ret;
1336
	unsigned int nofs_flag;
1337

1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * We might be called under a transaction (e.g. indirect backref
	 * resolution) which could deadlock if it triggers memory reclaim
	 */
	nofs_flag = memalloc_nofs_save();
	ret = btrfs_drew_lock_init(&root->snapshot_lock);
	memalloc_nofs_restore(nofs_flag);
	if (ret)
1346 1347
		goto fail;

1348 1349
	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1350
		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1351 1352 1353
		btrfs_check_and_init_root_item(&root->root_item);
	}

1354 1355 1356 1357 1358 1359
	/*
	 * Don't assign anonymous block device to roots that are not exposed to
	 * userspace, the id pool is limited to 1M
	 */
	if (is_fstree(root->root_key.objectid) &&
	    btrfs_root_refs(&root->root_item) > 0) {
1360 1361 1362 1363 1364 1365 1366
		if (!anon_dev) {
			ret = get_anon_bdev(&root->anon_dev);
			if (ret)
				goto fail;
		} else {
			root->anon_dev = anon_dev;
		}
1367
	}
1368 1369 1370 1371 1372 1373

	mutex_lock(&root->objectid_mutex);
	ret = btrfs_find_highest_objectid(root,
					&root->highest_objectid);
	if (ret) {
		mutex_unlock(&root->objectid_mutex);
L
Liu Bo 已提交
1374
		goto fail;
1375 1376 1377 1378 1379 1380
	}

	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);

	mutex_unlock(&root->objectid_mutex);

1381 1382
	return 0;
fail:
D
David Sterba 已提交
1383
	/* The caller is responsible to call btrfs_free_fs_root */
1384 1385 1386
	return ret;
}

1387 1388
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
					       u64 root_id)
1389 1390 1391 1392 1393 1394
{
	struct btrfs_root *root;

	spin_lock(&fs_info->fs_roots_radix_lock);
	root = radix_tree_lookup(&fs_info->fs_roots_radix,
				 (unsigned long)root_id);
1395
	if (root)
1396
		root = btrfs_grab_root(root);
1397 1398 1399 1400
	spin_unlock(&fs_info->fs_roots_radix_lock);
	return root;
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
						u64 objectid)
{
	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->tree_root);
	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->extent_root);
	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->chunk_root);
	if (objectid == BTRFS_DEV_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->dev_root);
	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->csum_root);
	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->quota_root) ?
			fs_info->quota_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_UUID_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->uuid_root) ?
			fs_info->uuid_root : ERR_PTR(-ENOENT);
	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
		return btrfs_grab_root(fs_info->free_space_root) ?
			fs_info->free_space_root : ERR_PTR(-ENOENT);
	return NULL;
}

1426 1427 1428 1429 1430
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
			 struct btrfs_root *root)
{
	int ret;

1431
	ret = radix_tree_preload(GFP_NOFS);
1432 1433 1434 1435 1436 1437 1438
	if (ret)
		return ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	ret = radix_tree_insert(&fs_info->fs_roots_radix,
				(unsigned long)root->root_key.objectid,
				root);
1439
	if (ret == 0) {
1440
		btrfs_grab_root(root);
1441
		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1442
	}
1443 1444 1445 1446 1447 1448
	spin_unlock(&fs_info->fs_roots_radix_lock);
	radix_tree_preload_end();

	return ret;
}

J
Josef Bacik 已提交
1449 1450 1451 1452 1453 1454
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
	struct btrfs_root *root;

	while (!list_empty(&fs_info->allocated_roots)) {
J
Josef Bacik 已提交
1455 1456
		char buf[BTRFS_ROOT_NAME_BUF_LEN];

J
Josef Bacik 已提交
1457 1458
		root = list_first_entry(&fs_info->allocated_roots,
					struct btrfs_root, leak_list);
J
Josef Bacik 已提交
1459 1460
		btrfs_err(fs_info, "leaked root %s refcount %d",
			  btrfs_root_name(root->root_key.objectid, buf),
J
Josef Bacik 已提交
1461 1462
			  refcount_read(&root->refs));
		while (refcount_read(&root->refs) > 1)
1463 1464
			btrfs_put_root(root);
		btrfs_put_root(root);
J
Josef Bacik 已提交
1465 1466 1467 1468
	}
#endif
}

1469 1470
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
1471 1472 1473 1474 1475 1476 1477
	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
	percpu_counter_destroy(&fs_info->delalloc_bytes);
	percpu_counter_destroy(&fs_info->dio_bytes);
	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
	btrfs_free_csum_hash(fs_info);
	btrfs_free_stripe_hash_table(fs_info);
	btrfs_free_ref_cache(fs_info);
1478 1479
	kfree(fs_info->balance_ctl);
	kfree(fs_info->delayed_root);
1480 1481 1482 1483 1484 1485 1486 1487 1488
	btrfs_put_root(fs_info->extent_root);
	btrfs_put_root(fs_info->tree_root);
	btrfs_put_root(fs_info->chunk_root);
	btrfs_put_root(fs_info->dev_root);
	btrfs_put_root(fs_info->csum_root);
	btrfs_put_root(fs_info->quota_root);
	btrfs_put_root(fs_info->uuid_root);
	btrfs_put_root(fs_info->free_space_root);
	btrfs_put_root(fs_info->fs_root);
1489
	btrfs_put_root(fs_info->data_reloc_root);
J
Josef Bacik 已提交
1490
	btrfs_check_leaked_roots(fs_info);
1491
	btrfs_extent_buffer_leak_debug_check(fs_info);
1492 1493 1494 1495 1496 1497
	kfree(fs_info->super_copy);
	kfree(fs_info->super_for_commit);
	kvfree(fs_info);
}


1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
 * Get an in-memory reference of a root structure.
 *
 * For essential trees like root/extent tree, we grab it from fs_info directly.
 * For subvolume trees, we check the cached filesystem roots first. If not
 * found, then read it from disk and add it to cached fs roots.
 *
 * Caller should release the root by calling btrfs_put_root() after the usage.
 *
 * NOTE: Reloc and log trees can't be read by this function as they share the
 *	 same root objectid.
 *
 * @objectid:	root id
 * @anon_dev:	preallocated anonymous block device number for new roots,
 * 		pass 0 for new allocation.
 * @check_ref:	whether to check root item references, If true, return -ENOENT
 *		for orphan roots
 */
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
					     u64 objectid, dev_t anon_dev,
					     bool check_ref)
1519 1520
{
	struct btrfs_root *root;
1521
	struct btrfs_path *path;
1522
	struct btrfs_key key;
1523 1524
	int ret;

1525 1526 1527
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;
1528
again:
D
David Sterba 已提交
1529
	root = btrfs_lookup_fs_root(fs_info, objectid);
1530
	if (root) {
1531 1532
		/* Shouldn't get preallocated anon_dev for cached roots */
		ASSERT(!anon_dev);
1533
		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1534
			btrfs_put_root(root);
1535
			return ERR_PTR(-ENOENT);
1536
		}
1537
		return root;
1538
	}
1539

D
David Sterba 已提交
1540 1541 1542 1543
	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1544 1545
	if (IS_ERR(root))
		return root;
1546

1547
	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1548
		ret = -ENOENT;
1549
		goto fail;
1550
	}
1551

1552
	ret = btrfs_init_fs_root(root, anon_dev);
1553 1554
	if (ret)
		goto fail;
1555

1556 1557 1558 1559 1560
	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto fail;
	}
1561 1562
	key.objectid = BTRFS_ORPHAN_OBJECTID;
	key.type = BTRFS_ORPHAN_ITEM_KEY;
D
David Sterba 已提交
1563
	key.offset = objectid;
1564 1565

	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1566
	btrfs_free_path(path);
1567 1568 1569
	if (ret < 0)
		goto fail;
	if (ret == 0)
1570
		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1571

1572
	ret = btrfs_insert_fs_root(fs_info, root);
1573
	if (ret) {
1574
		btrfs_put_root(root);
1575
		if (ret == -EEXIST)
1576 1577
			goto again;
		goto fail;
1578
	}
1579
	return root;
1580
fail:
1581
	btrfs_put_root(root);
1582
	return ERR_PTR(ret);
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/*
 * Get in-memory reference of a root structure
 *
 * @objectid:	tree objectid
 * @check_ref:	if set, verify that the tree exists and the item has at least
 *		one reference
 */
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
				     u64 objectid, bool check_ref)
{
	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
}

/*
 * Get in-memory reference of a root structure, created as new, optionally pass
 * the anonymous block device id
 *
 * @objectid:	tree objectid
 * @anon_dev:	if zero, allocate a new anonymous block device or use the
 *		parameter value
 */
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
					 u64 objectid, dev_t anon_dev)
{
	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/*
 * btrfs_get_fs_root_commit_root - return a root for the given objectid
 * @fs_info:	the fs_info
 * @objectid:	the objectid we need to lookup
 *
 * This is exclusively used for backref walking, and exists specifically because
 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
 * creation time, which means we may have to read the tree_root in order to look
 * up a fs root that is not in memory.  If the root is not in memory we will
 * read the tree root commit root and look up the fs root from there.  This is a
 * temporary root, it will not be inserted into the radix tree as it doesn't
 * have the most uptodate information, it'll simply be discarded once the
 * backref code is finished using the root.
 */
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
						 struct btrfs_path *path,
						 u64 objectid)
{
	struct btrfs_root *root;
	struct btrfs_key key;

	ASSERT(path->search_commit_root && path->skip_locking);

	/*
	 * This can return -ENOENT if we ask for a root that doesn't exist, but
	 * since this is called via the backref walking code we won't be looking
	 * up a root that doesn't exist, unless there's corruption.  So if root
	 * != NULL just return it.
	 */
	root = btrfs_get_global_root(fs_info, objectid);
	if (root)
		return root;

	root = btrfs_lookup_fs_root(fs_info, objectid);
	if (root)
		return root;

	key.objectid = objectid;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	root = read_tree_root_path(fs_info->tree_root, path, &key);
	btrfs_release_path(path);

	return root;
}

1658 1659 1660 1661 1662
/*
 * called by the kthread helper functions to finally call the bio end_io
 * functions.  This is where read checksum verification actually happens
 */
static void end_workqueue_fn(struct btrfs_work *work)
1663 1664
{
	struct bio *bio;
1665
	struct btrfs_end_io_wq *end_io_wq;
1666

1667
	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668
	bio = end_io_wq->bio;
1669

1670
	bio->bi_status = end_io_wq->status;
1671 1672
	bio->bi_private = end_io_wq->private;
	bio->bi_end_io = end_io_wq->end_io;
1673
	bio_endio(bio);
1674
	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1675 1676
}

1677 1678 1679
static int cleaner_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1680
	struct btrfs_fs_info *fs_info = root->fs_info;
1681
	int again;
1682

1683
	while (1) {
1684
		again = 0;
1685

1686 1687
		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);

1688
		/* Make the cleaner go to sleep early. */
1689
		if (btrfs_need_cleaner_sleep(fs_info))
1690 1691
			goto sleep;

1692 1693 1694 1695
		/*
		 * Do not do anything if we might cause open_ctree() to block
		 * before we have finished mounting the filesystem.
		 */
1696
		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1697 1698
			goto sleep;

1699
		if (!mutex_trylock(&fs_info->cleaner_mutex))
1700 1701
			goto sleep;

1702 1703 1704 1705
		/*
		 * Avoid the problem that we change the status of the fs
		 * during the above check and trylock.
		 */
1706
		if (btrfs_need_cleaner_sleep(fs_info)) {
1707
			mutex_unlock(&fs_info->cleaner_mutex);
1708
			goto sleep;
1709
		}
1710

1711
		btrfs_run_delayed_iputs(fs_info);
1712

1713
		again = btrfs_clean_one_deleted_snapshot(root);
1714
		mutex_unlock(&fs_info->cleaner_mutex);
1715 1716

		/*
1717 1718
		 * The defragger has dealt with the R/O remount and umount,
		 * needn't do anything special here.
1719
		 */
1720
		btrfs_run_defrag_inodes(fs_info);
1721 1722 1723 1724 1725 1726 1727 1728 1729

		/*
		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
		 * with relocation (btrfs_relocate_chunk) and relocation
		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
		 * unused block groups.
		 */
1730
		btrfs_delete_unused_bgs(fs_info);
1731
sleep:
1732
		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1733 1734 1735 1736
		if (kthread_should_park())
			kthread_parkme();
		if (kthread_should_stop())
			return 0;
1737
		if (!again) {
1738
			set_current_state(TASK_INTERRUPTIBLE);
1739
			schedule();
1740 1741
			__set_current_state(TASK_RUNNING);
		}
1742
	}
1743 1744 1745 1746 1747
}

static int transaction_kthread(void *arg)
{
	struct btrfs_root *root = arg;
1748
	struct btrfs_fs_info *fs_info = root->fs_info;
1749 1750
	struct btrfs_trans_handle *trans;
	struct btrfs_transaction *cur;
1751
	u64 transid;
1752
	time64_t delta;
1753
	unsigned long delay;
1754
	bool cannot_commit;
1755 1756

	do {
1757
		cannot_commit = false;
1758
		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1759
		mutex_lock(&fs_info->transaction_kthread_mutex);
1760

1761 1762
		spin_lock(&fs_info->trans_lock);
		cur = fs_info->running_transaction;
1763
		if (!cur) {
1764
			spin_unlock(&fs_info->trans_lock);
1765 1766
			goto sleep;
		}
Y
Yan Zheng 已提交
1767

1768
		delta = ktime_get_seconds() - cur->start_time;
1769
		if (cur->state < TRANS_STATE_COMMIT_START &&
1770
		    delta < fs_info->commit_interval) {
1771
			spin_unlock(&fs_info->trans_lock);
1772 1773 1774
			delay -= msecs_to_jiffies((delta - 1) * 1000);
			delay = min(delay,
				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1775 1776
			goto sleep;
		}
1777
		transid = cur->transid;
1778
		spin_unlock(&fs_info->trans_lock);
1779

1780
		/* If the file system is aborted, this will always fail. */
1781
		trans = btrfs_attach_transaction(root);
1782
		if (IS_ERR(trans)) {
1783 1784
			if (PTR_ERR(trans) != -ENOENT)
				cannot_commit = true;
1785
			goto sleep;
1786
		}
1787
		if (transid == trans->transid) {
1788
			btrfs_commit_transaction(trans);
1789
		} else {
1790
			btrfs_end_transaction(trans);
1791
		}
1792
sleep:
1793 1794
		wake_up_process(fs_info->cleaner_kthread);
		mutex_unlock(&fs_info->transaction_kthread_mutex);
1795

J
Josef Bacik 已提交
1796
		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1797
				      &fs_info->fs_state)))
1798
			btrfs_cleanup_transaction(fs_info);
1799
		if (!kthread_should_stop() &&
1800
				(!btrfs_transaction_blocked(fs_info) ||
1801
				 cannot_commit))
1802
			schedule_timeout_interruptible(delay);
1803 1804 1805 1806
	} while (!kthread_should_stop());
	return 0;
}

C
Chris Mason 已提交
1807
/*
1808 1809 1810
 * This will find the highest generation in the array of root backups.  The
 * index of the highest array is returned, or -EINVAL if we can't find
 * anything.
C
Chris Mason 已提交
1811 1812 1813 1814 1815
 *
 * We check to make sure the array is valid by comparing the
 * generation of the latest  root in the array with the generation
 * in the super block.  If they don't match we pitch it.
 */
1816
static int find_newest_super_backup(struct btrfs_fs_info *info)
C
Chris Mason 已提交
1817
{
1818
	const u64 newest_gen = btrfs_super_generation(info->super_copy);
C
Chris Mason 已提交
1819 1820 1821 1822 1823 1824 1825 1826
	u64 cur;
	struct btrfs_root_backup *root_backup;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		root_backup = info->super_copy->super_roots + i;
		cur = btrfs_backup_tree_root_gen(root_backup);
		if (cur == newest_gen)
1827
			return i;
C
Chris Mason 已提交
1828 1829
	}

1830
	return -EINVAL;
C
Chris Mason 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839
}

/*
 * copy all the root pointers into the super backup array.
 * this will bump the backup pointer by one when it is
 * done
 */
static void backup_super_roots(struct btrfs_fs_info *info)
{
1840
	const int next_backup = info->backup_root_index;
C
Chris Mason 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	struct btrfs_root_backup *root_backup;

	root_backup = info->super_for_commit->super_roots + next_backup;

	/*
	 * make sure all of our padding and empty slots get zero filled
	 * regardless of which ones we use today
	 */
	memset(root_backup, 0, sizeof(*root_backup));

	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;

	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
	btrfs_set_backup_tree_root_gen(root_backup,
			       btrfs_header_generation(info->tree_root->node));

	btrfs_set_backup_tree_root_level(root_backup,
			       btrfs_header_level(info->tree_root->node));

	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
	btrfs_set_backup_chunk_root_gen(root_backup,
			       btrfs_header_generation(info->chunk_root->node));
	btrfs_set_backup_chunk_root_level(root_backup,
			       btrfs_header_level(info->chunk_root->node));

	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
	btrfs_set_backup_extent_root_gen(root_backup,
			       btrfs_header_generation(info->extent_root->node));
	btrfs_set_backup_extent_root_level(root_backup,
			       btrfs_header_level(info->extent_root->node));

1872 1873 1874 1875 1876 1877 1878 1879
	/*
	 * we might commit during log recovery, which happens before we set
	 * the fs_root.  Make sure it is valid before we fill it in.
	 */
	if (info->fs_root && info->fs_root->node) {
		btrfs_set_backup_fs_root(root_backup,
					 info->fs_root->node->start);
		btrfs_set_backup_fs_root_gen(root_backup,
C
Chris Mason 已提交
1880
			       btrfs_header_generation(info->fs_root->node));
1881
		btrfs_set_backup_fs_root_level(root_backup,
C
Chris Mason 已提交
1882
			       btrfs_header_level(info->fs_root->node));
1883
	}
C
Chris Mason 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
	btrfs_set_backup_dev_root_gen(root_backup,
			       btrfs_header_generation(info->dev_root->node));
	btrfs_set_backup_dev_root_level(root_backup,
				       btrfs_header_level(info->dev_root->node));

	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
	btrfs_set_backup_csum_root_gen(root_backup,
			       btrfs_header_generation(info->csum_root->node));
	btrfs_set_backup_csum_root_level(root_backup,
			       btrfs_header_level(info->csum_root->node));

	btrfs_set_backup_total_bytes(root_backup,
			     btrfs_super_total_bytes(info->super_copy));
	btrfs_set_backup_bytes_used(root_backup,
			     btrfs_super_bytes_used(info->super_copy));
	btrfs_set_backup_num_devices(root_backup,
			     btrfs_super_num_devices(info->super_copy));

	/*
	 * if we don't copy this out to the super_copy, it won't get remembered
	 * for the next commit
	 */
	memcpy(&info->super_copy->super_roots,
	       &info->super_for_commit->super_roots,
	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}

N
Nikolay Borisov 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
/*
 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 *
 * fs_info - filesystem whose backup roots need to be read
 * priority - priority of backup root required
 *
 * Returns backup root index on success and -EINVAL otherwise.
 */
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
	int backup_index = find_newest_super_backup(fs_info);
	struct btrfs_super_block *super = fs_info->super_copy;
	struct btrfs_root_backup *root_backup;

	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
		if (priority == 0)
			return backup_index;

		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
	} else {
		return -EINVAL;
	}

	root_backup = super->super_roots + backup_index;

	btrfs_set_super_generation(super,
				   btrfs_backup_tree_root_gen(root_backup));
	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
	btrfs_set_super_root_level(super,
				   btrfs_backup_tree_root_level(root_backup));
	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));

	/*
	 * Fixme: the total bytes and num_devices need to match or we should
	 * need a fsck
	 */
	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));

	return backup_index;
}

L
Liu Bo 已提交
1957 1958 1959
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
1960
	btrfs_destroy_workqueue(fs_info->fixup_workers);
1961
	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1962
	btrfs_destroy_workqueue(fs_info->workers);
1963 1964
	btrfs_destroy_workqueue(fs_info->endio_workers);
	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1965
	btrfs_destroy_workqueue(fs_info->rmw_workers);
1966 1967
	btrfs_destroy_workqueue(fs_info->endio_write_workers);
	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1968
	btrfs_destroy_workqueue(fs_info->delayed_workers);
1969
	btrfs_destroy_workqueue(fs_info->caching_workers);
1970
	btrfs_destroy_workqueue(fs_info->readahead_workers);
1971
	btrfs_destroy_workqueue(fs_info->flush_workers);
1972
	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1973 1974
	if (fs_info->discard_ctl.discard_workers)
		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1975 1976 1977 1978 1979 1980 1981
	/*
	 * Now that all other work queues are destroyed, we can safely destroy
	 * the queues used for metadata I/O, since tasks from those other work
	 * queues can do metadata I/O operations.
	 */
	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
L
Liu Bo 已提交
1982 1983
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static void free_root_extent_buffers(struct btrfs_root *root)
{
	if (root) {
		free_extent_buffer(root->node);
		free_extent_buffer(root->commit_root);
		root->node = NULL;
		root->commit_root = NULL;
	}
}

C
Chris Mason 已提交
1994
/* helper to cleanup tree roots */
1995
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
C
Chris Mason 已提交
1996
{
1997
	free_root_extent_buffers(info->tree_root);
1998

1999 2000 2001 2002 2003
	free_root_extent_buffers(info->dev_root);
	free_root_extent_buffers(info->extent_root);
	free_root_extent_buffers(info->csum_root);
	free_root_extent_buffers(info->quota_root);
	free_root_extent_buffers(info->uuid_root);
2004
	free_root_extent_buffers(info->fs_root);
2005
	free_root_extent_buffers(info->data_reloc_root);
2006
	if (free_chunk_root)
2007
		free_root_extent_buffers(info->chunk_root);
2008
	free_root_extent_buffers(info->free_space_root);
C
Chris Mason 已提交
2009 2010
}

2011 2012 2013 2014 2015 2016 2017
void btrfs_put_root(struct btrfs_root *root)
{
	if (!root)
		return;

	if (refcount_dec_and_test(&root->refs)) {
		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2018
		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2019 2020 2021
		if (root->anon_dev)
			free_anon_bdev(root->anon_dev);
		btrfs_drew_lock_destroy(&root->snapshot_lock);
2022
		free_root_extent_buffers(root);
2023 2024 2025 2026 2027 2028 2029 2030 2031
#ifdef CONFIG_BTRFS_DEBUG
		spin_lock(&root->fs_info->fs_roots_radix_lock);
		list_del_init(&root->leak_list);
		spin_unlock(&root->fs_info->fs_roots_radix_lock);
#endif
		kfree(root);
	}
}

2032
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
{
	int ret;
	struct btrfs_root *gang[8];
	int i;

	while (!list_empty(&fs_info->dead_roots)) {
		gang[0] = list_entry(fs_info->dead_roots.next,
				     struct btrfs_root, root_list);
		list_del(&gang[0]->root_list);

2043
		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2044
			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2045
		btrfs_put_root(gang[0]);
2046 2047 2048 2049 2050 2051 2052 2053 2054
	}

	while (1) {
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, 0,
					     ARRAY_SIZE(gang));
		if (!ret)
			break;
		for (i = 0; i < ret; i++)
2055
			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2056 2057
	}
}
C
Chris Mason 已提交
2058

2059 2060 2061 2062 2063 2064 2065 2066
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->scrub_lock);
	atomic_set(&fs_info->scrubs_running, 0);
	atomic_set(&fs_info->scrub_pause_req, 0);
	atomic_set(&fs_info->scrubs_paused, 0);
	atomic_set(&fs_info->scrub_cancel_req, 0);
	init_waitqueue_head(&fs_info->scrub_pause_wait);
2067
	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->balance_lock);
	mutex_init(&fs_info->balance_mutex);
	atomic_set(&fs_info->balance_pause_req, 0);
	atomic_set(&fs_info->balance_cancel_req, 0);
	fs_info->balance_ctl = NULL;
	init_waitqueue_head(&fs_info->balance_wait_q);
}

2080
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2081
{
2082 2083 2084 2085
	struct inode *inode = fs_info->btree_inode;

	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
	set_nlink(inode, 1);
2086 2087 2088 2089 2090
	/*
	 * we set the i_size on the btree inode to the max possible int.
	 * the real end of the address space is determined by all of
	 * the devices in the system
	 */
2091 2092
	inode->i_size = OFFSET_MAX;
	inode->i_mapping->a_ops = &btree_aops;
2093

2094
	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2095
	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2096
			    IO_TREE_BTREE_INODE_IO, inode);
2097
	BTRFS_I(inode)->io_tree.track_uptodate = false;
2098
	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2099

2100
	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2101 2102 2103
	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
	btrfs_insert_inode_hash(inode);
2104 2105
}

2106 2107 2108
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2109
	init_rwsem(&fs_info->dev_replace.rwsem);
2110
	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
	spin_lock_init(&fs_info->qgroup_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	fs_info->qgroup_tree = RB_ROOT;
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	fs_info->qgroup_seq = 1;
	fs_info->qgroup_ulist = NULL;
2121
	fs_info->qgroup_rescan_running = false;
2122 2123 2124
	mutex_init(&fs_info->qgroup_rescan_lock);
}

2125 2126 2127
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
		struct btrfs_fs_devices *fs_devices)
{
2128
	u32 max_active = fs_info->thread_pool_size;
2129
	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2130 2131

	fs_info->workers =
2132 2133
		btrfs_alloc_workqueue(fs_info, "worker",
				      flags | WQ_HIGHPRI, max_active, 16);
2134 2135

	fs_info->delalloc_workers =
2136 2137
		btrfs_alloc_workqueue(fs_info, "delalloc",
				      flags, max_active, 2);
2138 2139

	fs_info->flush_workers =
2140 2141
		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
				      flags, max_active, 0);
2142 2143

	fs_info->caching_workers =
2144
		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2145 2146

	fs_info->fixup_workers =
2147
		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2148 2149 2150 2151 2152 2153

	/*
	 * endios are largely parallel and should have a very
	 * low idle thresh
	 */
	fs_info->endio_workers =
2154
		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2155
	fs_info->endio_meta_workers =
2156 2157
		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
				      max_active, 4);
2158
	fs_info->endio_meta_write_workers =
2159 2160
		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
				      max_active, 2);
2161
	fs_info->endio_raid56_workers =
2162 2163
		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
				      max_active, 4);
2164
	fs_info->rmw_workers =
2165
		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2166
	fs_info->endio_write_workers =
2167 2168
		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
				      max_active, 2);
2169
	fs_info->endio_freespace_worker =
2170 2171
		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
				      max_active, 0);
2172
	fs_info->delayed_workers =
2173 2174
		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
				      max_active, 0);
2175
	fs_info->readahead_workers =
2176 2177
		btrfs_alloc_workqueue(fs_info, "readahead", flags,
				      max_active, 2);
2178
	fs_info->qgroup_rescan_workers =
2179
		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2180 2181
	fs_info->discard_ctl.discard_workers =
		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2182 2183

	if (!(fs_info->workers && fs_info->delalloc_workers &&
2184
	      fs_info->flush_workers &&
2185 2186 2187 2188 2189 2190
	      fs_info->endio_workers && fs_info->endio_meta_workers &&
	      fs_info->endio_meta_write_workers &&
	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
	      fs_info->caching_workers && fs_info->readahead_workers &&
	      fs_info->fixup_workers && fs_info->delayed_workers &&
2191 2192
	      fs_info->qgroup_rescan_workers &&
	      fs_info->discard_ctl.discard_workers)) {
2193 2194 2195 2196 2197 2198
		return -ENOMEM;
	}

	return 0;
}

2199 2200 2201
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
	struct crypto_shash *csum_shash;
2202
	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2203

2204
	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2205 2206 2207

	if (IS_ERR(csum_shash)) {
		btrfs_err(fs_info, "error allocating %s hash for checksum",
2208
			  csum_driver);
2209 2210 2211 2212 2213 2214 2215 2216
		return PTR_ERR(csum_shash);
	}

	fs_info->csum_shash = csum_shash;

	return 0;
}

2217 2218 2219 2220 2221 2222 2223
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
			    struct btrfs_fs_devices *fs_devices)
{
	int ret;
	struct btrfs_root *log_tree_root;
	struct btrfs_super_block *disk_super = fs_info->super_copy;
	u64 bytenr = btrfs_super_log_root(disk_super);
2224
	int level = btrfs_super_log_root_level(disk_super);
2225 2226

	if (fs_devices->rw_devices == 0) {
2227
		btrfs_warn(fs_info, "log replay required on RO media");
2228 2229 2230
		return -EIO;
	}

2231 2232
	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
					 GFP_KERNEL);
2233 2234 2235
	if (!log_tree_root)
		return -ENOMEM;

2236
	log_tree_root->node = read_tree_block(fs_info, bytenr,
2237 2238 2239
					      BTRFS_TREE_LOG_OBJECTID,
					      fs_info->generation + 1, level,
					      NULL);
2240
	if (IS_ERR(log_tree_root->node)) {
2241
		btrfs_warn(fs_info, "failed to read log tree");
2242
		ret = PTR_ERR(log_tree_root->node);
2243
		log_tree_root->node = NULL;
2244
		btrfs_put_root(log_tree_root);
2245
		return ret;
2246
	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2247
		btrfs_err(fs_info, "failed to read log tree");
2248
		btrfs_put_root(log_tree_root);
2249 2250 2251 2252 2253
		return -EIO;
	}
	/* returns with log_tree_root freed on success */
	ret = btrfs_recover_log_trees(log_tree_root);
	if (ret) {
2254 2255
		btrfs_handle_fs_error(fs_info, ret,
				      "Failed to recover log tree");
2256
		btrfs_put_root(log_tree_root);
2257 2258 2259
		return ret;
	}

2260
	if (sb_rdonly(fs_info->sb)) {
2261
		ret = btrfs_commit_super(fs_info);
2262 2263 2264 2265 2266 2267 2268
		if (ret)
			return ret;
	}

	return 0;
}

2269
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2270
{
2271
	struct btrfs_root *tree_root = fs_info->tree_root;
2272
	struct btrfs_root *root;
2273 2274 2275
	struct btrfs_key location;
	int ret;

2276 2277
	BUG_ON(!fs_info->tree_root);

2278 2279 2280 2281
	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
	location.type = BTRFS_ROOT_ITEM_KEY;
	location.offset = 0;

2282
	root = btrfs_read_tree_root(tree_root, &location);
2283
	if (IS_ERR(root)) {
2284 2285 2286 2287 2288 2289 2290
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->extent_root = root;
2291
	}
2292 2293

	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2294
	root = btrfs_read_tree_root(tree_root, &location);
2295
	if (IS_ERR(root)) {
2296 2297 2298 2299 2300 2301 2302 2303
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->dev_root = root;
		btrfs_init_devices_late(fs_info);
2304
	}
2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
		if (IS_ERR(root)) {
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
				ret = PTR_ERR(root);
				goto out;
			}
		} else {
			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
			fs_info->csum_root = root;
2318
		}
2319
	}
2320

2321 2322 2323 2324
	/*
	 * This tree can share blocks with some other fs tree during relocation
	 * and we need a proper setup by btrfs_get_fs_root
	 */
D
David Sterba 已提交
2325 2326
	root = btrfs_get_fs_root(tree_root->fs_info,
				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2327
	if (IS_ERR(root)) {
2328 2329 2330 2331 2332 2333 2334
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			goto out;
		}
	} else {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->data_reloc_root = root;
2335 2336
	}

2337
	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2338 2339 2340
	root = btrfs_read_tree_root(tree_root, &location);
	if (!IS_ERR(root)) {
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341
		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2342
		fs_info->quota_root = root;
2343 2344 2345
	}

	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2346 2347
	root = btrfs_read_tree_root(tree_root, &location);
	if (IS_ERR(root)) {
2348 2349 2350 2351 2352
		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
			ret = PTR_ERR(root);
			if (ret != -ENOENT)
				goto out;
		}
2353
	} else {
2354 2355
		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
		fs_info->uuid_root = root;
2356 2357
	}

2358 2359 2360
	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
		root = btrfs_read_tree_root(tree_root, &location);
2361
		if (IS_ERR(root)) {
2362 2363 2364 2365 2366 2367 2368
			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
				ret = PTR_ERR(root);
				goto out;
			}
		}  else {
			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
			fs_info->free_space_root = root;
2369
		}
2370 2371
	}

2372
	return 0;
2373 2374 2375 2376
out:
	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
		   location.objectid, ret);
	return ret;
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
/*
 * Real super block validation
 * NOTE: super csum type and incompat features will not be checked here.
 *
 * @sb:		super block to check
 * @mirror_num:	the super block number to check its bytenr:
 * 		0	the primary (1st) sb
 * 		1, 2	2nd and 3rd backup copy
 * 	       -1	skip bytenr check
 */
static int validate_super(struct btrfs_fs_info *fs_info,
			    struct btrfs_super_block *sb, int mirror_num)
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
{
	u64 nodesize = btrfs_super_nodesize(sb);
	u64 sectorsize = btrfs_super_sectorsize(sb);
	int ret = 0;

	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
		btrfs_err(fs_info, "no valid FS found");
		ret = -EINVAL;
	}
	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
		ret = -EINVAL;
	}
	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}
	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
		btrfs_err(fs_info, "log_root level too big: %d >= %d",
				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
		ret = -EINVAL;
	}

	/*
	 * Check sectorsize and nodesize first, other check will need it.
	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
	 */
	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
		ret = -EINVAL;
	}
	/* Only PAGE SIZE is supported yet */
	if (sectorsize != PAGE_SIZE) {
		btrfs_err(fs_info,
			"sectorsize %llu not supported yet, only support %lu",
			sectorsize, PAGE_SIZE);
		ret = -EINVAL;
	}
	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
		ret = -EINVAL;
	}
	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
			  le32_to_cpu(sb->__unused_leafsize), nodesize);
		ret = -EINVAL;
	}

	/* Root alignment check */
	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
			   btrfs_super_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
			   btrfs_super_chunk_root(sb));
		ret = -EINVAL;
	}
	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
		btrfs_warn(fs_info, "log_root block unaligned: %llu",
			   btrfs_super_log_root(sb));
		ret = -EINVAL;
	}

2465
	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2466
		   BTRFS_FSID_SIZE) != 0) {
2467
		btrfs_err(fs_info,
2468
			"dev_item UUID does not match metadata fsid: %pU != %pU",
2469
			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		ret = -EINVAL;
	}

	/*
	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
	 * done later
	 */
	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
		btrfs_err(fs_info, "bytes_used is too small %llu",
			  btrfs_super_bytes_used(sb));
		ret = -EINVAL;
	}
	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
		btrfs_err(fs_info, "invalid stripesize %u",
			  btrfs_super_stripesize(sb));
		ret = -EINVAL;
	}
	if (btrfs_super_num_devices(sb) > (1UL << 31))
		btrfs_warn(fs_info, "suspicious number of devices: %llu",
			   btrfs_super_num_devices(sb));
	if (btrfs_super_num_devices(sb) == 0) {
		btrfs_err(fs_info, "number of devices is 0");
		ret = -EINVAL;
	}

2495 2496
	if (mirror_num >= 0 &&
	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		btrfs_err(fs_info, "super offset mismatch %llu != %u",
			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
		ret = -EINVAL;
	}

	/*
	 * Obvious sys_chunk_array corruptions, it must hold at least one key
	 * and one chunk
	 */
	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
		btrfs_err(fs_info, "system chunk array too big %u > %u",
			  btrfs_super_sys_array_size(sb),
			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
		ret = -EINVAL;
	}
	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
			+ sizeof(struct btrfs_chunk)) {
		btrfs_err(fs_info, "system chunk array too small %u < %zu",
			  btrfs_super_sys_array_size(sb),
			  sizeof(struct btrfs_disk_key)
			  + sizeof(struct btrfs_chunk));
		ret = -EINVAL;
	}

	/*
	 * The generation is a global counter, we'll trust it more than the others
	 * but it's still possible that it's the one that's wrong.
	 */
	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
		btrfs_warn(fs_info,
			"suspicious: generation < chunk_root_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_chunk_root_generation(sb));
	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
	    && btrfs_super_cache_generation(sb) != (u64)-1)
		btrfs_warn(fs_info,
			"suspicious: generation < cache_generation: %llu < %llu",
			btrfs_super_generation(sb),
			btrfs_super_cache_generation(sb));

	return ret;
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
/*
 * Validation of super block at mount time.
 * Some checks already done early at mount time, like csum type and incompat
 * flags will be skipped.
 */
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
	return validate_super(fs_info, fs_info->super_copy, 0);
}

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/*
 * Validation of super block at write time.
 * Some checks like bytenr check will be skipped as their values will be
 * overwritten soon.
 * Extra checks like csum type and incompat flags will be done here.
 */
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
				      struct btrfs_super_block *sb)
{
	int ret;

	ret = validate_super(fs_info, sb, -1);
	if (ret < 0)
		goto out;
2564
	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		ret = -EUCLEAN;
		btrfs_err(fs_info, "invalid csum type, has %u want %u",
			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
		goto out;
	}
	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
		ret = -EUCLEAN;
		btrfs_err(fs_info,
		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
			  btrfs_super_incompat_flags(sb),
			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
		goto out;
	}
out:
	if (ret < 0)
		btrfs_err(fs_info,
		"super block corruption detected before writing it to disk");
	return ret;
}

2585
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2586
{
2587
	int backup_index = find_newest_super_backup(fs_info);
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	struct btrfs_super_block *sb = fs_info->super_copy;
	struct btrfs_root *tree_root = fs_info->tree_root;
	bool handle_error = false;
	int ret = 0;
	int i;

	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
		u64 generation;
		int level;

		if (handle_error) {
			if (!IS_ERR(tree_root->node))
				free_extent_buffer(tree_root->node);
			tree_root->node = NULL;

			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
				break;

			free_root_pointers(fs_info, 0);

			/*
			 * Don't use the log in recovery mode, it won't be
			 * valid
			 */
			btrfs_set_super_log_root(sb, 0);

			/* We can't trust the free space cache either */
			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);

			ret = read_backup_root(fs_info, i);
2618
			backup_index = ret;
2619 2620 2621 2622 2623 2624
			if (ret < 0)
				return ret;
		}
		generation = btrfs_super_generation(sb);
		level = btrfs_super_root_level(sb);
		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2625
						  BTRFS_ROOT_TREE_OBJECTID,
2626
						  generation, level, NULL);
2627
		if (IS_ERR(tree_root->node)) {
2628
			handle_error = true;
2629 2630 2631 2632
			ret = PTR_ERR(tree_root->node);
			tree_root->node = NULL;
			btrfs_warn(fs_info, "couldn't read tree root");
			continue;
2633

2634 2635 2636 2637
		} else if (!extent_buffer_uptodate(tree_root->node)) {
			handle_error = true;
			ret = -EIO;
			btrfs_warn(fs_info, "error while reading tree root");
2638 2639 2640 2641 2642 2643 2644
			continue;
		}

		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
		tree_root->commit_root = btrfs_root_node(tree_root);
		btrfs_set_root_refs(&tree_root->root_item, 1);

2645 2646 2647 2648
		/*
		 * No need to hold btrfs_root::objectid_mutex since the fs
		 * hasn't been fully initialised and we are the only user
		 */
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		ret = btrfs_find_highest_objectid(tree_root,
						&tree_root->highest_objectid);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);

		ret = btrfs_read_roots(fs_info);
		if (ret < 0) {
			handle_error = true;
			continue;
		}

		/* All successful */
		fs_info->generation = generation;
		fs_info->last_trans_committed = generation;
2667 2668 2669 2670 2671 2672 2673 2674

		/* Always begin writing backup roots after the one being used */
		if (backup_index < 0) {
			fs_info->backup_root_index = 0;
		} else {
			fs_info->backup_root_index = backup_index + 1;
			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
		}
2675 2676 2677 2678 2679 2680
		break;
	}

	return ret;
}

2681
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2682
{
2683
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2684
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
C
Chris Mason 已提交
2685
	INIT_LIST_HEAD(&fs_info->trans_list);
2686
	INIT_LIST_HEAD(&fs_info->dead_roots);
Y
Yan, Zheng 已提交
2687
	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2688
	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2689
	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2690
	spin_lock_init(&fs_info->delalloc_root_lock);
J
Josef Bacik 已提交
2691
	spin_lock_init(&fs_info->trans_lock);
2692
	spin_lock_init(&fs_info->fs_roots_radix_lock);
Y
Yan, Zheng 已提交
2693
	spin_lock_init(&fs_info->delayed_iput_lock);
C
Chris Mason 已提交
2694
	spin_lock_init(&fs_info->defrag_inodes_lock);
2695
	spin_lock_init(&fs_info->super_lock);
2696
	spin_lock_init(&fs_info->buffer_lock);
2697
	spin_lock_init(&fs_info->unused_bgs_lock);
J
Jan Schmidt 已提交
2698
	rwlock_init(&fs_info->tree_mod_log_lock);
2699
	mutex_init(&fs_info->unused_bg_unpin_mutex);
2700
	mutex_init(&fs_info->delete_unused_bgs_mutex);
C
Chris Mason 已提交
2701
	mutex_init(&fs_info->reloc_mutex);
2702
	mutex_init(&fs_info->delalloc_root_mutex);
2703
	seqlock_init(&fs_info->profiles_lock);
2704

2705
	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706
	INIT_LIST_HEAD(&fs_info->space_info);
J
Jan Schmidt 已提交
2707
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708
	INIT_LIST_HEAD(&fs_info->unused_bgs);
J
Josef Bacik 已提交
2709 2710
#ifdef CONFIG_BTRFS_DEBUG
	INIT_LIST_HEAD(&fs_info->allocated_roots);
2711 2712
	INIT_LIST_HEAD(&fs_info->allocated_ebs);
	spin_lock_init(&fs_info->eb_leak_lock);
J
Josef Bacik 已提交
2713
#endif
2714
	extent_map_tree_init(&fs_info->mapping_tree);
2715 2716 2717 2718 2719 2720 2721
	btrfs_init_block_rsv(&fs_info->global_block_rsv,
			     BTRFS_BLOCK_RSV_GLOBAL);
	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
			     BTRFS_BLOCK_RSV_DELOPS);
J
Josef Bacik 已提交
2722 2723 2724
	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
			     BTRFS_BLOCK_RSV_DELREFS);

2725
	atomic_set(&fs_info->async_delalloc_pages, 0);
C
Chris Mason 已提交
2726
	atomic_set(&fs_info->defrag_running, 0);
Z
Zhao Lei 已提交
2727
	atomic_set(&fs_info->reada_works_cnt, 0);
2728
	atomic_set(&fs_info->nr_delayed_iputs, 0);
2729
	atomic64_set(&fs_info->tree_mod_seq, 0);
2730
	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
J
Josef Bacik 已提交
2731
	fs_info->metadata_ratio = 0;
C
Chris Mason 已提交
2732
	fs_info->defrag_inodes = RB_ROOT;
2733
	atomic64_set(&fs_info->free_chunk_space, 0);
J
Jan Schmidt 已提交
2734
	fs_info->tree_mod_log = RB_ROOT;
2735
	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2736
	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2737
	/* readahead state */
2738
	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2739
	spin_lock_init(&fs_info->reada_lock);
J
Josef Bacik 已提交
2740
	btrfs_init_ref_verify(fs_info);
C
Chris Mason 已提交
2741

2742 2743
	fs_info->thread_pool_size = min_t(unsigned long,
					  num_online_cpus() + 2, 8);
2744

2745 2746
	INIT_LIST_HEAD(&fs_info->ordered_roots);
	spin_lock_init(&fs_info->ordered_root_lock);
2747

2748
	btrfs_init_scrub(fs_info);
2749 2750 2751
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
	fs_info->check_integrity_print_mask = 0;
#endif
2752
	btrfs_init_balance(fs_info);
2753
	btrfs_init_async_reclaim_work(fs_info);
A
Arne Jansen 已提交
2754

J
Josef Bacik 已提交
2755
	spin_lock_init(&fs_info->block_group_cache_lock);
2756
	fs_info->block_group_cache_tree = RB_ROOT;
2757
	fs_info->first_logical_byte = (u64)-1;
J
Josef Bacik 已提交
2758

2759 2760
	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2761
	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
C
Chris Mason 已提交
2762

2763
	mutex_init(&fs_info->ordered_operations_mutex);
2764
	mutex_init(&fs_info->tree_log_mutex);
2765
	mutex_init(&fs_info->chunk_mutex);
2766 2767
	mutex_init(&fs_info->transaction_kthread_mutex);
	mutex_init(&fs_info->cleaner_mutex);
2768
	mutex_init(&fs_info->ro_block_group_mutex);
2769
	init_rwsem(&fs_info->commit_root_sem);
2770
	init_rwsem(&fs_info->cleanup_work_sem);
2771
	init_rwsem(&fs_info->subvol_sem);
S
Stefan Behrens 已提交
2772
	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2773

2774
	btrfs_init_dev_replace_locks(fs_info);
2775
	btrfs_init_qgroup(fs_info);
2776
	btrfs_discard_init(fs_info);
2777

2778 2779 2780
	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);

2781
	init_waitqueue_head(&fs_info->transaction_throttle);
2782
	init_waitqueue_head(&fs_info->transaction_wait);
S
Sage Weil 已提交
2783
	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2784
	init_waitqueue_head(&fs_info->async_submit_wait);
2785
	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2786

2787 2788 2789
	/* Usable values until the real ones are cached from the superblock */
	fs_info->nodesize = 4096;
	fs_info->sectorsize = 4096;
2790
	fs_info->sectorsize_bits = ilog2(4096);
2791 2792
	fs_info->stripesize = 4096;

2793 2794 2795
	spin_lock_init(&fs_info->swapfile_pins_lock);
	fs_info->swapfile_pins = RB_ROOT;

2796
	fs_info->send_in_progress = 0;
2797 2798 2799 2800 2801 2802 2803 2804 2805
}

static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
	int ret;

	fs_info->sb = sb;
	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2806

2807 2808
	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
2809
		return ret;
2810 2811 2812

	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
2813
		return ret;
2814 2815 2816 2817 2818 2819

	fs_info->dirty_metadata_batch = PAGE_SIZE *
					(1 + ilog2(nr_cpu_ids));

	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
2820
		return ret;
2821 2822 2823 2824

	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
			GFP_KERNEL);
	if (ret)
J
Josef Bacik 已提交
2825
		return ret;
2826 2827 2828

	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
					GFP_KERNEL);
J
Josef Bacik 已提交
2829 2830
	if (!fs_info->delayed_root)
		return -ENOMEM;
2831 2832
	btrfs_init_delayed_root(fs_info->delayed_root);

J
Josef Bacik 已提交
2833
	return btrfs_alloc_stripe_hash_table(fs_info);
2834 2835
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static int btrfs_uuid_rescan_kthread(void *data)
{
	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
	int ret;

	/*
	 * 1st step is to iterate through the existing UUID tree and
	 * to delete all entries that contain outdated data.
	 * 2nd step is to add all missing entries to the UUID tree.
	 */
	ret = btrfs_uuid_tree_iterate(fs_info);
	if (ret < 0) {
2848 2849 2850
		if (ret != -EINTR)
			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
				   ret);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
		up(&fs_info->uuid_tree_rescan_sem);
		return ret;
	}
	return btrfs_uuid_scan_kthread(data);
}

static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
	struct task_struct *task;

	down(&fs_info->uuid_tree_rescan_sem);
	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
	if (IS_ERR(task)) {
		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
		btrfs_warn(fs_info, "failed to start uuid_rescan task");
		up(&fs_info->uuid_tree_rescan_sem);
		return PTR_ERR(task);
	}

	return 0;
}

2873 2874 2875 2876 2877 2878 2879 2880
/*
 * Some options only have meaning at mount time and shouldn't persist across
 * remounts, or be displayed. Clear these at the end of mount and remount
 * code paths.
 */
void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
{
	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2881
	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2882 2883
}

2884 2885 2886 2887 2888 2889 2890
/*
 * Mounting logic specific to read-write file systems. Shared by open_ctree
 * and btrfs_remount when remounting from read-only to read-write.
 */
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
	int ret;
2891
	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	bool clear_free_space_tree = false;

	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		clear_free_space_tree = true;
	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
		btrfs_warn(fs_info, "free space tree is invalid");
		clear_free_space_tree = true;
	}

	if (clear_free_space_tree) {
		btrfs_info(fs_info, "clearing free space tree");
		ret = btrfs_clear_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to clear free space tree: %d", ret);
			goto out;
		}
	}
2912 2913 2914 2915 2916

	ret = btrfs_cleanup_fs_roots(fs_info);
	if (ret)
		goto out;

2917 2918 2919 2920 2921 2922 2923 2924
	down_read(&fs_info->cleanup_work_sem);
	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
		up_read(&fs_info->cleanup_work_sem);
		goto out;
	}
	up_read(&fs_info->cleanup_work_sem);

2925 2926 2927 2928 2929 2930 2931 2932
	mutex_lock(&fs_info->cleaner_mutex);
	ret = btrfs_recover_relocation(fs_info->tree_root);
	mutex_unlock(&fs_info->cleaner_mutex);
	if (ret < 0) {
		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
		goto out;
	}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
		btrfs_info(fs_info, "creating free space tree");
		ret = btrfs_create_free_space_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				"failed to create free space tree: %d", ret);
			goto out;
		}
	}

2944 2945 2946 2947 2948 2949
	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
		if (ret)
			goto out;
	}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	ret = btrfs_resume_balance_async(fs_info);
	if (ret)
		goto out;

	ret = btrfs_resume_dev_replace_async(fs_info);
	if (ret) {
		btrfs_warn(fs_info, "failed to resume dev_replace");
		goto out;
	}

	btrfs_qgroup_rescan_resume(fs_info);

	if (!fs_info->uuid_root) {
		btrfs_info(fs_info, "creating UUID tree");
		ret = btrfs_create_uuid_tree(fs_info);
		if (ret) {
			btrfs_warn(fs_info,
				   "failed to create the UUID tree %d", ret);
			goto out;
		}
	}

out:
	return ret;
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
		      char *options)
{
	u32 sectorsize;
	u32 nodesize;
	u32 stripesize;
	u64 generation;
	u64 features;
	u16 csum_type;
	struct btrfs_super_block *disk_super;
	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
	struct btrfs_root *tree_root;
	struct btrfs_root *chunk_root;
	int ret;
	int err = -EINVAL;
	int level;

2993
	ret = init_mount_fs_info(fs_info, sb);
D
David Woodhouse 已提交
2994
	if (ret) {
2995
		err = ret;
2996
		goto fail;
D
David Woodhouse 已提交
2997 2998
	}

2999 3000 3001 3002 3003 3004 3005 3006 3007
	/* These need to be init'ed before we start creating inodes and such. */
	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
				     GFP_KERNEL);
	fs_info->tree_root = tree_root;
	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
				      GFP_KERNEL);
	fs_info->chunk_root = chunk_root;
	if (!tree_root || !chunk_root) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3008
		goto fail;
3009 3010 3011 3012 3013
	}

	fs_info->btree_inode = new_inode(sb);
	if (!fs_info->btree_inode) {
		err = -ENOMEM;
J
Josef Bacik 已提交
3014
		goto fail;
3015 3016 3017 3018
	}
	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
	btrfs_init_btree_inode(fs_info);

3019
	invalidate_bdev(fs_devices->latest_bdev);
D
David Sterba 已提交
3020 3021 3022 3023

	/*
	 * Read super block and check the signature bytes only
	 */
3024 3025 3026
	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
	if (IS_ERR(disk_super)) {
		err = PTR_ERR(disk_super);
3027
		goto fail_alloc;
3028
	}
C
Chris Mason 已提交
3029

3030
	/*
3031
	 * Verify the type first, if that or the checksum value are
3032 3033
	 * corrupted, we'll find out
	 */
3034
	csum_type = btrfs_super_csum_type(disk_super);
3035
	if (!btrfs_supported_super_csum(csum_type)) {
3036
		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3037
			  csum_type);
3038
		err = -EINVAL;
3039
		btrfs_release_disk_super(disk_super);
3040 3041 3042
		goto fail_alloc;
	}

3043 3044 3045
	ret = btrfs_init_csum_hash(fs_info, csum_type);
	if (ret) {
		err = ret;
3046
		btrfs_release_disk_super(disk_super);
3047 3048 3049
		goto fail_alloc;
	}

D
David Sterba 已提交
3050 3051 3052 3053
	/*
	 * We want to check superblock checksum, the type is stored inside.
	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
	 */
3054
	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3055
		btrfs_err(fs_info, "superblock checksum mismatch");
D
David Sterba 已提交
3056
		err = -EINVAL;
3057
		btrfs_release_disk_super(disk_super);
3058
		goto fail_alloc;
D
David Sterba 已提交
3059 3060 3061 3062 3063 3064 3065
	}

	/*
	 * super_copy is zeroed at allocation time and we never touch the
	 * following bytes up to INFO_SIZE, the checksum is calculated from
	 * the whole block of INFO_SIZE
	 */
3066 3067
	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
	btrfs_release_disk_super(disk_super);
3068

3069 3070
	disk_super = fs_info->super_copy;

3071 3072 3073
	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
		       BTRFS_FSID_SIZE));

3074
	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3075 3076 3077
		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
				fs_info->super_copy->metadata_uuid,
				BTRFS_FSID_SIZE));
3078
	}
3079

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	features = btrfs_super_flags(disk_super);
	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
		btrfs_set_super_flags(disk_super, features);
		btrfs_info(fs_info,
			"found metadata UUID change in progress flag, clearing");
	}

	memcpy(fs_info->super_for_commit, fs_info->super_copy,
	       sizeof(*fs_info->super_for_commit));
3090

3091
	ret = btrfs_validate_mount_super(fs_info);
D
David Sterba 已提交
3092
	if (ret) {
3093
		btrfs_err(fs_info, "superblock contains fatal errors");
D
David Sterba 已提交
3094
		err = -EINVAL;
3095
		goto fail_alloc;
D
David Sterba 已提交
3096 3097
	}

3098
	if (!btrfs_super_root(disk_super))
3099
		goto fail_alloc;
3100

L
liubo 已提交
3101
	/* check FS state, whether FS is broken. */
3102 3103
	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
L
liubo 已提交
3104

3105 3106 3107 3108 3109 3110
	/*
	 * In the long term, we'll store the compression type in the super
	 * block, and it'll be used for per file compression control.
	 */
	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;

3111
	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
Y
Yan Zheng 已提交
3112 3113
	if (ret) {
		err = ret;
3114
		goto fail_alloc;
Y
Yan Zheng 已提交
3115
	}
3116

3117 3118 3119
	features = btrfs_super_incompat_flags(disk_super) &
		~BTRFS_FEATURE_INCOMPAT_SUPP;
	if (features) {
3120 3121 3122
		btrfs_err(fs_info,
		    "cannot mount because of unsupported optional features (%llx)",
		    features);
3123
		err = -EINVAL;
3124
		goto fail_alloc;
3125 3126
	}

3127
	features = btrfs_super_incompat_flags(disk_super);
L
Li Zefan 已提交
3128
	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3129
	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
L
Li Zefan 已提交
3130
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
N
Nick Terrell 已提交
3131 3132
	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3133

3134
	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3135
		btrfs_info(fs_info, "has skinny extents");
3136

N
Naohiro Aota 已提交
3137 3138
	fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED);

3139 3140 3141 3142
	/*
	 * flag our filesystem as having big metadata blocks if
	 * they are bigger than the page size
	 */
3143
	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3144
		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3145 3146
			btrfs_info(fs_info,
				"flagging fs with big metadata feature");
3147 3148 3149
		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
	}

3150 3151
	nodesize = btrfs_super_nodesize(disk_super);
	sectorsize = btrfs_super_sectorsize(disk_super);
3152
	stripesize = sectorsize;
3153
	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3154
	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3155

3156 3157 3158
	/* Cache block sizes */
	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;
3159
	fs_info->sectorsize_bits = ilog2(sectorsize);
3160
	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3161
	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3162 3163
	fs_info->stripesize = stripesize;

3164 3165 3166 3167 3168
	/*
	 * mixed block groups end up with duplicate but slightly offset
	 * extent buffers for the same range.  It leads to corruptions
	 */
	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3169
	    (sectorsize != nodesize)) {
3170 3171 3172
		btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
			nodesize, sectorsize);
3173
		goto fail_alloc;
3174 3175
	}

3176 3177 3178 3179
	/*
	 * Needn't use the lock because there is no other task which will
	 * update the flag.
	 */
L
Li Zefan 已提交
3180
	btrfs_set_super_incompat_flags(disk_super, features);
3181

3182 3183
	features = btrfs_super_compat_ro_flags(disk_super) &
		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3184
	if (!sb_rdonly(sb) && features) {
3185 3186
		btrfs_err(fs_info,
	"cannot mount read-write because of unsupported optional features (%llx)",
3187
		       features);
3188
		err = -EINVAL;
3189
		goto fail_alloc;
3190
	}
3191

3192 3193 3194
	ret = btrfs_init_workqueues(fs_info, fs_devices);
	if (ret) {
		err = ret;
3195 3196
		goto fail_sb_buffer;
	}
3197

3198 3199
	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3200

3201 3202
	sb->s_blocksize = sectorsize;
	sb->s_blocksize_bits = blksize_bits(sectorsize);
3203
	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3204

3205
	mutex_lock(&fs_info->chunk_mutex);
3206
	ret = btrfs_read_sys_array(fs_info);
3207
	mutex_unlock(&fs_info->chunk_mutex);
3208
	if (ret) {
3209
		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3210
		goto fail_sb_buffer;
3211
	}
3212

3213
	generation = btrfs_super_chunk_root_generation(disk_super);
3214
	level = btrfs_super_chunk_root_level(disk_super);
3215

3216
	chunk_root->node = read_tree_block(fs_info,
3217
					   btrfs_super_chunk_root(disk_super),
3218
					   BTRFS_CHUNK_TREE_OBJECTID,
3219
					   generation, level, NULL);
3220 3221
	if (IS_ERR(chunk_root->node) ||
	    !extent_buffer_uptodate(chunk_root->node)) {
3222
		btrfs_err(fs_info, "failed to read chunk root");
3223 3224
		if (!IS_ERR(chunk_root->node))
			free_extent_buffer(chunk_root->node);
3225
		chunk_root->node = NULL;
C
Chris Mason 已提交
3226
		goto fail_tree_roots;
3227
	}
3228 3229
	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
	chunk_root->commit_root = btrfs_root_node(chunk_root);
3230

3231
	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3232 3233
			   offsetof(struct btrfs_header, chunk_tree_uuid),
			   BTRFS_UUID_SIZE);
3234

3235
	ret = btrfs_read_chunk_tree(fs_info);
Y
Yan Zheng 已提交
3236
	if (ret) {
3237
		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
C
Chris Mason 已提交
3238
		goto fail_tree_roots;
Y
Yan Zheng 已提交
3239
	}
3240

3241
	/*
3242 3243 3244 3245 3246
	 * At this point we know all the devices that make this filesystem,
	 * including the seed devices but we don't know yet if the replace
	 * target is required. So free devices that are not part of this
	 * filesystem but skip the replace traget device which is checked
	 * below in btrfs_init_dev_replace().
3247
	 */
3248
	btrfs_free_extra_devids(fs_devices);
3249
	if (!fs_devices->latest_bdev) {
3250
		btrfs_err(fs_info, "failed to read devices");
3251 3252 3253
		goto fail_tree_roots;
	}

3254
	ret = init_tree_roots(fs_info);
3255
	if (ret)
3256
		goto fail_tree_roots;
3257

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	/*
	 * If we have a uuid root and we're not being told to rescan we need to
	 * check the generation here so we can set the
	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
	 * transaction during a balance or the log replay without updating the
	 * uuid generation, and then if we crash we would rescan the uuid tree,
	 * even though it was perfectly fine.
	 */
	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);

3270 3271 3272 3273 3274 3275 3276
	ret = btrfs_verify_dev_extents(fs_info);
	if (ret) {
		btrfs_err(fs_info,
			  "failed to verify dev extents against chunks: %d",
			  ret);
		goto fail_block_groups;
	}
3277 3278
	ret = btrfs_recover_balance(fs_info);
	if (ret) {
3279
		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3280 3281 3282
		goto fail_block_groups;
	}

3283 3284
	ret = btrfs_init_dev_stats(fs_info);
	if (ret) {
3285
		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3286 3287 3288
		goto fail_block_groups;
	}

3289 3290
	ret = btrfs_init_dev_replace(fs_info);
	if (ret) {
3291
		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3292 3293 3294
		goto fail_block_groups;
	}

N
Naohiro Aota 已提交
3295 3296 3297 3298 3299 3300 3301
	ret = btrfs_check_zoned_mode(fs_info);
	if (ret) {
		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
			  ret);
		goto fail_block_groups;
	}

3302
	ret = btrfs_sysfs_add_fsid(fs_devices);
3303
	if (ret) {
3304 3305
		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
				ret);
3306 3307 3308
		goto fail_block_groups;
	}

3309
	ret = btrfs_sysfs_add_mounted(fs_info);
3310
	if (ret) {
3311
		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3312
		goto fail_fsdev_sysfs;
3313 3314 3315 3316
	}

	ret = btrfs_init_space_info(fs_info);
	if (ret) {
3317
		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3318
		goto fail_sysfs;
3319 3320
	}

3321
	ret = btrfs_read_block_groups(fs_info);
3322
	if (ret) {
3323
		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3324
		goto fail_sysfs;
3325
	}
3326

3327
	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3328
		btrfs_warn(fs_info,
3329
		"writable mount is not allowed due to too many missing devices");
3330
		goto fail_sysfs;
3331
	}
C
Chris Mason 已提交
3332

3333 3334
	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
					       "btrfs-cleaner");
3335
	if (IS_ERR(fs_info->cleaner_kthread))
3336
		goto fail_sysfs;
3337 3338 3339 3340

	fs_info->transaction_kthread = kthread_run(transaction_kthread,
						   tree_root,
						   "btrfs-transaction");
3341
	if (IS_ERR(fs_info->transaction_kthread))
3342
		goto fail_cleaner;
3343

3344
	if (!btrfs_test_opt(fs_info, NOSSD) &&
C
Chris Mason 已提交
3345
	    !fs_info->fs_devices->rotating) {
3346
		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
C
Chris Mason 已提交
3347 3348
	}

3349
	/*
3350
	 * Mount does not set all options immediately, we can do it now and do
3351 3352 3353
	 * not have to wait for transaction commit
	 */
	btrfs_apply_pending_changes(fs_info);
3354

3355
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3356
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3357
		ret = btrfsic_mount(fs_info, fs_devices,
3358
				    btrfs_test_opt(fs_info,
3359 3360 3361 3362
					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
				    1 : 0,
				    fs_info->check_integrity_print_mask);
		if (ret)
3363 3364 3365
			btrfs_warn(fs_info,
				"failed to initialize integrity check module: %d",
				ret);
3366 3367
	}
#endif
3368 3369 3370
	ret = btrfs_read_qgroup_config(fs_info);
	if (ret)
		goto fail_trans_kthread;
3371

J
Josef Bacik 已提交
3372 3373 3374
	if (btrfs_build_ref_tree(fs_info))
		btrfs_err(fs_info, "couldn't build ref tree");

3375 3376
	/* do not make disk changes in broken FS or nologreplay is given */
	if (btrfs_super_log_root(disk_super) != 0 &&
3377
	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3378
		btrfs_info(fs_info, "start tree-log replay");
3379
		ret = btrfs_replay_log(fs_info, fs_devices);
3380
		if (ret) {
3381
			err = ret;
3382
			goto fail_qgroup;
3383
		}
3384
	}
Z
Zheng Yan 已提交
3385

3386
	ret = btrfs_find_orphan_roots(fs_info);
3387
	if (ret)
3388
		goto fail_qgroup;
3389

D
David Sterba 已提交
3390
	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3391 3392
	if (IS_ERR(fs_info->fs_root)) {
		err = PTR_ERR(fs_info->fs_root);
3393
		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3394
		fs_info->fs_root = NULL;
3395
		goto fail_qgroup;
3396
	}
C
Chris Mason 已提交
3397

3398
	if (sb_rdonly(sb))
3399
		goto clear_oneshot;
I
Ilya Dryomov 已提交
3400

3401
	ret = btrfs_start_pre_rw_mount(fs_info);
3402
	if (ret) {
3403
		close_ctree(fs_info);
3404
		return ret;
3405
	}
3406
	btrfs_discard_resume(fs_info);
3407

3408 3409 3410
	if (fs_info->uuid_root &&
	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3411
		btrfs_info(fs_info, "checking UUID tree");
3412 3413
		ret = btrfs_check_uuid_tree(fs_info);
		if (ret) {
3414 3415
			btrfs_warn(fs_info,
				"failed to check the UUID tree: %d", ret);
3416
			close_ctree(fs_info);
3417 3418
			return ret;
		}
3419
	}
3420

3421
	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3422

3423 3424
clear_oneshot:
	btrfs_clear_oneshot_options(fs_info);
A
Al Viro 已提交
3425
	return 0;
C
Chris Mason 已提交
3426

3427 3428
fail_qgroup:
	btrfs_free_qgroup_config(fs_info);
3429 3430
fail_trans_kthread:
	kthread_stop(fs_info->transaction_kthread);
3431
	btrfs_cleanup_transaction(fs_info);
3432
	btrfs_free_fs_roots(fs_info);
3433
fail_cleaner:
3434
	kthread_stop(fs_info->cleaner_kthread);
3435 3436 3437 3438 3439 3440 3441

	/*
	 * make sure we're done with the btree inode before we stop our
	 * kthreads
	 */
	filemap_write_and_wait(fs_info->btree_inode->i_mapping);

3442
fail_sysfs:
3443
	btrfs_sysfs_remove_mounted(fs_info);
3444

3445 3446 3447
fail_fsdev_sysfs:
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);

3448
fail_block_groups:
J
Josef Bacik 已提交
3449
	btrfs_put_block_group_cache(fs_info);
C
Chris Mason 已提交
3450 3451

fail_tree_roots:
3452 3453
	if (fs_info->data_reloc_root)
		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3454
	free_root_pointers(fs_info, true);
3455
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
C
Chris Mason 已提交
3456

C
Chris Mason 已提交
3457
fail_sb_buffer:
L
Liu Bo 已提交
3458
	btrfs_stop_all_workers(fs_info);
3459
	btrfs_free_block_groups(fs_info);
3460
fail_alloc:
3461 3462
	btrfs_mapping_tree_free(&fs_info->mapping_tree);

3463
	iput(fs_info->btree_inode);
3464
fail:
3465
	btrfs_close_devices(fs_info->fs_devices);
A
Al Viro 已提交
3466
	return err;
3467
}
3468
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3469

3470
static void btrfs_end_super_write(struct bio *bio)
3471
{
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
	struct btrfs_device *device = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;
	struct page *page;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		page = bvec->bv_page;

		if (bio->bi_status) {
			btrfs_warn_rl_in_rcu(device->fs_info,
				"lost page write due to IO error on %s (%d)",
				rcu_str_deref(device->name),
				blk_status_to_errno(bio->bi_status));
			ClearPageUptodate(page);
			SetPageError(page);
			btrfs_dev_stat_inc_and_print(device,
						     BTRFS_DEV_STAT_WRITE_ERRS);
		} else {
			SetPageUptodate(page);
		}

		put_page(page);
		unlock_page(page);
3495
	}
3496 3497

	bio_put(bio);
3498 3499
}

3500 3501
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
						   int copy_num)
3502 3503
{
	struct btrfs_super_block *super;
3504
	struct page *page;
3505
	u64 bytenr, bytenr_orig;
3506
	struct address_space *mapping = bdev->bd_inode->i_mapping;
3507 3508 3509 3510 3511 3512 3513 3514
	int ret;

	bytenr_orig = btrfs_sb_offset(copy_num);
	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
	if (ret == -ENOENT)
		return ERR_PTR(-EINVAL);
	else if (ret)
		return ERR_PTR(ret);
3515 3516

	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3517
		return ERR_PTR(-EINVAL);
3518

3519 3520 3521
	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
	if (IS_ERR(page))
		return ERR_CAST(page);
3522

3523
	super = page_address(page);
3524 3525 3526 3527 3528
	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
		btrfs_release_disk_super(super);
		return ERR_PTR(-ENODATA);
	}

3529
	if (btrfs_super_bytenr(super) != bytenr_orig) {
3530 3531
		btrfs_release_disk_super(super);
		return ERR_PTR(-EINVAL);
3532 3533
	}

3534
	return super;
3535 3536 3537
}


3538
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
Y
Yan Zheng 已提交
3539
{
3540
	struct btrfs_super_block *super, *latest = NULL;
Y
Yan Zheng 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549
	int i;
	u64 transid = 0;

	/* we would like to check all the supers, but that would make
	 * a btrfs mount succeed after a mkfs from a different FS.
	 * So, we need to add a special mount option to scan for
	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
	 */
	for (i = 0; i < 1; i++) {
3550 3551
		super = btrfs_read_dev_one_super(bdev, i);
		if (IS_ERR(super))
Y
Yan Zheng 已提交
3552 3553 3554
			continue;

		if (!latest || btrfs_super_generation(super) > transid) {
3555 3556 3557 3558
			if (latest)
				btrfs_release_disk_super(super);

			latest = super;
Y
Yan Zheng 已提交
3559 3560 3561
			transid = btrfs_super_generation(super);
		}
	}
3562

3563
	return super;
Y
Yan Zheng 已提交
3564 3565
}

3566
/*
3567
 * Write superblock @sb to the @device. Do not wait for completion, all the
3568
 * pages we use for writing are locked.
3569
 *
3570 3571 3572
 * Write @max_mirrors copies of the superblock, where 0 means default that fit
 * the expected device size at commit time. Note that max_mirrors must be
 * same for write and wait phases.
3573
 *
3574
 * Return number of errors when page is not found or submission fails.
3575
 */
Y
Yan Zheng 已提交
3576
static int write_dev_supers(struct btrfs_device *device,
3577
			    struct btrfs_super_block *sb, int max_mirrors)
Y
Yan Zheng 已提交
3578
{
3579
	struct btrfs_fs_info *fs_info = device->fs_info;
3580
	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3581
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
Y
Yan Zheng 已提交
3582 3583
	int i;
	int errors = 0;
3584 3585
	int ret;
	u64 bytenr, bytenr_orig;
Y
Yan Zheng 已提交
3586 3587 3588 3589

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

3590 3591
	shash->tfm = fs_info->csum_shash;

Y
Yan Zheng 已提交
3592
	for (i = 0; i < max_mirrors; i++) {
3593 3594 3595 3596
		struct page *page;
		struct bio *bio;
		struct btrfs_super_block *disk_super;

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		bytenr_orig = btrfs_sb_offset(i);
		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
		if (ret == -ENOENT) {
			continue;
		} else if (ret < 0) {
			btrfs_err(device->fs_info,
				"couldn't get super block location for mirror %d",
				i);
			errors++;
			continue;
		}
3608 3609
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
Y
Yan Zheng 已提交
3610 3611
			break;

3612
		btrfs_set_super_bytenr(sb, bytenr_orig);
3613

3614 3615 3616
		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
				    sb->csum);
3617

3618 3619 3620
		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
					   GFP_NOFS);
		if (!page) {
3621
			btrfs_err(device->fs_info,
3622
			    "couldn't get super block page for bytenr %llu",
3623 3624
			    bytenr);
			errors++;
3625
			continue;
3626
		}
3627

3628 3629
		/* Bump the refcount for wait_dev_supers() */
		get_page(page);
Y
Yan Zheng 已提交
3630

3631 3632
		disk_super = page_address(page);
		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3633

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
		/*
		 * Directly use bios here instead of relying on the page cache
		 * to do I/O, so we don't lose the ability to do integrity
		 * checking.
		 */
		bio = bio_alloc(GFP_NOFS, 1);
		bio_set_dev(bio, device->bdev);
		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
		bio->bi_private = device;
		bio->bi_end_io = btrfs_end_super_write;
		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
			       offset_in_page(bytenr));
Y
Yan Zheng 已提交
3646

C
Chris Mason 已提交
3647
		/*
3648 3649 3650
		 * We FUA only the first super block.  The others we allow to
		 * go down lazy and there's a short window where the on-disk
		 * copies might still contain the older version.
C
Chris Mason 已提交
3651
		 */
3652
		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3653
		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3654 3655 3656
			bio->bi_opf |= REQ_FUA;

		btrfsic_submit_bio(bio);
3657
		btrfs_advance_sb_log(device, i);
Y
Yan Zheng 已提交
3658 3659 3660 3661
	}
	return errors < i ? 0 : -1;
}

3662 3663 3664 3665
/*
 * Wait for write completion of superblocks done by write_dev_supers,
 * @max_mirrors same for write and wait phases.
 *
3666
 * Return number of errors when page is not found or not marked up to
3667 3668 3669 3670 3671 3672
 * date.
 */
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
	int i;
	int errors = 0;
3673
	bool primary_failed = false;
3674
	int ret;
3675 3676 3677 3678 3679 3680
	u64 bytenr;

	if (max_mirrors == 0)
		max_mirrors = BTRFS_SUPER_MIRROR_MAX;

	for (i = 0; i < max_mirrors; i++) {
3681 3682
		struct page *page;

3683 3684 3685 3686 3687 3688 3689 3690 3691
		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
		if (ret == -ENOENT) {
			break;
		} else if (ret < 0) {
			errors++;
			if (i == 0)
				primary_failed = true;
			continue;
		}
3692 3693 3694 3695
		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
		    device->commit_total_bytes)
			break;

3696 3697 3698
		page = find_get_page(device->bdev->bd_inode->i_mapping,
				     bytenr >> PAGE_SHIFT);
		if (!page) {
3699
			errors++;
3700 3701
			if (i == 0)
				primary_failed = true;
3702 3703
			continue;
		}
3704 3705 3706
		/* Page is submitted locked and unlocked once the IO completes */
		wait_on_page_locked(page);
		if (PageError(page)) {
3707
			errors++;
3708 3709 3710
			if (i == 0)
				primary_failed = true;
		}
3711

3712 3713
		/* Drop our reference */
		put_page(page);
3714

3715 3716
		/* Drop the reference from the writing run */
		put_page(page);
3717 3718
	}

3719 3720 3721 3722 3723 3724 3725
	/* log error, force error return */
	if (primary_failed) {
		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
			  device->devid);
		return -1;
	}

3726 3727 3728
	return errors < i ? 0 : -1;
}

C
Chris Mason 已提交
3729 3730 3731 3732
/*
 * endio for the write_dev_flush, this will wake anyone waiting
 * for the barrier when it is done
 */
3733
static void btrfs_end_empty_barrier(struct bio *bio)
C
Chris Mason 已提交
3734
{
3735
	complete(bio->bi_private);
C
Chris Mason 已提交
3736 3737 3738
}

/*
3739 3740
 * Submit a flush request to the device if it supports it. Error handling is
 * done in the waiting counterpart.
C
Chris Mason 已提交
3741
 */
3742
static void write_dev_flush(struct btrfs_device *device)
C
Chris Mason 已提交
3743
{
3744
	struct request_queue *q = bdev_get_queue(device->bdev);
3745
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
3746

3747
	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3748
		return;
C
Chris Mason 已提交
3749

3750
	bio_reset(bio);
C
Chris Mason 已提交
3751
	bio->bi_end_io = btrfs_end_empty_barrier;
3752
	bio_set_dev(bio, device->bdev);
3753
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
C
Chris Mason 已提交
3754 3755 3756
	init_completion(&device->flush_wait);
	bio->bi_private = &device->flush_wait;

3757
	btrfsic_submit_bio(bio);
3758
	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3759
}
C
Chris Mason 已提交
3760

3761 3762 3763
/*
 * If the flush bio has been submitted by write_dev_flush, wait for it.
 */
3764
static blk_status_t wait_dev_flush(struct btrfs_device *device)
3765 3766
{
	struct bio *bio = device->flush_bio;
C
Chris Mason 已提交
3767

3768
	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3769
		return BLK_STS_OK;
C
Chris Mason 已提交
3770

3771
	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3772
	wait_for_completion_io(&device->flush_wait);
C
Chris Mason 已提交
3773

3774
	return bio->bi_status;
C
Chris Mason 已提交
3775 3776
}

3777
static int check_barrier_error(struct btrfs_fs_info *fs_info)
3778
{
3779
	if (!btrfs_check_rw_degradable(fs_info, NULL))
3780
		return -EIO;
C
Chris Mason 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	return 0;
}

/*
 * send an empty flush down to each device in parallel,
 * then wait for them
 */
static int barrier_all_devices(struct btrfs_fs_info *info)
{
	struct list_head *head;
	struct btrfs_device *dev;
3792
	int errors_wait = 0;
3793
	blk_status_t ret;
C
Chris Mason 已提交
3794

3795
	lockdep_assert_held(&info->fs_devices->device_list_mutex);
C
Chris Mason 已提交
3796 3797
	/* send down all the barriers */
	head = &info->fs_devices->devices;
3798
	list_for_each_entry(dev, head, dev_list) {
3799
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3800
			continue;
3801
		if (!dev->bdev)
C
Chris Mason 已提交
3802
			continue;
3803
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3804
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
3805 3806
			continue;

3807
		write_dev_flush(dev);
3808
		dev->last_flush_error = BLK_STS_OK;
C
Chris Mason 已提交
3809 3810 3811
	}

	/* wait for all the barriers */
3812
	list_for_each_entry(dev, head, dev_list) {
3813
		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3814
			continue;
C
Chris Mason 已提交
3815
		if (!dev->bdev) {
3816
			errors_wait++;
C
Chris Mason 已提交
3817 3818
			continue;
		}
3819
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
C
Chris Mason 已提交
3821 3822
			continue;

3823
		ret = wait_dev_flush(dev);
3824 3825
		if (ret) {
			dev->last_flush_error = ret;
3826 3827
			btrfs_dev_stat_inc_and_print(dev,
					BTRFS_DEV_STAT_FLUSH_ERRS);
3828
			errors_wait++;
3829 3830 3831
		}
	}

3832
	if (errors_wait) {
3833 3834 3835 3836 3837
		/*
		 * At some point we need the status of all disks
		 * to arrive at the volume status. So error checking
		 * is being pushed to a separate loop.
		 */
3838
		return check_barrier_error(info);
C
Chris Mason 已提交
3839 3840 3841 3842
	}
	return 0;
}

3843 3844
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
3845 3846
	int raid_type;
	int min_tolerated = INT_MAX;
3847

3848 3849
	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3850
		min_tolerated = min_t(int, min_tolerated,
3851 3852
				    btrfs_raid_array[BTRFS_RAID_SINGLE].
				    tolerated_failures);
3853

3854 3855 3856
	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
		if (raid_type == BTRFS_RAID_SINGLE)
			continue;
3857
		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3858
			continue;
3859
		min_tolerated = min_t(int, min_tolerated,
3860 3861 3862
				    btrfs_raid_array[raid_type].
				    tolerated_failures);
	}
3863

3864
	if (min_tolerated == INT_MAX) {
3865
		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3866 3867 3868 3869
		min_tolerated = 0;
	}

	return min_tolerated;
3870 3871
}

3872
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3873
{
3874
	struct list_head *head;
3875
	struct btrfs_device *dev;
3876
	struct btrfs_super_block *sb;
3877 3878 3879
	struct btrfs_dev_item *dev_item;
	int ret;
	int do_barriers;
3880 3881
	int max_errors;
	int total_errors = 0;
3882
	u64 flags;
3883

3884
	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3885 3886 3887 3888 3889 3890 3891 3892

	/*
	 * max_mirrors == 0 indicates we're from commit_transaction,
	 * not from fsync where the tree roots in fs_info have not
	 * been consistent on disk.
	 */
	if (max_mirrors == 0)
		backup_super_roots(fs_info);
3893

3894
	sb = fs_info->super_for_commit;
3895
	dev_item = &sb->dev_item;
3896

3897 3898 3899
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	head = &fs_info->fs_devices->devices;
	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
C
Chris Mason 已提交
3900

3901
	if (do_barriers) {
3902
		ret = barrier_all_devices(fs_info);
3903 3904
		if (ret) {
			mutex_unlock(
3905 3906 3907
				&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, ret,
					      "errors while submitting device barriers.");
3908 3909 3910
			return ret;
		}
	}
C
Chris Mason 已提交
3911

3912
	list_for_each_entry(dev, head, dev_list) {
3913 3914 3915 3916
		if (!dev->bdev) {
			total_errors++;
			continue;
		}
3917
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3918
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3919 3920
			continue;

Y
Yan Zheng 已提交
3921
		btrfs_set_stack_device_generation(dev_item, 0);
3922 3923
		btrfs_set_stack_device_type(dev_item, dev->type);
		btrfs_set_stack_device_id(dev_item, dev->devid);
3924
		btrfs_set_stack_device_total_bytes(dev_item,
3925
						   dev->commit_total_bytes);
3926 3927
		btrfs_set_stack_device_bytes_used(dev_item,
						  dev->commit_bytes_used);
3928 3929 3930 3931
		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3932 3933
		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
		       BTRFS_FSID_SIZE);
Y
Yan Zheng 已提交
3934

3935 3936 3937
		flags = btrfs_super_flags(sb);
		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);

3938 3939 3940 3941 3942 3943 3944 3945
		ret = btrfs_validate_write_super(fs_info, sb);
		if (ret < 0) {
			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
			btrfs_handle_fs_error(fs_info, -EUCLEAN,
				"unexpected superblock corruption detected");
			return -EUCLEAN;
		}

3946
		ret = write_dev_supers(dev, sb, max_mirrors);
3947 3948
		if (ret)
			total_errors++;
3949
	}
3950
	if (total_errors > max_errors) {
3951 3952 3953
		btrfs_err(fs_info, "%d errors while writing supers",
			  total_errors);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3954

3955
		/* FUA is masked off if unsupported and can't be the reason */
3956 3957 3958
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
3959
		return -EIO;
3960
	}
3961

Y
Yan Zheng 已提交
3962
	total_errors = 0;
3963
	list_for_each_entry(dev, head, dev_list) {
3964 3965
		if (!dev->bdev)
			continue;
3966
		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3967
		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3968 3969
			continue;

3970
		ret = wait_dev_supers(dev, max_mirrors);
Y
Yan Zheng 已提交
3971 3972
		if (ret)
			total_errors++;
3973
	}
3974
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3975
	if (total_errors > max_errors) {
3976 3977 3978
		btrfs_handle_fs_error(fs_info, -EIO,
				      "%d errors while writing supers",
				      total_errors);
3979
		return -EIO;
3980
	}
3981 3982 3983
	return 0;
}

3984 3985 3986
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
				  struct btrfs_root *root)
C
Chris Mason 已提交
3987
{
3988 3989
	bool drop_ref = false;

3990
	spin_lock(&fs_info->fs_roots_radix_lock);
C
Chris Mason 已提交
3991 3992
	radix_tree_delete(&fs_info->fs_roots_radix,
			  (unsigned long)root->root_key.objectid);
3993
	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3994
		drop_ref = true;
3995
	spin_unlock(&fs_info->fs_roots_radix_lock);
3996

L
Liu Bo 已提交
3997
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3998
		ASSERT(root->log_root == NULL);
L
Liu Bo 已提交
3999
		if (root->reloc_root) {
4000
			btrfs_put_root(root->reloc_root);
L
Liu Bo 已提交
4001 4002 4003
			root->reloc_root = NULL;
		}
	}
L
Liu Bo 已提交
4004

4005 4006
	if (drop_ref)
		btrfs_put_root(root);
C
Chris Mason 已提交
4007 4008
}

Y
Yan Zheng 已提交
4009
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4010
{
Y
Yan Zheng 已提交
4011 4012
	u64 root_objectid = 0;
	struct btrfs_root *gang[8];
4013 4014 4015
	int i = 0;
	int err = 0;
	unsigned int ret = 0;
4016

Y
Yan Zheng 已提交
4017
	while (1) {
4018
		spin_lock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4019 4020 4021
		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang));
4022
		if (!ret) {
4023
			spin_unlock(&fs_info->fs_roots_radix_lock);
Y
Yan Zheng 已提交
4024
			break;
4025
		}
4026
		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4027

Y
Yan Zheng 已提交
4028
		for (i = 0; i < ret; i++) {
4029 4030 4031 4032 4033 4034
			/* Avoid to grab roots in dead_roots */
			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
				gang[i] = NULL;
				continue;
			}
			/* grab all the search result for later use */
4035
			gang[i] = btrfs_grab_root(gang[i]);
4036
		}
4037
		spin_unlock(&fs_info->fs_roots_radix_lock);
4038

4039 4040 4041
		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
Y
Yan Zheng 已提交
4042
			root_objectid = gang[i]->root_key.objectid;
4043 4044
			err = btrfs_orphan_cleanup(gang[i]);
			if (err)
4045
				break;
4046
			btrfs_put_root(gang[i]);
Y
Yan Zheng 已提交
4047 4048 4049
		}
		root_objectid++;
	}
4050 4051 4052 4053

	/* release the uncleaned roots due to error */
	for (; i < ret; i++) {
		if (gang[i])
4054
			btrfs_put_root(gang[i]);
4055 4056
	}
	return err;
Y
Yan Zheng 已提交
4057
}
4058

4059
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4060
{
4061
	struct btrfs_root *root = fs_info->tree_root;
Y
Yan Zheng 已提交
4062
	struct btrfs_trans_handle *trans;
4063

4064
	mutex_lock(&fs_info->cleaner_mutex);
4065
	btrfs_run_delayed_iputs(fs_info);
4066 4067
	mutex_unlock(&fs_info->cleaner_mutex);
	wake_up_process(fs_info->cleaner_kthread);
4068 4069

	/* wait until ongoing cleanup work done */
4070 4071
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
4072

4073
	trans = btrfs_join_transaction(root);
4074 4075
	if (IS_ERR(trans))
		return PTR_ERR(trans);
4076
	return btrfs_commit_transaction(trans);
Y
Yan Zheng 已提交
4077 4078
}

4079
void __cold close_ctree(struct btrfs_fs_info *fs_info)
Y
Yan Zheng 已提交
4080 4081 4082
{
	int ret;

4083
	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4084 4085 4086 4087 4088 4089 4090
	/*
	 * We don't want the cleaner to start new transactions, add more delayed
	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
	 * because that frees the task_struct, and the transaction kthread might
	 * still try to wake up the cleaner.
	 */
	kthread_park(fs_info->cleaner_kthread);
Y
Yan Zheng 已提交
4091

4092
	/* wait for the qgroup rescan worker to stop */
4093
	btrfs_qgroup_wait_for_completion(fs_info, false);
4094

S
Stefan Behrens 已提交
4095 4096 4097 4098 4099
	/* wait for the uuid_scan task to finish */
	down(&fs_info->uuid_tree_rescan_sem);
	/* avoid complains from lockdep et al., set sem back to initial state */
	up(&fs_info->uuid_tree_rescan_sem);

4100
	/* pause restriper - we want to resume on mount */
4101
	btrfs_pause_balance(fs_info);
4102

4103 4104
	btrfs_dev_replace_suspend_for_unmount(fs_info);

4105
	btrfs_scrub_cancel(fs_info);
C
Chris Mason 已提交
4106 4107 4108 4109 4110 4111

	/* wait for any defraggers to finish */
	wait_event(fs_info->transaction_wait,
		   (atomic_read(&fs_info->defrag_running) == 0));

	/* clear out the rbtree of defraggable inodes */
4112
	btrfs_cleanup_defrag_inodes(fs_info);
C
Chris Mason 已提交
4113

4114
	cancel_work_sync(&fs_info->async_reclaim_work);
4115
	cancel_work_sync(&fs_info->async_data_reclaim_work);
4116

4117 4118 4119
	/* Cancel or finish ongoing discard work */
	btrfs_discard_cleanup(fs_info);

4120
	if (!sb_rdonly(fs_info->sb)) {
4121
		/*
4122 4123
		 * The cleaner kthread is stopped, so do one final pass over
		 * unused block groups.
4124
		 */
4125
		btrfs_delete_unused_bgs(fs_info);
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		/*
		 * There might be existing delayed inode workers still running
		 * and holding an empty delayed inode item. We must wait for
		 * them to complete first because they can create a transaction.
		 * This happens when someone calls btrfs_balance_delayed_items()
		 * and then a transaction commit runs the same delayed nodes
		 * before any delayed worker has done something with the nodes.
		 * We must wait for any worker here and not at transaction
		 * commit time since that could cause a deadlock.
		 * This is a very rare case.
		 */
		btrfs_flush_workqueue(fs_info->delayed_workers);

4140
		ret = btrfs_commit_super(fs_info);
L
liubo 已提交
4141
		if (ret)
4142
			btrfs_err(fs_info, "commit super ret %d", ret);
L
liubo 已提交
4143 4144
	}

4145 4146
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4147
		btrfs_error_commit_super(fs_info);
4148

A
Al Viro 已提交
4149 4150
	kthread_stop(fs_info->transaction_kthread);
	kthread_stop(fs_info->cleaner_kthread);
4151

4152
	ASSERT(list_empty(&fs_info->delayed_iputs));
4153
	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4154

4155 4156 4157 4158 4159
	if (btrfs_check_quota_leak(fs_info)) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		btrfs_err(fs_info, "qgroup reserved space leaked");
	}

4160
	btrfs_free_qgroup_config(fs_info);
4161
	ASSERT(list_empty(&fs_info->delalloc_roots));
4162

4163
	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4164
		btrfs_info(fs_info, "at unmount delalloc count %lld",
4165
		       percpu_counter_sum(&fs_info->delalloc_bytes));
C
Chris Mason 已提交
4166
	}
4167

J
Josef Bacik 已提交
4168 4169 4170 4171
	if (percpu_counter_sum(&fs_info->dio_bytes))
		btrfs_info(fs_info, "at unmount dio bytes count %lld",
			   percpu_counter_sum(&fs_info->dio_bytes));

4172
	btrfs_sysfs_remove_mounted(fs_info);
4173
	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4174

4175 4176
	btrfs_put_block_group_cache(fs_info);

4177 4178 4179 4180 4181
	/*
	 * we must make sure there is not any read request to
	 * submit after we stopping all workers.
	 */
	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4182 4183
	btrfs_stop_all_workers(fs_info);

4184
	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4185
	free_root_pointers(fs_info, true);
4186
	btrfs_free_fs_roots(fs_info);
4187

4188 4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * We must free the block groups after dropping the fs_roots as we could
	 * have had an IO error and have left over tree log blocks that aren't
	 * cleaned up until the fs roots are freed.  This makes the block group
	 * accounting appear to be wrong because there's pending reserved bytes,
	 * so make sure we do the block group cleanup afterwards.
	 */
	btrfs_free_block_groups(fs_info);

4197
	iput(fs_info->btree_inode);
4198

4199
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4200
	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4201
		btrfsic_unmount(fs_info->fs_devices);
4202 4203
#endif

4204
	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4205
	btrfs_close_devices(fs_info->fs_devices);
4206 4207
}

4208 4209
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
			  int atomic)
4210
{
4211
	int ret;
4212
	struct inode *btree_inode = buf->pages[0]->mapping->host;
4213

4214
	ret = extent_buffer_uptodate(buf);
4215 4216 4217 4218
	if (!ret)
		return ret;

	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4219 4220 4221
				    parent_transid, atomic);
	if (ret == -EAGAIN)
		return ret;
4222
	return !ret;
4223 4224 4225 4226
}

void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
4227
	struct btrfs_fs_info *fs_info = buf->fs_info;
4228
	u64 transid = btrfs_header_generation(buf);
4229
	int was_dirty;
4230

4231 4232 4233
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	/*
	 * This is a fast path so only do this check if we have sanity tests
4234
	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4235 4236
	 * outside of the sanity tests.
	 */
4237
	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4238 4239
		return;
#endif
4240
	btrfs_assert_tree_locked(buf);
4241
	if (transid != fs_info->generation)
J
Jeff Mahoney 已提交
4242
		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4243
			buf->start, transid, fs_info->generation);
4244
	was_dirty = set_extent_buffer_dirty(buf);
4245
	if (!was_dirty)
4246 4247 4248
		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
					 buf->len,
					 fs_info->dirty_metadata_batch);
4249
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4250 4251 4252 4253 4254 4255
	/*
	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
	 * but item data not updated.
	 * So here we should only check item pointers, not item data.
	 */
	if (btrfs_header_level(buf) == 0 &&
4256
	    btrfs_check_leaf_relaxed(buf)) {
4257
		btrfs_print_leaf(buf);
4258 4259 4260
		ASSERT(0);
	}
#endif
4261 4262
}

4263
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4264
					int flush_delayed)
4265 4266 4267 4268 4269
{
	/*
	 * looks as though older kernels can get into trouble with
	 * this code, they end up stuck in balance_dirty_pages forever
	 */
4270
	int ret;
4271 4272 4273 4274

	if (current->flags & PF_MEMALLOC)
		return;

4275
	if (flush_delayed)
4276
		btrfs_balance_delayed_items(fs_info);
4277

4278 4279 4280
	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
				     BTRFS_DIRTY_METADATA_THRESH,
				     fs_info->dirty_metadata_batch);
4281
	if (ret > 0) {
4282
		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4283 4284 4285
	}
}

4286
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
C
Chris Mason 已提交
4287
{
4288
	__btrfs_btree_balance_dirty(fs_info, 1);
4289
}
4290

4291
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4292
{
4293
	__btrfs_btree_balance_dirty(fs_info, 0);
C
Chris Mason 已提交
4294
}
4295

4296 4297
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
		      struct btrfs_key *first_key)
4298
{
4299
	return btree_read_extent_buffer_pages(buf, parent_transid,
4300
					      level, first_key);
4301
}
4302

4303
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4304
{
4305 4306 4307
	/* cleanup FS via transaction */
	btrfs_cleanup_transaction(fs_info);

4308
	mutex_lock(&fs_info->cleaner_mutex);
4309
	btrfs_run_delayed_iputs(fs_info);
4310
	mutex_unlock(&fs_info->cleaner_mutex);
L
liubo 已提交
4311

4312 4313
	down_write(&fs_info->cleanup_work_sem);
	up_write(&fs_info->cleanup_work_sem);
L
liubo 已提交
4314 4315
}

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *gang[8];
	u64 root_objectid = 0;
	int ret;

	spin_lock(&fs_info->fs_roots_radix_lock);
	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
					     (void **)gang, root_objectid,
					     ARRAY_SIZE(gang))) != 0) {
		int i;

		for (i = 0; i < ret; i++)
			gang[i] = btrfs_grab_root(gang[i]);
		spin_unlock(&fs_info->fs_roots_radix_lock);

		for (i = 0; i < ret; i++) {
			if (!gang[i])
				continue;
			root_objectid = gang[i]->root_key.objectid;
			btrfs_free_log(NULL, gang[i]);
			btrfs_put_root(gang[i]);
		}
		root_objectid++;
		spin_lock(&fs_info->fs_roots_radix_lock);
	}
	spin_unlock(&fs_info->fs_roots_radix_lock);
	btrfs_free_log_root_tree(NULL, fs_info);
}

4346
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
L
liubo 已提交
4347 4348 4349
{
	struct btrfs_ordered_extent *ordered;

4350
	spin_lock(&root->ordered_extent_lock);
4351 4352 4353 4354
	/*
	 * This will just short circuit the ordered completion stuff which will
	 * make sure the ordered extent gets properly cleaned up.
	 */
4355
	list_for_each_entry(ordered, &root->ordered_extents,
4356 4357
			    root_extent_list)
		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	spin_unlock(&root->ordered_extent_lock);
}

static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->ordered_root_lock);
	list_splice_init(&fs_info->ordered_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					ordered_root);
4373 4374
		list_move_tail(&root->ordered_root,
			       &fs_info->ordered_roots);
4375

4376
		spin_unlock(&fs_info->ordered_root_lock);
4377 4378
		btrfs_destroy_ordered_extents(root);

4379 4380
		cond_resched();
		spin_lock(&fs_info->ordered_root_lock);
4381 4382
	}
	spin_unlock(&fs_info->ordered_root_lock);
4383 4384 4385 4386 4387 4388 4389 4390

	/*
	 * We need this here because if we've been flipped read-only we won't
	 * get sync() from the umount, so we need to make sure any ordered
	 * extents that haven't had their dirty pages IO start writeout yet
	 * actually get run and error out properly.
	 */
	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
L
liubo 已提交
4391 4392
}

4393
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4394
				      struct btrfs_fs_info *fs_info)
L
liubo 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403
{
	struct rb_node *node;
	struct btrfs_delayed_ref_root *delayed_refs;
	struct btrfs_delayed_ref_node *ref;
	int ret = 0;

	delayed_refs = &trans->delayed_refs;

	spin_lock(&delayed_refs->lock);
4404
	if (atomic_read(&delayed_refs->num_entries) == 0) {
4405
		spin_unlock(&delayed_refs->lock);
4406
		btrfs_debug(fs_info, "delayed_refs has NO entry");
L
liubo 已提交
4407 4408 4409
		return ret;
	}

4410
	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4411
		struct btrfs_delayed_ref_head *head;
4412
		struct rb_node *n;
4413
		bool pin_bytes = false;
L
liubo 已提交
4414

4415 4416
		head = rb_entry(node, struct btrfs_delayed_ref_head,
				href_node);
4417
		if (btrfs_delayed_ref_lock(delayed_refs, head))
4418
			continue;
4419

4420
		spin_lock(&head->lock);
4421
		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4422 4423
			ref = rb_entry(n, struct btrfs_delayed_ref_node,
				       ref_node);
4424
			ref->in_tree = 0;
4425
			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4426
			RB_CLEAR_NODE(&ref->ref_node);
4427 4428
			if (!list_empty(&ref->add_list))
				list_del(&ref->add_list);
4429 4430
			atomic_dec(&delayed_refs->num_entries);
			btrfs_put_delayed_ref(ref);
4431
		}
4432 4433 4434
		if (head->must_insert_reserved)
			pin_bytes = true;
		btrfs_free_delayed_extent_op(head->extent_op);
4435
		btrfs_delete_ref_head(delayed_refs, head);
4436 4437 4438
		spin_unlock(&head->lock);
		spin_unlock(&delayed_refs->lock);
		mutex_unlock(&head->mutex);
L
liubo 已提交
4439

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
		if (pin_bytes) {
			struct btrfs_block_group *cache;

			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
			BUG_ON(!cache);

			spin_lock(&cache->space_info->lock);
			spin_lock(&cache->lock);
			cache->pinned += head->num_bytes;
			btrfs_space_info_update_bytes_pinned(fs_info,
				cache->space_info, head->num_bytes);
			cache->reserved -= head->num_bytes;
			cache->space_info->bytes_reserved -= head->num_bytes;
			spin_unlock(&cache->lock);
			spin_unlock(&cache->space_info->lock);
			percpu_counter_add_batch(
				&cache->space_info->total_bytes_pinned,
				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);

			btrfs_put_block_group(cache);

			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
				head->bytenr + head->num_bytes - 1);
		}
4464
		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4465
		btrfs_put_delayed_ref_head(head);
L
liubo 已提交
4466 4467 4468
		cond_resched();
		spin_lock(&delayed_refs->lock);
	}
4469
	btrfs_qgroup_destroy_extent_records(trans);
L
liubo 已提交
4470 4471 4472 4473 4474 4475

	spin_unlock(&delayed_refs->lock);

	return ret;
}

4476
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
L
liubo 已提交
4477 4478 4479 4480 4481 4482
{
	struct btrfs_inode *btrfs_inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

4483 4484
	spin_lock(&root->delalloc_lock);
	list_splice_init(&root->delalloc_inodes, &splice);
L
liubo 已提交
4485 4486

	while (!list_empty(&splice)) {
4487
		struct inode *inode = NULL;
4488 4489
		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
					       delalloc_inodes);
4490
		__btrfs_del_delalloc_inode(root, btrfs_inode);
4491
		spin_unlock(&root->delalloc_lock);
L
liubo 已提交
4492

4493 4494 4495 4496 4497 4498 4499 4500 4501
		/*
		 * Make sure we get a live inode and that it'll not disappear
		 * meanwhile.
		 */
		inode = igrab(&btrfs_inode->vfs_inode);
		if (inode) {
			invalidate_inode_pages2(inode->i_mapping);
			iput(inode);
		}
4502
		spin_lock(&root->delalloc_lock);
L
liubo 已提交
4503
	}
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	spin_unlock(&root->delalloc_lock);
}

static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
	struct btrfs_root *root;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	spin_lock(&fs_info->delalloc_root_lock);
	list_splice_init(&fs_info->delalloc_roots, &splice);
	while (!list_empty(&splice)) {
		root = list_first_entry(&splice, struct btrfs_root,
					 delalloc_root);
4519
		root = btrfs_grab_root(root);
4520 4521 4522 4523
		BUG_ON(!root);
		spin_unlock(&fs_info->delalloc_root_lock);

		btrfs_destroy_delalloc_inodes(root);
4524
		btrfs_put_root(root);
4525 4526 4527 4528

		spin_lock(&fs_info->delalloc_root_lock);
	}
	spin_unlock(&fs_info->delalloc_root_lock);
L
liubo 已提交
4529 4530
}

4531
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
L
liubo 已提交
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
					struct extent_io_tree *dirty_pages,
					int mark)
{
	int ret;
	struct extent_buffer *eb;
	u64 start = 0;
	u64 end;

	while (1) {
		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4542
					    mark, NULL);
L
liubo 已提交
4543 4544 4545
		if (ret)
			break;

4546
		clear_extent_bits(dirty_pages, start, end, mark);
L
liubo 已提交
4547
		while (start <= end) {
4548 4549
			eb = find_extent_buffer(fs_info, start);
			start += fs_info->nodesize;
4550
			if (!eb)
L
liubo 已提交
4551
				continue;
4552
			wait_on_extent_buffer_writeback(eb);
L
liubo 已提交
4553

4554 4555 4556 4557
			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
					       &eb->bflags))
				clear_extent_buffer_dirty(eb);
			free_extent_buffer_stale(eb);
L
liubo 已提交
4558 4559 4560 4561 4562 4563
		}
	}

	return ret;
}

4564
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4565
				       struct extent_io_tree *unpin)
L
liubo 已提交
4566 4567 4568 4569 4570 4571
{
	u64 start;
	u64 end;
	int ret;

	while (1) {
4572 4573
		struct extent_state *cached_state = NULL;

4574 4575 4576 4577 4578 4579 4580
		/*
		 * The btrfs_finish_extent_commit() may get the same range as
		 * ours between find_first_extent_bit and clear_extent_dirty.
		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
		 * the same extent range.
		 */
		mutex_lock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4581
		ret = find_first_extent_bit(unpin, 0, &start, &end,
4582
					    EXTENT_DIRTY, &cached_state);
4583 4584
		if (ret) {
			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4585
			break;
4586
		}
L
liubo 已提交
4587

4588 4589
		clear_extent_dirty(unpin, start, end, &cached_state);
		free_extent_state(cached_state);
4590
		btrfs_error_unpin_extent_range(fs_info, start, end);
4591
		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
L
liubo 已提交
4592 4593 4594 4595 4596 4597
		cond_resched();
	}

	return 0;
}

4598
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
{
	struct inode *inode;

	inode = cache->io_ctl.inode;
	if (inode) {
		invalidate_inode_pages2(inode->i_mapping);
		BTRFS_I(inode)->generation = 0;
		cache->io_ctl.inode = NULL;
		iput(inode);
	}
4609
	ASSERT(cache->io_ctl.pages == NULL);
4610 4611 4612 4613
	btrfs_put_block_group(cache);
}

void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4614
			     struct btrfs_fs_info *fs_info)
4615
{
4616
	struct btrfs_block_group *cache;
4617 4618 4619 4620

	spin_lock(&cur_trans->dirty_bgs_lock);
	while (!list_empty(&cur_trans->dirty_bgs)) {
		cache = list_first_entry(&cur_trans->dirty_bgs,
4621
					 struct btrfs_block_group,
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
					 dirty_list);

		if (!list_empty(&cache->io_list)) {
			spin_unlock(&cur_trans->dirty_bgs_lock);
			list_del_init(&cache->io_list);
			btrfs_cleanup_bg_io(cache);
			spin_lock(&cur_trans->dirty_bgs_lock);
		}

		list_del_init(&cache->dirty_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);

		spin_unlock(&cur_trans->dirty_bgs_lock);
		btrfs_put_block_group(cache);
J
Josef Bacik 已提交
4638
		btrfs_delayed_refs_rsv_release(fs_info, 1);
4639 4640 4641 4642
		spin_lock(&cur_trans->dirty_bgs_lock);
	}
	spin_unlock(&cur_trans->dirty_bgs_lock);

4643 4644 4645 4646
	/*
	 * Refer to the definition of io_bgs member for details why it's safe
	 * to use it without any locking
	 */
4647 4648
	while (!list_empty(&cur_trans->io_bgs)) {
		cache = list_first_entry(&cur_trans->io_bgs,
4649
					 struct btrfs_block_group,
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
					 io_list);

		list_del_init(&cache->io_list);
		spin_lock(&cache->lock);
		cache->disk_cache_state = BTRFS_DC_ERROR;
		spin_unlock(&cache->lock);
		btrfs_cleanup_bg_io(cache);
	}
}

4660
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4661
				   struct btrfs_fs_info *fs_info)
4662
{
4663 4664
	struct btrfs_device *dev, *tmp;

4665
	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4666 4667 4668
	ASSERT(list_empty(&cur_trans->dirty_bgs));
	ASSERT(list_empty(&cur_trans->io_bgs));

4669 4670 4671 4672 4673
	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
				 post_commit_list) {
		list_del_init(&dev->post_commit_list);
	}

4674
	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4675

4676
	cur_trans->state = TRANS_STATE_COMMIT_START;
4677
	wake_up(&fs_info->transaction_blocked_wait);
4678

4679
	cur_trans->state = TRANS_STATE_UNBLOCKED;
4680
	wake_up(&fs_info->transaction_wait);
4681

4682
	btrfs_destroy_delayed_inodes(fs_info);
4683

4684
	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4685
				     EXTENT_DIRTY);
4686
	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4687

4688 4689
	cur_trans->state =TRANS_STATE_COMPLETED;
	wake_up(&cur_trans->commit_wait);
4690 4691
}

4692
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
L
liubo 已提交
4693 4694 4695
{
	struct btrfs_transaction *t;

4696
	mutex_lock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
4697

4698 4699 4700
	spin_lock(&fs_info->trans_lock);
	while (!list_empty(&fs_info->trans_list)) {
		t = list_first_entry(&fs_info->trans_list,
4701 4702
				     struct btrfs_transaction, list);
		if (t->state >= TRANS_STATE_COMMIT_START) {
4703
			refcount_inc(&t->use_count);
4704
			spin_unlock(&fs_info->trans_lock);
4705
			btrfs_wait_for_commit(fs_info, t->transid);
4706
			btrfs_put_transaction(t);
4707
			spin_lock(&fs_info->trans_lock);
4708 4709
			continue;
		}
4710
		if (t == fs_info->running_transaction) {
4711
			t->state = TRANS_STATE_COMMIT_DOING;
4712
			spin_unlock(&fs_info->trans_lock);
4713 4714 4715 4716 4717 4718 4719
			/*
			 * We wait for 0 num_writers since we don't hold a trans
			 * handle open currently for this transaction.
			 */
			wait_event(t->writer_wait,
				   atomic_read(&t->num_writers) == 0);
		} else {
4720
			spin_unlock(&fs_info->trans_lock);
4721
		}
4722
		btrfs_cleanup_one_transaction(t, fs_info);
4723

4724 4725 4726
		spin_lock(&fs_info->trans_lock);
		if (t == fs_info->running_transaction)
			fs_info->running_transaction = NULL;
L
liubo 已提交
4727
		list_del_init(&t->list);
4728
		spin_unlock(&fs_info->trans_lock);
L
liubo 已提交
4729

4730
		btrfs_put_transaction(t);
4731
		trace_btrfs_transaction_commit(fs_info->tree_root);
4732
		spin_lock(&fs_info->trans_lock);
4733
	}
4734 4735
	spin_unlock(&fs_info->trans_lock);
	btrfs_destroy_all_ordered_extents(fs_info);
4736 4737
	btrfs_destroy_delayed_inodes(fs_info);
	btrfs_assert_delayed_root_empty(fs_info);
4738
	btrfs_destroy_all_delalloc_inodes(fs_info);
4739
	btrfs_drop_all_logs(fs_info);
4740
	mutex_unlock(&fs_info->transaction_kthread_mutex);
L
liubo 已提交
4741 4742 4743

	return 0;
}
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
{
	struct btrfs_path *path;
	int ret;
	struct extent_buffer *l;
	struct btrfs_key search_key;
	struct btrfs_key found_key;
	int slot;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
	search_key.type = -1;
	search_key.offset = (u64)-1;
	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
	if (ret < 0)
		goto error;
	BUG_ON(ret == 0); /* Corruption */
	if (path->slots[0] > 0) {
		slot = path->slots[0] - 1;
		l = path->nodes[0];
		btrfs_item_key_to_cpu(l, &found_key, slot);
		*objectid = max_t(u64, found_key.objectid,
				  BTRFS_FIRST_FREE_OBJECTID - 1);
	} else {
		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
	}
	ret = 0;
error:
	btrfs_free_path(path);
	return ret;
}

int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
{
	int ret;
	mutex_lock(&root->objectid_mutex);

	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
		btrfs_warn(root->fs_info,
			   "the objectid of root %llu reaches its highest value",
			   root->root_key.objectid);
		ret = -ENOSPC;
		goto out;
	}

	*objectid = ++root->highest_objectid;
	ret = 0;
out:
	mutex_unlock(&root->objectid_mutex);
	return ret;
}