t4_hw.c 229.0 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
38
#include "t4_values.h"
39
#include "t4fw_api.h"
40
#include "t4fw_version.h"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

/**
 *	t4_wait_op_done_val - wait until an operation is completed
 *	@adapter: the adapter performing the operation
 *	@reg: the register to check for completion
 *	@mask: a single-bit field within @reg that indicates completion
 *	@polarity: the value of the field when the operation is completed
 *	@attempts: number of check iterations
 *	@delay: delay in usecs between iterations
 *	@valp: where to store the value of the register at completion time
 *
 *	Wait until an operation is completed by checking a bit in a register
 *	up to @attempts times.  If @valp is not NULL the value of the register
 *	at the time it indicated completion is stored there.  Returns 0 if the
 *	operation completes and	-EAGAIN	otherwise.
 */
57 58
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			       int polarity, int attempts, int delay, u32 *valp)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
				  int polarity, int attempts, int delay)
{
	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
				   delay, NULL);
}

/**
 *	t4_set_reg_field - set a register field to a value
 *	@adapter: the adapter to program
 *	@addr: the register address
 *	@mask: specifies the portion of the register to modify
 *	@val: the new value for the register field
 *
 *	Sets a register field specified by the supplied mask to the
 *	given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void) t4_read_reg(adapter, addr);      /* flush */
}

/**
 *	t4_read_indirect - read indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect address
 *	@data_reg: register holding the value of the indirect register
 *	@vals: where the read register values are stored
 *	@nregs: how many indirect registers to read
 *	@start_idx: index of first indirect register to read
 *
 *	Reads registers that are accessed indirectly through an address/data
 *	register pair.
 */
V
Vipul Pandya 已提交
113
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 115
			     unsigned int data_reg, u32 *vals,
			     unsigned int nregs, unsigned int start_idx)
116 117 118 119 120 121 122 123
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/**
 *	t4_write_indirect - write indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect addresses
 *	@data_reg: register holding the value for the indirect registers
 *	@vals: values to write
 *	@nregs: how many indirect registers to write
 *	@start_idx: address of first indirect register to write
 *
 *	Writes a sequential block of registers that are accessed indirectly
 *	through an address/data register pair.
 */
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
		       unsigned int data_reg, const u32 *vals,
		       unsigned int nregs, unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx++);
		t4_write_reg(adap, data_reg, *vals++);
	}
}

146 147 148 149 150 151 152 153
/*
 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 * mechanism.  This guarantees that we get the real value even if we're
 * operating within a Virtual Machine and the Hypervisor is trapping our
 * Configuration Space accesses.
 */
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
{
154 155 156 157 158 159
	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);

	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		req |= ENABLE_F;
	else
		req |= T6_ENABLE_F;
160 161

	if (is_t4(adap->params.chip))
162
		req |= LOCALCFG_F;
163

164 165
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 167 168 169 170 171

	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
	 * Configuration Space read.  (None of the other fields matter when
	 * ENABLE is 0 so a simple register write is easier than a
	 * read-modify-write via t4_set_reg_field().)
	 */
172
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * t4_report_fw_error - report firmware error
 * @adap: the adapter
 *
 * The adapter firmware can indicate error conditions to the host.
 * If the firmware has indicated an error, print out the reason for
 * the firmware error.
 */
static void t4_report_fw_error(struct adapter *adap)
{
	static const char *const reason[] = {
		"Crash",                        /* PCIE_FW_EVAL_CRASH */
		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
		"Reserved",                     /* reserved */
	};
	u32 pcie_fw;

197 198
	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
	if (pcie_fw & PCIE_FW_ERR_F)
199
		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200
			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 202
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	dev_alert(adap->pdev_dev,
		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 224
		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
}

static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
	dev_err(adap->pdev_dev,
		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
		(unsigned long long)t4_read_reg64(adap, data_reg),
		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}

/**
242
 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 244 245 246 247 248
 *	@adap: the adapter
 *	@mbox: index of the mailbox to use
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
249
 *	@timeout: time to wait for command to finish before timing out
250 251 252 253 254 255 256 257 258 259 260 261 262 263
 *
 *	Sends the given command to FW through the selected mailbox and waits
 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
 *	store the FW's reply to the command.  The command and its optional
 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
 *	the response.  If sleeping is allowed we use progressive backoff
 *	otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
264 265
int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
			    int size, void *rpl, bool sleep_ok, int timeout)
266
{
J
Joe Perches 已提交
267
	static const int delay[] = {
268 269 270 271 272 273 274
		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
	};

	u32 v;
	u64 res;
	int i, ms, delay_idx;
	const __be64 *p = cmd;
275 276
	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277 278 279 280

	if ((size & 15) || size > MBOX_LEN)
		return -EINVAL;

D
Dimitris Michailidis 已提交
281 282 283 284 285 286 287
	/*
	 * If the device is off-line, as in EEH, commands will time out.
	 * Fail them early so we don't waste time waiting.
	 */
	if (adap->pdev->error_state != pci_channel_io_normal)
		return -EIO;

288
	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290
		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291 292 293 294 295 296 297

	if (v != MBOX_OWNER_DRV)
		return v ? -EBUSY : -ETIMEDOUT;

	for (i = 0; i < size; i += 8)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));

298
	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299 300 301 302 303
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

304
	for (i = 0; i < timeout; i += ms) {
305 306 307 308 309 310 311 312 313
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		v = t4_read_reg(adap, ctl_reg);
314 315
		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
			if (!(v & MBMSGVALID_F)) {
316 317 318 319 320
				t4_write_reg(adap, ctl_reg, 0);
				continue;
			}

			res = t4_read_reg64(adap, data_reg);
321
			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322
				fw_asrt(adap, data_reg);
323 324
				res = FW_CMD_RETVAL_V(EIO);
			} else if (rpl) {
325
				get_mbox_rpl(adap, rpl, size / 8, data_reg);
326
			}
327

328
			if (FW_CMD_RETVAL_G((int)res))
329 330
				dump_mbox(adap, mbox, data_reg);
			t4_write_reg(adap, ctl_reg, 0);
331
			return -FW_CMD_RETVAL_G((int)res);
332 333 334 335 336 337
		}
	}

	dump_mbox(adap, mbox, data_reg);
	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
338
	t4_report_fw_error(adap);
339 340 341
	return -ETIMEDOUT;
}

342 343
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
344
{
345 346
	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
				       FW_CMD_MAX_TIMEOUT);
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
static int t4_edc_err_read(struct adapter *adap, int idx)
{
	u32 edc_ecc_err_addr_reg;
	u32 rdata_reg;

	if (is_t4(adap->params.chip)) {
		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
		return 0;
	}
	if (idx != 0 && idx != 1) {
		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
		return 0;
	}

	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);

	CH_WARN(adap,
		"edc%d err addr 0x%x: 0x%x.\n",
		idx, edc_ecc_err_addr_reg,
		t4_read_reg(adap, edc_ecc_err_addr_reg));
	CH_WARN(adap,
		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
		rdata_reg,
		(unsigned long long)t4_read_reg64(adap, rdata_reg),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));

	return 0;
}

386 387 388
/**
 *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 *	@adap: the adapter
389
 *	@win: PCI-E Memory Window to use
390 391 392
 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 *	@addr: address within indicated memory type
 *	@len: amount of memory to transfer
393
 *	@hbuf: host memory buffer
394
 *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395 396
 *
 *	Reads/writes an [almost] arbitrary memory region in the firmware: the
397 398 399 400 401
 *	firmware memory address and host buffer must be aligned on 32-bit
 *	boudaries; the length may be arbitrary.  The memory is transferred as
 *	a raw byte sequence from/to the firmware's memory.  If this memory
 *	contains data structures which contain multi-byte integers, it's the
 *	caller's responsibility to perform appropriate byte order conversions.
402
 */
403
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404
		 u32 len, void *hbuf, int dir)
405
{
406 407
	u32 pos, offset, resid, memoffset;
	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408
	u32 *buf;
409

410
	/* Argument sanity checks ...
411
	 */
412
	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413
		return -EINVAL;
414
	buf = (u32 *)hbuf;
415

416 417 418 419 420 421 422
	/* It's convenient to be able to handle lengths which aren't a
	 * multiple of 32-bits because we often end up transferring files to
	 * the firmware.  So we'll handle that by normalizing the length here
	 * and then handling any residual transfer at the end.
	 */
	resid = len & 0x3;
	len -= resid;
423

S
Santosh Rastapur 已提交
424
	/* Offset into the region of memory which is being accessed
425 426
	 * MEM_EDC0 = 0
	 * MEM_EDC1 = 1
427 428
	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
429
	 */
430
	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
S
Santosh Rastapur 已提交
431 432 433
	if (mtype != MEM_MC1)
		memoffset = (mtype * (edc_size * 1024 * 1024));
	else {
434
		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435
						      MA_EXT_MEMORY0_BAR_A));
S
Santosh Rastapur 已提交
436 437
		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
	}
438 439 440 441

	/* Determine the PCIE_MEM_ACCESS_OFFSET */
	addr = addr + memoffset;

442 443 444 445 446 447 448
	/* Each PCI-E Memory Window is programmed with a window size -- or
	 * "aperture" -- which controls the granularity of its mapping onto
	 * adapter memory.  We need to grab that aperture in order to know
	 * how to use the specified window.  The window is also programmed
	 * with the base address of the Memory Window in BAR0's address
	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
	 * the address is relative to BAR0.
449
	 */
450
	mem_reg = t4_read_reg(adap,
451
			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452
						  win));
453 454
	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455 456
	if (is_t4(adap->params.chip))
		mem_base -= adap->t4_bar0;
457
	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458

459 460 461 462 463
	/* Calculate our initial PCI-E Memory Window Position and Offset into
	 * that Window.
	 */
	pos = addr & ~(mem_aperture-1);
	offset = addr - pos;
464

465 466 467 468 469
	/* Set up initial PCI-E Memory Window to cover the start of our
	 * transfer.  (Read it back to ensure that changes propagate before we
	 * attempt to use the new value.)
	 */
	t4_write_reg(adap,
470
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471 472
		     pos | win_pf);
	t4_read_reg(adap,
473
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474 475 476

	/* Transfer data to/from the adapter as long as there's an integral
	 * number of 32-bit transfers to complete.
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	 *
	 * A note on Endianness issues:
	 *
	 * The "register" reads and writes below from/to the PCI-E Memory
	 * Window invoke the standard adapter Big-Endian to PCI-E Link
	 * Little-Endian "swizzel."  As a result, if we have the following
	 * data in adapter memory:
	 *
	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
	 *     Address:      i+0  i+1  i+2  i+3
	 *
	 * Then a read of the adapter memory via the PCI-E Memory Window
	 * will yield:
	 *
	 *     x = readl(i)
	 *         31                  0
	 *         [ b3 | b2 | b1 | b0 ]
	 *
	 * If this value is stored into local memory on a Little-Endian system
	 * it will show up correctly in local memory as:
	 *
	 *     ( ..., b0, b1, b2, b3, ... )
	 *
	 * But on a Big-Endian system, the store will show up in memory
	 * incorrectly swizzled as:
	 *
	 *     ( ..., b3, b2, b1, b0, ... )
	 *
	 * So we need to account for this in the reads and writes to the
	 * PCI-E Memory Window below by undoing the register read/write
	 * swizzels.
508 509 510
	 */
	while (len > 0) {
		if (dir == T4_MEMORY_READ)
511 512
			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
						mem_base + offset));
513 514
		else
			t4_write_reg(adap, mem_base + offset,
515
				     (__force u32)cpu_to_le32(*buf++));
516 517 518 519 520 521 522 523
		offset += sizeof(__be32);
		len -= sizeof(__be32);

		/* If we've reached the end of our current window aperture,
		 * move the PCI-E Memory Window on to the next.  Note that
		 * doing this here after "len" may be 0 allows us to set up
		 * the PCI-E Memory Window for a possible final residual
		 * transfer below ...
524
		 */
525 526 527 528
		if (offset == mem_aperture) {
			pos += mem_aperture;
			offset = 0;
			t4_write_reg(adap,
529 530
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win), pos | win_pf);
531
			t4_read_reg(adap,
532 533
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win));
534 535 536
		}
	}

537 538 539 540 541 542 543
	/* If the original transfer had a length which wasn't a multiple of
	 * 32-bits, now's where we need to finish off the transfer of the
	 * residual amount.  The PCI-E Memory Window has already been moved
	 * above (if necessary) to cover this final transfer.
	 */
	if (resid) {
		union {
544
			u32 word;
545 546 547 548 549
			char byte[4];
		} last;
		unsigned char *bp;
		int i;

550
		if (dir == T4_MEMORY_READ) {
551 552 553
			last.word = le32_to_cpu(
					(__force __le32)t4_read_reg(adap,
						mem_base + offset));
554 555 556 557 558 559 560
			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
				bp[i] = last.byte[i];
		} else {
			last.word = *buf;
			for (i = resid; i < 4; i++)
				last.byte[i] = 0;
			t4_write_reg(adap, mem_base + offset,
561
				     (__force u32)cpu_to_le32(last.word));
562 563
		}
	}
564

565
	return 0;
566 567
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
/* Return the specified PCI-E Configuration Space register from our Physical
 * Function.  We try first via a Firmware LDST Command since we prefer to let
 * the firmware own all of these registers, but if that fails we go for it
 * directly ourselves.
 */
u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
{
	u32 val, ldst_addrspace;

	/* If fw_attach != 0, construct and send the Firmware LDST Command to
	 * retrieve the specified PCI-E Configuration Space register.
	 */
	struct fw_ldst_cmd ldst_cmd;
	int ret;

	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					       FW_CMD_REQUEST_F |
					       FW_CMD_READ_F |
					       ldst_addrspace);
	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
	ldst_cmd.u.pcie.ctrl_to_fn =
592
		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	ldst_cmd.u.pcie.r = reg;

	/* If the LDST Command succeeds, return the result, otherwise
	 * fall through to reading it directly ourselves ...
	 */
	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
			 &ldst_cmd);
	if (ret == 0)
		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
	else
		/* Read the desired Configuration Space register via the PCI-E
		 * Backdoor mechanism.
		 */
		t4_hw_pci_read_cfg4(adap, reg, &val);
	return val;
}

/* Get the window based on base passed to it.
 * Window aperture is currently unhandled, but there is no use case for it
 * right now
 */
static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
			 u32 memwin_base)
{
	u32 ret;

	if (is_t4(adap->params.chip)) {
		u32 bar0;

		/* Truncation intentional: we only read the bottom 32-bits of
		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
		 * mechanism to read BAR0 instead of using
		 * pci_resource_start() because we could be operating from
		 * within a Virtual Machine which is trapping our accesses to
		 * our Configuration Space and we need to set up the PCI-E
		 * Memory Window decoders with the actual addresses which will
		 * be coming across the PCI-E link.
		 */
		bar0 = t4_read_pcie_cfg4(adap, pci_base);
		bar0 &= pci_mask;
		adap->t4_bar0 = bar0;

		ret = bar0 + memwin_base;
	} else {
		/* For T5, only relative offset inside the PCIe BAR is passed */
		ret = memwin_base;
	}
	return ret;
}

/* Get the default utility window (win0) used by everyone */
u32 t4_get_util_window(struct adapter *adap)
{
	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
}

/* Set up memory window for accessing adapter memory ranges.  (Read
 * back MA register to ensure that changes propagate before we attempt
 * to use the new values.)
 */
void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
{
	t4_write_reg(adap,
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
		     memwin_base | BIR_V(0) |
		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
	t4_read_reg(adap,
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 *	t4_get_regs_len - return the size of the chips register set
 *	@adapter: the adapter
 *
 *	Returns the size of the chip's BAR0 register space.
 */
unsigned int t4_get_regs_len(struct adapter *adapter)
{
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);

	switch (chip_version) {
	case CHELSIO_T4:
		return T4_REGMAP_SIZE;

	case CHELSIO_T5:
679
	case CHELSIO_T6:
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		return T5_REGMAP_SIZE;
	}

	dev_err(adapter->pdev_dev,
		"Unsupported chip version %d\n", chip_version);
	return 0;
}

/**
 *	t4_get_regs - read chip registers into provided buffer
 *	@adap: the adapter
 *	@buf: register buffer
 *	@buf_size: size (in bytes) of register buffer
 *
 *	If the provided register buffer isn't large enough for the chip's
 *	full register range, the register dump will be truncated to the
 *	register buffer's size.
 */
void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
{
	static const unsigned int t4_reg_ranges[] = {
		0x1008, 0x1108,
702 703 704 705
		0x1180, 0x1184,
		0x1190, 0x1194,
		0x11a0, 0x11a4,
		0x11b0, 0x11b4,
706 707 708
		0x11fc, 0x123c,
		0x1300, 0x173c,
		0x1800, 0x18fc,
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
		0x3000, 0x30d8,
		0x30e0, 0x30e4,
		0x30ec, 0x5910,
		0x5920, 0x5924,
		0x5960, 0x5960,
		0x5968, 0x5968,
		0x5970, 0x5970,
		0x5978, 0x5978,
		0x5980, 0x5980,
		0x5988, 0x5988,
		0x5990, 0x5990,
		0x5998, 0x5998,
		0x59a0, 0x59d4,
		0x5a00, 0x5ae0,
		0x5ae8, 0x5ae8,
		0x5af0, 0x5af0,
		0x5af8, 0x5af8,
726 727 728 729
		0x6000, 0x6098,
		0x6100, 0x6150,
		0x6200, 0x6208,
		0x6240, 0x6248,
730 731
		0x6280, 0x62b0,
		0x62c0, 0x6338,
732 733 734
		0x6370, 0x638c,
		0x6400, 0x643c,
		0x6500, 0x6524,
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		0x6a00, 0x6a04,
		0x6a14, 0x6a38,
		0x6a60, 0x6a70,
		0x6a78, 0x6a78,
		0x6b00, 0x6b0c,
		0x6b1c, 0x6b84,
		0x6bf0, 0x6bf8,
		0x6c00, 0x6c0c,
		0x6c1c, 0x6c84,
		0x6cf0, 0x6cf8,
		0x6d00, 0x6d0c,
		0x6d1c, 0x6d84,
		0x6df0, 0x6df8,
		0x6e00, 0x6e0c,
		0x6e1c, 0x6e84,
		0x6ef0, 0x6ef8,
		0x6f00, 0x6f0c,
		0x6f1c, 0x6f84,
		0x6ff0, 0x6ff8,
		0x7000, 0x700c,
		0x701c, 0x7084,
		0x70f0, 0x70f8,
		0x7100, 0x710c,
		0x711c, 0x7184,
		0x71f0, 0x71f8,
		0x7200, 0x720c,
		0x721c, 0x7284,
		0x72f0, 0x72f8,
		0x7300, 0x730c,
		0x731c, 0x7384,
		0x73f0, 0x73f8,
		0x7400, 0x7450,
767
		0x7500, 0x7530,
768 769
		0x7600, 0x760c,
		0x7614, 0x761c,
770 771 772 773
		0x7680, 0x76cc,
		0x7700, 0x7798,
		0x77c0, 0x77fc,
		0x7900, 0x79fc,
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		0x7b00, 0x7b58,
		0x7b60, 0x7b84,
		0x7b8c, 0x7c38,
		0x7d00, 0x7d38,
		0x7d40, 0x7d80,
		0x7d8c, 0x7ddc,
		0x7de4, 0x7e04,
		0x7e10, 0x7e1c,
		0x7e24, 0x7e38,
		0x7e40, 0x7e44,
		0x7e4c, 0x7e78,
		0x7e80, 0x7ea4,
		0x7eac, 0x7edc,
		0x7ee8, 0x7efc,
		0x8dc0, 0x8e04,
		0x8e10, 0x8e1c,
790
		0x8e30, 0x8e78,
791 792 793 794 795 796
		0x8ea0, 0x8eb8,
		0x8ec0, 0x8f6c,
		0x8fc0, 0x9008,
		0x9010, 0x9058,
		0x9060, 0x9060,
		0x9068, 0x9074,
797
		0x90fc, 0x90fc,
798 799 800 801 802
		0x9400, 0x9408,
		0x9410, 0x9458,
		0x9600, 0x9600,
		0x9608, 0x9638,
		0x9640, 0x96bc,
803 804 805 806 807 808 809 810 811 812 813
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0x9fec,
814 815
		0xd004, 0xd004,
		0xd010, 0xd03c,
816 817
		0xdfc0, 0xdfe0,
		0xe000, 0xea7c,
818
		0xf000, 0x11190,
819 820
		0x19040, 0x1906c,
		0x19078, 0x19080,
821 822 823 824 825 826
		0x1908c, 0x190e4,
		0x190f0, 0x190f8,
		0x19100, 0x19110,
		0x19120, 0x19124,
		0x19150, 0x19194,
		0x1919c, 0x191b0,
827 828
		0x191d0, 0x191e8,
		0x19238, 0x1924c,
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		0x193f8, 0x1943c,
		0x1944c, 0x19474,
		0x19490, 0x194e0,
		0x194f0, 0x194f8,
		0x19800, 0x19c08,
		0x19c10, 0x19c90,
		0x19ca0, 0x19ce4,
		0x19cf0, 0x19d40,
		0x19d50, 0x19d94,
		0x19da0, 0x19de8,
		0x19df0, 0x19e40,
		0x19e50, 0x19e90,
		0x19ea0, 0x19f4c,
		0x1a000, 0x1a004,
		0x1a010, 0x1a06c,
		0x1a0b0, 0x1a0e4,
		0x1a0ec, 0x1a0f4,
		0x1a100, 0x1a108,
		0x1a114, 0x1a120,
		0x1a128, 0x1a130,
		0x1a138, 0x1a138,
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e28c,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e68c,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea8c,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee8c,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f28c,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f68c,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa8c,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe8c,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x20000, 0x2002c,
		0x20100, 0x2013c,
902 903 904
		0x20190, 0x201a0,
		0x201a8, 0x201b8,
		0x201c4, 0x201c8,
905
		0x20200, 0x20318,
906 907
		0x20400, 0x204b4,
		0x204c0, 0x20528,
908 909 910 911 912 913 914 915
		0x20540, 0x20614,
		0x21000, 0x21040,
		0x2104c, 0x21060,
		0x210c0, 0x210ec,
		0x21200, 0x21268,
		0x21270, 0x21284,
		0x212fc, 0x21388,
		0x21400, 0x21404,
916 917 918 919
		0x21500, 0x21500,
		0x21510, 0x21518,
		0x2152c, 0x21530,
		0x2153c, 0x2153c,
920 921
		0x21550, 0x21554,
		0x21600, 0x21600,
922 923 924 925
		0x21608, 0x2161c,
		0x21624, 0x21628,
		0x21630, 0x21634,
		0x2163c, 0x2163c,
926 927
		0x21700, 0x2171c,
		0x21780, 0x2178c,
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		0x21800, 0x21818,
		0x21820, 0x21828,
		0x21830, 0x21848,
		0x21850, 0x21854,
		0x21860, 0x21868,
		0x21870, 0x21870,
		0x21878, 0x21898,
		0x218a0, 0x218a8,
		0x218b0, 0x218c8,
		0x218d0, 0x218d4,
		0x218e0, 0x218e8,
		0x218f0, 0x218f0,
		0x218f8, 0x21a18,
		0x21a20, 0x21a28,
		0x21a30, 0x21a48,
		0x21a50, 0x21a54,
		0x21a60, 0x21a68,
		0x21a70, 0x21a70,
		0x21a78, 0x21a98,
		0x21aa0, 0x21aa8,
		0x21ab0, 0x21ac8,
		0x21ad0, 0x21ad4,
		0x21ae0, 0x21ae8,
		0x21af0, 0x21af0,
		0x21af8, 0x21c18,
		0x21c20, 0x21c20,
		0x21c28, 0x21c30,
		0x21c38, 0x21c38,
		0x21c80, 0x21c98,
		0x21ca0, 0x21ca8,
		0x21cb0, 0x21cc8,
		0x21cd0, 0x21cd4,
		0x21ce0, 0x21ce8,
		0x21cf0, 0x21cf0,
		0x21cf8, 0x21d7c,
963 964 965
		0x21e00, 0x21e04,
		0x22000, 0x2202c,
		0x22100, 0x2213c,
966 967 968
		0x22190, 0x221a0,
		0x221a8, 0x221b8,
		0x221c4, 0x221c8,
969
		0x22200, 0x22318,
970 971
		0x22400, 0x224b4,
		0x224c0, 0x22528,
972 973 974 975 976 977 978 979
		0x22540, 0x22614,
		0x23000, 0x23040,
		0x2304c, 0x23060,
		0x230c0, 0x230ec,
		0x23200, 0x23268,
		0x23270, 0x23284,
		0x232fc, 0x23388,
		0x23400, 0x23404,
980 981 982 983
		0x23500, 0x23500,
		0x23510, 0x23518,
		0x2352c, 0x23530,
		0x2353c, 0x2353c,
984 985
		0x23550, 0x23554,
		0x23600, 0x23600,
986 987 988 989
		0x23608, 0x2361c,
		0x23624, 0x23628,
		0x23630, 0x23634,
		0x2363c, 0x2363c,
990 991
		0x23700, 0x2371c,
		0x23780, 0x2378c,
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		0x23800, 0x23818,
		0x23820, 0x23828,
		0x23830, 0x23848,
		0x23850, 0x23854,
		0x23860, 0x23868,
		0x23870, 0x23870,
		0x23878, 0x23898,
		0x238a0, 0x238a8,
		0x238b0, 0x238c8,
		0x238d0, 0x238d4,
		0x238e0, 0x238e8,
		0x238f0, 0x238f0,
		0x238f8, 0x23a18,
		0x23a20, 0x23a28,
		0x23a30, 0x23a48,
		0x23a50, 0x23a54,
		0x23a60, 0x23a68,
		0x23a70, 0x23a70,
		0x23a78, 0x23a98,
		0x23aa0, 0x23aa8,
		0x23ab0, 0x23ac8,
		0x23ad0, 0x23ad4,
		0x23ae0, 0x23ae8,
		0x23af0, 0x23af0,
		0x23af8, 0x23c18,
		0x23c20, 0x23c20,
		0x23c28, 0x23c30,
		0x23c38, 0x23c38,
		0x23c80, 0x23c98,
		0x23ca0, 0x23ca8,
		0x23cb0, 0x23cc8,
		0x23cd0, 0x23cd4,
		0x23ce0, 0x23ce8,
		0x23cf0, 0x23cf0,
		0x23cf8, 0x23d7c,
1027 1028 1029
		0x23e00, 0x23e04,
		0x24000, 0x2402c,
		0x24100, 0x2413c,
1030 1031 1032
		0x24190, 0x241a0,
		0x241a8, 0x241b8,
		0x241c4, 0x241c8,
1033
		0x24200, 0x24318,
1034 1035
		0x24400, 0x244b4,
		0x244c0, 0x24528,
1036 1037 1038 1039 1040 1041 1042 1043
		0x24540, 0x24614,
		0x25000, 0x25040,
		0x2504c, 0x25060,
		0x250c0, 0x250ec,
		0x25200, 0x25268,
		0x25270, 0x25284,
		0x252fc, 0x25388,
		0x25400, 0x25404,
1044 1045 1046 1047
		0x25500, 0x25500,
		0x25510, 0x25518,
		0x2552c, 0x25530,
		0x2553c, 0x2553c,
1048 1049
		0x25550, 0x25554,
		0x25600, 0x25600,
1050 1051 1052 1053
		0x25608, 0x2561c,
		0x25624, 0x25628,
		0x25630, 0x25634,
		0x2563c, 0x2563c,
1054 1055
		0x25700, 0x2571c,
		0x25780, 0x2578c,
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		0x25800, 0x25818,
		0x25820, 0x25828,
		0x25830, 0x25848,
		0x25850, 0x25854,
		0x25860, 0x25868,
		0x25870, 0x25870,
		0x25878, 0x25898,
		0x258a0, 0x258a8,
		0x258b0, 0x258c8,
		0x258d0, 0x258d4,
		0x258e0, 0x258e8,
		0x258f0, 0x258f0,
		0x258f8, 0x25a18,
		0x25a20, 0x25a28,
		0x25a30, 0x25a48,
		0x25a50, 0x25a54,
		0x25a60, 0x25a68,
		0x25a70, 0x25a70,
		0x25a78, 0x25a98,
		0x25aa0, 0x25aa8,
		0x25ab0, 0x25ac8,
		0x25ad0, 0x25ad4,
		0x25ae0, 0x25ae8,
		0x25af0, 0x25af0,
		0x25af8, 0x25c18,
		0x25c20, 0x25c20,
		0x25c28, 0x25c30,
		0x25c38, 0x25c38,
		0x25c80, 0x25c98,
		0x25ca0, 0x25ca8,
		0x25cb0, 0x25cc8,
		0x25cd0, 0x25cd4,
		0x25ce0, 0x25ce8,
		0x25cf0, 0x25cf0,
		0x25cf8, 0x25d7c,
1091 1092 1093
		0x25e00, 0x25e04,
		0x26000, 0x2602c,
		0x26100, 0x2613c,
1094 1095 1096
		0x26190, 0x261a0,
		0x261a8, 0x261b8,
		0x261c4, 0x261c8,
1097
		0x26200, 0x26318,
1098 1099
		0x26400, 0x264b4,
		0x264c0, 0x26528,
1100 1101 1102 1103 1104 1105 1106 1107
		0x26540, 0x26614,
		0x27000, 0x27040,
		0x2704c, 0x27060,
		0x270c0, 0x270ec,
		0x27200, 0x27268,
		0x27270, 0x27284,
		0x272fc, 0x27388,
		0x27400, 0x27404,
1108 1109 1110 1111
		0x27500, 0x27500,
		0x27510, 0x27518,
		0x2752c, 0x27530,
		0x2753c, 0x2753c,
1112 1113
		0x27550, 0x27554,
		0x27600, 0x27600,
1114 1115 1116 1117
		0x27608, 0x2761c,
		0x27624, 0x27628,
		0x27630, 0x27634,
		0x2763c, 0x2763c,
1118 1119
		0x27700, 0x2771c,
		0x27780, 0x2778c,
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		0x27800, 0x27818,
		0x27820, 0x27828,
		0x27830, 0x27848,
		0x27850, 0x27854,
		0x27860, 0x27868,
		0x27870, 0x27870,
		0x27878, 0x27898,
		0x278a0, 0x278a8,
		0x278b0, 0x278c8,
		0x278d0, 0x278d4,
		0x278e0, 0x278e8,
		0x278f0, 0x278f0,
		0x278f8, 0x27a18,
		0x27a20, 0x27a28,
		0x27a30, 0x27a48,
		0x27a50, 0x27a54,
		0x27a60, 0x27a68,
		0x27a70, 0x27a70,
		0x27a78, 0x27a98,
		0x27aa0, 0x27aa8,
		0x27ab0, 0x27ac8,
		0x27ad0, 0x27ad4,
		0x27ae0, 0x27ae8,
		0x27af0, 0x27af0,
		0x27af8, 0x27c18,
		0x27c20, 0x27c20,
		0x27c28, 0x27c30,
		0x27c38, 0x27c38,
		0x27c80, 0x27c98,
		0x27ca0, 0x27ca8,
		0x27cb0, 0x27cc8,
		0x27cd0, 0x27cd4,
		0x27ce0, 0x27ce8,
		0x27cf0, 0x27cf0,
		0x27cf8, 0x27d7c,
1155
		0x27e00, 0x27e04,
1156 1157 1158
	};

	static const unsigned int t5_reg_ranges[] = {
1159 1160 1161 1162 1163 1164 1165 1166
		0x1008, 0x10c0,
		0x10cc, 0x10f8,
		0x1100, 0x1100,
		0x110c, 0x1148,
		0x1180, 0x1184,
		0x1190, 0x1194,
		0x11a0, 0x11a4,
		0x11b0, 0x11b4,
1167 1168 1169 1170
		0x11fc, 0x123c,
		0x1280, 0x173c,
		0x1800, 0x18fc,
		0x3000, 0x3028,
1171 1172
		0x3060, 0x30b0,
		0x30b8, 0x30d8,
1173 1174 1175 1176 1177
		0x30e0, 0x30fc,
		0x3140, 0x357c,
		0x35a8, 0x35cc,
		0x35ec, 0x35ec,
		0x3600, 0x5624,
1178 1179 1180
		0x56cc, 0x56ec,
		0x56f4, 0x5720,
		0x5728, 0x575c,
1181
		0x580c, 0x5814,
1182 1183 1184 1185 1186
		0x5890, 0x589c,
		0x58a4, 0x58ac,
		0x58b8, 0x58bc,
		0x5940, 0x59c8,
		0x59d0, 0x59dc,
1187
		0x59fc, 0x5a18,
1188 1189
		0x5a60, 0x5a70,
		0x5a80, 0x5a9c,
1190
		0x5b94, 0x5bfc,
1191 1192 1193 1194
		0x6000, 0x6020,
		0x6028, 0x6040,
		0x6058, 0x609c,
		0x60a8, 0x614c,
1195 1196
		0x7700, 0x7798,
		0x77c0, 0x78fc,
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		0x7b00, 0x7b58,
		0x7b60, 0x7b84,
		0x7b8c, 0x7c54,
		0x7d00, 0x7d38,
		0x7d40, 0x7d80,
		0x7d8c, 0x7ddc,
		0x7de4, 0x7e04,
		0x7e10, 0x7e1c,
		0x7e24, 0x7e38,
		0x7e40, 0x7e44,
		0x7e4c, 0x7e78,
		0x7e80, 0x7edc,
		0x7ee8, 0x7efc,
1210
		0x8dc0, 0x8de0,
1211 1212
		0x8df8, 0x8e04,
		0x8e10, 0x8e84,
1213
		0x8ea0, 0x8f84,
1214 1215 1216 1217 1218 1219 1220 1221
		0x8fc0, 0x9058,
		0x9060, 0x9060,
		0x9068, 0x90f8,
		0x9400, 0x9408,
		0x9410, 0x9470,
		0x9600, 0x9600,
		0x9608, 0x9638,
		0x9640, 0x96f4,
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0xa020,
1233 1234
		0xd004, 0xd004,
		0xd010, 0xd03c,
1235
		0xdfc0, 0xdfe0,
1236 1237 1238
		0xe000, 0x1106c,
		0x11074, 0x11088,
		0x1109c, 0x1117c,
1239 1240 1241
		0x11190, 0x11204,
		0x19040, 0x1906c,
		0x19078, 0x19080,
1242 1243 1244 1245 1246 1247
		0x1908c, 0x190e8,
		0x190f0, 0x190f8,
		0x19100, 0x19110,
		0x19120, 0x19124,
		0x19150, 0x19194,
		0x1919c, 0x191b0,
1248 1249
		0x191d0, 0x191e8,
		0x19238, 0x19290,
1250 1251 1252 1253
		0x193f8, 0x19428,
		0x19430, 0x19444,
		0x1944c, 0x1946c,
		0x19474, 0x19474,
1254 1255
		0x19490, 0x194cc,
		0x194f0, 0x194f8,
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		0x19c00, 0x19c08,
		0x19c10, 0x19c60,
		0x19c94, 0x19ce4,
		0x19cf0, 0x19d40,
		0x19d50, 0x19d94,
		0x19da0, 0x19de8,
		0x19df0, 0x19e10,
		0x19e50, 0x19e90,
		0x19ea0, 0x19f24,
		0x19f34, 0x19f34,
1266
		0x19f40, 0x19f50,
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		0x19f90, 0x19fb4,
		0x19fc4, 0x19fe4,
		0x1a000, 0x1a004,
		0x1a010, 0x1a06c,
		0x1a0b0, 0x1a0e4,
		0x1a0ec, 0x1a0f8,
		0x1a100, 0x1a108,
		0x1a114, 0x1a120,
		0x1a128, 0x1a130,
		0x1a138, 0x1a138,
1277 1278 1279
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e008, 0x1e00c,
1280 1281
		0x1e040, 0x1e044,
		0x1e04c, 0x1e04c,
1282 1283 1284 1285 1286 1287
		0x1e284, 0x1e290,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e408, 0x1e40c,
1288 1289
		0x1e440, 0x1e444,
		0x1e44c, 0x1e44c,
1290 1291 1292 1293 1294 1295
		0x1e684, 0x1e690,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e808, 0x1e80c,
1296 1297
		0x1e840, 0x1e844,
		0x1e84c, 0x1e84c,
1298 1299 1300 1301 1302 1303
		0x1ea84, 0x1ea90,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec08, 0x1ec0c,
1304 1305
		0x1ec40, 0x1ec44,
		0x1ec4c, 0x1ec4c,
1306 1307 1308 1309 1310 1311
		0x1ee84, 0x1ee90,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f008, 0x1f00c,
1312 1313
		0x1f040, 0x1f044,
		0x1f04c, 0x1f04c,
1314 1315 1316 1317 1318 1319
		0x1f284, 0x1f290,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f408, 0x1f40c,
1320 1321
		0x1f440, 0x1f444,
		0x1f44c, 0x1f44c,
1322 1323 1324 1325 1326 1327
		0x1f684, 0x1f690,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f808, 0x1f80c,
1328 1329
		0x1f840, 0x1f844,
		0x1f84c, 0x1f84c,
1330 1331 1332 1333 1334 1335
		0x1fa84, 0x1fa90,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc08, 0x1fc0c,
1336 1337
		0x1fc40, 0x1fc44,
		0x1fc4c, 0x1fc4c,
1338 1339 1340 1341 1342 1343
		0x1fe84, 0x1fe90,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x30000, 0x30030,
1344 1345
		0x30038, 0x30038,
		0x30040, 0x30040,
1346
		0x30100, 0x30144,
1347 1348 1349 1350
		0x30190, 0x301a0,
		0x301a8, 0x301b8,
		0x301c4, 0x301c8,
		0x301d0, 0x301d0,
1351
		0x30200, 0x30318,
1352 1353
		0x30400, 0x304b4,
		0x304c0, 0x3052c,
1354
		0x30540, 0x3061c,
1355 1356
		0x30800, 0x30828,
		0x30834, 0x30834,
1357 1358
		0x308c0, 0x30908,
		0x30910, 0x309ac,
1359 1360
		0x30a00, 0x30a14,
		0x30a1c, 0x30a2c,
1361
		0x30a44, 0x30a50,
1362 1363 1364
		0x30a74, 0x30a74,
		0x30a7c, 0x30afc,
		0x30b08, 0x30c24,
1365
		0x30d00, 0x30d00,
1366 1367
		0x30d08, 0x30d14,
		0x30d1c, 0x30d20,
1368 1369
		0x30d3c, 0x30d3c,
		0x30d48, 0x30d50,
1370 1371 1372
		0x31200, 0x3120c,
		0x31220, 0x31220,
		0x31240, 0x31240,
1373
		0x31600, 0x3160c,
1374
		0x31a00, 0x31a1c,
1375
		0x31e00, 0x31e20,
1376 1377 1378 1379 1380 1381
		0x31e38, 0x31e3c,
		0x31e80, 0x31e80,
		0x31e88, 0x31ea8,
		0x31eb0, 0x31eb4,
		0x31ec8, 0x31ed4,
		0x31fb8, 0x32004,
1382 1383 1384 1385 1386
		0x32200, 0x32200,
		0x32208, 0x32240,
		0x32248, 0x32280,
		0x32288, 0x322c0,
		0x322c8, 0x322fc,
1387 1388
		0x32600, 0x32630,
		0x32a00, 0x32abc,
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		0x32b00, 0x32b10,
		0x32b20, 0x32b30,
		0x32b40, 0x32b50,
		0x32b60, 0x32b70,
		0x33000, 0x33028,
		0x33030, 0x33048,
		0x33060, 0x33068,
		0x33070, 0x3309c,
		0x330f0, 0x33128,
		0x33130, 0x33148,
		0x33160, 0x33168,
		0x33170, 0x3319c,
		0x331f0, 0x33238,
		0x33240, 0x33240,
		0x33248, 0x33250,
		0x3325c, 0x33264,
		0x33270, 0x332b8,
		0x332c0, 0x332e4,
		0x332f8, 0x33338,
		0x33340, 0x33340,
		0x33348, 0x33350,
		0x3335c, 0x33364,
		0x33370, 0x333b8,
		0x333c0, 0x333e4,
		0x333f8, 0x33428,
		0x33430, 0x33448,
		0x33460, 0x33468,
		0x33470, 0x3349c,
		0x334f0, 0x33528,
		0x33530, 0x33548,
		0x33560, 0x33568,
		0x33570, 0x3359c,
		0x335f0, 0x33638,
		0x33640, 0x33640,
		0x33648, 0x33650,
		0x3365c, 0x33664,
		0x33670, 0x336b8,
		0x336c0, 0x336e4,
		0x336f8, 0x33738,
		0x33740, 0x33740,
		0x33748, 0x33750,
		0x3375c, 0x33764,
		0x33770, 0x337b8,
		0x337c0, 0x337e4,
1433 1434 1435 1436 1437
		0x337f8, 0x337fc,
		0x33814, 0x33814,
		0x3382c, 0x3382c,
		0x33880, 0x3388c,
		0x338e8, 0x338ec,
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		0x33900, 0x33928,
		0x33930, 0x33948,
		0x33960, 0x33968,
		0x33970, 0x3399c,
		0x339f0, 0x33a38,
		0x33a40, 0x33a40,
		0x33a48, 0x33a50,
		0x33a5c, 0x33a64,
		0x33a70, 0x33ab8,
		0x33ac0, 0x33ae4,
1448 1449 1450 1451 1452 1453 1454 1455
		0x33af8, 0x33b10,
		0x33b28, 0x33b28,
		0x33b3c, 0x33b50,
		0x33bf0, 0x33c10,
		0x33c28, 0x33c28,
		0x33c3c, 0x33c50,
		0x33cf0, 0x33cfc,
		0x34000, 0x34030,
1456 1457
		0x34038, 0x34038,
		0x34040, 0x34040,
1458
		0x34100, 0x34144,
1459 1460 1461 1462
		0x34190, 0x341a0,
		0x341a8, 0x341b8,
		0x341c4, 0x341c8,
		0x341d0, 0x341d0,
1463
		0x34200, 0x34318,
1464 1465
		0x34400, 0x344b4,
		0x344c0, 0x3452c,
1466
		0x34540, 0x3461c,
1467 1468
		0x34800, 0x34828,
		0x34834, 0x34834,
1469 1470
		0x348c0, 0x34908,
		0x34910, 0x349ac,
1471 1472
		0x34a00, 0x34a14,
		0x34a1c, 0x34a2c,
1473
		0x34a44, 0x34a50,
1474 1475 1476
		0x34a74, 0x34a74,
		0x34a7c, 0x34afc,
		0x34b08, 0x34c24,
1477
		0x34d00, 0x34d00,
1478 1479
		0x34d08, 0x34d14,
		0x34d1c, 0x34d20,
1480 1481
		0x34d3c, 0x34d3c,
		0x34d48, 0x34d50,
1482 1483 1484
		0x35200, 0x3520c,
		0x35220, 0x35220,
		0x35240, 0x35240,
1485
		0x35600, 0x3560c,
1486
		0x35a00, 0x35a1c,
1487
		0x35e00, 0x35e20,
1488 1489 1490 1491 1492 1493
		0x35e38, 0x35e3c,
		0x35e80, 0x35e80,
		0x35e88, 0x35ea8,
		0x35eb0, 0x35eb4,
		0x35ec8, 0x35ed4,
		0x35fb8, 0x36004,
1494 1495 1496 1497 1498
		0x36200, 0x36200,
		0x36208, 0x36240,
		0x36248, 0x36280,
		0x36288, 0x362c0,
		0x362c8, 0x362fc,
1499 1500
		0x36600, 0x36630,
		0x36a00, 0x36abc,
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		0x36b00, 0x36b10,
		0x36b20, 0x36b30,
		0x36b40, 0x36b50,
		0x36b60, 0x36b70,
		0x37000, 0x37028,
		0x37030, 0x37048,
		0x37060, 0x37068,
		0x37070, 0x3709c,
		0x370f0, 0x37128,
		0x37130, 0x37148,
		0x37160, 0x37168,
		0x37170, 0x3719c,
		0x371f0, 0x37238,
		0x37240, 0x37240,
		0x37248, 0x37250,
		0x3725c, 0x37264,
		0x37270, 0x372b8,
		0x372c0, 0x372e4,
		0x372f8, 0x37338,
		0x37340, 0x37340,
		0x37348, 0x37350,
		0x3735c, 0x37364,
		0x37370, 0x373b8,
		0x373c0, 0x373e4,
		0x373f8, 0x37428,
		0x37430, 0x37448,
		0x37460, 0x37468,
		0x37470, 0x3749c,
		0x374f0, 0x37528,
		0x37530, 0x37548,
		0x37560, 0x37568,
		0x37570, 0x3759c,
		0x375f0, 0x37638,
		0x37640, 0x37640,
		0x37648, 0x37650,
		0x3765c, 0x37664,
		0x37670, 0x376b8,
		0x376c0, 0x376e4,
		0x376f8, 0x37738,
		0x37740, 0x37740,
		0x37748, 0x37750,
		0x3775c, 0x37764,
		0x37770, 0x377b8,
		0x377c0, 0x377e4,
1545 1546 1547 1548 1549
		0x377f8, 0x377fc,
		0x37814, 0x37814,
		0x3782c, 0x3782c,
		0x37880, 0x3788c,
		0x378e8, 0x378ec,
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		0x37900, 0x37928,
		0x37930, 0x37948,
		0x37960, 0x37968,
		0x37970, 0x3799c,
		0x379f0, 0x37a38,
		0x37a40, 0x37a40,
		0x37a48, 0x37a50,
		0x37a5c, 0x37a64,
		0x37a70, 0x37ab8,
		0x37ac0, 0x37ae4,
1560 1561 1562 1563 1564 1565 1566 1567
		0x37af8, 0x37b10,
		0x37b28, 0x37b28,
		0x37b3c, 0x37b50,
		0x37bf0, 0x37c10,
		0x37c28, 0x37c28,
		0x37c3c, 0x37c50,
		0x37cf0, 0x37cfc,
		0x38000, 0x38030,
1568 1569
		0x38038, 0x38038,
		0x38040, 0x38040,
1570
		0x38100, 0x38144,
1571 1572 1573 1574
		0x38190, 0x381a0,
		0x381a8, 0x381b8,
		0x381c4, 0x381c8,
		0x381d0, 0x381d0,
1575
		0x38200, 0x38318,
1576 1577
		0x38400, 0x384b4,
		0x384c0, 0x3852c,
1578
		0x38540, 0x3861c,
1579 1580
		0x38800, 0x38828,
		0x38834, 0x38834,
1581 1582
		0x388c0, 0x38908,
		0x38910, 0x389ac,
1583 1584
		0x38a00, 0x38a14,
		0x38a1c, 0x38a2c,
1585
		0x38a44, 0x38a50,
1586 1587 1588
		0x38a74, 0x38a74,
		0x38a7c, 0x38afc,
		0x38b08, 0x38c24,
1589
		0x38d00, 0x38d00,
1590 1591
		0x38d08, 0x38d14,
		0x38d1c, 0x38d20,
1592 1593
		0x38d3c, 0x38d3c,
		0x38d48, 0x38d50,
1594 1595 1596
		0x39200, 0x3920c,
		0x39220, 0x39220,
		0x39240, 0x39240,
1597
		0x39600, 0x3960c,
1598
		0x39a00, 0x39a1c,
1599
		0x39e00, 0x39e20,
1600 1601 1602 1603 1604 1605
		0x39e38, 0x39e3c,
		0x39e80, 0x39e80,
		0x39e88, 0x39ea8,
		0x39eb0, 0x39eb4,
		0x39ec8, 0x39ed4,
		0x39fb8, 0x3a004,
1606 1607 1608 1609 1610
		0x3a200, 0x3a200,
		0x3a208, 0x3a240,
		0x3a248, 0x3a280,
		0x3a288, 0x3a2c0,
		0x3a2c8, 0x3a2fc,
1611 1612
		0x3a600, 0x3a630,
		0x3aa00, 0x3aabc,
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		0x3ab00, 0x3ab10,
		0x3ab20, 0x3ab30,
		0x3ab40, 0x3ab50,
		0x3ab60, 0x3ab70,
		0x3b000, 0x3b028,
		0x3b030, 0x3b048,
		0x3b060, 0x3b068,
		0x3b070, 0x3b09c,
		0x3b0f0, 0x3b128,
		0x3b130, 0x3b148,
		0x3b160, 0x3b168,
		0x3b170, 0x3b19c,
		0x3b1f0, 0x3b238,
		0x3b240, 0x3b240,
		0x3b248, 0x3b250,
		0x3b25c, 0x3b264,
		0x3b270, 0x3b2b8,
		0x3b2c0, 0x3b2e4,
		0x3b2f8, 0x3b338,
		0x3b340, 0x3b340,
		0x3b348, 0x3b350,
		0x3b35c, 0x3b364,
		0x3b370, 0x3b3b8,
		0x3b3c0, 0x3b3e4,
		0x3b3f8, 0x3b428,
		0x3b430, 0x3b448,
		0x3b460, 0x3b468,
		0x3b470, 0x3b49c,
		0x3b4f0, 0x3b528,
		0x3b530, 0x3b548,
		0x3b560, 0x3b568,
		0x3b570, 0x3b59c,
		0x3b5f0, 0x3b638,
		0x3b640, 0x3b640,
		0x3b648, 0x3b650,
		0x3b65c, 0x3b664,
		0x3b670, 0x3b6b8,
		0x3b6c0, 0x3b6e4,
		0x3b6f8, 0x3b738,
		0x3b740, 0x3b740,
		0x3b748, 0x3b750,
		0x3b75c, 0x3b764,
		0x3b770, 0x3b7b8,
		0x3b7c0, 0x3b7e4,
1657 1658 1659 1660 1661
		0x3b7f8, 0x3b7fc,
		0x3b814, 0x3b814,
		0x3b82c, 0x3b82c,
		0x3b880, 0x3b88c,
		0x3b8e8, 0x3b8ec,
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		0x3b900, 0x3b928,
		0x3b930, 0x3b948,
		0x3b960, 0x3b968,
		0x3b970, 0x3b99c,
		0x3b9f0, 0x3ba38,
		0x3ba40, 0x3ba40,
		0x3ba48, 0x3ba50,
		0x3ba5c, 0x3ba64,
		0x3ba70, 0x3bab8,
		0x3bac0, 0x3bae4,
1672 1673 1674 1675 1676 1677 1678 1679
		0x3baf8, 0x3bb10,
		0x3bb28, 0x3bb28,
		0x3bb3c, 0x3bb50,
		0x3bbf0, 0x3bc10,
		0x3bc28, 0x3bc28,
		0x3bc3c, 0x3bc50,
		0x3bcf0, 0x3bcfc,
		0x3c000, 0x3c030,
1680 1681
		0x3c038, 0x3c038,
		0x3c040, 0x3c040,
1682
		0x3c100, 0x3c144,
1683 1684 1685 1686
		0x3c190, 0x3c1a0,
		0x3c1a8, 0x3c1b8,
		0x3c1c4, 0x3c1c8,
		0x3c1d0, 0x3c1d0,
1687
		0x3c200, 0x3c318,
1688 1689
		0x3c400, 0x3c4b4,
		0x3c4c0, 0x3c52c,
1690
		0x3c540, 0x3c61c,
1691 1692
		0x3c800, 0x3c828,
		0x3c834, 0x3c834,
1693 1694
		0x3c8c0, 0x3c908,
		0x3c910, 0x3c9ac,
1695 1696
		0x3ca00, 0x3ca14,
		0x3ca1c, 0x3ca2c,
1697
		0x3ca44, 0x3ca50,
1698 1699 1700
		0x3ca74, 0x3ca74,
		0x3ca7c, 0x3cafc,
		0x3cb08, 0x3cc24,
1701
		0x3cd00, 0x3cd00,
1702 1703
		0x3cd08, 0x3cd14,
		0x3cd1c, 0x3cd20,
1704 1705
		0x3cd3c, 0x3cd3c,
		0x3cd48, 0x3cd50,
1706 1707 1708
		0x3d200, 0x3d20c,
		0x3d220, 0x3d220,
		0x3d240, 0x3d240,
1709
		0x3d600, 0x3d60c,
1710
		0x3da00, 0x3da1c,
1711
		0x3de00, 0x3de20,
1712 1713 1714 1715 1716 1717
		0x3de38, 0x3de3c,
		0x3de80, 0x3de80,
		0x3de88, 0x3dea8,
		0x3deb0, 0x3deb4,
		0x3dec8, 0x3ded4,
		0x3dfb8, 0x3e004,
1718 1719 1720 1721 1722
		0x3e200, 0x3e200,
		0x3e208, 0x3e240,
		0x3e248, 0x3e280,
		0x3e288, 0x3e2c0,
		0x3e2c8, 0x3e2fc,
1723 1724
		0x3e600, 0x3e630,
		0x3ea00, 0x3eabc,
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		0x3eb00, 0x3eb10,
		0x3eb20, 0x3eb30,
		0x3eb40, 0x3eb50,
		0x3eb60, 0x3eb70,
		0x3f000, 0x3f028,
		0x3f030, 0x3f048,
		0x3f060, 0x3f068,
		0x3f070, 0x3f09c,
		0x3f0f0, 0x3f128,
		0x3f130, 0x3f148,
		0x3f160, 0x3f168,
		0x3f170, 0x3f19c,
		0x3f1f0, 0x3f238,
		0x3f240, 0x3f240,
		0x3f248, 0x3f250,
		0x3f25c, 0x3f264,
		0x3f270, 0x3f2b8,
		0x3f2c0, 0x3f2e4,
		0x3f2f8, 0x3f338,
		0x3f340, 0x3f340,
		0x3f348, 0x3f350,
		0x3f35c, 0x3f364,
		0x3f370, 0x3f3b8,
		0x3f3c0, 0x3f3e4,
		0x3f3f8, 0x3f428,
		0x3f430, 0x3f448,
		0x3f460, 0x3f468,
		0x3f470, 0x3f49c,
		0x3f4f0, 0x3f528,
		0x3f530, 0x3f548,
		0x3f560, 0x3f568,
		0x3f570, 0x3f59c,
		0x3f5f0, 0x3f638,
		0x3f640, 0x3f640,
		0x3f648, 0x3f650,
		0x3f65c, 0x3f664,
		0x3f670, 0x3f6b8,
		0x3f6c0, 0x3f6e4,
		0x3f6f8, 0x3f738,
		0x3f740, 0x3f740,
		0x3f748, 0x3f750,
		0x3f75c, 0x3f764,
		0x3f770, 0x3f7b8,
		0x3f7c0, 0x3f7e4,
1769 1770 1771 1772 1773
		0x3f7f8, 0x3f7fc,
		0x3f814, 0x3f814,
		0x3f82c, 0x3f82c,
		0x3f880, 0x3f88c,
		0x3f8e8, 0x3f8ec,
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		0x3f900, 0x3f928,
		0x3f930, 0x3f948,
		0x3f960, 0x3f968,
		0x3f970, 0x3f99c,
		0x3f9f0, 0x3fa38,
		0x3fa40, 0x3fa40,
		0x3fa48, 0x3fa50,
		0x3fa5c, 0x3fa64,
		0x3fa70, 0x3fab8,
		0x3fac0, 0x3fae4,
1784 1785 1786 1787 1788 1789 1790 1791
		0x3faf8, 0x3fb10,
		0x3fb28, 0x3fb28,
		0x3fb3c, 0x3fb50,
		0x3fbf0, 0x3fc10,
		0x3fc28, 0x3fc28,
		0x3fc3c, 0x3fc50,
		0x3fcf0, 0x3fcfc,
		0x40000, 0x4000c,
1792 1793 1794 1795 1796
		0x40040, 0x40050,
		0x40060, 0x40068,
		0x4007c, 0x4008c,
		0x40094, 0x400b0,
		0x400c0, 0x40144,
1797
		0x40180, 0x4018c,
1798 1799 1800 1801 1802 1803 1804 1805
		0x40200, 0x40254,
		0x40260, 0x40264,
		0x40270, 0x40288,
		0x40290, 0x40298,
		0x402ac, 0x402c8,
		0x402d0, 0x402e0,
		0x402f0, 0x402f0,
		0x40300, 0x4033c,
1806 1807
		0x403f8, 0x403fc,
		0x41304, 0x413c4,
1808 1809
		0x41400, 0x4140c,
		0x41414, 0x4141c,
1810
		0x41480, 0x414d0,
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		0x44000, 0x44054,
		0x4405c, 0x44078,
		0x440c0, 0x44174,
		0x44180, 0x441ac,
		0x441b4, 0x441b8,
		0x441c0, 0x44254,
		0x4425c, 0x44278,
		0x442c0, 0x44374,
		0x44380, 0x443ac,
		0x443b4, 0x443b8,
		0x443c0, 0x44454,
		0x4445c, 0x44478,
		0x444c0, 0x44574,
		0x44580, 0x445ac,
		0x445b4, 0x445b8,
		0x445c0, 0x44654,
		0x4465c, 0x44678,
		0x446c0, 0x44774,
		0x44780, 0x447ac,
		0x447b4, 0x447b8,
		0x447c0, 0x44854,
		0x4485c, 0x44878,
		0x448c0, 0x44974,
		0x44980, 0x449ac,
		0x449b4, 0x449b8,
		0x449c0, 0x449fc,
		0x45000, 0x45004,
		0x45010, 0x45030,
		0x45040, 0x45060,
		0x45068, 0x45068,
1841 1842
		0x45080, 0x45084,
		0x450a0, 0x450b0,
1843 1844 1845 1846
		0x45200, 0x45204,
		0x45210, 0x45230,
		0x45240, 0x45260,
		0x45268, 0x45268,
1847 1848 1849
		0x45280, 0x45284,
		0x452a0, 0x452b0,
		0x460c0, 0x460e4,
1850 1851
		0x47000, 0x4703c,
		0x47044, 0x4708c,
1852
		0x47200, 0x47250,
1853 1854
		0x47400, 0x47408,
		0x47414, 0x47420,
1855 1856 1857
		0x47600, 0x47618,
		0x47800, 0x47814,
		0x48000, 0x4800c,
1858 1859 1860 1861 1862
		0x48040, 0x48050,
		0x48060, 0x48068,
		0x4807c, 0x4808c,
		0x48094, 0x480b0,
		0x480c0, 0x48144,
1863
		0x48180, 0x4818c,
1864 1865 1866 1867 1868 1869 1870 1871
		0x48200, 0x48254,
		0x48260, 0x48264,
		0x48270, 0x48288,
		0x48290, 0x48298,
		0x482ac, 0x482c8,
		0x482d0, 0x482e0,
		0x482f0, 0x482f0,
		0x48300, 0x4833c,
1872 1873
		0x483f8, 0x483fc,
		0x49304, 0x493c4,
1874 1875
		0x49400, 0x4940c,
		0x49414, 0x4941c,
1876
		0x49480, 0x494d0,
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
		0x4c000, 0x4c054,
		0x4c05c, 0x4c078,
		0x4c0c0, 0x4c174,
		0x4c180, 0x4c1ac,
		0x4c1b4, 0x4c1b8,
		0x4c1c0, 0x4c254,
		0x4c25c, 0x4c278,
		0x4c2c0, 0x4c374,
		0x4c380, 0x4c3ac,
		0x4c3b4, 0x4c3b8,
		0x4c3c0, 0x4c454,
		0x4c45c, 0x4c478,
		0x4c4c0, 0x4c574,
		0x4c580, 0x4c5ac,
		0x4c5b4, 0x4c5b8,
		0x4c5c0, 0x4c654,
		0x4c65c, 0x4c678,
		0x4c6c0, 0x4c774,
		0x4c780, 0x4c7ac,
		0x4c7b4, 0x4c7b8,
		0x4c7c0, 0x4c854,
		0x4c85c, 0x4c878,
		0x4c8c0, 0x4c974,
		0x4c980, 0x4c9ac,
		0x4c9b4, 0x4c9b8,
		0x4c9c0, 0x4c9fc,
		0x4d000, 0x4d004,
		0x4d010, 0x4d030,
		0x4d040, 0x4d060,
		0x4d068, 0x4d068,
1907 1908
		0x4d080, 0x4d084,
		0x4d0a0, 0x4d0b0,
1909 1910 1911 1912
		0x4d200, 0x4d204,
		0x4d210, 0x4d230,
		0x4d240, 0x4d260,
		0x4d268, 0x4d268,
1913 1914 1915
		0x4d280, 0x4d284,
		0x4d2a0, 0x4d2b0,
		0x4e0c0, 0x4e0e4,
1916 1917
		0x4f000, 0x4f03c,
		0x4f044, 0x4f08c,
1918
		0x4f200, 0x4f250,
1919 1920
		0x4f400, 0x4f408,
		0x4f414, 0x4f420,
1921 1922
		0x4f600, 0x4f618,
		0x4f800, 0x4f814,
1923 1924
		0x50000, 0x50084,
		0x50090, 0x500cc,
1925
		0x50400, 0x50400,
1926 1927
		0x50800, 0x50884,
		0x50890, 0x508cc,
1928 1929 1930 1931 1932
		0x50c00, 0x50c00,
		0x51000, 0x5101c,
		0x51300, 0x51308,
	};

1933
	static const unsigned int t6_reg_ranges[] = {
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		0x1008, 0x101c,
		0x1024, 0x10a8,
		0x10b4, 0x10f8,
		0x1100, 0x1114,
		0x111c, 0x112c,
		0x1138, 0x113c,
		0x1144, 0x114c,
		0x1180, 0x1184,
		0x1190, 0x1194,
		0x11a0, 0x11a4,
		0x11b0, 0x11b4,
1945 1946 1947 1948 1949 1950
		0x11fc, 0x1258,
		0x1280, 0x12d4,
		0x12d9, 0x12d9,
		0x12de, 0x12de,
		0x12e3, 0x12e3,
		0x12e8, 0x133c,
1951 1952
		0x1800, 0x18fc,
		0x3000, 0x302c,
1953 1954
		0x3060, 0x30b0,
		0x30b8, 0x30d8,
1955 1956 1957 1958 1959
		0x30e0, 0x30fc,
		0x3140, 0x357c,
		0x35a8, 0x35cc,
		0x35ec, 0x35ec,
		0x3600, 0x5624,
1960 1961 1962
		0x56cc, 0x56ec,
		0x56f4, 0x5720,
		0x5728, 0x575c,
1963
		0x580c, 0x5814,
1964 1965 1966
		0x5890, 0x589c,
		0x58a4, 0x58ac,
		0x58b8, 0x58bc,
1967 1968
		0x5940, 0x595c,
		0x5980, 0x598c,
1969 1970
		0x59b0, 0x59c8,
		0x59d0, 0x59dc,
1971 1972
		0x59fc, 0x5a18,
		0x5a60, 0x5a6c,
1973 1974
		0x5a80, 0x5a8c,
		0x5a94, 0x5a9c,
1975
		0x5b94, 0x5bfc,
1976 1977 1978 1979
		0x5c10, 0x5e48,
		0x5e50, 0x5e94,
		0x5ea0, 0x5eb0,
		0x5ec0, 0x5ec0,
1980
		0x5ec8, 0x5ed0,
1981 1982 1983 1984
		0x6000, 0x6020,
		0x6028, 0x6040,
		0x6058, 0x609c,
		0x60a8, 0x619c,
1985 1986 1987
		0x7700, 0x7798,
		0x77c0, 0x7880,
		0x78cc, 0x78fc,
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
		0x7b00, 0x7b58,
		0x7b60, 0x7b84,
		0x7b8c, 0x7c54,
		0x7d00, 0x7d38,
		0x7d40, 0x7d84,
		0x7d8c, 0x7ddc,
		0x7de4, 0x7e04,
		0x7e10, 0x7e1c,
		0x7e24, 0x7e38,
		0x7e40, 0x7e44,
		0x7e4c, 0x7e78,
		0x7e80, 0x7edc,
		0x7ee8, 0x7efc,
2001
		0x8dc0, 0x8de4,
2002 2003
		0x8df8, 0x8e04,
		0x8e10, 0x8e84,
2004
		0x8ea0, 0x8f88,
2005 2006 2007 2008
		0x8fb8, 0x9058,
		0x9060, 0x9060,
		0x9068, 0x90f8,
		0x9100, 0x9124,
2009
		0x9400, 0x9470,
2010 2011 2012 2013
		0x9600, 0x9600,
		0x9608, 0x9638,
		0x9640, 0x9704,
		0x9710, 0x971c,
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0xa020,
		0xd004, 0xd03c,
2026
		0xd100, 0xd118,
2027 2028 2029 2030 2031 2032 2033 2034 2035
		0xd200, 0xd214,
		0xd220, 0xd234,
		0xd240, 0xd254,
		0xd260, 0xd274,
		0xd280, 0xd294,
		0xd2a0, 0xd2b4,
		0xd2c0, 0xd2d4,
		0xd2e0, 0xd2f4,
		0xd300, 0xd31c,
2036 2037 2038
		0xdfc0, 0xdfe0,
		0xe000, 0xf008,
		0x11000, 0x11014,
2039 2040 2041 2042 2043
		0x11048, 0x1106c,
		0x11074, 0x11088,
		0x11098, 0x11120,
		0x1112c, 0x1117c,
		0x11190, 0x112e0,
2044
		0x11300, 0x1130c,
2045
		0x12000, 0x1206c,
2046 2047
		0x19040, 0x1906c,
		0x19078, 0x19080,
2048 2049 2050 2051 2052 2053
		0x1908c, 0x190e8,
		0x190f0, 0x190f8,
		0x19100, 0x19110,
		0x19120, 0x19124,
		0x19150, 0x19194,
		0x1919c, 0x191b0,
2054
		0x191d0, 0x191e8,
2055 2056
		0x19238, 0x19290,
		0x192a4, 0x192b0,
2057 2058 2059 2060 2061 2062 2063
		0x192bc, 0x192bc,
		0x19348, 0x1934c,
		0x193f8, 0x19418,
		0x19420, 0x19428,
		0x19430, 0x19444,
		0x1944c, 0x1946c,
		0x19474, 0x19474,
2064 2065
		0x19490, 0x194cc,
		0x194f0, 0x194f8,
2066 2067 2068 2069 2070 2071 2072
		0x19c00, 0x19c48,
		0x19c50, 0x19c80,
		0x19c94, 0x19c98,
		0x19ca0, 0x19cbc,
		0x19ce4, 0x19ce4,
		0x19cf0, 0x19cf8,
		0x19d00, 0x19d28,
2073
		0x19d50, 0x19d78,
2074 2075
		0x19d94, 0x19d98,
		0x19da0, 0x19dc8,
2076 2077
		0x19df0, 0x19e10,
		0x19e50, 0x19e6c,
2078 2079 2080 2081
		0x19ea0, 0x19ebc,
		0x19ec4, 0x19ef4,
		0x19f04, 0x19f2c,
		0x19f34, 0x19f34,
2082 2083
		0x19f40, 0x19f50,
		0x19f90, 0x19fac,
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		0x19fc4, 0x19fc8,
		0x19fd0, 0x19fe4,
		0x1a000, 0x1a004,
		0x1a010, 0x1a06c,
		0x1a0b0, 0x1a0e4,
		0x1a0ec, 0x1a0f8,
		0x1a100, 0x1a108,
		0x1a114, 0x1a120,
		0x1a128, 0x1a130,
		0x1a138, 0x1a138,
2094 2095 2096
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e008, 0x1e00c,
2097 2098
		0x1e040, 0x1e044,
		0x1e04c, 0x1e04c,
2099 2100 2101 2102 2103 2104
		0x1e284, 0x1e290,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e408, 0x1e40c,
2105 2106
		0x1e440, 0x1e444,
		0x1e44c, 0x1e44c,
2107 2108 2109 2110 2111 2112
		0x1e684, 0x1e690,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e808, 0x1e80c,
2113 2114
		0x1e840, 0x1e844,
		0x1e84c, 0x1e84c,
2115 2116 2117 2118 2119 2120
		0x1ea84, 0x1ea90,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec08, 0x1ec0c,
2121 2122
		0x1ec40, 0x1ec44,
		0x1ec4c, 0x1ec4c,
2123 2124 2125 2126 2127 2128
		0x1ee84, 0x1ee90,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f008, 0x1f00c,
2129 2130
		0x1f040, 0x1f044,
		0x1f04c, 0x1f04c,
2131 2132 2133 2134 2135 2136
		0x1f284, 0x1f290,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f408, 0x1f40c,
2137 2138
		0x1f440, 0x1f444,
		0x1f44c, 0x1f44c,
2139 2140 2141 2142 2143 2144
		0x1f684, 0x1f690,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f808, 0x1f80c,
2145 2146
		0x1f840, 0x1f844,
		0x1f84c, 0x1f84c,
2147 2148 2149 2150 2151 2152
		0x1fa84, 0x1fa90,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc08, 0x1fc0c,
2153 2154
		0x1fc40, 0x1fc44,
		0x1fc4c, 0x1fc4c,
2155 2156 2157 2158 2159
		0x1fe84, 0x1fe90,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		0x30000, 0x30030,
		0x30038, 0x30038,
		0x30040, 0x30040,
		0x30048, 0x30048,
		0x30050, 0x30050,
		0x3005c, 0x30060,
		0x30068, 0x30068,
		0x30070, 0x30070,
		0x30100, 0x30168,
		0x30190, 0x301a0,
		0x301a8, 0x301b8,
		0x301c4, 0x301c8,
		0x301d0, 0x301d0,
2173
		0x30200, 0x30320,
2174 2175
		0x30400, 0x304b4,
		0x304c0, 0x3052c,
2176
		0x30540, 0x3061c,
2177
		0x30800, 0x308a0,
2178 2179 2180
		0x308c0, 0x30908,
		0x30910, 0x309b8,
		0x30a00, 0x30a04,
2181 2182
		0x30a0c, 0x30a14,
		0x30a1c, 0x30a2c,
2183
		0x30a44, 0x30a50,
2184 2185 2186 2187 2188 2189 2190 2191
		0x30a74, 0x30a74,
		0x30a7c, 0x30afc,
		0x30b08, 0x30c24,
		0x30d00, 0x30d14,
		0x30d1c, 0x30d3c,
		0x30d44, 0x30d4c,
		0x30d54, 0x30d74,
		0x30d7c, 0x30d7c,
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		0x30de0, 0x30de0,
		0x30e00, 0x30ed4,
		0x30f00, 0x30fa4,
		0x30fc0, 0x30fc4,
		0x31000, 0x31004,
		0x31080, 0x310fc,
		0x31208, 0x31220,
		0x3123c, 0x31254,
		0x31300, 0x31300,
		0x31308, 0x3131c,
		0x31338, 0x3133c,
		0x31380, 0x31380,
		0x31388, 0x313a8,
		0x313b4, 0x313b4,
		0x31400, 0x31420,
		0x31438, 0x3143c,
		0x31480, 0x31480,
		0x314a8, 0x314a8,
		0x314b0, 0x314b4,
		0x314c8, 0x314d4,
		0x31a40, 0x31a4c,
		0x31af0, 0x31b20,
		0x31b38, 0x31b3c,
		0x31b80, 0x31b80,
		0x31ba8, 0x31ba8,
		0x31bb0, 0x31bb4,
		0x31bc8, 0x31bd4,
		0x32140, 0x3218c,
2220 2221
		0x321f0, 0x321f4,
		0x32200, 0x32200,
2222 2223 2224 2225 2226 2227 2228 2229
		0x32218, 0x32218,
		0x32400, 0x32400,
		0x32408, 0x3241c,
		0x32618, 0x32620,
		0x32664, 0x32664,
		0x326a8, 0x326a8,
		0x326ec, 0x326ec,
		0x32a00, 0x32abc,
2230 2231 2232
		0x32b00, 0x32b38,
		0x32b40, 0x32b58,
		0x32b60, 0x32b78,
2233 2234 2235 2236
		0x32c00, 0x32c00,
		0x32c08, 0x32c3c,
		0x32e00, 0x32e2c,
		0x32f00, 0x32f2c,
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
		0x33000, 0x3302c,
		0x33034, 0x33050,
		0x33058, 0x33058,
		0x33060, 0x3308c,
		0x3309c, 0x330ac,
		0x330c0, 0x330c0,
		0x330c8, 0x330d0,
		0x330d8, 0x330e0,
		0x330ec, 0x3312c,
		0x33134, 0x33150,
		0x33158, 0x33158,
		0x33160, 0x3318c,
		0x3319c, 0x331ac,
		0x331c0, 0x331c0,
		0x331c8, 0x331d0,
		0x331d8, 0x331e0,
		0x331ec, 0x33290,
		0x33298, 0x332c4,
		0x332e4, 0x33390,
		0x33398, 0x333c4,
		0x333e4, 0x3342c,
		0x33434, 0x33450,
		0x33458, 0x33458,
		0x33460, 0x3348c,
		0x3349c, 0x334ac,
		0x334c0, 0x334c0,
		0x334c8, 0x334d0,
		0x334d8, 0x334e0,
		0x334ec, 0x3352c,
		0x33534, 0x33550,
		0x33558, 0x33558,
		0x33560, 0x3358c,
		0x3359c, 0x335ac,
		0x335c0, 0x335c0,
		0x335c8, 0x335d0,
		0x335d8, 0x335e0,
		0x335ec, 0x33690,
		0x33698, 0x336c4,
		0x336e4, 0x33790,
		0x33798, 0x337c4,
2277 2278 2279 2280 2281 2282
		0x337e4, 0x337fc,
		0x33814, 0x33814,
		0x33854, 0x33868,
		0x33880, 0x3388c,
		0x338c0, 0x338d0,
		0x338e8, 0x338ec,
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		0x33900, 0x3392c,
		0x33934, 0x33950,
		0x33958, 0x33958,
		0x33960, 0x3398c,
		0x3399c, 0x339ac,
		0x339c0, 0x339c0,
		0x339c8, 0x339d0,
		0x339d8, 0x339e0,
		0x339ec, 0x33a90,
		0x33a98, 0x33ac4,
2293
		0x33ae4, 0x33b10,
2294 2295
		0x33b24, 0x33b28,
		0x33b38, 0x33b50,
2296
		0x33bf0, 0x33c10,
2297 2298
		0x33c24, 0x33c28,
		0x33c38, 0x33c50,
2299
		0x33cf0, 0x33cfc,
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		0x34000, 0x34030,
		0x34038, 0x34038,
		0x34040, 0x34040,
		0x34048, 0x34048,
		0x34050, 0x34050,
		0x3405c, 0x34060,
		0x34068, 0x34068,
		0x34070, 0x34070,
		0x34100, 0x34168,
		0x34190, 0x341a0,
		0x341a8, 0x341b8,
		0x341c4, 0x341c8,
		0x341d0, 0x341d0,
2313
		0x34200, 0x34320,
2314 2315
		0x34400, 0x344b4,
		0x344c0, 0x3452c,
2316
		0x34540, 0x3461c,
2317
		0x34800, 0x348a0,
2318 2319 2320
		0x348c0, 0x34908,
		0x34910, 0x349b8,
		0x34a00, 0x34a04,
2321 2322
		0x34a0c, 0x34a14,
		0x34a1c, 0x34a2c,
2323
		0x34a44, 0x34a50,
2324 2325 2326 2327 2328 2329 2330 2331
		0x34a74, 0x34a74,
		0x34a7c, 0x34afc,
		0x34b08, 0x34c24,
		0x34d00, 0x34d14,
		0x34d1c, 0x34d3c,
		0x34d44, 0x34d4c,
		0x34d54, 0x34d74,
		0x34d7c, 0x34d7c,
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
		0x34de0, 0x34de0,
		0x34e00, 0x34ed4,
		0x34f00, 0x34fa4,
		0x34fc0, 0x34fc4,
		0x35000, 0x35004,
		0x35080, 0x350fc,
		0x35208, 0x35220,
		0x3523c, 0x35254,
		0x35300, 0x35300,
		0x35308, 0x3531c,
		0x35338, 0x3533c,
		0x35380, 0x35380,
		0x35388, 0x353a8,
		0x353b4, 0x353b4,
		0x35400, 0x35420,
		0x35438, 0x3543c,
		0x35480, 0x35480,
		0x354a8, 0x354a8,
		0x354b0, 0x354b4,
		0x354c8, 0x354d4,
		0x35a40, 0x35a4c,
		0x35af0, 0x35b20,
		0x35b38, 0x35b3c,
		0x35b80, 0x35b80,
		0x35ba8, 0x35ba8,
		0x35bb0, 0x35bb4,
		0x35bc8, 0x35bd4,
		0x36140, 0x3618c,
2360 2361
		0x361f0, 0x361f4,
		0x36200, 0x36200,
2362 2363 2364 2365 2366 2367 2368 2369
		0x36218, 0x36218,
		0x36400, 0x36400,
		0x36408, 0x3641c,
		0x36618, 0x36620,
		0x36664, 0x36664,
		0x366a8, 0x366a8,
		0x366ec, 0x366ec,
		0x36a00, 0x36abc,
2370 2371 2372
		0x36b00, 0x36b38,
		0x36b40, 0x36b58,
		0x36b60, 0x36b78,
2373 2374 2375 2376
		0x36c00, 0x36c00,
		0x36c08, 0x36c3c,
		0x36e00, 0x36e2c,
		0x36f00, 0x36f2c,
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
		0x37000, 0x3702c,
		0x37034, 0x37050,
		0x37058, 0x37058,
		0x37060, 0x3708c,
		0x3709c, 0x370ac,
		0x370c0, 0x370c0,
		0x370c8, 0x370d0,
		0x370d8, 0x370e0,
		0x370ec, 0x3712c,
		0x37134, 0x37150,
		0x37158, 0x37158,
		0x37160, 0x3718c,
		0x3719c, 0x371ac,
		0x371c0, 0x371c0,
		0x371c8, 0x371d0,
		0x371d8, 0x371e0,
		0x371ec, 0x37290,
		0x37298, 0x372c4,
		0x372e4, 0x37390,
		0x37398, 0x373c4,
		0x373e4, 0x3742c,
		0x37434, 0x37450,
		0x37458, 0x37458,
		0x37460, 0x3748c,
		0x3749c, 0x374ac,
		0x374c0, 0x374c0,
		0x374c8, 0x374d0,
		0x374d8, 0x374e0,
		0x374ec, 0x3752c,
		0x37534, 0x37550,
		0x37558, 0x37558,
		0x37560, 0x3758c,
		0x3759c, 0x375ac,
		0x375c0, 0x375c0,
		0x375c8, 0x375d0,
		0x375d8, 0x375e0,
		0x375ec, 0x37690,
		0x37698, 0x376c4,
		0x376e4, 0x37790,
		0x37798, 0x377c4,
2417 2418 2419 2420 2421 2422
		0x377e4, 0x377fc,
		0x37814, 0x37814,
		0x37854, 0x37868,
		0x37880, 0x3788c,
		0x378c0, 0x378d0,
		0x378e8, 0x378ec,
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		0x37900, 0x3792c,
		0x37934, 0x37950,
		0x37958, 0x37958,
		0x37960, 0x3798c,
		0x3799c, 0x379ac,
		0x379c0, 0x379c0,
		0x379c8, 0x379d0,
		0x379d8, 0x379e0,
		0x379ec, 0x37a90,
		0x37a98, 0x37ac4,
2433
		0x37ae4, 0x37b10,
2434 2435
		0x37b24, 0x37b28,
		0x37b38, 0x37b50,
2436
		0x37bf0, 0x37c10,
2437 2438
		0x37c24, 0x37c28,
		0x37c38, 0x37c50,
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
		0x37cf0, 0x37cfc,
		0x40040, 0x40040,
		0x40080, 0x40084,
		0x40100, 0x40100,
		0x40140, 0x401bc,
		0x40200, 0x40214,
		0x40228, 0x40228,
		0x40240, 0x40258,
		0x40280, 0x40280,
		0x40304, 0x40304,
		0x40330, 0x4033c,
2450 2451
		0x41304, 0x413b8,
		0x413c0, 0x413c8,
2452 2453 2454 2455
		0x413d0, 0x413dc,
		0x413f0, 0x413f0,
		0x41400, 0x4140c,
		0x41414, 0x4141c,
2456 2457
		0x41480, 0x414d0,
		0x44000, 0x4407c,
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
		0x440c0, 0x441ac,
		0x441b4, 0x4427c,
		0x442c0, 0x443ac,
		0x443b4, 0x4447c,
		0x444c0, 0x445ac,
		0x445b4, 0x4467c,
		0x446c0, 0x447ac,
		0x447b4, 0x4487c,
		0x448c0, 0x449ac,
		0x449b4, 0x44a7c,
		0x44ac0, 0x44bac,
		0x44bb4, 0x44c7c,
		0x44cc0, 0x44dac,
		0x44db4, 0x44e7c,
		0x44ec0, 0x44fac,
		0x44fb4, 0x4507c,
		0x450c0, 0x451ac,
		0x451b4, 0x451fc,
		0x45800, 0x45804,
		0x45810, 0x45830,
		0x45840, 0x45860,
		0x45868, 0x45868,
2480 2481
		0x45880, 0x45884,
		0x458a0, 0x458b0,
2482 2483 2484 2485
		0x45a00, 0x45a04,
		0x45a10, 0x45a30,
		0x45a40, 0x45a60,
		0x45a68, 0x45a68,
2486 2487 2488
		0x45a80, 0x45a84,
		0x45aa0, 0x45ab0,
		0x460c0, 0x460e4,
2489 2490
		0x47000, 0x4703c,
		0x47044, 0x4708c,
2491
		0x47200, 0x47250,
2492 2493
		0x47400, 0x47408,
		0x47414, 0x47420,
2494
		0x47600, 0x47618,
2495 2496 2497 2498 2499
		0x47800, 0x47814,
		0x47820, 0x4782c,
		0x50000, 0x50084,
		0x50090, 0x500cc,
		0x50300, 0x50384,
2500
		0x50400, 0x50400,
2501 2502 2503
		0x50800, 0x50884,
		0x50890, 0x508cc,
		0x50b00, 0x50b84,
2504
		0x50c00, 0x50c00,
2505 2506
		0x51000, 0x51020,
		0x51028, 0x510b0,
2507 2508 2509
		0x51300, 0x51324,
	};

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	u32 *buf_end = (u32 *)((char *)buf + buf_size);
	const unsigned int *reg_ranges;
	int reg_ranges_size, range;
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);

	/* Select the right set of register ranges to dump depending on the
	 * adapter chip type.
	 */
	switch (chip_version) {
	case CHELSIO_T4:
		reg_ranges = t4_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
		break;

	case CHELSIO_T5:
		reg_ranges = t5_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
		break;

2529 2530 2531 2532 2533
	case CHELSIO_T6:
		reg_ranges = t6_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
		break;

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	default:
		dev_err(adap->pdev_dev,
			"Unsupported chip version %d\n", chip_version);
		return;
	}

	/* Clear the register buffer and insert the appropriate register
	 * values selected by the above register ranges.
	 */
	memset(buf, 0, buf_size);
	for (range = 0; range < reg_ranges_size; range += 2) {
		unsigned int reg = reg_ranges[range];
		unsigned int last_reg = reg_ranges[range + 1];
		u32 *bufp = (u32 *)((char *)buf + reg);

		/* Iterate across the register range filling in the register
		 * buffer but don't write past the end of the register buffer.
		 */
		while (reg <= last_reg && bufp < buf_end) {
			*bufp++ = t4_read_reg(adap, reg);
			reg += sizeof(u32);
		}
	}
}

2559
#define EEPROM_STAT_ADDR   0x7bfc
2560
#define VPD_SIZE           0x800
2561 2562
#define VPD_BASE           0x400
#define VPD_BASE_OLD       0
S
Santosh Rastapur 已提交
2563
#define VPD_LEN            1024
2564
#define CHELSIO_VPD_UNIQUE_ID 0x82
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

/**
 *	t4_seeprom_wp - enable/disable EEPROM write protection
 *	@adapter: the adapter
 *	@enable: whether to enable or disable write protection
 *
 *	Enables or disables write protection on the serial EEPROM.
 */
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
	unsigned int v = enable ? 0xc : 0;
	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
	return ret < 0 ? ret : 0;
}

/**
2581
 *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2582 2583 2584 2585 2586
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM.
 */
2587
int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2588
{
2589 2590
	int i, ret = 0, addr;
	int ec, sn, pn, na;
2591
	u8 *vpd, csum;
D
Dimitris Michailidis 已提交
2592
	unsigned int vpdr_len, kw_offset, id_len;
2593

2594 2595 2596 2597
	vpd = vmalloc(VPD_LEN);
	if (!vpd)
		return -ENOMEM;

2598 2599 2600 2601 2602 2603 2604 2605 2606
	/* We have two VPD data structures stored in the adapter VPD area.
	 * By default, Linux calculates the size of the VPD area by traversing
	 * the first VPD area at offset 0x0, so we need to tell the OS what
	 * our real VPD size is.
	 */
	ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
	if (ret < 0)
		goto out;

2607 2608 2609
	/* Card information normally starts at VPD_BASE but early cards had
	 * it at 0.
	 */
2610 2611 2612
	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
	if (ret < 0)
		goto out;
2613 2614 2615 2616 2617 2618 2619 2620

	/* The VPD shall have a unique identifier specified by the PCI SIG.
	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
	 * is expected to automatically put this entry at the
	 * beginning of the VPD.
	 */
	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2621 2622

	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2623
	if (ret < 0)
2624
		goto out;
2625

D
Dimitris Michailidis 已提交
2626 2627
	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2628 2629
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638
	}

	id_len = pci_vpd_lrdt_size(vpd);
	if (id_len > ID_LEN)
		id_len = ID_LEN;

	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2639 2640
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
2641 2642 2643 2644 2645
	}

	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
	if (vpdr_len + kw_offset > VPD_LEN) {
2646
		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2647 2648
		ret = -EINVAL;
		goto out;
2649 2650 2651
	}

#define FIND_VPD_KW(var, name) do { \
D
Dimitris Michailidis 已提交
2652
	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2653 2654
	if (var < 0) { \
		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2655 2656
		ret = -EINVAL; \
		goto out; \
2657 2658 2659 2660 2661 2662 2663
	} \
	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)

	FIND_VPD_KW(i, "RV");
	for (csum = 0; i >= 0; i--)
		csum += vpd[i];
2664 2665 2666 2667

	if (csum) {
		dev_err(adapter->pdev_dev,
			"corrupted VPD EEPROM, actual csum %u\n", csum);
2668 2669
		ret = -EINVAL;
		goto out;
2670 2671
	}

2672 2673
	FIND_VPD_KW(ec, "EC");
	FIND_VPD_KW(sn, "SN");
2674
	FIND_VPD_KW(pn, "PN");
2675
	FIND_VPD_KW(na, "NA");
2676 2677
#undef FIND_VPD_KW

D
Dimitris Michailidis 已提交
2678
	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2679
	strim(p->id);
2680
	memcpy(p->ec, vpd + ec, EC_LEN);
2681
	strim(p->ec);
2682 2683
	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2684
	strim(p->sn);
2685
	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2686 2687
	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
	strim(p->pn);
2688 2689
	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
	strim((char *)p->na);
2690

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
out:
	vfree(vpd);
	return ret;
}

/**
 *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM and retrieves the Core
 *	Clock.  This can only be called after a connection to the firmware
 *	is established.
 */
int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
	u32 cclk_param, cclk_val;
	int ret;

	/* Grab the raw VPD parameters.
	 */
	ret = t4_get_raw_vpd_params(adapter, p);
	if (ret)
		return ret;

	/* Ask firmware for the Core Clock since it knows how to translate the
2717 2718
	 * Reference Clock ('V2') VPD field into a Core Clock value ...
	 */
2719 2720
	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2721
	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2722
			      1, &cclk_param, &cclk_val);
2723

2724 2725 2726 2727
	if (ret)
		return ret;
	p->cclk = cclk_val;

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	return 0;
}

/* serial flash and firmware constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
2741
	SF_RD_ID        = 0x9f,       /* read ID */
2742 2743
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */

2744
	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
};

/**
 *	sf1_read - read data from the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to read
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@valp: where to store the read data
 *
 *	Reads up to 4 bytes of data from the serial flash.  The location of
 *	the read needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
2766
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2767
		return -EBUSY;
2768 2769 2770
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2771
	if (!ret)
2772
		*valp = t4_read_reg(adapter, SF_DATA_A);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	return ret;
}

/**
 *	sf1_write - write data to the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to write
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@val: value to write
 *
 *	Writes up to 4 bytes of data to the serial flash.  The location of
 *	the write needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
2793
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2794
		return -EBUSY;
2795 2796 2797 2798
	t4_write_reg(adapter, SF_DATA_A, val);
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
}

/**
 *	flash_wait_op - wait for a flash operation to complete
 *	@adapter: the adapter
 *	@attempts: max number of polls of the status register
 *	@delay: delay between polls in ms
 *
 *	Wait for a flash operation to complete by polling the status register.
 */
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
	int ret;
	u32 status;

	while (1) {
		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
			return ret;
		if (!(status & 1))
			return 0;
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			msleep(delay);
	}
}

/**
 *	t4_read_flash - read words from serial flash
 *	@adapter: the adapter
 *	@addr: the start address for the read
 *	@nwords: how many 32-bit words to read
 *	@data: where to store the read data
 *	@byte_oriented: whether to store data as bytes or as words
 *
 *	Read the specified number of 32-bit words from the serial flash.
 *	If @byte_oriented is set the read data is stored as a byte array
 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2838
 *	natural endianness.
2839
 */
2840 2841
int t4_read_flash(struct adapter *adapter, unsigned int addr,
		  unsigned int nwords, u32 *data, int byte_oriented)
2842 2843 2844
{
	int ret;

2845
	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
		return -EINVAL;

	addr = swab32(addr) | SF_RD_DATA_FAST;

	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
2857
			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2858 2859 2860
		if (ret)
			return ret;
		if (byte_oriented)
2861
			*data = (__force __u32)(cpu_to_be32(*data));
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	}
	return 0;
}

/**
 *	t4_write_flash - write up to a page of data to the serial flash
 *	@adapter: the adapter
 *	@addr: the start address to write
 *	@n: length of data to write in bytes
 *	@data: the data to write
 *
 *	Writes up to a page of data (256 bytes) to the serial flash starting
 *	at the given address.  All the data must be written to the same page.
 */
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
			  unsigned int n, const u8 *data)
{
	int ret;
	u32 buf[64];
	unsigned int i, c, left, val, offset = addr & 0xff;

2883
	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		return -EINVAL;

	val = swab32(addr) | SF_PROG_PAGE;

	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
		goto unlock;

	for (left = n; left; left -= c) {
		c = min(left, 4U);
		for (val = 0, i = 0; i < c; ++i)
			val = (val << 8) + *data++;

		ret = sf1_write(adapter, c, c != left, 1, val);
		if (ret)
			goto unlock;
	}
2901
	ret = flash_wait_op(adapter, 8, 1);
2902 2903 2904
	if (ret)
		goto unlock;

2905
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

	/* Read the page to verify the write succeeded */
	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
	if (ret)
		return ret;

	if (memcmp(data - n, (u8 *)buf + offset, n)) {
		dev_err(adapter->pdev_dev,
			"failed to correctly write the flash page at %#x\n",
			addr);
		return -EIO;
	}
	return 0;

unlock:
2921
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2922 2923 2924 2925
	return ret;
}

/**
2926
 *	t4_get_fw_version - read the firmware version
2927 2928 2929 2930 2931
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW version from flash.
 */
2932
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2933
{
2934 2935 2936
	return t4_read_flash(adapter, FLASH_FW_START +
			     offsetof(struct fw_hdr, fw_ver), 1,
			     vers, 0);
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
/**
 *	t4_get_bs_version - read the firmware bootstrap version
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW Bootstrap version from flash.
 */
int t4_get_bs_version(struct adapter *adapter, u32 *vers)
{
	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
			     offsetof(struct fw_hdr, fw_ver), 1,
			     vers, 0);
}

2953
/**
2954
 *	t4_get_tp_version - read the TP microcode version
2955 2956 2957 2958 2959
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the TP microcode version from flash.
 */
2960
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2961
{
2962
	return t4_read_flash(adapter, FLASH_FW_START +
2963
			     offsetof(struct fw_hdr, tp_microcode_ver),
2964 2965 2966
			     1, vers, 0);
}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/**
 *	t4_get_exprom_version - return the Expansion ROM version (if any)
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the Expansion ROM header from FLASH and returns the version
 *	number (if present) through the @vers return value pointer.  We return
 *	this in the Firmware Version Format since it's convenient.  Return
 *	0 on success, -ENOENT if no Expansion ROM is present.
 */
int t4_get_exprom_version(struct adapter *adap, u32 *vers)
{
	struct exprom_header {
		unsigned char hdr_arr[16];	/* must start with 0x55aa */
		unsigned char hdr_ver[4];	/* Expansion ROM version */
	} *hdr;
	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
					   sizeof(u32))];
	int ret;

	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
			    0);
	if (ret)
		return ret;

	hdr = (struct exprom_header *)exprom_header_buf;
	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
		return -ENOENT;

	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
	return 0;
}

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/**
 *	t4_check_fw_version - check if the FW is supported with this driver
 *	@adap: the adapter
 *
 *	Checks if an adapter's FW is compatible with the driver.  Returns 0
 *	if there's exact match, a negative error if the version could not be
 *	read or there's a major version mismatch
 */
int t4_check_fw_version(struct adapter *adap)
{
3014
	int i, ret, major, minor, micro;
3015 3016 3017 3018
	int exp_major, exp_minor, exp_micro;
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);

	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3019 3020 3021 3022
	/* Try multiple times before returning error */
	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
		ret = t4_get_fw_version(adap, &adap->params.fw_vers);

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	if (ret)
		return ret;

	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);

	switch (chip_version) {
	case CHELSIO_T4:
		exp_major = T4FW_MIN_VERSION_MAJOR;
		exp_minor = T4FW_MIN_VERSION_MINOR;
		exp_micro = T4FW_MIN_VERSION_MICRO;
		break;
	case CHELSIO_T5:
		exp_major = T5FW_MIN_VERSION_MAJOR;
		exp_minor = T5FW_MIN_VERSION_MINOR;
		exp_micro = T5FW_MIN_VERSION_MICRO;
		break;
	case CHELSIO_T6:
		exp_major = T6FW_MIN_VERSION_MAJOR;
		exp_minor = T6FW_MIN_VERSION_MINOR;
		exp_micro = T6FW_MIN_VERSION_MICRO;
		break;
	default:
		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
			adap->chip);
		return -EINVAL;
	}

	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
		dev_err(adap->pdev_dev,
			"Card has firmware version %u.%u.%u, minimum "
			"supported firmware is %u.%u.%u.\n", major, minor,
			micro, exp_major, exp_minor, exp_micro);
		return -EFAULT;
	}
	return 0;
}

3063 3064
/* Is the given firmware API compatible with the one the driver was compiled
 * with?
3065
 */
3066
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3067 3068
{

3069 3070 3071
	/* short circuit if it's the exact same firmware version */
	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
		return 1;
3072

3073 3074 3075 3076 3077
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
		return 1;
#undef SAME_INTF
S
Santosh Rastapur 已提交
3078

3079 3080
	return 0;
}
3081

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
/* The firmware in the filesystem is usable, but should it be installed?
 * This routine explains itself in detail if it indicates the filesystem
 * firmware should be installed.
 */
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
				int k, int c)
{
	const char *reason;

	if (!card_fw_usable) {
		reason = "incompatible or unusable";
		goto install;
3094 3095
	}

3096 3097 3098
	if (k > c) {
		reason = "older than the version supported with this driver";
		goto install;
3099 3100
	}

3101 3102 3103 3104 3105
	return 0;

install:
	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
		"installing firmware %u.%u.%u.%u on card.\n",
3106 3107 3108 3109
		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3110 3111 3112 3113

	return 1;
}

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
	       const u8 *fw_data, unsigned int fw_size,
	       struct fw_hdr *card_fw, enum dev_state state,
	       int *reset)
{
	int ret, card_fw_usable, fs_fw_usable;
	const struct fw_hdr *fs_fw;
	const struct fw_hdr *drv_fw;

	drv_fw = &fw_info->fw_hdr;

	/* Read the header of the firmware on the card */
	ret = -t4_read_flash(adap, FLASH_FW_START,
			    sizeof(*card_fw) / sizeof(uint32_t),
			    (uint32_t *)card_fw, 1);
	if (ret == 0) {
		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
	} else {
		dev_err(adap->pdev_dev,
			"Unable to read card's firmware header: %d\n", ret);
		card_fw_usable = 0;
	}

	if (fw_data != NULL) {
		fs_fw = (const void *)fw_data;
		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
	} else {
		fs_fw = NULL;
		fs_fw_usable = 0;
	}

	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
		/* Common case: the firmware on the card is an exact match and
		 * the filesystem one is an exact match too, or the filesystem
		 * one is absent/incompatible.
		 */
	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
		   should_install_fs_fw(adap, card_fw_usable,
					be32_to_cpu(fs_fw->fw_ver),
					be32_to_cpu(card_fw->fw_ver))) {
		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
				     fw_size, 0);
		if (ret != 0) {
			dev_err(adap->pdev_dev,
				"failed to install firmware: %d\n", ret);
			goto bye;
		}

		/* Installed successfully, update the cached header too. */
3164
		*card_fw = *fs_fw;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		card_fw_usable = 1;
		*reset = 0;	/* already reset as part of load_fw */
	}

	if (!card_fw_usable) {
		uint32_t d, c, k;

		d = be32_to_cpu(drv_fw->fw_ver);
		c = be32_to_cpu(card_fw->fw_ver);
		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;

		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
			"chip state %d, "
			"driver compiled with %d.%d.%d.%d, "
			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
			state,
3181 3182 3183 3184 3185 3186
			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
		ret = EINVAL;
		goto bye;
	}

	/* We're using whatever's on the card and it's known to be good. */
	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);

bye:
	return ret;
}

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/**
 *	t4_flash_erase_sectors - erase a range of flash sectors
 *	@adapter: the adapter
 *	@start: the first sector to erase
 *	@end: the last sector to erase
 *
 *	Erases the sectors in the given inclusive range.
 */
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
	int ret = 0;

3211 3212 3213
	if (end >= adapter->params.sf_nsec)
		return -EINVAL;

3214 3215 3216 3217
	while (start <= end) {
		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
		    (ret = sf1_write(adapter, 4, 0, 1,
				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3218
		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3219 3220 3221 3222 3223 3224 3225
			dev_err(adapter->pdev_dev,
				"erase of flash sector %d failed, error %d\n",
				start, ret);
			break;
		}
		start++;
	}
3226
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3227 3228 3229
	return ret;
}

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
/**
 *	t4_flash_cfg_addr - return the address of the flash configuration file
 *	@adapter: the adapter
 *
 *	Return the address within the flash where the Firmware Configuration
 *	File is stored.
 */
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
{
	if (adapter->params.sf_size == 0x100000)
		return FLASH_FPGA_CFG_START;
	else
		return FLASH_CFG_START;
}

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
 * and emit an error message for mismatched firmware to save our caller the
 * effort ...
 */
static bool t4_fw_matches_chip(const struct adapter *adap,
			       const struct fw_hdr *hdr)
{
	/* The expression below will return FALSE for any unsupported adapter
	 * which will keep us "honest" in the future ...
	 */
	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3257 3258
	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3259 3260 3261 3262 3263 3264 3265 3266
		return true;

	dev_err(adap->pdev_dev,
		"FW image (%d) is not suitable for this adapter (%d)\n",
		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
	return false;
}

3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/**
 *	t4_load_fw - download firmware
 *	@adap: the adapter
 *	@fw_data: the firmware image to write
 *	@size: image size
 *
 *	Write the supplied firmware image to the card's serial flash.
 */
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
	u32 csum;
	int ret, addr;
	unsigned int i;
	u8 first_page[SF_PAGE_SIZE];
3281
	const __be32 *p = (const __be32 *)fw_data;
3282
	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3283 3284 3285
	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
	unsigned int fw_img_start = adap->params.sf_fw_start;
	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

	if (!size) {
		dev_err(adap->pdev_dev, "FW image has no data\n");
		return -EINVAL;
	}
	if (size & 511) {
		dev_err(adap->pdev_dev,
			"FW image size not multiple of 512 bytes\n");
		return -EINVAL;
	}
3296
	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3297 3298 3299 3300 3301 3302 3303 3304 3305
		dev_err(adap->pdev_dev,
			"FW image size differs from size in FW header\n");
		return -EINVAL;
	}
	if (size > FW_MAX_SIZE) {
		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
			FW_MAX_SIZE);
		return -EFBIG;
	}
3306 3307
	if (!t4_fw_matches_chip(adap, hdr))
		return -EINVAL;
3308 3309

	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3310
		csum += be32_to_cpu(p[i]);
3311 3312 3313 3314 3315 3316 3317

	if (csum != 0xffffffff) {
		dev_err(adap->pdev_dev,
			"corrupted firmware image, checksum %#x\n", csum);
		return -EINVAL;
	}

3318 3319
	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3320 3321 3322 3323 3324 3325 3326 3327 3328
	if (ret)
		goto out;

	/*
	 * We write the correct version at the end so the driver can see a bad
	 * version if the FW write fails.  Start by writing a copy of the
	 * first page with a bad version.
	 */
	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3329
	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3330
	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3331 3332 3333
	if (ret)
		goto out;

3334
	addr = fw_img_start;
3335 3336 3337 3338 3339 3340 3341 3342 3343
	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
		addr += SF_PAGE_SIZE;
		fw_data += SF_PAGE_SIZE;
		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
		if (ret)
			goto out;
	}

	ret = t4_write_flash(adap,
3344
			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3345 3346 3347 3348 3349
			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
	if (ret)
		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
			ret);
3350 3351
	else
		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3352 3353 3354
	return ret;
}

3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
/**
 *	t4_phy_fw_ver - return current PHY firmware version
 *	@adap: the adapter
 *	@phy_fw_ver: return value buffer for PHY firmware version
 *
 *	Returns the current version of external PHY firmware on the
 *	adapter.
 */
int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
{
	u32 param, val;
	int ret;

	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3372
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
			      &param, &val);
	if (ret < 0)
		return ret;
	*phy_fw_ver = val;
	return 0;
}

/**
 *	t4_load_phy_fw - download port PHY firmware
 *	@adap: the adapter
 *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
 *	@win_lock: the lock to use to guard the memory copy
 *	@phy_fw_version: function to check PHY firmware versions
 *	@phy_fw_data: the PHY firmware image to write
 *	@phy_fw_size: image size
 *
 *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
 *	@phy_fw_version is supplied, then it will be used to determine if
 *	it's necessary to perform the transfer by comparing the version
 *	of any existing adapter PHY firmware with that of the passed in
 *	PHY firmware image.  If @win_lock is non-NULL then it will be used
 *	around the call to t4_memory_rw() which transfers the PHY firmware
 *	to the adapter.
 *
 *	A negative error number will be returned if an error occurs.  If
 *	version number support is available and there's no need to upgrade
 *	the firmware, 0 will be returned.  If firmware is successfully
 *	transferred to the adapter, 1 will be retured.
 *
 *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
 *	a result, a RESET of the adapter would cause that RAM to lose its
 *	contents.  Thus, loading PHY firmware on such adapters must happen
 *	after any FW_RESET_CMDs ...
 */
int t4_load_phy_fw(struct adapter *adap,
		   int win, spinlock_t *win_lock,
		   int (*phy_fw_version)(const u8 *, size_t),
		   const u8 *phy_fw_data, size_t phy_fw_size)
{
	unsigned long mtype = 0, maddr = 0;
	u32 param, val;
	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
	int ret;

	/* If we have version number support, then check to see if the adapter
	 * already has up-to-date PHY firmware loaded.
	 */
	 if (phy_fw_version) {
		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
		if (ret < 0)
			return ret;

		if (cur_phy_fw_ver >= new_phy_fw_vers) {
			CH_WARN(adap, "PHY Firmware already up-to-date, "
				"version %#x\n", cur_phy_fw_ver);
			return 0;
		}
	}

	/* Ask the firmware where it wants us to copy the PHY firmware image.
	 * The size of the file requires a special version of the READ coommand
	 * which will pass the file size via the values field in PARAMS_CMD and
	 * retrieve the return value from firmware and place it in the same
	 * buffer values
	 */
	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
	val = phy_fw_size;
3444
	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
				 &param, &val, 1);
	if (ret < 0)
		return ret;
	mtype = val >> 8;
	maddr = (val & 0xff) << 16;

	/* Copy the supplied PHY Firmware image to the adapter memory location
	 * allocated by the adapter firmware.
	 */
	if (win_lock)
		spin_lock_bh(win_lock);
	ret = t4_memory_rw(adap, win, mtype, maddr,
			   phy_fw_size, (__be32 *)phy_fw_data,
			   T4_MEMORY_WRITE);
	if (win_lock)
		spin_unlock_bh(win_lock);
	if (ret)
		return ret;

	/* Tell the firmware that the PHY firmware image has been written to
	 * RAM and it can now start copying it over to the PHYs.  The chip
	 * firmware will RESET the affected PHYs as part of this operation
	 * leaving them running the new PHY firmware image.
	 */
	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3473
	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
				    &param, &val, 30000);

	/* If we have version number support, then check to see that the new
	 * firmware got loaded properly.
	 */
	if (phy_fw_version) {
		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
		if (ret < 0)
			return ret;

		if (cur_phy_fw_ver != new_phy_fw_vers) {
			CH_WARN(adap, "PHY Firmware did not update: "
				"version on adapter %#x, "
				"version flashed %#x\n",
				cur_phy_fw_ver, new_phy_fw_vers);
			return -ENXIO;
		}
	}

	return 1;
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
/**
 *	t4_fwcache - firmware cache operation
 *	@adap: the adapter
 *	@op  : the operation (flush or flush and invalidate)
 */
int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
{
	struct fw_params_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn =
		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3509
			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
			    FW_PARAMS_CMD_VFN_V(0));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.param[0].mnem =
		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
	c.param[0].val = (__force __be32)op;

	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
			unsigned int *pif_req_wrptr,
			unsigned int *pif_rsp_wrptr)
{
	int i, j;
	u32 cfg, val, req, rsp;

	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
	if (cfg & LADBGEN_F)
		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);

	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
	req = POLADBGWRPTR_G(val);
	rsp = PILADBGWRPTR_G(val);
	if (pif_req_wrptr)
		*pif_req_wrptr = req;
	if (pif_rsp_wrptr)
		*pif_rsp_wrptr = rsp;

	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
		for (j = 0; j < 6; j++) {
			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
				     PILADBGRDPTR_V(rsp));
			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
			req++;
			rsp++;
		}
		req = (req + 2) & POLADBGRDPTR_M;
		rsp = (rsp + 2) & PILADBGRDPTR_M;
	}
	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
}

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
{
	u32 cfg;
	int i, j, idx;

	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
	if (cfg & LADBGEN_F)
		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);

	for (i = 0; i < CIM_MALA_SIZE; i++) {
		for (j = 0; j < 5; j++) {
			idx = 8 * i + j;
			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
				     PILADBGRDPTR_V(idx));
			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
		}
	}
	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
}

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
{
	unsigned int i, j;

	for (i = 0; i < 8; i++) {
		u32 *p = la_buf + i;

		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
	}
}

3590
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3591 3592
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		     FW_PORT_CAP_ANEG)
3593 3594

/**
3595
 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
 *	@phy: the PHY to setup
 *	@mac: the MAC to setup
 *	@lc: the requested link configuration
 *
 *	Set up a port's MAC and PHY according to a desired link configuration.
 *	- If the PHY can auto-negotiate first decide what to advertise, then
 *	  enable/disable auto-negotiation as desired, and reset.
 *	- If the PHY does not auto-negotiate just reset it.
 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *	  otherwise do it later based on the outcome of auto-negotiation.
 */
3607
int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3608 3609 3610
		  struct link_config *lc)
{
	struct fw_port_cmd c;
3611
	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3612 3613 3614 3615 3616 3617 3618 3619

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
3620 3621 3622 3623 3624 3625
	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				     FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));
3626 3627

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3628 3629
		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
					     fc);
3630 3631
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
3632
		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3633 3634
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else
3635
		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_restart_aneg - restart autonegotiation
 *	@adap: the adapter
 *	@mbox: mbox to use for the FW command
 *	@port: the port id
 *
 *	Restarts autonegotiation for the selected port.
 */
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));
3653 3654 3655 3656 3657 3658 3659
	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				     FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));
	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3660 3661 3662
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

3663 3664
typedef void (*int_handler_t)(struct adapter *adap);

3665 3666 3667 3668 3669
struct intr_info {
	unsigned int mask;       /* bits to check in interrupt status */
	const char *msg;         /* message to print or NULL */
	short stat_idx;          /* stat counter to increment or -1 */
	unsigned short fatal;    /* whether the condition reported is fatal */
3670
	int_handler_t int_handler; /* platform-specific int handler */
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
};

/**
 *	t4_handle_intr_status - table driven interrupt handler
 *	@adapter: the adapter that generated the interrupt
 *	@reg: the interrupt status register to process
 *	@acts: table of interrupt actions
 *
 *	A table driven interrupt handler that applies a set of masks to an
 *	interrupt status word and performs the corresponding actions if the
L
Lucas De Marchi 已提交
3681
 *	interrupts described by the mask have occurred.  The actions include
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
 *	optionally emitting a warning or alert message.  The table is terminated
 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
 *	conditions.
 */
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
				 const struct intr_info *acts)
{
	int fatal = 0;
	unsigned int mask = 0;
	unsigned int status = t4_read_reg(adapter, reg);

	for ( ; acts->mask; ++acts) {
		if (!(status & acts->mask))
			continue;
		if (acts->fatal) {
			fatal++;
			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				  status & acts->mask);
		} else if (acts->msg && printk_ratelimit())
			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				 status & acts->mask);
3703 3704
		if (acts->int_handler)
			acts->int_handler(adapter);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
		mask |= acts->mask;
	}
	status &= mask;
	if (status)                           /* clear processed interrupts */
		t4_write_reg(adapter, reg, status);
	return fatal;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void pcie_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3718
	static const struct intr_info sysbus_intr_info[] = {
3719 3720 3721 3722 3723
		{ RNPP_F, "RXNP array parity error", -1, 1 },
		{ RPCP_F, "RXPC array parity error", -1, 1 },
		{ RCIP_F, "RXCIF array parity error", -1, 1 },
		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
		{ RFTP_F, "RXFT array parity error", -1, 1 },
3724 3725
		{ 0 }
	};
J
Joe Perches 已提交
3726
	static const struct intr_info pcie_port_intr_info[] = {
3727 3728 3729 3730 3731 3732 3733 3734 3735
		{ TPCP_F, "TXPC array parity error", -1, 1 },
		{ TNPP_F, "TXNP array parity error", -1, 1 },
		{ TFTP_F, "TXFT array parity error", -1, 1 },
		{ TCAP_F, "TXCA array parity error", -1, 1 },
		{ TCIP_F, "TXCIF array parity error", -1, 1 },
		{ RCAP_F, "RXCA array parity error", -1, 1 },
		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
		{ RDPE_F, "Rx data parity error", -1, 1 },
		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3736 3737
		{ 0 }
	};
J
Joe Perches 已提交
3738
	static const struct intr_info pcie_intr_info[] = {
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
		  -1, 0 },
3770 3771 3772
		{ 0 }
	};

S
Santosh Rastapur 已提交
3773
	static struct intr_info t5_pcie_intr_info[] = {
3774
		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
S
Santosh Rastapur 已提交
3775
		  -1, 1 },
3776 3777 3778 3779 3780 3781 3782
		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
S
Santosh Rastapur 已提交
3783
		  -1, 1 },
3784
		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
S
Santosh Rastapur 已提交
3785
		  -1, 1 },
3786 3787 3788 3789 3790
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
S
Santosh Rastapur 已提交
3791
		  -1, 1 },
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
S
Santosh Rastapur 已提交
3803
		  -1, 1 },
3804 3805 3806 3807 3808 3809
		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
		  -1, 1 },
		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
		{ READRSPERR_F, "Outbound read error", -1, 0 },
S
Santosh Rastapur 已提交
3810 3811 3812
		{ 0 }
	};

3813 3814
	int fat;

3815 3816
	if (is_t4(adapter->params.chip))
		fat = t4_handle_intr_status(adapter,
3817 3818
				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
				sysbus_intr_info) +
3819
			t4_handle_intr_status(adapter,
3820 3821 3822
					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
					pcie_port_intr_info) +
			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3823 3824
					      pcie_intr_info);
	else
3825
		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3826
					    t5_pcie_intr_info);
S
Santosh Rastapur 已提交
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * TP interrupt handler.
 */
static void tp_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3837
	static const struct intr_info tp_intr_info[] = {
3838
		{ 0x3fffffff, "TP parity error", -1, 1 },
3839
		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3840 3841 3842
		{ 0 }
	};

3843
	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3844 3845 3846 3847 3848 3849 3850 3851 3852
		t4_fatal_err(adapter);
}

/*
 * SGE interrupt handler.
 */
static void sge_intr_handler(struct adapter *adapter)
{
	u64 v;
3853
	u32 err;
3854

J
Joe Perches 已提交
3855
	static const struct intr_info sge_intr_info[] = {
3856
		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3857
		  "SGE received CPL exceeding IQE size", -1, 1 },
3858
		{ ERR_INVALID_CIDX_INC_F,
3859
		  "SGE GTS CIDX increment too large", -1, 0 },
3860 3861 3862
		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3863
		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3864
		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3865
		  0 },
3866
		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3867
		  0 },
3868
		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3869
		  0 },
3870
		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3871
		  0 },
3872
		{ ERR_ING_CTXT_PRIO_F,
3873
		  "SGE too many priority ingress contexts", -1, 0 },
3874 3875
		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3876 3877 3878
		{ 0 }
	};

3879 3880 3881 3882 3883 3884 3885 3886
	static struct intr_info t4t5_sge_intr_info[] = {
		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_EGR_CTXT_PRIO_F,
		  "SGE too many priority egress contexts", -1, 0 },
		{ 0 }
	};

3887 3888
	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3889 3890
	if (v) {
		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3891
				(unsigned long long)v);
3892 3893
		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3894 3895
	}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
					   t4t5_sge_intr_info);

	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
	if (err & ERROR_QID_VALID_F) {
		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
			ERROR_QID_G(err));
		if (err & UNCAPTURED_ERROR_F)
			dev_err(adapter->pdev_dev,
				"SGE UNCAPTURED_ERROR set (clearing)\n");
		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
			     UNCAPTURED_ERROR_F);
	}

	if (v != 0)
3913 3914 3915
		t4_fatal_err(adapter);
}

3916 3917 3918 3919 3920
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)

3921 3922 3923 3924 3925
/*
 * CIM interrupt handler.
 */
static void cim_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3926
	static const struct intr_info cim_intr_info[] = {
3927 3928 3929 3930 3931 3932 3933
		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3934 3935
		{ 0 }
	};
J
Joe Perches 已提交
3936
	static const struct intr_info cim_upintr_info[] = {
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3965 3966 3967 3968 3969
		{ 0 }
	};

	int fat;

3970
	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3971 3972
		t4_report_fw_error(adapter);

3973
	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3974
				    cim_intr_info) +
3975
	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
				    cim_upintr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * ULP RX interrupt handler.
 */
static void ulprx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3986
	static const struct intr_info ulprx_intr_info[] = {
3987
		{ 0x1800000, "ULPRX context error", -1, 1 },
3988 3989 3990 3991
		{ 0x7fffff, "ULPRX parity error", -1, 1 },
		{ 0 }
	};

3992
	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3993 3994 3995 3996 3997 3998 3999 4000
		t4_fatal_err(adapter);
}

/*
 * ULP TX interrupt handler.
 */
static void ulptx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
4001
	static const struct intr_info ulptx_intr_info[] = {
4002
		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4003
		  0 },
4004
		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4005
		  0 },
4006
		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4007
		  0 },
4008
		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4009 4010 4011 4012 4013
		  0 },
		{ 0xfffffff, "ULPTX parity error", -1, 1 },
		{ 0 }
	};

4014
	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4015 4016 4017 4018 4019 4020 4021 4022
		t4_fatal_err(adapter);
}

/*
 * PM TX interrupt handler.
 */
static void pmtx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
4023
	static const struct intr_info pmtx_intr_info[] = {
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
		  -1, 1 },
		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4034 4035 4036
		{ 0 }
	};

4037
	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4038 4039 4040 4041 4042 4043 4044 4045
		t4_fatal_err(adapter);
}

/*
 * PM RX interrupt handler.
 */
static void pmrx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
4046
	static const struct intr_info pmrx_intr_info[] = {
4047 4048 4049 4050 4051 4052 4053
		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
		  -1, 1 },
		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4054 4055 4056
		{ 0 }
	};

4057
	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4058 4059 4060 4061 4062 4063 4064 4065
		t4_fatal_err(adapter);
}

/*
 * CPL switch interrupt handler.
 */
static void cplsw_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
4066
	static const struct intr_info cplsw_intr_info[] = {
4067 4068 4069 4070 4071 4072
		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4073 4074 4075
		{ 0 }
	};

4076
	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4077 4078 4079 4080 4081 4082 4083 4084
		t4_fatal_err(adapter);
}

/*
 * LE interrupt handler.
 */
static void le_intr_handler(struct adapter *adap)
{
4085
	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
J
Joe Perches 已提交
4086
	static const struct intr_info le_intr_info[] = {
4087 4088 4089 4090 4091
		{ LIPMISS_F, "LE LIP miss", -1, 0 },
		{ LIP0_F, "LE 0 LIP error", -1, 0 },
		{ PARITYERR_F, "LE parity error", -1, 1 },
		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4092 4093 4094
		{ 0 }
	};

4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	static struct intr_info t6_le_intr_info[] = {
		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
				  (chip <= CHELSIO_T5) ?
				  le_intr_info : t6_le_intr_info))
4107 4108 4109 4110 4111 4112 4113 4114
		t4_fatal_err(adap);
}

/*
 * MPS interrupt handler.
 */
static void mps_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
4115
	static const struct intr_info mps_rx_intr_info[] = {
4116 4117 4118
		{ 0xffffff, "MPS Rx parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
4119
	static const struct intr_info mps_tx_intr_info[] = {
4120 4121 4122 4123 4124 4125 4126 4127 4128
		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
		  -1, 1 },
		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
		  -1, 1 },
		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4129 4130
		{ 0 }
	};
J
Joe Perches 已提交
4131
	static const struct intr_info mps_trc_intr_info[] = {
4132 4133 4134 4135
		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
		  -1, 1 },
		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4136 4137
		{ 0 }
	};
J
Joe Perches 已提交
4138
	static const struct intr_info mps_stat_sram_intr_info[] = {
4139 4140 4141
		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
4142
	static const struct intr_info mps_stat_tx_intr_info[] = {
4143 4144 4145
		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
4146
	static const struct intr_info mps_stat_rx_intr_info[] = {
4147 4148 4149
		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
4150
	static const struct intr_info mps_cls_intr_info[] = {
4151 4152 4153
		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4154 4155 4156 4157 4158
		{ 0 }
	};

	int fat;

4159
	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4160
				    mps_rx_intr_info) +
4161
	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4162
				    mps_tx_intr_info) +
4163
	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4164
				    mps_trc_intr_info) +
4165
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4166
				    mps_stat_sram_intr_info) +
4167
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4168
				    mps_stat_tx_intr_info) +
4169
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4170
				    mps_stat_rx_intr_info) +
4171
	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4172 4173
				    mps_cls_intr_info);

4174 4175
	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4176 4177 4178 4179
	if (fat)
		t4_fatal_err(adapter);
}

4180 4181
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
		      ECC_UE_INT_CAUSE_F)
4182 4183 4184 4185 4186 4187

/*
 * EDC/MC interrupt handler.
 */
static void mem_intr_handler(struct adapter *adapter, int idx)
{
4188
	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4189 4190 4191 4192

	unsigned int addr, cnt_addr, v;

	if (idx <= MEM_EDC1) {
4193 4194
		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4195 4196
	} else if (idx == MEM_MC) {
		if (is_t4(adapter->params.chip)) {
4197 4198
			addr = MC_INT_CAUSE_A;
			cnt_addr = MC_ECC_STATUS_A;
4199
		} else {
4200 4201
			addr = MC_P_INT_CAUSE_A;
			cnt_addr = MC_P_ECC_STATUS_A;
4202
		}
4203
	} else {
4204 4205
		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4206 4207 4208
	}

	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4209
	if (v & PERR_INT_CAUSE_F)
4210 4211
		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
			  name[idx]);
4212 4213
	if (v & ECC_CE_INT_CAUSE_F) {
		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4214

4215 4216
		t4_edc_err_read(adapter, idx);

4217
		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4218 4219 4220 4221 4222
		if (printk_ratelimit())
			dev_warn(adapter->pdev_dev,
				 "%u %s correctable ECC data error%s\n",
				 cnt, name[idx], cnt > 1 ? "s" : "");
	}
4223
	if (v & ECC_UE_INT_CAUSE_F)
4224 4225 4226 4227
		dev_alert(adapter->pdev_dev,
			  "%s uncorrectable ECC data error\n", name[idx]);

	t4_write_reg(adapter, addr, v);
4228
	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4229 4230 4231 4232 4233 4234 4235 4236
		t4_fatal_err(adapter);
}

/*
 * MA interrupt handler.
 */
static void ma_intr_handler(struct adapter *adap)
{
4237
	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4238

4239
	if (status & MEM_PERR_INT_CAUSE_F) {
4240 4241
		dev_alert(adap->pdev_dev,
			  "MA parity error, parity status %#x\n",
4242
			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4243 4244 4245 4246
		if (is_t5(adap->params.chip))
			dev_alert(adap->pdev_dev,
				  "MA parity error, parity status %#x\n",
				  t4_read_reg(adap,
4247
					      MA_PARITY_ERROR_STATUS2_A));
4248
	}
4249 4250
	if (status & MEM_WRAP_INT_CAUSE_F) {
		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4251 4252
		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
			  "client %u to address %#x\n",
4253 4254
			  MEM_WRAP_CLIENT_NUM_G(v),
			  MEM_WRAP_ADDRESS_G(v) << 4);
4255
	}
4256
	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4257 4258 4259 4260 4261 4262 4263 4264
	t4_fatal_err(adap);
}

/*
 * SMB interrupt handler.
 */
static void smb_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
4265
	static const struct intr_info smb_intr_info[] = {
4266 4267 4268
		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4269 4270 4271
		{ 0 }
	};

4272
	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4273 4274 4275 4276 4277 4278 4279 4280
		t4_fatal_err(adap);
}

/*
 * NC-SI interrupt handler.
 */
static void ncsi_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
4281
	static const struct intr_info ncsi_intr_info[] = {
4282 4283 4284 4285
		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4286 4287 4288
		{ 0 }
	};

4289
	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4290 4291 4292 4293 4294 4295 4296 4297
		t4_fatal_err(adap);
}

/*
 * XGMAC interrupt handler.
 */
static void xgmac_intr_handler(struct adapter *adap, int port)
{
S
Santosh Rastapur 已提交
4298 4299
	u32 v, int_cause_reg;

4300
	if (is_t4(adap->params.chip))
4301
		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
4302
	else
4303
		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
4304 4305

	v = t4_read_reg(adap, int_cause_reg);
4306

4307
	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4308 4309 4310
	if (!v)
		return;

4311
	if (v & TXFIFO_PRTY_ERR_F)
4312 4313
		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
			  port);
4314
	if (v & RXFIFO_PRTY_ERR_F)
4315 4316
		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
			  port);
4317
	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4318 4319 4320 4321 4322 4323 4324 4325
	t4_fatal_err(adap);
}

/*
 * PL interrupt handler.
 */
static void pl_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
4326
	static const struct intr_info pl_intr_info[] = {
4327 4328
		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4329 4330 4331
		{ 0 }
	};

4332
	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4333 4334 4335
		t4_fatal_err(adap);
}

4336 4337 4338 4339
#define PF_INTR_MASK (PFSW_F)
#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

/**
 *	t4_slow_intr_handler - control path interrupt handler
 *	@adapter: the adapter
 *
 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
 *	The designation 'slow' is because it involves register reads, while
 *	data interrupts typically don't involve any MMIOs.
 */
int t4_slow_intr_handler(struct adapter *adapter)
{
4351
	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4352 4353 4354

	if (!(cause & GLBL_INTR_MASK))
		return 0;
4355
	if (cause & CIM_F)
4356
		cim_intr_handler(adapter);
4357
	if (cause & MPS_F)
4358
		mps_intr_handler(adapter);
4359
	if (cause & NCSI_F)
4360
		ncsi_intr_handler(adapter);
4361
	if (cause & PL_F)
4362
		pl_intr_handler(adapter);
4363
	if (cause & SMB_F)
4364
		smb_intr_handler(adapter);
4365
	if (cause & XGMAC0_F)
4366
		xgmac_intr_handler(adapter, 0);
4367
	if (cause & XGMAC1_F)
4368
		xgmac_intr_handler(adapter, 1);
4369
	if (cause & XGMAC_KR0_F)
4370
		xgmac_intr_handler(adapter, 2);
4371
	if (cause & XGMAC_KR1_F)
4372
		xgmac_intr_handler(adapter, 3);
4373
	if (cause & PCIE_F)
4374
		pcie_intr_handler(adapter);
4375
	if (cause & MC_F)
4376
		mem_intr_handler(adapter, MEM_MC);
4377
	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4378
		mem_intr_handler(adapter, MEM_MC1);
4379
	if (cause & EDC0_F)
4380
		mem_intr_handler(adapter, MEM_EDC0);
4381
	if (cause & EDC1_F)
4382
		mem_intr_handler(adapter, MEM_EDC1);
4383
	if (cause & LE_F)
4384
		le_intr_handler(adapter);
4385
	if (cause & TP_F)
4386
		tp_intr_handler(adapter);
4387
	if (cause & MA_F)
4388
		ma_intr_handler(adapter);
4389
	if (cause & PM_TX_F)
4390
		pmtx_intr_handler(adapter);
4391
	if (cause & PM_RX_F)
4392
		pmrx_intr_handler(adapter);
4393
	if (cause & ULP_RX_F)
4394
		ulprx_intr_handler(adapter);
4395
	if (cause & CPL_SWITCH_F)
4396
		cplsw_intr_handler(adapter);
4397
	if (cause & SGE_F)
4398
		sge_intr_handler(adapter);
4399
	if (cause & ULP_TX_F)
4400 4401 4402
		ulptx_intr_handler(adapter);

	/* Clear the interrupts just processed for which we are the master. */
4403 4404
	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
	return 1;
}

/**
 *	t4_intr_enable - enable interrupts
 *	@adapter: the adapter whose interrupts should be enabled
 *
 *	Enable PF-specific interrupts for the calling function and the top-level
 *	interrupt concentrator for global interrupts.  Interrupts are already
 *	enabled at each module,	here we just enable the roots of the interrupt
 *	hierarchies.
 *
 *	Note: this function should be called only when the driver manages
 *	non PF-specific interrupts from the various HW modules.  Only one PCI
 *	function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
4423
	u32 val = 0;
4424 4425 4426
	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4427

4428 4429
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4430 4431
	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4432
		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4433 4434 4435
		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4436
		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4437 4438
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
}

/**
 *	t4_intr_disable - disable interrupts
 *	@adapter: the adapter whose interrupts should be disabled
 *
 *	Disable interrupts.  We only disable the top-level interrupt
 *	concentrators.  The caller must be a PCI function managing global
 *	interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
4451 4452 4453
	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4454

4455 4456
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
}

/**
 *	t4_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: virtual interface whose RSS subtable is to be written
 *	@start: start entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the response queue lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range allowed for
 *	@viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
4485
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4486
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4487
			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4488
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4489 4490 4491 4492 4493 4494

	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
	while (n > 0) {
		int nq = min(n, 32);
		__be32 *qp = &cmd.iq0_to_iq2;

4495 4496
		cmd.niqid = cpu_to_be16(nq);
		cmd.startidx = cpu_to_be16(start);
4497 4498 4499 4500 4501 4502 4503

		start += nq;
		n -= nq;

		while (nq > 0) {
			unsigned int v;

4504
			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4505 4506
			if (++rsp >= rsp_end)
				rsp = rspq;
4507
			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4508 4509
			if (++rsp >= rsp_end)
				rsp = rspq;
4510
			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4511 4512 4513
			if (++rsp >= rsp_end)
				rsp = rspq;

4514
			*qp++ = cpu_to_be32(v);
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
			nq -= 3;
		}

		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4_config_glbl_rss - configure the global RSS mode
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@mode: global RSS mode
 *	@flags: mode-specific flags
 *
 *	Sets the global RSS mode.
 */
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
		       unsigned int flags)
{
	struct fw_rss_glb_config_cmd c;

	memset(&c, 0, sizeof(c));
4540 4541 4542
	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4543
	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4544 4545
		c.u.manual.mode_pkd =
			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4546 4547
	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
		c.u.basicvirtual.mode_pkd =
4548 4549
			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4550 4551 4552 4553 4554
	} else
		return -EINVAL;
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
/**
 *	t4_config_vi_rss - configure per VI RSS settings
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: the VI id
 *	@flags: RSS flags
 *	@defq: id of the default RSS queue for the VI.
 *
 *	Configures VI-specific RSS properties.
 */
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
		     unsigned int flags, unsigned int defq)
{
	struct fw_rss_vi_config_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
/* Read an RSS table row */
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
{
	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
				   5, 0, val);
}

/**
 *	t4_read_rss - read the contents of the RSS mapping table
 *	@adapter: the adapter
 *	@map: holds the contents of the RSS mapping table
 *
 *	Reads the contents of the RSS hash->queue mapping table.
 */
int t4_read_rss(struct adapter *adapter, u16 *map)
{
	u32 val;
	int i, ret;

	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
		ret = rd_rss_row(adapter, i, &val);
		if (ret)
			return ret;
		*map++ = LKPTBLQUEUE0_G(val);
		*map++ = LKPTBLQUEUE1_G(val);
	}
	return 0;
}

4610 4611 4612 4613 4614
static unsigned int t4_use_ldst(struct adapter *adap)
{
	return (adap->flags & FW_OK) || !adap->use_bd;
}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
/**
 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
 *	@adap: the adapter
 *	@vals: where the indirect register values are stored/written
 *	@nregs: how many indirect registers to read/write
 *	@start_idx: index of first indirect register to read/write
 *	@rw: Read (1) or Write (0)
 *
 *	Access TP PIO registers through LDST
 */
static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
			    unsigned int start_index, unsigned int rw)
{
	int ret, i;
	int cmd = FW_LDST_ADDRSPC_TP_PIO;
	struct fw_ldst_cmd c;

	for (i = 0 ; i < nregs; i++) {
		memset(&c, 0, sizeof(c));
		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
						FW_CMD_REQUEST_F |
						(rw ? FW_CMD_READ_F :
						      FW_CMD_WRITE_F) |
						FW_LDST_CMD_ADDRSPACE_V(cmd));
		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));

		c.u.addrval.addr = cpu_to_be32(start_index + i);
		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
		if (!ret && rw)
			vals[i] = be32_to_cpu(c.u.addrval.val);
	}
}

4649 4650 4651 4652 4653 4654 4655 4656 4657
/**
 *	t4_read_rss_key - read the global RSS key
 *	@adap: the adapter
 *	@key: 10-entry array holding the 320-bit RSS key
 *
 *	Reads the global 320-bit RSS key.
 */
void t4_read_rss_key(struct adapter *adap, u32 *key)
{
4658
	if (t4_use_ldst(adap))
4659 4660 4661 4662
		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
	else
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
				 TP_RSS_SECRET_KEY0_A);
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
}

/**
 *	t4_write_rss_key - program one of the RSS keys
 *	@adap: the adapter
 *	@key: 10-entry array holding the 320-bit RSS key
 *	@idx: which RSS key to write
 *
 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
 *	0..15 the corresponding entry in the RSS key table is written,
 *	otherwise the global RSS key is written.
 */
void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
{
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	u8 rss_key_addr_cnt = 16;
	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);

	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
	 * allows access to key addresses 16-63 by using KeyWrAddrX
	 * as index[5:4](upper 2) into key table
	 */
	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
		rss_key_addr_cnt = 32;

4688
	if (t4_use_ldst(adap))
4689 4690 4691 4692
		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
	else
		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
				  TP_RSS_SECRET_KEY0_A);
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702

	if (idx >= 0 && idx < rss_key_addr_cnt) {
		if (rss_key_addr_cnt > 16)
			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
				     KEYWRADDRX_V(idx >> 4) |
				     T6_VFWRADDR_V(idx) | KEYWREN_F);
		else
			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
				     KEYWRADDR_V(idx) | KEYWREN_F);
	}
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
}

/**
 *	t4_read_rss_pf_config - read PF RSS Configuration Table
 *	@adapter: the adapter
 *	@index: the entry in the PF RSS table to read
 *	@valp: where to store the returned value
 *
 *	Reads the PF RSS Configuration Table at the specified index and returns
 *	the value found there.
 */
void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
			   u32 *valp)
{
4717
	if (t4_use_ldst(adapter))
4718 4719 4720 4721 4722
		t4_fw_tp_pio_rw(adapter, valp, 1,
				TP_RSS_PF0_CONFIG_A + index, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
}

/**
 *	t4_read_rss_vf_config - read VF RSS Configuration Table
 *	@adapter: the adapter
 *	@index: the entry in the VF RSS table to read
 *	@vfl: where to store the returned VFL
 *	@vfh: where to store the returned VFH
 *
 *	Reads the VF RSS Configuration Table at the specified index and returns
 *	the (VFL, VFH) values found there.
 */
void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
			   u32 *vfl, u32 *vfh)
{
	u32 vrt, mask, data;

4740 4741 4742 4743 4744 4745 4746
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
		mask = VFWRADDR_V(VFWRADDR_M);
		data = VFWRADDR_V(index);
	} else {
		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
		 data = T6_VFWRADDR_V(index);
	}
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	/* Request that the index'th VF Table values be read into VFL/VFH.
	 */
	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
	vrt |= data | VFRDEN_F;
	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);

	/* Grab the VFL/VFH values ...
	 */
4757
	if (t4_use_ldst(adapter)) {
4758 4759 4760 4761 4762 4763 4764 4765
		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
	} else {
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 vfl, 1, TP_RSS_VFL_CONFIG_A);
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 vfh, 1, TP_RSS_VFH_CONFIG_A);
	}
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
}

/**
 *	t4_read_rss_pf_map - read PF RSS Map
 *	@adapter: the adapter
 *
 *	Reads the PF RSS Map register and returns its value.
 */
u32 t4_read_rss_pf_map(struct adapter *adapter)
{
	u32 pfmap;

4778
	if (t4_use_ldst(adapter))
4779 4780 4781 4782
		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &pfmap, 1, TP_RSS_PF_MAP_A);
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
	return pfmap;
}

/**
 *	t4_read_rss_pf_mask - read PF RSS Mask
 *	@adapter: the adapter
 *
 *	Reads the PF RSS Mask register and returns its value.
 */
u32 t4_read_rss_pf_mask(struct adapter *adapter)
{
	u32 pfmask;

4796
	if (t4_use_ldst(adapter))
4797 4798 4799 4800
		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &pfmask, 1, TP_RSS_PF_MSK_A);
4801 4802 4803
	return pfmask;
}

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
/**
 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
 *	@adap: the adapter
 *	@v4: holds the TCP/IP counter values
 *	@v6: holds the TCP/IPv6 counter values
 *
 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
 */
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
4816
	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4817

4818
#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4819 4820 4821 4822
#define STAT(x)     val[STAT_IDX(x)]
#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))

	if (v4) {
4823 4824
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4825 4826 4827 4828
		v4->tcp_out_rsts = STAT(OUT_RST);
		v4->tcp_in_segs  = STAT64(IN_SEG);
		v4->tcp_out_segs = STAT64(OUT_SEG);
		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4829 4830
	}
	if (v6) {
4831 4832
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4833 4834 4835 4836
		v6->tcp_out_rsts = STAT(OUT_RST);
		v6->tcp_in_segs  = STAT64(IN_SEG);
		v6->tcp_out_segs = STAT64(OUT_SEG);
		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4837 4838 4839 4840 4841 4842
	}
#undef STAT64
#undef STAT
#undef STAT_IDX
}

4843 4844 4845 4846 4847 4848 4849 4850 4851
/**
 *	t4_tp_get_err_stats - read TP's error MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's error counters.
 */
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
{
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
	int nchan = adap->params.arch.nchan;

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);

4871 4872 4873 4874
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
}

4875 4876 4877 4878 4879 4880 4881 4882 4883
/**
 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's CPL counters.
 */
void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
{
4884 4885 4886 4887 4888 4889 4890
	int nchan = adap->params.arch.nchan;

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
			 nchan, TP_MIB_CPL_IN_REQ_0_A);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
			 nchan, TP_MIB_CPL_OUT_RSP_0_A);

4891 4892
}

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
/**
 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's RDMA counters.
 */
void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
{
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
			 2, TP_MIB_RQE_DFR_PKT_A);
}

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
/**
 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
 *	@adap: the adapter
 *	@idx: the port index
 *	@st: holds the counter values
 *
 *	Returns the values of TP's FCoE counters for the selected port.
 */
void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
		       struct tp_fcoe_stats *st)
{
	u32 val[2];

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
			 1, TP_MIB_FCOE_DDP_0_A + idx);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
			 1, TP_MIB_FCOE_DROP_0_A + idx);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
	st->octets_ddp = ((u64)val[0] << 32) | val[1];
}

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
/**
 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's counters for non-TCP directly-placed packets.
 */
void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
{
	u32 val[4];

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
			 TP_MIB_USM_PKTS_A);
	st->frames = val[0];
	st->drops = val[1];
	st->octets = ((u64)val[2] << 32) | val[3];
}

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
/**
 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
 *	@adap: the adapter
 *	@mtus: where to store the MTU values
 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 *	Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
4960 4961 4962 4963
		t4_write_reg(adap, TP_MTU_TABLE_A,
			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
		v = t4_read_reg(adap, TP_MTU_TABLE_A);
		mtus[i] = MTUVALUE_G(v);
4964
		if (mtu_log)
4965
			mtu_log[i] = MTUWIDTH_G(v);
4966 4967 4968
	}
}

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
/**
 *	t4_read_cong_tbl - reads the congestion control table
 *	@adap: the adapter
 *	@incr: where to store the alpha values
 *
 *	Reads the additive increments programmed into the HW congestion
 *	control table.
 */
void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
{
	unsigned int mtu, w;

	for (mtu = 0; mtu < NMTUS; ++mtu)
		for (w = 0; w < NCCTRL_WIN; ++w) {
			t4_write_reg(adap, TP_CCTRL_TABLE_A,
				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
			incr[mtu][w] = (u16)t4_read_reg(adap,
						TP_CCTRL_TABLE_A) & 0x1fff;
		}
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
/**
 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 *	@adap: the adapter
 *	@addr: the indirect TP register address
 *	@mask: specifies the field within the register to modify
 *	@val: new value for the field
 *
 *	Sets a field of an indirect TP register to the given value.
 */
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
			    unsigned int mask, unsigned int val)
{
5002 5003 5004
	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
	t4_write_reg(adap, TP_PIO_DATA_A, val);
5005 5006
}

5007 5008 5009 5010 5011 5012 5013
/**
 *	init_cong_ctrl - initialize congestion control parameters
 *	@a: the alpha values for congestion control
 *	@b: the beta values for congestion control
 *
 *	Initialize the congestion control parameters.
 */
B
Bill Pemberton 已提交
5014
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
{
	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
	b[9] = b[10] = 1;
	b[11] = b[12] = 2;
	b[13] = b[14] = b[15] = b[16] = 3;
	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
	b[28] = b[29] = 6;
	b[30] = b[31] = 7;
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 *	t4_load_mtus - write the MTU and congestion control HW tables
 *	@adap: the adapter
 *	@mtus: the values for the MTU table
 *	@alpha: the values for the congestion control alpha parameter
 *	@beta: the values for the congestion control beta parameter
 *
 *	Write the HW MTU table with the supplied MTUs and the high-speed
 *	congestion control table with the supplied alpha, beta, and MTUs.
 *	We write the two tables together because the additive increments
 *	depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
5083 5084
		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5085 5086 5087 5088 5089 5090 5091

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

5092
			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5093 5094 5095 5096 5097
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
 * clocks.  The formula is
 *
 * bytes/s = bytes256 * 256 * ClkFreq / 4096
 *
 * which is equivalent to
 *
 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
 */
static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
{
	u64 v = bytes256 * adap->params.vpd.cclk;

	return v * 62 + v / 2;
}

/**
 *	t4_get_chan_txrate - get the current per channel Tx rates
 *	@adap: the adapter
 *	@nic_rate: rates for NIC traffic
 *	@ofld_rate: rates for offloaded traffic
 *
 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
 *	for each channel.
 */
void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
{
	u32 v;

	v = t4_read_reg(adap, TP_TX_TRATE_A);
	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
	if (adap->params.arch.nchan == NCHAN) {
		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
	}

	v = t4_read_reg(adap, TP_TX_ORATE_A);
	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
	if (adap->params.arch.nchan == NCHAN) {
		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
	}
}

5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
/**
 *	t4_set_trace_filter - configure one of the tracing filters
 *	@adap: the adapter
 *	@tp: the desired trace filter parameters
 *	@idx: which filter to configure
 *	@enable: whether to enable or disable the filter
 *
 *	Configures one of the tracing filters available in HW.  If @enable is
 *	%0 @tp is not examined and may be %NULL. The user is responsible to
 *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
 */
int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
			int idx, int enable)
{
	int i, ofst = idx * 4;
	u32 data_reg, mask_reg, cfg;
	u32 multitrc = TRCMULTIFILTER_F;

	if (!enable) {
		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
		return 0;
	}

	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
	if (cfg & TRCMULTIFILTER_F) {
		/* If multiple tracers are enabled, then maximum
		 * capture size is 2.5KB (FIFO size of a single channel)
		 * minus 2 flits for CPL_TRACE_PKT header.
		 */
		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
			return -EINVAL;
	} else {
		/* If multiple tracers are disabled, to avoid deadlocks
		 * maximum packet capture size of 9600 bytes is recommended.
		 * Also in this mode, only trace0 can be enabled and running.
		 */
		multitrc = 0;
		if (tp->snap_len > 9600 || idx)
			return -EINVAL;
	}

	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
	    tp->min_len > TFMINPKTSIZE_M)
		return -EINVAL;

	/* stop the tracer we'll be changing */
	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);

	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;

	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
		t4_write_reg(adap, data_reg, tp->data[i]);
		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
	}
	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
		     TFCAPTUREMAX_V(tp->snap_len) |
		     TFMINPKTSIZE_V(tp->min_len));
	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
		     (is_t4(adap->params.chip) ?
		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
		     T5_TFINVERTMATCH_V(tp->invert)));

	return 0;
}

/**
 *	t4_get_trace_filter - query one of the tracing filters
 *	@adap: the adapter
 *	@tp: the current trace filter parameters
 *	@idx: which trace filter to query
 *	@enabled: non-zero if the filter is enabled
 *
 *	Returns the current settings of one of the HW tracing filters.
 */
void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
			 int *enabled)
{
	u32 ctla, ctlb;
	int i, ofst = idx * 4;
	u32 data_reg, mask_reg;

	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);

	if (is_t4(adap->params.chip)) {
		*enabled = !!(ctla & TFEN_F);
		tp->port =  TFPORT_G(ctla);
		tp->invert = !!(ctla & TFINVERTMATCH_F);
	} else {
		*enabled = !!(ctla & T5_TFEN_F);
		tp->port = T5_TFPORT_G(ctla);
		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
	}
	tp->snap_len = TFCAPTUREMAX_G(ctlb);
	tp->min_len = TFMINPKTSIZE_G(ctlb);
	tp->skip_ofst = TFOFFSET_G(ctla);
	tp->skip_len = TFLENGTH_G(ctla);

	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;

	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
	}
}

5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
/**
 *	t4_pmtx_get_stats - returns the HW stats from PMTX
 *	@adap: the adapter
 *	@cnt: where to store the count statistics
 *	@cycles: where to store the cycle statistics
 *
 *	Returns performance statistics from PMTX.
 */
void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
	int i;
	u32 data[2];

5270
	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
		if (is_t4(adap->params.chip)) {
			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
		} else {
			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
					 PM_TX_DBG_DATA_A, data, 2,
					 PM_TX_DBG_STAT_MSB_A);
			cycles[i] = (((u64)data[0] << 32) | data[1]);
		}
	}
}

/**
 *	t4_pmrx_get_stats - returns the HW stats from PMRX
 *	@adap: the adapter
 *	@cnt: where to store the count statistics
 *	@cycles: where to store the cycle statistics
 *
 *	Returns performance statistics from PMRX.
 */
void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
	int i;
	u32 data[2];

5297
	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
		if (is_t4(adap->params.chip)) {
			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
		} else {
			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
					 PM_RX_DBG_DATA_A, data, 2,
					 PM_RX_DBG_STAT_MSB_A);
			cycles[i] = (((u64)data[0] << 32) | data[1]);
		}
	}
}

5311
/**
5312
 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5313 5314 5315 5316 5317 5318 5319
 *	@adap: the adapter
 *	@idx: the port index
 *
 *	Returns a bitmap indicating which MPS buffer groups are associated
 *	with the given port.  Bit i is set if buffer group i is used by the
 *	port.
 */
5320
unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5321
{
5322
	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5323 5324 5325

	if (n == 0)
		return idx == 0 ? 0xf : 0;
5326 5327 5328 5329 5330 5331 5332 5333
	/* In T6 (which is a 2 port card),
	 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
	 * For 2 port T4/T5 adapter,
	 * port 0 is mapped to channel 0 and 1,
	 * port 1 is mapped to channel 2 and 3.
	 */
	if ((n == 1) &&
	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5334 5335 5336 5337
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
/**
 *      t4_get_port_type_description - return Port Type string description
 *      @port_type: firmware Port Type enumeration
 */
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
	static const char *const port_type_description[] = {
		"R XFI",
		"R XAUI",
		"T SGMII",
		"T XFI",
		"T XAUI",
		"KX4",
		"CX4",
		"KX",
		"KR",
		"R SFP+",
		"KR/KX",
		"KR/KX/KX4",
		"R QSFP_10G",
5358
		"R QSA",
5359 5360 5361 5362 5363 5364 5365 5366 5367
		"R QSFP",
		"R BP40_BA",
	};

	if (port_type < ARRAY_SIZE(port_type_description))
		return port_type_description[port_type];
	return "UNKNOWN";
}

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
/**
 *      t4_get_port_stats_offset - collect port stats relative to a previous
 *                                 snapshot
 *      @adap: The adapter
 *      @idx: The port
 *      @stats: Current stats to fill
 *      @offset: Previous stats snapshot
 */
void t4_get_port_stats_offset(struct adapter *adap, int idx,
			      struct port_stats *stats,
			      struct port_stats *offset)
{
	u64 *s, *o;
	int i;

	t4_get_port_stats(adap, idx, stats);
	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
			i < (sizeof(struct port_stats) / sizeof(u64));
			i++, s++, o++)
		*s -= *o;
}

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
/**
 *	t4_get_port_stats - collect port statistics
 *	@adap: the adapter
 *	@idx: the port index
 *	@p: the stats structure to fill
 *
 *	Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
5400
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5401 5402

#define GET_STAT(name) \
S
Santosh Rastapur 已提交
5403
	t4_read_reg64(adap, \
5404
	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
S
Santosh Rastapur 已提交
5405
	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);

	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
5474
 *	t4_get_lb_stats - collect loopback port statistics
5475
 *	@adap: the adapter
5476 5477
 *	@idx: the loopback port index
 *	@p: the stats structure to fill
5478
 *
5479
 *	Return HW statistics for the given loopback port.
5480
 */
5481
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5482
{
5483
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5484

5485 5486
#define GET_STAT(name) \
	t4_read_reg64(adap, \
5487
	(is_t4(adap->params.chip) ? \
5488 5489 5490
	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5491

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	p->octets           = GET_STAT(BYTES);
	p->frames           = GET_STAT(FRAMES);
	p->bcast_frames     = GET_STAT(BCAST);
	p->mcast_frames     = GET_STAT(MCAST);
	p->ucast_frames     = GET_STAT(UCAST);
	p->error_frames     = GET_STAT(ERROR);

	p->frames_64        = GET_STAT(64B);
	p->frames_65_127    = GET_STAT(65B_127B);
	p->frames_128_255   = GET_STAT(128B_255B);
	p->frames_256_511   = GET_STAT(256B_511B);
	p->frames_512_1023  = GET_STAT(512B_1023B);
	p->frames_1024_1518 = GET_STAT(1024B_1518B);
	p->frames_1519_max  = GET_STAT(1519B_MAX);
	p->drop             = GET_STAT(DROP_FRAMES);

	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5516

5517 5518
#undef GET_STAT
#undef GET_STAT_COM
5519 5520
}

V
Vipul Pandya 已提交
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
/*     t4_mk_filtdelwr - create a delete filter WR
 *     @ftid: the filter ID
 *     @wr: the filter work request to populate
 *     @qid: ingress queue to receive the delete notification
 *
 *     Creates a filter work request to delete the supplied filter.  If @qid is
 *     negative the delete notification is suppressed.
 */
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
	memset(wr, 0, sizeof(*wr));
5532 5533 5534 5535 5536
	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
				    FW_FILTER_WR_NOREPLY_V(qid < 0));
	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
V
Vipul Pandya 已提交
5537
	if (qid >= 0)
5538 5539
		wr->rx_chan_rx_rpl_iq =
			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
V
Vipul Pandya 已提交
5540 5541
}

5542
#define INIT_CMD(var, cmd, rd_wr) do { \
5543 5544 5545 5546
	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
					FW_CMD_REQUEST_F | \
					FW_CMD_##rd_wr##_F); \
	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5547 5548
} while (0)

5549 5550 5551
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
			  u32 addr, u32 val)
{
5552
	u32 ldst_addrspace;
5553 5554 5555
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
5556 5557 5558 5559 5560 5561 5562 5563
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_WRITE_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.addrval.addr = cpu_to_be32(addr);
	c.u.addrval.val = cpu_to_be32(val);
5564 5565 5566 5567

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
/**
 *	t4_mdio_rd - read a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to read
 *	@valp: where to store the value
 *
 *	Issues a FW command through the given mailbox to read a PHY register.
 */
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 *valp)
{
	int ret;
5583
	u32 ldst_addrspace;
5584 5585 5586
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
5587 5588 5589 5590 5591 5592 5593 5594
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_READ_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
					 FW_LDST_CMD_MMD_V(mmd));
	c.u.mdio.raddr = cpu_to_be16(reg);
5595 5596 5597

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
5598
		*valp = be16_to_cpu(c.u.mdio.rval);
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	return ret;
}

/**
 *	t4_mdio_wr - write a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to write
 *	@valp: value to write
 *
 *	Issues a FW command through the given mailbox to write a PHY register.
 */
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 val)
{
5616
	u32 ldst_addrspace;
5617 5618 5619
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
5620 5621 5622 5623 5624 5625 5626 5627 5628
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
					 FW_LDST_CMD_MMD_V(mmd));
	c.u.mdio.raddr = cpu_to_be16(reg);
	c.u.mdio.rval = cpu_to_be16(val);
5629 5630 5631 5632

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
/**
 *	t4_sge_decode_idma_state - decode the idma state
 *	@adap: the adapter
 *	@state: the state idma is stuck in
 */
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
{
	static const char * const t4_decode[] = {
		"IDMA_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"Not used",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL_PREP",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
		"IDMA_FL_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATAFL_DONE",
		"IDMA_FL_REQ_HEADERFL_DONE",
	};
	static const char * const t5_decode[] = {
		"IDMA_IDLE",
		"IDMA_ALMOST_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_DROP_SEND_INC",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
	};
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
	static const char * const t6_decode[] = {
		"IDMA_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_DROP_SEND_INC",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
	};
5745
	static const u32 sge_regs[] = {
5746 5747 5748
		SGE_DEBUG_DATA_LOW_INDEX_2_A,
		SGE_DEBUG_DATA_LOW_INDEX_3_A,
		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5749 5750 5751 5752
	};
	const char **sge_idma_decode;
	int sge_idma_decode_nstates;
	int i;
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);

	/* Select the right set of decode strings to dump depending on the
	 * adapter chip type.
	 */
	switch (chip_version) {
	case CHELSIO_T4:
		sge_idma_decode = (const char **)t4_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
		break;

	case CHELSIO_T5:
		sge_idma_decode = (const char **)t5_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
		break;

	case CHELSIO_T6:
		sge_idma_decode = (const char **)t6_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
		break;

	default:
		dev_err(adapter->pdev_dev,
			"Unsupported chip version %d\n", chip_version);
		return;
	}
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797

	if (is_t4(adapter->params.chip)) {
		sge_idma_decode = (const char **)t4_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
	} else {
		sge_idma_decode = (const char **)t5_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
	}

	if (state < sge_idma_decode_nstates)
		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
	else
		CH_WARN(adapter, "idma state %d unknown\n", state);

	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
		CH_WARN(adapter, "SGE register %#x value %#x\n",
			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
}

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
/**
 *      t4_sge_ctxt_flush - flush the SGE context cache
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *
 *      Issues a FW command through the given mailbox to flush the
 *      SGE context cache.
 */
int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
{
	int ret;
	u32 ldst_addrspace;
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_READ_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	return ret;
}

5824
/**
5825 5826 5827 5828 5829 5830
 *      t4_fw_hello - establish communication with FW
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @evt_mbox: mailbox to receive async FW events
 *      @master: specifies the caller's willingness to be the device master
 *	@state: returns the current device state (if non-NULL)
5831
 *
5832 5833
 *	Issues a command to establish communication with FW.  Returns either
 *	an error (negative integer) or the mailbox of the Master PF.
5834 5835 5836 5837 5838 5839
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;
5840 5841 5842
	u32 v;
	unsigned int master_mbox;
	int retries = FW_CMD_HELLO_RETRIES;
5843

5844 5845
retry:
	memset(&c, 0, sizeof(c));
5846
	INIT_CMD(c, HELLO, WRITE);
5847
	c.err_to_clearinit = cpu_to_be32(
5848 5849
		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5850 5851
		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
					mbox : FW_HELLO_CMD_MBMASTER_M) |
5852 5853 5854
		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
		FW_HELLO_CMD_CLEARINIT_F);
5855

5856 5857 5858
	/*
	 * Issue the HELLO command to the firmware.  If it's not successful
	 * but indicates that we got a "busy" or "timeout" condition, retry
5859 5860 5861
	 * the HELLO until we exhaust our retry limit.  If we do exceed our
	 * retry limit, check to see if the firmware left us any error
	 * information and report that if so.
5862
	 */
5863
	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5864 5865 5866
	if (ret < 0) {
		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
			goto retry;
5867
		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5868
			t4_report_fw_error(adap);
5869 5870 5871
		return ret;
	}

5872
	v = be32_to_cpu(c.err_to_clearinit);
5873
	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5874
	if (state) {
5875
		if (v & FW_HELLO_CMD_ERR_F)
5876
			*state = DEV_STATE_ERR;
5877
		else if (v & FW_HELLO_CMD_INIT_F)
5878
			*state = DEV_STATE_INIT;
5879 5880 5881
		else
			*state = DEV_STATE_UNINIT;
	}
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891

	/*
	 * If we're not the Master PF then we need to wait around for the
	 * Master PF Driver to finish setting up the adapter.
	 *
	 * Note that we also do this wait if we're a non-Master-capable PF and
	 * there is no current Master PF; a Master PF may show up momentarily
	 * and we wouldn't want to fail pointlessly.  (This can happen when an
	 * OS loads lots of different drivers rapidly at the same time).  In
	 * this case, the Master PF returned by the firmware will be
5892
	 * PCIE_FW_MASTER_M so the test below will work ...
5893
	 */
5894
	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	    master_mbox != mbox) {
		int waiting = FW_CMD_HELLO_TIMEOUT;

		/*
		 * Wait for the firmware to either indicate an error or
		 * initialized state.  If we see either of these we bail out
		 * and report the issue to the caller.  If we exhaust the
		 * "hello timeout" and we haven't exhausted our retries, try
		 * again.  Otherwise bail with a timeout error.
		 */
		for (;;) {
			u32 pcie_fw;

			msleep(50);
			waiting -= 50;

			/*
			 * If neither Error nor Initialialized are indicated
			 * by the firmware keep waiting till we exaust our
			 * timeout ... and then retry if we haven't exhausted
			 * our retries ...
			 */
5917 5918
			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
				if (waiting <= 0) {
					if (retries-- > 0)
						goto retry;

					return -ETIMEDOUT;
				}
				continue;
			}

			/*
			 * We either have an Error or Initialized condition
			 * report errors preferentially.
			 */
			if (state) {
5933
				if (pcie_fw & PCIE_FW_ERR_F)
5934
					*state = DEV_STATE_ERR;
5935
				else if (pcie_fw & PCIE_FW_INIT_F)
5936 5937 5938 5939 5940 5941 5942 5943
					*state = DEV_STATE_INIT;
			}

			/*
			 * If we arrived before a Master PF was selected and
			 * there's not a valid Master PF, grab its identity
			 * for our caller.
			 */
5944
			if (master_mbox == PCIE_FW_MASTER_M &&
5945
			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5946
				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5947 5948 5949 5950 5951
			break;
		}
	}

	return master_mbox;
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
}

/**
 *	t4_fw_bye - end communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

5965
	memset(&c, 0, sizeof(c));
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_init_cmd - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

5982
	memset(&c, 0, sizeof(c));
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_reset - issue a reset to FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@reset: specifies the type of reset to perform
 *
 *	Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

5999
	memset(&c, 0, sizeof(c));
6000
	INIT_CMD(c, RESET, WRITE);
6001
	c.val = cpu_to_be32(reset);
6002 6003 6004
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

6005 6006 6007 6008 6009 6010 6011 6012 6013
/**
 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@force: force uP into RESET even if FW RESET command fails
 *
 *	Issues a RESET command to firmware (if desired) with a HALT indication
 *	and then puts the microprocessor into RESET state.  The RESET command
 *	will only be issued if a legitimate mailbox is provided (mbox <=
6014
 *	PCIE_FW_MASTER_M).
6015 6016 6017 6018 6019 6020
 *
 *	This is generally used in order for the host to safely manipulate the
 *	adapter without fear of conflicting with whatever the firmware might
 *	be doing.  The only way out of this state is to RESTART the firmware
 *	...
 */
6021
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6022 6023 6024 6025 6026 6027 6028
{
	int ret = 0;

	/*
	 * If a legitimate mailbox is provided, issue a RESET command
	 * with a HALT indication.
	 */
6029
	if (mbox <= PCIE_FW_MASTER_M) {
6030 6031 6032 6033
		struct fw_reset_cmd c;

		memset(&c, 0, sizeof(c));
		INIT_CMD(c, RESET, WRITE);
6034 6035
		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
	}

	/*
	 * Normally we won't complete the operation if the firmware RESET
	 * command fails but if our caller insists we'll go ahead and put the
	 * uP into RESET.  This can be useful if the firmware is hung or even
	 * missing ...  We'll have to take the risk of putting the uP into
	 * RESET without the cooperation of firmware in that case.
	 *
	 * We also force the firmware's HALT flag to be on in case we bypassed
	 * the firmware RESET command above or we're dealing with old firmware
	 * which doesn't have the HALT capability.  This will serve as a flag
	 * for the incoming firmware to know that it's coming out of a HALT
	 * rather than a RESET ... if it's new enough to understand that ...
	 */
	if (ret == 0 || force) {
6053
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6054
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6055
				 PCIE_FW_HALT_F);
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
	}

	/*
	 * And we always return the result of the firmware RESET command
	 * even when we force the uP into RESET ...
	 */
	return ret;
}

/**
 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
 *	@adap: the adapter
 *	@reset: if we want to do a RESET to restart things
 *
 *	Restart firmware previously halted by t4_fw_halt().  On successful
 *	return the previous PF Master remains as the new PF Master and there
 *	is no need to issue a new HELLO command, etc.
 *
 *	We do this in two ways:
 *
 *	 1. If we're dealing with newer firmware we'll simply want to take
 *	    the chip's microprocessor out of RESET.  This will cause the
 *	    firmware to start up from its start vector.  And then we'll loop
 *	    until the firmware indicates it's started again (PCIE_FW.HALT
 *	    reset to 0) or we timeout.
 *
 *	 2. If we're dealing with older firmware then we'll need to RESET
 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
 *	    flag and automatically RESET itself on startup.
 */
6086
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6087 6088 6089 6090 6091 6092 6093
{
	if (reset) {
		/*
		 * Since we're directing the RESET instead of the firmware
		 * doing it automatically, we need to clear the PCIE_FW.HALT
		 * bit.
		 */
6094
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6095 6096 6097 6098 6099 6100 6101 6102

		/*
		 * If we've been given a valid mailbox, first try to get the
		 * firmware to do the RESET.  If that works, great and we can
		 * return success.  Otherwise, if we haven't been given a
		 * valid mailbox or the RESET command failed, fall back to
		 * hitting the chip with a hammer.
		 */
6103
		if (mbox <= PCIE_FW_MASTER_M) {
6104
			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6105 6106
			msleep(100);
			if (t4_fw_reset(adap, mbox,
6107
					PIORST_F | PIORSTMODE_F) == 0)
6108 6109 6110
				return 0;
		}

6111
		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6112 6113 6114 6115
		msleep(2000);
	} else {
		int ms;

6116
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6117
		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6118
			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
				return 0;
			msleep(100);
			ms += 100;
		}
		return -ETIMEDOUT;
	}
	return 0;
}

/**
 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@fw_data: the firmware image to write
 *	@size: image size
 *	@force: force upgrade even if firmware doesn't cooperate
 *
 *	Perform all of the steps necessary for upgrading an adapter's
 *	firmware image.  Normally this requires the cooperation of the
 *	existing firmware in order to halt all existing activities
 *	but if an invalid mailbox token is passed in we skip that step
 *	(though we'll still put the adapter microprocessor into RESET in
 *	that case).
 *
 *	On successful return the new firmware will have been loaded and
 *	the adapter will have been fully RESET losing all previous setup
 *	state.  On unsuccessful return the adapter may be completely hosed ...
 *	positive errno indicates that the adapter is ~probably~ intact, a
 *	negative errno indicates that things are looking bad ...
 */
6149 6150
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
		  const u8 *fw_data, unsigned int size, int force)
6151 6152 6153 6154
{
	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
	int reset, ret;

6155 6156 6157
	if (!t4_fw_matches_chip(adap, fw_hdr))
		return -EINVAL;

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
	ret = t4_fw_halt(adap, mbox, force);
	if (ret < 0 && !force)
		return ret;

	ret = t4_load_fw(adap, fw_data, size);
	if (ret < 0)
		return ret;

	/*
	 * Older versions of the firmware don't understand the new
	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
	 * restart.  So for newly loaded older firmware we'll have to do the
	 * RESET for it so it starts up on a clean slate.  We can tell if
	 * the newly loaded firmware will handle this right by checking
	 * its header flags to see if it advertises the capability.
	 */
6174
	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6175 6176 6177
	return t4_fw_restart(adap, mbox, reset);
}

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
/**
 *	t4_fl_pkt_align - return the fl packet alignment
 *	@adap: the adapter
 *
 *	T4 has a single field to specify the packing and padding boundary.
 *	T5 onwards has separate fields for this and hence the alignment for
 *	next packet offset is maximum of these two.
 *
 */
int t4_fl_pkt_align(struct adapter *adap)
{
	u32 sge_control, sge_control2;
	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;

	sge_control = t4_read_reg(adap, SGE_CONTROL_A);

	/* T4 uses a single control field to specify both the PCIe Padding and
	 * Packing Boundary.  T5 introduced the ability to specify these
	 * separately.  The actual Ingress Packet Data alignment boundary
	 * within Packed Buffer Mode is the maximum of these two
	 * specifications.  (Note that it makes no real practical sense to
	 * have the Pading Boudary be larger than the Packing Boundary but you
	 * could set the chip up that way and, in fact, legacy T4 code would
	 * end doing this because it would initialize the Padding Boundary and
	 * leave the Packing Boundary initialized to 0 (16 bytes).)
	 * Padding Boundary values in T6 starts from 8B,
	 * where as it is 32B for T4 and T5.
	 */
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
	else
		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;

	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);

	fl_align = ingpadboundary;
	if (!is_t4(adap->params.chip)) {
		/* T5 has a weird interpretation of one of the PCIe Packing
		 * Boundary values.  No idea why ...
		 */
		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
			ingpackboundary = 16;
		else
			ingpackboundary = 1 << (ingpackboundary +
						INGPACKBOUNDARY_SHIFT_X);

		fl_align = max(ingpadboundary, ingpackboundary);
	}
	return fl_align;
}

6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
/**
 *	t4_fixup_host_params - fix up host-dependent parameters
 *	@adap: the adapter
 *	@page_size: the host's Base Page Size
 *	@cache_line_size: the host's Cache Line Size
 *
 *	Various registers in T4 contain values which are dependent on the
 *	host's Base Page and Cache Line Sizes.  This function will fix all of
 *	those registers with the appropriate values as passed in ...
 */
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
			 unsigned int cache_line_size)
{
	unsigned int page_shift = fls(page_size) - 1;
	unsigned int sge_hps = page_shift - 10;
	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
	unsigned int fl_align_log = fls(fl_align) - 1;
6249
	unsigned int ingpad;
6250

6251 6252 6253 6254 6255 6256 6257 6258 6259
	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
		     HOSTPAGESIZEPF0_V(sge_hps) |
		     HOSTPAGESIZEPF1_V(sge_hps) |
		     HOSTPAGESIZEPF2_V(sge_hps) |
		     HOSTPAGESIZEPF3_V(sge_hps) |
		     HOSTPAGESIZEPF4_V(sge_hps) |
		     HOSTPAGESIZEPF5_V(sge_hps) |
		     HOSTPAGESIZEPF6_V(sge_hps) |
		     HOSTPAGESIZEPF7_V(sge_hps));
6260

6261
	if (is_t4(adap->params.chip)) {
6262 6263 6264 6265 6266 6267
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(fl_align_log -
						  INGPADBOUNDARY_SHIFT_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
	} else {
		/* T5 introduced the separation of the Free List Padding and
		 * Packing Boundaries.  Thus, we can select a smaller Padding
		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
		 * Bandwidth, and use a Packing Boundary which is large enough
		 * to avoid false sharing between CPUs, etc.
		 *
		 * For the PCI Link, the smaller the Padding Boundary the
		 * better.  For the Memory Controller, a smaller Padding
		 * Boundary is better until we cross under the Memory Line
		 * Size (the minimum unit of transfer to/from Memory).  If we
		 * have a Padding Boundary which is smaller than the Memory
		 * Line Size, that'll involve a Read-Modify-Write cycle on the
		 * Memory Controller which is never good.  For T5 the smallest
		 * Padding Boundary which we can select is 32 bytes which is
		 * larger than any known Memory Controller Line Size so we'll
		 * use that.
		 *
		 * T5 has a different interpretation of the "0" value for the
		 * Packing Boundary.  This corresponds to 16 bytes instead of
		 * the expected 32 bytes.  We never have a Packing Boundary
		 * less than 32 bytes so we can't use that special value but
		 * on the other hand, if we wanted 32 bytes, the best we can
		 * really do is 64 bytes.
		*/
		if (fl_align <= 32) {
			fl_align = 64;
			fl_align_log = 6;
		}
6297 6298 6299 6300 6301 6302

		if (is_t5(adap->params.chip))
			ingpad = INGPCIEBOUNDARY_32B_X;
		else
			ingpad = T6_INGPADBOUNDARY_32B_X;

6303 6304 6305
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
6306
				 INGPADBOUNDARY_V(ingpad) |
6307
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6308 6309 6310
		t4_set_reg_field(adap, SGE_CONTROL2_A,
				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
				 INGPACKBOUNDARY_V(fl_align_log -
6311
						   INGPACKBOUNDARY_SHIFT_X));
6312
	}
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
	/*
	 * Adjust various SGE Free List Host Buffer Sizes.
	 *
	 * This is something of a crock since we're using fixed indices into
	 * the array which are also known by the sge.c code and the T4
	 * Firmware Configuration File.  We need to come up with a much better
	 * approach to managing this array.  For now, the first four entries
	 * are:
	 *
	 *   0: Host Page Size
	 *   1: 64KB
	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
	 *
	 * For the single-MTU buffers in unpacked mode we need to include
	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6330
	 * Padding boundary.  All of these are accommodated in the Factory
6331 6332 6333
	 * Default Firmware Configuration File but we need to adjust it for
	 * this host's cache line size.
	 */
6334 6335 6336
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6337
		     & ~(fl_align-1));
6338 6339
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6340 6341
		     & ~(fl_align-1));

6342
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363

	return 0;
}

/**
 *	t4_fw_initialize - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

6364
/**
6365
 *	t4_query_params_rw - query FW or device parameters
6366 6367 6368 6369 6370 6371 6372
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
6373
 *	@rw: Write and read flag
6374 6375 6376 6377
 *
 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
 *	queried at once.
 */
6378 6379 6380
int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
		       unsigned int vf, unsigned int nparams, const u32 *params,
		       u32 *val, int rw)
6381 6382 6383 6384 6385 6386 6387 6388 6389
{
	int i, ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
6390 6391 6392 6393 6394 6395
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
				  FW_PARAMS_CMD_PFN_V(pf) |
				  FW_PARAMS_CMD_VFN_V(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

6396 6397 6398 6399 6400 6401
	for (i = 0; i < nparams; i++) {
		*p++ = cpu_to_be32(*params++);
		if (rw)
			*p = cpu_to_be32(*(val + i));
		p++;
	}
6402 6403 6404 6405

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6406
			*val++ = be32_to_cpu(*p);
6407 6408 6409
	return ret;
}

6410 6411 6412 6413 6414 6415 6416
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
}

6417
/**
6418
 *      t4_set_params_timeout - sets FW or device parameters
6419 6420 6421 6422 6423 6424 6425
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @pf: the PF
 *      @vf: the VF
 *      @nparams: the number of parameters
 *      @params: the parameter names
 *      @val: the parameter values
6426
 *      @timeout: the timeout time
6427 6428 6429 6430
 *
 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
 *      specified at once.
 */
6431
int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6432 6433
			  unsigned int pf, unsigned int vf,
			  unsigned int nparams, const u32 *params,
6434
			  const u32 *val, int timeout)
6435 6436 6437 6438 6439 6440 6441 6442
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
6443
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6444 6445 6446
				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				  FW_PARAMS_CMD_PFN_V(pf) |
				  FW_PARAMS_CMD_VFN_V(vf));
6447 6448 6449 6450 6451 6452 6453
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

	while (nparams--) {
		*p++ = cpu_to_be32(*params++);
		*p++ = cpu_to_be32(*val++);
	}

6454
	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6455 6456
}

6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
/**
 *	t4_set_params - sets FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
 *	specified at once.
 */
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
6474 6475
	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
				     FW_CMD_MAX_TIMEOUT);
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
}

/**
 *	t4_cfg_pfvf - configure PF/VF resource limits
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF being configured
 *	@vf: the VF being configured
 *	@txq: the max number of egress queues
 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
 *	@rxqi: the max number of interrupt-capable ingress queues
 *	@rxq: the max number of interruptless ingress queues
 *	@tc: the PCI traffic class
 *	@vi: the max number of virtual interfaces
 *	@cmask: the channel access rights mask for the PF/VF
 *	@pmask: the port access rights mask for the PF/VF
 *	@nexact: the maximum number of exact MPS filters
 *	@rcaps: read capabilities
 *	@wxcaps: write/execute capabilities
 *
 *	Configures resource limits and capabilities for a physical or virtual
 *	function.
 */
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
		unsigned int rxqi, unsigned int rxq, unsigned int tc,
		unsigned int vi, unsigned int cmask, unsigned int pmask,
		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
	struct fw_pfvf_cmd c;

	memset(&c, 0, sizeof(c));
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
				  FW_PFVF_CMD_VFN_V(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
				     FW_PFVF_CMD_NIQ_V(rxq));
	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
				    FW_PFVF_CMD_PMASK_V(pmask) |
				    FW_PFVF_CMD_NEQ_V(txq));
	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
				      FW_PFVF_CMD_NVI_V(vi) |
				      FW_PFVF_CMD_NEXACTF_V(nexact));
	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_alloc_vi - allocate a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@port: physical port associated with the VI
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@nmac: number of MAC addresses needed (1 to 5)
 *	@mac: the MAC addresses of the VI
 *	@rss_size: size of RSS table slice associated with this VI
 *
 *	Allocates a virtual interface for the given physical port.  If @mac is
 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
 *	stored consecutively so the space needed is @nmac * 6 bytes.
 *	Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
6551 6552 6553 6554
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6555
	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
		}
	}
	if (rss_size)
6576 6577
		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6578 6579
}

6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
/**
 *	t4_free_vi - free a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@viid: virtual interface identifiler
 *
 *	Free a previously allocated virtual interface.
 */
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int viid)
{
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				  FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F |
				  FW_VI_CMD_PFN_V(pf) |
				  FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
}

/**
 *	t4_set_rxmode - set Rx properties of a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@mtu: the new MTU or -1
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6616
 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6617 6618 6619 6620 6621
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6622 6623
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
6624 6625 6626 6627 6628 6629 6630
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_RXMODE_MTU_NO_CHG;
	if (promisc < 0)
6631
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6632
	if (all_multi < 0)
6633
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6634
	if (bcast < 0)
6635
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6636
	if (vlanex < 0)
6637
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6638 6639

	memset(&c, 0, sizeof(c));
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_RXMODE_CMD_VIID_V(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.mtu_to_vlanexen =
		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
		      unsigned int viid, bool free, unsigned int naddr,
		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
6679
	int offset, ret = 0;
6680
	struct fw_vi_mac_cmd c;
6681 6682 6683
	unsigned int nfilters = 0;
	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
	unsigned int rem = naddr;
6684

6685
	if (naddr > max_naddr)
6686 6687
		return -EINVAL;

6688 6689 6690 6691 6692 6693 6694
	for (offset = 0; offset < naddr ; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
					 rem : ARRAY_SIZE(c.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;
6695

6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
		memset(&c, 0, sizeof(c));
		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
					   FW_CMD_REQUEST_F |
					   FW_CMD_WRITE_F |
					   FW_CMD_EXEC_V(free) |
					   FW_VI_MAC_CMD_VIID_V(viid));
		c.freemacs_to_len16 =
			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
				    FW_CMD_LEN16_V(len16));

		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			p->valid_to_idx =
				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
					    FW_VI_MAC_CMD_IDX_V(
						    FW_VI_MAC_ADD_MAC));
			memcpy(p->macaddr, addr[offset + i],
			       sizeof(p->macaddr));
		}
6714

6715 6716 6717 6718 6719 6720 6721
		/* It's okay if we run out of space in our MAC address arena.
		 * Some of the addresses we submit may get stored so we need
		 * to run through the reply to see what the results were ...
		 */
		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
		if (ret && ret != -FW_ENOMEM)
			break;
6722

6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			u16 index = FW_VI_MAC_CMD_IDX_G(
					be16_to_cpu(p->valid_to_idx));

			if (idx)
				idx[offset + i] = (index >= max_naddr ?
						   0xffff : index);
			if (index < max_naddr)
				nfilters++;
			else if (hash)
				*hash |= (1ULL <<
					  hash_mac_addr(addr[offset + i]));
		}
6736

6737 6738 6739
		free = false;
		offset += fw_naddr;
		rem -= fw_naddr;
6740
	}
6741 6742 6743

	if (ret == 0 || ret == -FW_ENOMEM)
		ret = nfilters;
6744 6745 6746
	return ret;
}

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
/**
 *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@sleep_ok: call is allowed to sleep
 *
 *	Frees the exact-match filter for each of the supplied addresses
 *
 *	Returns a negative error number or the number of filters freed.
 */
int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
		     unsigned int viid, unsigned int naddr,
		     const u8 **addr, bool sleep_ok)
{
	int offset, ret = 0;
	struct fw_vi_mac_cmd c;
	unsigned int nfilters = 0;
	unsigned int max_naddr = is_t4(adap->params.chip) ?
				       NUM_MPS_CLS_SRAM_L_INSTANCES :
				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
	unsigned int rem = naddr;

	if (naddr > max_naddr)
		return -EINVAL;

	for (offset = 0; offset < (int)naddr ; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
					 ? rem
					 : ARRAY_SIZE(c.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;

		memset(&c, 0, sizeof(c));
		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
				     FW_CMD_EXEC_V(0) |
				     FW_VI_MAC_CMD_VIID_V(viid));
		c.freemacs_to_len16 =
				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
					    FW_CMD_LEN16_V(len16));

		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
			p->valid_to_idx = cpu_to_be16(
				FW_VI_MAC_CMD_VALID_F |
				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
		}

		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
		if (ret)
			break;

		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			u16 index = FW_VI_MAC_CMD_IDX_G(
						be16_to_cpu(p->valid_to_idx));

			if (index < max_naddr)
				nfilters++;
		}

		offset += fw_naddr;
		rem -= fw_naddr;
	}

	if (ret == 0)
		ret = nfilters;
	return ret;
}

6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
/**
 *	t4_change_mac - modifies the exact-match filter for a MAC address
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: whether a new MAC allocation should be persistent
 *	@add_smt: if true also add the address to the HW SMT
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the one
 *	being used by the old address value and allocate a new filter for the
 *	new address value.  @idx can be -1 if the address is a new addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;
6847
	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6848 6849 6850 6851 6852 6853

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
6854 6855 6856 6857 6858 6859 6860
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_MAC_CMD_VIID_V(viid));
	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
				      FW_VI_MAC_CMD_IDX_V(idx));
6861 6862 6863 6864
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
6865
		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
S
Santosh Rastapur 已提交
6866
		if (ret >= max_mac_addr)
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4_set_addr_hash - program the MAC inexact-match hash filter
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd c;

	memset(&c, 0, sizeof(c));
6889 6890 6891 6892 6893 6894
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
					  FW_CMD_LEN16_V(1));
6895 6896 6897 6898
	c.u.hash.hashvec = cpu_to_be64(vec);
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
/**
 *      t4_enable_vi_params - enable/disable a virtual interface
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @viid: the VI id
 *      @rx_en: 1=enable Rx, 0=disable Rx
 *      @tx_en: 1=enable Tx, 0=disable Tx
 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
 *
 *      Enables/disables a virtual interface.  Note that setting DCB Enable
 *      only makes sense when enabling a Virtual Interface ...
 */
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
6917 6918 6919 6920 6921 6922 6923
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
				     FW_LEN16(c));
6924
	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6925 6926
}

6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
/**
 *	t4_enable_vi - enable/disable a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
6940
	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
}

/**
 *	t4_identify_port - identify a VI's port by blinking its LED
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     unsigned int nblinks)
{
	struct fw_vi_enable_cmd c;

6957
	memset(&c, 0, sizeof(c));
6958 6959 6960 6961 6962
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
	c.blinkdur = cpu_to_be16(nblinks);
6963 6964 6965
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
/**
 *	t4_iq_stop - stop an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Stops an ingress queue and its associated FLs, if any.  This causes
 *	any current or future data/messages destined for these queues to be
 *	tossed.
 */
int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
				  FW_IQ_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
	c.iqid = cpu_to_be16(iqid);
	c.fl0id = cpu_to_be16(fl0id);
	c.fl1id = cpu_to_be16(fl1id);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
/**
 *	t4_iq_free - free an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
7019 7020 7021 7022 7023 7024 7025 7026
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
				  FW_IQ_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
	c.iqid = cpu_to_be16(iqid);
	c.fl0id = cpu_to_be16(fl0id);
	c.fl1id = cpu_to_be16(fl1id);
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_eth_eq_free - free an Ethernet egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
7046 7047 7048 7049 7050 7051
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_ETH_CMD_PFN_V(pf) |
				  FW_EQ_ETH_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ctrl_eq_free - free a control egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ctrl_cmd c;

	memset(&c, 0, sizeof(c));
7071 7072 7073 7074 7075 7076
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_CTRL_CMD_PFN_V(pf) |
				  FW_EQ_CTRL_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ofld_eq_free - free an offload egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ofld_cmd c;

	memset(&c, 0, sizeof(c));
7096 7097 7098 7099 7100 7101
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_OFLD_CMD_PFN_V(pf) |
				  FW_EQ_OFLD_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_handle_fw_rpl - process a FW reply message
 *	@adap: the adapter
 *	@rpl: start of the FW message
 *
 *	Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
		int speed = 0, fc = 0;
		const struct fw_port_cmd *p = (void *)rpl;
7119
		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7120 7121 7122
		int port = adap->chan_map[chan];
		struct port_info *pi = adap2pinfo(adap, port);
		struct link_config *lc = &pi->link_cfg;
7123
		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7124 7125
		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7126

7127
		if (stat & FW_PORT_CMD_RXPAUSE_F)
7128
			fc |= PAUSE_RX;
7129
		if (stat & FW_PORT_CMD_TXPAUSE_F)
7130
			fc |= PAUSE_TX;
7131
		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7132
			speed = 100;
7133
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7134
			speed = 1000;
7135
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7136
			speed = 10000;
7137
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7138
			speed = 40000;
7139 7140 7141 7142 7143 7144

		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
7145
			lc->supported = be16_to_cpu(p->u.info.pcap);
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
			t4_os_link_changed(adap, port, link_ok);
		}
		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, port);
		}
	}
	return 0;
}

7156
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7157 7158 7159
{
	u16 val;

7160 7161
	if (pci_is_pcie(adapter->pdev)) {
		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
		p->speed = val & PCI_EXP_LNKSTA_CLS;
		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
	}
}

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
7175
static void init_link_config(struct link_config *lc, unsigned int caps)
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

7191 7192 7193
#define CIM_PF_NOACCESS 0xeeeeeeee

int t4_wait_dev_ready(void __iomem *regs)
7194
{
7195 7196
	u32 whoami;

7197
	whoami = readl(regs + PL_WHOAMI_A);
7198
	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7199
		return 0;
7200

7201
	msleep(500);
7202
	whoami = readl(regs + PL_WHOAMI_A);
7203
	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7204 7205
}

7206 7207 7208 7209 7210
struct flash_desc {
	u32 vendor_and_model_id;
	u32 size_mb;
};

B
Bill Pemberton 已提交
7211
static int get_flash_params(struct adapter *adap)
7212
{
7213 7214 7215 7216 7217 7218 7219
	/* Table for non-Numonix supported flash parts.  Numonix parts are left
	 * to the preexisting code.  All flash parts have 64KB sectors.
	 */
	static struct flash_desc supported_flash[] = {
		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
	};

7220 7221 7222 7223 7224 7225
	int ret;
	u32 info;

	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adap, 3, 0, 1, &info);
7226
	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7227 7228 7229
	if (ret)
		return ret;

7230 7231 7232 7233 7234 7235 7236 7237
	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
		if (supported_flash[ret].vendor_and_model_id == info) {
			adap->params.sf_size = supported_flash[ret].size_mb;
			adap->params.sf_nsec =
				adap->params.sf_size / SF_SEC_SIZE;
			return 0;
		}

7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adap->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adap->params.sf_nsec = 64;
	else
		return -EINVAL;
	adap->params.sf_size = 1 << info;
	adap->params.sf_fw_start =
7249
		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7250 7251 7252 7253

	if (adap->params.sf_size < FLASH_MIN_SIZE)
		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
			 adap->params.sf_size, FLASH_MIN_SIZE);
7254 7255 7256
	return 0;
}

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
{
	u16 val;
	u32 pcie_cap;

	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (pcie_cap) {
		pci_read_config_word(adapter->pdev,
				     pcie_cap + PCI_EXP_DEVCTL2, &val);
		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
		val |= range;
		pci_write_config_word(adapter->pdev,
				      pcie_cap + PCI_EXP_DEVCTL2, val);
	}
}

7273 7274 7275 7276 7277 7278 7279 7280 7281
/**
 *	t4_prep_adapter - prepare SW and HW for operation
 *	@adapter: the adapter
 *	@reset: if true perform a HW reset
 *
 *	Initialize adapter SW state for the various HW modules, set initial
 *	values for some adapter tunables, take PHYs out of reset, and
 *	initialize the MDIO interface.
 */
B
Bill Pemberton 已提交
7282
int t4_prep_adapter(struct adapter *adapter)
7283
{
S
Santosh Rastapur 已提交
7284 7285
	int ret, ver;
	uint16_t device_id;
7286
	u32 pl_rev;
7287 7288

	get_pci_mode(adapter, &adapter->params.pci);
7289
	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7290

7291 7292 7293 7294 7295 7296
	ret = get_flash_params(adapter);
	if (ret < 0) {
		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
		return ret;
	}

S
Santosh Rastapur 已提交
7297 7298 7299 7300
	/* Retrieve adapter's device ID
	 */
	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
	ver = device_id >> 12;
7301
	adapter->params.chip = 0;
S
Santosh Rastapur 已提交
7302 7303
	switch (ver) {
	case CHELSIO_T4:
7304
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7305 7306 7307 7308 7309
		adapter->params.arch.sge_fl_db = DBPRIO_F;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
7310
		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7311
		adapter->params.arch.vfcount = 128;
7312 7313 7314 7315
		/* Congestion map is for 4 channels so that
		 * MPS can have 4 priority per port.
		 */
		adapter->params.arch.cng_ch_bits_log = 2;
S
Santosh Rastapur 已提交
7316 7317
		break;
	case CHELSIO_T5:
7318
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7319 7320 7321 7322 7323
		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
7324
		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7325
		adapter->params.arch.vfcount = 128;
7326
		adapter->params.arch.cng_ch_bits_log = 2;
7327 7328 7329 7330 7331 7332 7333 7334
		break;
	case CHELSIO_T6:
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
		adapter->params.arch.sge_fl_db = 0;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 256;
		adapter->params.arch.nchan = 2;
7335
		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7336
		adapter->params.arch.vfcount = 256;
7337 7338 7339 7340
		/* Congestion map will be for 2 channels so that
		 * MPS can have 8 priority per port.
		 */
		adapter->params.arch.cng_ch_bits_log = 3;
S
Santosh Rastapur 已提交
7341 7342 7343 7344 7345 7346 7347
		break;
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
			device_id);
		return -EINVAL;
	}

7348
	adapter->params.cim_la_size = CIMLA_SIZE;
7349 7350 7351 7352 7353 7354 7355
	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
7356
	adapter->params.vpd.cclk = 50000;
7357 7358 7359

	/* Set pci completion timeout value to 4 seconds. */
	set_pcie_completion_timeout(adapter, 0xd);
7360 7361 7362
	return 0;
}

7363
/**
7364
 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7365 7366 7367
 *	@adapter: the adapter
 *	@qid: the Queue ID
 *	@qtype: the Ingress or Egress type for @qid
7368
 *	@user: true if this request is for a user mode queue
7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
 *	@pbar2_qoffset: BAR2 Queue Offset
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 *	Returns the BAR2 SGE Queue Registers information associated with the
 *	indicated Absolute Queue ID.  These are passed back in return value
 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 *	This may return an error which indicates that BAR2 SGE Queue
 *	registers aren't available.  If an error is not returned, then the
 *	following values are returned:
 *
 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 *	require the "Inferred Queue ID" ability may be used.  E.g. the
 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 *	then these "Inferred Queue ID" register may not be used.
 */
7389
int t4_bar2_sge_qregs(struct adapter *adapter,
7390 7391
		      unsigned int qid,
		      enum t4_bar2_qtype qtype,
7392
		      int user,
7393 7394 7395 7396 7397 7398 7399
		      u64 *pbar2_qoffset,
		      unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

7400 7401
	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
	if (!user && is_t4(adapter->params.chip))
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
		return -EINVAL;

	/* Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.hps + 10;
	page_size = 1 << page_shift;

	/* Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
		     ? adapter->params.sge.eq_qpp
		     : adapter->params.sge.iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/*  Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
7421
	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
/**
 *	t4_init_devlog_params - initialize adapter->params.devlog
 *	@adap: the adapter
 *
 *	Initialize various fields of the adapter's Firmware Device Log
 *	Parameters structure.
 */
int t4_init_devlog_params(struct adapter *adap)
{
	struct devlog_params *dparams = &adap->params.devlog;
	u32 pf_dparams;
	unsigned int devlog_meminfo;
	struct fw_devlog_cmd devlog_cmd;
	int ret;

	/* If we're dealing with newer firmware, the Device Log Paramerters
	 * are stored in a designated register which allows us to access the
	 * Device Log even if we can't talk to the firmware.
	 */
	pf_dparams =
		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
	if (pf_dparams) {
		unsigned int nentries, nentries128;

		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;

		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
		nentries = (nentries128 + 1) * 128;
		dparams->size = nentries * sizeof(struct fw_devlog_e);

		return 0;
	}

	/* Otherwise, ask the firmware for it's Device Log Parameters.
	 */
	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7490 7491 7492
	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7493 7494 7495 7496 7497
	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
			 &devlog_cmd);
	if (ret)
		return ret;

7498 7499
	devlog_meminfo =
		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7500 7501
	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7502
	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7503 7504 7505 7506

	return 0;
}

7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
/**
 *	t4_init_sge_params - initialize adap->params.sge
 *	@adapter: the adapter
 *
 *	Initialize various fields of the adapter's SGE Parameters structure.
 */
int t4_init_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 hps, qpp;
	unsigned int s_hps, s_qpp;

	/* Extract the SGE Page Size for our PF.
	 */
7521
	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7522
	s_hps = (HOSTPAGESIZEPF0_S +
7523
		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7524 7525 7526 7527 7528
	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);

	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
	 */
	s_qpp = (QUEUESPERPAGEPF0_S +
7529
		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7530 7531
	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7532
	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7533
	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7534 7535 7536 7537

	return 0;
}

7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
/**
 *      t4_init_tp_params - initialize adap->params.tp
 *      @adap: the adapter
 *
 *      Initialize various fields of the adapter's TP Parameters structure.
 */
int t4_init_tp_params(struct adapter *adap)
{
	int chan;
	u32 v;

7549 7550 7551
	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
	adap->params.tp.tre = TIMERRESOLUTION_G(v);
	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7552 7553 7554 7555 7556 7557 7558 7559

	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
	for (chan = 0; chan < NCHAN; chan++)
		adap->params.tp.tx_modq[chan] = chan;

	/* Cache the adapter's Compressed Filter Mode and global Incress
	 * Configuration.
	 */
7560
	if (t4_use_ldst(adap)) {
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
				TP_VLAN_PRI_MAP_A, 1);
		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
				TP_INGRESS_CONFIG_A, 1);
	} else {
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &adap->params.tp.vlan_pri_map, 1,
				 TP_VLAN_PRI_MAP_A);
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &adap->params.tp.ingress_config, 1,
				 TP_INGRESS_CONFIG_A);
	}
7573 7574 7575 7576 7577

	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
	 * shift positions of several elements of the Compressed Filter Tuple
	 * for this adapter which we need frequently ...
	 */
7578 7579 7580
	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7581
	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7582
							       PROTOCOL_F);
7583 7584

	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7585
	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7586
	 */
7587
	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
		adap->params.tp.vnic_shift = -1;

	return 0;
}

/**
 *      t4_filter_field_shift - calculate filter field shift
 *      @adap: the adapter
 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
 *
 *      Return the shift position of a filter field within the Compressed
 *      Filter Tuple.  The filter field is specified via its selection bit
 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
 */
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
	unsigned int sel;
	int field_shift;

	if ((filter_mode & filter_sel) == 0)
		return -1;

	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
		switch (filter_mode & sel) {
7613 7614
		case FCOE_F:
			field_shift += FT_FCOE_W;
7615
			break;
7616 7617
		case PORT_F:
			field_shift += FT_PORT_W;
7618
			break;
7619 7620
		case VNIC_ID_F:
			field_shift += FT_VNIC_ID_W;
7621
			break;
7622 7623
		case VLAN_F:
			field_shift += FT_VLAN_W;
7624
			break;
7625 7626
		case TOS_F:
			field_shift += FT_TOS_W;
7627
			break;
7628 7629
		case PROTOCOL_F:
			field_shift += FT_PROTOCOL_W;
7630
			break;
7631 7632
		case ETHERTYPE_F:
			field_shift += FT_ETHERTYPE_W;
7633
			break;
7634 7635
		case MACMATCH_F:
			field_shift += FT_MACMATCH_W;
7636
			break;
7637 7638
		case MPSHITTYPE_F:
			field_shift += FT_MPSHITTYPE_W;
7639
			break;
7640 7641
		case FRAGMENTATION_F:
			field_shift += FT_FRAGMENTATION_W;
7642 7643 7644 7645 7646 7647
			break;
		}
	}
	return field_shift;
}

7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
int t4_init_rss_mode(struct adapter *adap, int mbox)
{
	int i, ret;
	struct fw_rss_vi_config_cmd rvc;

	memset(&rvc, 0, sizeof(rvc));

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

7658 7659 7660 7661 7662
		rvc.op_to_viid =
			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7663 7664 7665
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
7666
		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7667 7668 7669 7670
	}
	return 0;
}

B
Bill Pemberton 已提交
7671
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7672 7673 7674 7675
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;
7676
	struct fw_rss_vi_config_cmd rvc;
7677 7678

	memset(&c, 0, sizeof(c));
7679
	memset(&rvc, 0, sizeof(rvc));
7680 7681 7682 7683 7684 7685 7686 7687

	for_each_port(adap, i) {
		unsigned int rss_size;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

7688 7689 7690 7691
		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
					     FW_PORT_CMD_PORTID_V(j));
		c.action_to_len16 = cpu_to_be32(
7692
			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
			FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->lport = j;
		p->rss_size = rss_size;
		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7707
		adap->port[i]->dev_port = j;
7708

7709
		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7710 7711 7712
		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7713
		p->mod_type = FW_PORT_MOD_TYPE_NA;
7714

7715 7716 7717 7718 7719
		rvc.op_to_viid =
			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7720 7721 7722
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
7723
		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7724

7725
		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7726 7727 7728 7729
		j++;
	}
	return 0;
}
7730

7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
/**
 *	t4_read_cimq_cfg - read CIM queue configuration
 *	@adap: the adapter
 *	@base: holds the queue base addresses in bytes
 *	@size: holds the queue sizes in bytes
 *	@thres: holds the queue full thresholds in bytes
 *
 *	Returns the current configuration of the CIM queues, starting with
 *	the IBQs, then the OBQs.
 */
void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
{
	unsigned int i, v;
	int cim_num_obq = is_t4(adap->params.chip) ?
				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;

	for (i = 0; i < CIM_NUM_IBQ; i++) {
		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
			     QUENUMSELECT_V(i));
		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
		/* value is in 256-byte units */
		*base++ = CIMQBASE_G(v) * 256;
		*size++ = CIMQSIZE_G(v) * 256;
		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
	}
	for (i = 0; i < cim_num_obq; i++) {
		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
			     QUENUMSELECT_V(i));
		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
		/* value is in 256-byte units */
		*base++ = CIMQBASE_G(v) * 256;
		*size++ = CIMQSIZE_G(v) * 256;
	}
}

7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804
/**
 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
 *	@adap: the adapter
 *	@qid: the queue index
 *	@data: where to store the queue contents
 *	@n: capacity of @data in 32-bit words
 *
 *	Reads the contents of the selected CIM queue starting at address 0 up
 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
 *	error and the number of 32-bit words actually read on success.
 */
int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
	int i, err, attempts;
	unsigned int addr;
	const unsigned int nwords = CIM_IBQ_SIZE * 4;

	if (qid > 5 || (n & 3))
		return -EINVAL;

	addr = qid * nwords;
	if (n > nwords)
		n = nwords;

	/* It might take 3-10ms before the IBQ debug read access is allowed.
	 * Wait for 1 Sec with a delay of 1 usec.
	 */
	attempts = 1000000;

	for (i = 0; i < n; i++, addr++) {
		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
			     IBQDBGEN_F);
		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
				      attempts, 1);
		if (err)
			return err;
		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
	}
	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
	return i;
}

/**
 *	t4_read_cim_obq - read the contents of a CIM outbound queue
 *	@adap: the adapter
 *	@qid: the queue index
 *	@data: where to store the queue contents
 *	@n: capacity of @data in 32-bit words
 *
 *	Reads the contents of the selected CIM queue starting at address 0 up
 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
 *	error and the number of 32-bit words actually read on success.
 */
int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
	int i, err;
	unsigned int addr, v, nwords;
	int cim_num_obq = is_t4(adap->params.chip) ?
				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;

	if ((qid > (cim_num_obq - 1)) || (n & 3))
		return -EINVAL;

	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
		     QUENUMSELECT_V(qid));
	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);

	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
	nwords = CIMQSIZE_G(v) * 64;  /* same */
	if (n > nwords)
		n = nwords;

	for (i = 0; i < n; i++, addr++) {
		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
			     OBQDBGEN_F);
		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
				      2, 1);
		if (err)
			return err;
		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
	}
	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7848 7849 7850
	return i;
}

7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968
/**
 *	t4_cim_read - read a block from CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to read
 *	@valp: where to store the result
 *
 *	Reads a block of 4-byte words from the CIM intenal address space.
 */
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
		unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
		if (!ret)
			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
	}
	return ret;
}

/**
 *	t4_cim_write - write a block into CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to write
 *	@valp: set of values to write
 *
 *	Writes a block of 4-byte words into the CIM intenal address space.
 */
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
		 const unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
	}
	return ret;
}

static int t4_cim_write1(struct adapter *adap, unsigned int addr,
			 unsigned int val)
{
	return t4_cim_write(adap, addr, 1, &val);
}

/**
 *	t4_cim_read_la - read CIM LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the CIM LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We try to leave the LA in the running state we find it in.
 */
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
{
	int i, ret;
	unsigned int cfg, val, idx;

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
	if (ret)
		return ret;

	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
		if (ret)
			return ret;
	}

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
	if (ret)
		goto restart;

	idx = UPDBGLAWRPTR_G(val);
	if (wrptr)
		*wrptr = idx;

	for (i = 0; i < adap->params.cim_la_size; i++) {
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
		if (ret)
			break;
		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
		if (ret)
			break;
		if (val & UPDBGLARDEN_F) {
			ret = -ETIMEDOUT;
			break;
		}
		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
		if (ret)
			break;
		idx = (idx + 1) & UPDBGLARDPTR_M;
	}
restart:
	if (cfg & UPDBGLAEN_F) {
		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				      cfg & ~UPDBGLARDEN_F);
		if (!ret)
			ret = r;
	}
	return ret;
}
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015

/**
 *	t4_tp_read_la - read TP LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the TP LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We leave the LA in the running state we find it in.
 */
void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
{
	bool last_incomplete;
	unsigned int i, cfg, val, idx;

	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
	if (cfg & DBGLAENABLE_F)			/* freeze LA */
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));

	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
	idx = DBGLAWPTR_G(val);
	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
	if (last_incomplete)
		idx = (idx + 1) & DBGLARPTR_M;
	if (wrptr)
		*wrptr = idx;

	val &= 0xffff;
	val &= ~DBGLARPTR_V(DBGLARPTR_M);
	val |= adap->params.tp.la_mask;

	for (i = 0; i < TPLA_SIZE; i++) {
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
		idx = (idx + 1) & DBGLARPTR_M;
	}

	/* Wipe out last entry if it isn't valid */
	if (last_incomplete)
		la_buf[TPLA_SIZE - 1] = ~0ULL;

	if (cfg & DBGLAENABLE_F)                    /* restore running state */
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
			     cfg | adap->params.tp.la_mask);
}
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142

/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
 * state for more than the Warning Threshold then we'll issue a warning about
 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
 * appears to be hung every Warning Repeat second till the situation clears.
 * If the situation clears, we'll note that as well.
 */
#define SGE_IDMA_WARN_THRESH 1
#define SGE_IDMA_WARN_REPEAT 300

/**
 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
 *	@adapter: the adapter
 *	@idma: the adapter IDMA Monitor state
 *
 *	Initialize the state of an SGE Ingress DMA Monitor.
 */
void t4_idma_monitor_init(struct adapter *adapter,
			  struct sge_idma_monitor_state *idma)
{
	/* Initialize the state variables for detecting an SGE Ingress DMA
	 * hang.  The SGE has internal counters which count up on each clock
	 * tick whenever the SGE finds its Ingress DMA State Engines in the
	 * same state they were on the previous clock tick.  The clock used is
	 * the Core Clock so we have a limit on the maximum "time" they can
	 * record; typically a very small number of seconds.  For instance,
	 * with a 600MHz Core Clock, we can only count up to a bit more than
	 * 7s.  So we'll synthesize a larger counter in order to not run the
	 * risk of having the "timers" overflow and give us the flexibility to
	 * maintain a Hung SGE State Machine of our own which operates across
	 * a longer time frame.
	 */
	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
	idma->idma_stalled[0] = 0;
	idma->idma_stalled[1] = 0;
}

/**
 *	t4_idma_monitor - monitor SGE Ingress DMA state
 *	@adapter: the adapter
 *	@idma: the adapter IDMA Monitor state
 *	@hz: number of ticks/second
 *	@ticks: number of ticks since the last IDMA Monitor call
 */
void t4_idma_monitor(struct adapter *adapter,
		     struct sge_idma_monitor_state *idma,
		     int hz, int ticks)
{
	int i, idma_same_state_cnt[2];

	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
	  * are counters inside the SGE which count up on each clock when the
	  * SGE finds its Ingress DMA State Engines in the same states they
	  * were in the previous clock.  The counters will peg out at
	  * 0xffffffff without wrapping around so once they pass the 1s
	  * threshold they'll stay above that till the IDMA state changes.
	  */
	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);

	for (i = 0; i < 2; i++) {
		u32 debug0, debug11;

		/* If the Ingress DMA Same State Counter ("timer") is less
		 * than 1s, then we can reset our synthesized Stall Timer and
		 * continue.  If we have previously emitted warnings about a
		 * potential stalled Ingress Queue, issue a note indicating
		 * that the Ingress Queue has resumed forward progress.
		 */
		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
					 "resumed after %d seconds\n",
					 i, idma->idma_qid[i],
					 idma->idma_stalled[i] / hz);
			idma->idma_stalled[i] = 0;
			continue;
		}

		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
		 * domain.  The first time we get here it'll be because we
		 * passed the 1s Threshold; each additional time it'll be
		 * because the RX Timer Callback is being fired on its regular
		 * schedule.
		 *
		 * If the stall is below our Potential Hung Ingress Queue
		 * Warning Threshold, continue.
		 */
		if (idma->idma_stalled[i] == 0) {
			idma->idma_stalled[i] = hz;
			idma->idma_warn[i] = 0;
		} else {
			idma->idma_stalled[i] += ticks;
			idma->idma_warn[i] -= ticks;
		}

		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
			continue;

		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
		 */
		if (idma->idma_warn[i] > 0)
			continue;
		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;

		/* Read and save the SGE IDMA State and Queue ID information.
		 * We do this every time in case it changes across time ...
		 * can't be too careful ...
		 */
		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;

		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;

		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
			 i, idma->idma_qid[i], idma->idma_state[i],
			 idma->idma_stalled[i] / hz,
			 debug0, debug11);
		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
	}
}