t4_hw.c 137.5 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
38
#include "t4_values.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "t4fw_api.h"

/**
 *	t4_wait_op_done_val - wait until an operation is completed
 *	@adapter: the adapter performing the operation
 *	@reg: the register to check for completion
 *	@mask: a single-bit field within @reg that indicates completion
 *	@polarity: the value of the field when the operation is completed
 *	@attempts: number of check iterations
 *	@delay: delay in usecs between iterations
 *	@valp: where to store the value of the register at completion time
 *
 *	Wait until an operation is completed by checking a bit in a register
 *	up to @attempts times.  If @valp is not NULL the value of the register
 *	at the time it indicated completion is stored there.  Returns 0 if the
 *	operation completes and	-EAGAIN	otherwise.
 */
56 57
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			       int polarity, int attempts, int delay, u32 *valp)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
				  int polarity, int attempts, int delay)
{
	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
				   delay, NULL);
}

/**
 *	t4_set_reg_field - set a register field to a value
 *	@adapter: the adapter to program
 *	@addr: the register address
 *	@mask: specifies the portion of the register to modify
 *	@val: the new value for the register field
 *
 *	Sets a register field specified by the supplied mask to the
 *	given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void) t4_read_reg(adapter, addr);      /* flush */
}

/**
 *	t4_read_indirect - read indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect address
 *	@data_reg: register holding the value of the indirect register
 *	@vals: where the read register values are stored
 *	@nregs: how many indirect registers to read
 *	@start_idx: index of first indirect register to read
 *
 *	Reads registers that are accessed indirectly through an address/data
 *	register pair.
 */
V
Vipul Pandya 已提交
112
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 114
			     unsigned int data_reg, u32 *vals,
			     unsigned int nregs, unsigned int start_idx)
115 116 117 118 119 120 121 122
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/**
 *	t4_write_indirect - write indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect addresses
 *	@data_reg: register holding the value for the indirect registers
 *	@vals: values to write
 *	@nregs: how many indirect registers to write
 *	@start_idx: address of first indirect register to write
 *
 *	Writes a sequential block of registers that are accessed indirectly
 *	through an address/data register pair.
 */
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
		       unsigned int data_reg, const u32 *vals,
		       unsigned int nregs, unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx++);
		t4_write_reg(adap, data_reg, *vals++);
	}
}

145 146 147 148 149 150 151 152
/*
 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 * mechanism.  This guarantees that we get the real value even if we're
 * operating within a Virtual Machine and the Hypervisor is trapping our
 * Configuration Space accesses.
 */
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
{
153
	u32 req = ENABLE_F | FUNCTION_V(adap->fn) | REGISTER_V(reg);
154 155

	if (is_t4(adap->params.chip))
156
		req |= LOCALCFG_F;
157

158 159
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
160 161 162 163 164 165

	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
	 * Configuration Space read.  (None of the other fields matter when
	 * ENABLE is 0 so a simple register write is easier than a
	 * read-modify-write via t4_set_reg_field().)
	 */
166
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * t4_report_fw_error - report firmware error
 * @adap: the adapter
 *
 * The adapter firmware can indicate error conditions to the host.
 * If the firmware has indicated an error, print out the reason for
 * the firmware error.
 */
static void t4_report_fw_error(struct adapter *adap)
{
	static const char *const reason[] = {
		"Crash",                        /* PCIE_FW_EVAL_CRASH */
		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
		"Reserved",                     /* reserved */
	};
	u32 pcie_fw;

191 192
	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
	if (pcie_fw & PCIE_FW_ERR_F)
193
		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
194
			reason[PCIE_FW_EVAL_G(pcie_fw)]);
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	dev_alert(adap->pdev_dev,
		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
		  asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
		  ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
}

static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
	dev_err(adap->pdev_dev,
		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
		(unsigned long long)t4_read_reg64(adap, data_reg),
		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}

/**
 *	t4_wr_mbox_meat - send a command to FW through the given mailbox
 *	@adap: the adapter
 *	@mbox: index of the mailbox to use
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sends the given command to FW through the selected mailbox and waits
 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
 *	store the FW's reply to the command.  The command and its optional
 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
 *	the response.  If sleeping is allowed we use progressive backoff
 *	otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
{
J
Joe Perches 已提交
260
	static const int delay[] = {
261 262 263 264 265 266 267
		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
	};

	u32 v;
	u64 res;
	int i, ms, delay_idx;
	const __be64 *p = cmd;
268 269
	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
270 271 272 273

	if ((size & 15) || size > MBOX_LEN)
		return -EINVAL;

D
Dimitris Michailidis 已提交
274 275 276 277 278 279 280
	/*
	 * If the device is off-line, as in EEH, commands will time out.
	 * Fail them early so we don't waste time waiting.
	 */
	if (adap->pdev->error_state != pci_channel_io_normal)
		return -EIO;

281
	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
282
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
283
		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
284 285 286 287 288 289 290

	if (v != MBOX_OWNER_DRV)
		return v ? -EBUSY : -ETIMEDOUT;

	for (i = 0; i < size; i += 8)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));

291
	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		v = t4_read_reg(adap, ctl_reg);
307 308
		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
			if (!(v & MBMSGVALID_F)) {
309 310 311 312 313
				t4_write_reg(adap, ctl_reg, 0);
				continue;
			}

			res = t4_read_reg64(adap, data_reg);
314
			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
315
				fw_asrt(adap, data_reg);
316 317
				res = FW_CMD_RETVAL_V(EIO);
			} else if (rpl) {
318
				get_mbox_rpl(adap, rpl, size / 8, data_reg);
319
			}
320

321
			if (FW_CMD_RETVAL_G((int)res))
322 323
				dump_mbox(adap, mbox, data_reg);
			t4_write_reg(adap, ctl_reg, 0);
324
			return -FW_CMD_RETVAL_G((int)res);
325 326 327 328 329 330
		}
	}

	dump_mbox(adap, mbox, data_reg);
	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
331
	t4_report_fw_error(adap);
332 333 334 335 336 337 338
	return -ETIMEDOUT;
}

/**
 *	t4_mc_read - read from MC through backdoor accesses
 *	@adap: the adapter
 *	@addr: address of first byte requested
S
Santosh Rastapur 已提交
339
 *	@idx: which MC to access
340 341 342 343 344 345 346
 *	@data: 64 bytes of data containing the requested address
 *	@ecc: where to store the corresponding 64-bit ECC word
 *
 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
 *	that covers the requested address @addr.  If @parity is not %NULL it
 *	is assigned the 64-bit ECC word for the read data.
 */
S
Santosh Rastapur 已提交
347
int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
348 349
{
	int i;
S
Santosh Rastapur 已提交
350 351
	u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
	u32 mc_bist_status_rdata, mc_bist_data_pattern;
352

353
	if (is_t4(adap->params.chip)) {
354 355 356 357 358
		mc_bist_cmd = MC_BIST_CMD_A;
		mc_bist_cmd_addr = MC_BIST_CMD_ADDR_A;
		mc_bist_cmd_len = MC_BIST_CMD_LEN_A;
		mc_bist_status_rdata = MC_BIST_STATUS_RDATA_A;
		mc_bist_data_pattern = MC_BIST_DATA_PATTERN_A;
S
Santosh Rastapur 已提交
359
	} else {
360 361 362 363 364
		mc_bist_cmd = MC_REG(MC_P_BIST_CMD_A, idx);
		mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
		mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
		mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA_A, idx);
		mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
S
Santosh Rastapur 已提交
365 366
	}

367
	if (t4_read_reg(adap, mc_bist_cmd) & START_BIST_F)
368
		return -EBUSY;
S
Santosh Rastapur 已提交
369 370 371
	t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
	t4_write_reg(adap, mc_bist_cmd_len, 64);
	t4_write_reg(adap, mc_bist_data_pattern, 0xc);
372 373 374
	t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE_V(1) | START_BIST_F |
		     BIST_CMD_GAP_V(1));
	i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST_F, 0, 10, 1);
375 376 377
	if (i)
		return i;

S
Santosh Rastapur 已提交
378
#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	for (i = 15; i >= 0; i--)
		*data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
	if (ecc)
		*ecc = t4_read_reg64(adap, MC_DATA(16));
#undef MC_DATA
	return 0;
}

/**
 *	t4_edc_read - read from EDC through backdoor accesses
 *	@adap: the adapter
 *	@idx: which EDC to access
 *	@addr: address of first byte requested
 *	@data: 64 bytes of data containing the requested address
 *	@ecc: where to store the corresponding 64-bit ECC word
 *
 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
 *	that covers the requested address @addr.  If @parity is not %NULL it
 *	is assigned the 64-bit ECC word for the read data.
 */
int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
{
	int i;
S
Santosh Rastapur 已提交
403 404
	u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
405

406
	if (is_t4(adap->params.chip)) {
407 408 409 410
		edc_bist_cmd = EDC_REG(EDC_BIST_CMD_A, idx);
		edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR_A, idx);
		edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN_A, idx);
		edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN_A,
S
Santosh Rastapur 已提交
411
						    idx);
412 413
		edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA_A,
						idx);
S
Santosh Rastapur 已提交
414
	} else {
415 416 417
		edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
		edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
		edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
S
Santosh Rastapur 已提交
418
		edc_bist_cmd_data_pattern =
419
			EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
S
Santosh Rastapur 已提交
420
		edc_bist_status_rdata =
421
			 EDC_REG_T5(EDC_H_BIST_STATUS_RDATA_A, idx);
S
Santosh Rastapur 已提交
422 423
	}

424
	if (t4_read_reg(adap, edc_bist_cmd) & START_BIST_F)
425
		return -EBUSY;
S
Santosh Rastapur 已提交
426 427 428 429
	t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
	t4_write_reg(adap, edc_bist_cmd_len, 64);
	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
	t4_write_reg(adap, edc_bist_cmd,
430 431
		     BIST_OPCODE_V(1) | BIST_CMD_GAP_V(1) | START_BIST_F);
	i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST_F, 0, 10, 1);
432 433 434
	if (i)
		return i;

S
Santosh Rastapur 已提交
435
#define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
436 437 438 439 440 441 442 443 444

	for (i = 15; i >= 0; i--)
		*data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
	if (ecc)
		*ecc = t4_read_reg64(adap, EDC_DATA(16));
#undef EDC_DATA
	return 0;
}

445 446 447
/**
 *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 *	@adap: the adapter
448
 *	@win: PCI-E Memory Window to use
449 450 451 452
 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 *	@addr: address within indicated memory type
 *	@len: amount of memory to transfer
 *	@buf: host memory buffer
453
 *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
454 455
 *
 *	Reads/writes an [almost] arbitrary memory region in the firmware: the
456 457 458 459 460
 *	firmware memory address and host buffer must be aligned on 32-bit
 *	boudaries; the length may be arbitrary.  The memory is transferred as
 *	a raw byte sequence from/to the firmware's memory.  If this memory
 *	contains data structures which contain multi-byte integers, it's the
 *	caller's responsibility to perform appropriate byte order conversions.
461
 */
462 463
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
		 u32 len, __be32 *buf, int dir)
464
{
465 466
	u32 pos, offset, resid, memoffset;
	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
467

468
	/* Argument sanity checks ...
469
	 */
470
	if (addr & 0x3)
471 472
		return -EINVAL;

473 474 475 476 477 478 479
	/* It's convenient to be able to handle lengths which aren't a
	 * multiple of 32-bits because we often end up transferring files to
	 * the firmware.  So we'll handle that by normalizing the length here
	 * and then handling any residual transfer at the end.
	 */
	resid = len & 0x3;
	len -= resid;
480

S
Santosh Rastapur 已提交
481
	/* Offset into the region of memory which is being accessed
482 483
	 * MEM_EDC0 = 0
	 * MEM_EDC1 = 1
S
Santosh Rastapur 已提交
484 485 486
	 * MEM_MC   = 2 -- T4
	 * MEM_MC0  = 2 -- For T5
	 * MEM_MC1  = 3 -- For T5
487
	 */
488
	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
S
Santosh Rastapur 已提交
489 490 491
	if (mtype != MEM_MC1)
		memoffset = (mtype * (edc_size * 1024 * 1024));
	else {
492 493
		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
						      MA_EXT_MEMORY1_BAR_A));
S
Santosh Rastapur 已提交
494 495
		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
	}
496 497 498 499

	/* Determine the PCIE_MEM_ACCESS_OFFSET */
	addr = addr + memoffset;

500 501 502 503 504 505 506
	/* Each PCI-E Memory Window is programmed with a window size -- or
	 * "aperture" -- which controls the granularity of its mapping onto
	 * adapter memory.  We need to grab that aperture in order to know
	 * how to use the specified window.  The window is also programmed
	 * with the base address of the Memory Window in BAR0's address
	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
	 * the address is relative to BAR0.
507
	 */
508
	mem_reg = t4_read_reg(adap,
509
			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
510
						  win));
511 512
	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
513 514
	if (is_t4(adap->params.chip))
		mem_base -= adap->t4_bar0;
515
	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->fn);
516

517 518 519 520 521
	/* Calculate our initial PCI-E Memory Window Position and Offset into
	 * that Window.
	 */
	pos = addr & ~(mem_aperture-1);
	offset = addr - pos;
522

523 524 525 526 527
	/* Set up initial PCI-E Memory Window to cover the start of our
	 * transfer.  (Read it back to ensure that changes propagate before we
	 * attempt to use the new value.)
	 */
	t4_write_reg(adap,
528
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
529 530
		     pos | win_pf);
	t4_read_reg(adap,
531
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

	/* Transfer data to/from the adapter as long as there's an integral
	 * number of 32-bit transfers to complete.
	 */
	while (len > 0) {
		if (dir == T4_MEMORY_READ)
			*buf++ = (__force __be32) t4_read_reg(adap,
							mem_base + offset);
		else
			t4_write_reg(adap, mem_base + offset,
				     (__force u32) *buf++);
		offset += sizeof(__be32);
		len -= sizeof(__be32);

		/* If we've reached the end of our current window aperture,
		 * move the PCI-E Memory Window on to the next.  Note that
		 * doing this here after "len" may be 0 allows us to set up
		 * the PCI-E Memory Window for a possible final residual
		 * transfer below ...
551
		 */
552 553 554 555
		if (offset == mem_aperture) {
			pos += mem_aperture;
			offset = 0;
			t4_write_reg(adap,
556 557
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win), pos | win_pf);
558
			t4_read_reg(adap,
559 560
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win));
561 562 563
		}
	}

564 565 566 567 568 569 570 571 572 573 574 575 576
	/* If the original transfer had a length which wasn't a multiple of
	 * 32-bits, now's where we need to finish off the transfer of the
	 * residual amount.  The PCI-E Memory Window has already been moved
	 * above (if necessary) to cover this final transfer.
	 */
	if (resid) {
		union {
			__be32 word;
			char byte[4];
		} last;
		unsigned char *bp;
		int i;

577
		if (dir == T4_MEMORY_READ) {
578 579 580 581 582 583 584 585 586 587 588 589
			last.word = (__force __be32) t4_read_reg(adap,
							mem_base + offset);
			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
				bp[i] = last.byte[i];
		} else {
			last.word = *buf;
			for (i = resid; i < 4; i++)
				last.byte[i] = 0;
			t4_write_reg(adap, mem_base + offset,
				     (__force u32) last.word);
		}
	}
590

591
	return 0;
592 593
}

594
#define EEPROM_STAT_ADDR   0x7bfc
595 596
#define VPD_BASE           0x400
#define VPD_BASE_OLD       0
S
Santosh Rastapur 已提交
597
#define VPD_LEN            1024
598
#define CHELSIO_VPD_UNIQUE_ID 0x82
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

/**
 *	t4_seeprom_wp - enable/disable EEPROM write protection
 *	@adapter: the adapter
 *	@enable: whether to enable or disable write protection
 *
 *	Enables or disables write protection on the serial EEPROM.
 */
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
	unsigned int v = enable ? 0xc : 0;
	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
	return ret < 0 ? ret : 0;
}

/**
 *	get_vpd_params - read VPD parameters from VPD EEPROM
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM.
 */
621
int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
622
{
623
	u32 cclk_param, cclk_val;
624
	int i, ret, addr;
625
	int ec, sn, pn;
626
	u8 *vpd, csum;
D
Dimitris Michailidis 已提交
627
	unsigned int vpdr_len, kw_offset, id_len;
628

629 630 631 632
	vpd = vmalloc(VPD_LEN);
	if (!vpd)
		return -ENOMEM;

633 634 635
	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
	if (ret < 0)
		goto out;
636 637 638 639 640 641 642 643

	/* The VPD shall have a unique identifier specified by the PCI SIG.
	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
	 * is expected to automatically put this entry at the
	 * beginning of the VPD.
	 */
	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
644 645

	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
646
	if (ret < 0)
647
		goto out;
648

D
Dimitris Michailidis 已提交
649 650
	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
651 652
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
653 654 655 656 657 658 659 660 661
	}

	id_len = pci_vpd_lrdt_size(vpd);
	if (id_len > ID_LEN)
		id_len = ID_LEN;

	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
662 663
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
664 665 666 667 668
	}

	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
	if (vpdr_len + kw_offset > VPD_LEN) {
669
		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
670 671
		ret = -EINVAL;
		goto out;
672 673 674
	}

#define FIND_VPD_KW(var, name) do { \
D
Dimitris Michailidis 已提交
675
	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
676 677
	if (var < 0) { \
		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
678 679
		ret = -EINVAL; \
		goto out; \
680 681 682 683 684 685 686
	} \
	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)

	FIND_VPD_KW(i, "RV");
	for (csum = 0; i >= 0; i--)
		csum += vpd[i];
687 688 689 690

	if (csum) {
		dev_err(adapter->pdev_dev,
			"corrupted VPD EEPROM, actual csum %u\n", csum);
691 692
		ret = -EINVAL;
		goto out;
693 694
	}

695 696
	FIND_VPD_KW(ec, "EC");
	FIND_VPD_KW(sn, "SN");
697
	FIND_VPD_KW(pn, "PN");
698 699
#undef FIND_VPD_KW

D
Dimitris Michailidis 已提交
700
	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
701
	strim(p->id);
702
	memcpy(p->ec, vpd + ec, EC_LEN);
703
	strim(p->ec);
704 705
	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
706
	strim(p->sn);
707
	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
708 709
	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
	strim(p->pn);
710 711 712 713 714

	/*
	 * Ask firmware for the Core Clock since it knows how to translate the
	 * Reference Clock ('V2') VPD field into a Core Clock value ...
	 */
715 716
	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
717 718
	ret = t4_query_params(adapter, adapter->mbox, 0, 0,
			      1, &cclk_param, &cclk_val);
719 720 721

out:
	vfree(vpd);
722 723 724 725
	if (ret)
		return ret;
	p->cclk = cclk_val;

726 727 728 729 730 731 732 733 734 735 736 737 738
	return 0;
}

/* serial flash and firmware constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
739
	SF_RD_ID        = 0x9f,       /* read ID */
740 741
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */

742
	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
};

/**
 *	sf1_read - read data from the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to read
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@valp: where to store the read data
 *
 *	Reads up to 4 bytes of data from the serial flash.  The location of
 *	the read needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
764
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
765
		return -EBUSY;
766 767 768
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
769
	if (!ret)
770
		*valp = t4_read_reg(adapter, SF_DATA_A);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	return ret;
}

/**
 *	sf1_write - write data to the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to write
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@val: value to write
 *
 *	Writes up to 4 bytes of data to the serial flash.  The location of
 *	the write needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
791
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
792
		return -EBUSY;
793 794 795 796
	t4_write_reg(adapter, SF_DATA_A, val);
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
}

/**
 *	flash_wait_op - wait for a flash operation to complete
 *	@adapter: the adapter
 *	@attempts: max number of polls of the status register
 *	@delay: delay between polls in ms
 *
 *	Wait for a flash operation to complete by polling the status register.
 */
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
	int ret;
	u32 status;

	while (1) {
		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
			return ret;
		if (!(status & 1))
			return 0;
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			msleep(delay);
	}
}

/**
 *	t4_read_flash - read words from serial flash
 *	@adapter: the adapter
 *	@addr: the start address for the read
 *	@nwords: how many 32-bit words to read
 *	@data: where to store the read data
 *	@byte_oriented: whether to store data as bytes or as words
 *
 *	Read the specified number of 32-bit words from the serial flash.
 *	If @byte_oriented is set the read data is stored as a byte array
 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
 *	natural endianess.
 */
838 839
static int t4_read_flash(struct adapter *adapter, unsigned int addr,
			 unsigned int nwords, u32 *data, int byte_oriented)
840 841 842
{
	int ret;

843
	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
844 845 846 847 848 849 850 851 852 853 854
		return -EINVAL;

	addr = swab32(addr) | SF_RD_DATA_FAST;

	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
855
			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
856 857 858
		if (ret)
			return ret;
		if (byte_oriented)
859
			*data = (__force __u32) (htonl(*data));
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	}
	return 0;
}

/**
 *	t4_write_flash - write up to a page of data to the serial flash
 *	@adapter: the adapter
 *	@addr: the start address to write
 *	@n: length of data to write in bytes
 *	@data: the data to write
 *
 *	Writes up to a page of data (256 bytes) to the serial flash starting
 *	at the given address.  All the data must be written to the same page.
 */
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
			  unsigned int n, const u8 *data)
{
	int ret;
	u32 buf[64];
	unsigned int i, c, left, val, offset = addr & 0xff;

881
	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		return -EINVAL;

	val = swab32(addr) | SF_PROG_PAGE;

	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
		goto unlock;

	for (left = n; left; left -= c) {
		c = min(left, 4U);
		for (val = 0, i = 0; i < c; ++i)
			val = (val << 8) + *data++;

		ret = sf1_write(adapter, c, c != left, 1, val);
		if (ret)
			goto unlock;
	}
899
	ret = flash_wait_op(adapter, 8, 1);
900 901 902
	if (ret)
		goto unlock;

903
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	/* Read the page to verify the write succeeded */
	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
	if (ret)
		return ret;

	if (memcmp(data - n, (u8 *)buf + offset, n)) {
		dev_err(adapter->pdev_dev,
			"failed to correctly write the flash page at %#x\n",
			addr);
		return -EIO;
	}
	return 0;

unlock:
919
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
920 921 922 923
	return ret;
}

/**
924
 *	t4_get_fw_version - read the firmware version
925 926 927 928 929
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW version from flash.
 */
930
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
931
{
932 933 934
	return t4_read_flash(adapter, FLASH_FW_START +
			     offsetof(struct fw_hdr, fw_ver), 1,
			     vers, 0);
935 936 937
}

/**
938
 *	t4_get_tp_version - read the TP microcode version
939 940 941 942 943
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the TP microcode version from flash.
 */
944
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
945
{
946
	return t4_read_flash(adapter, FLASH_FW_START +
947
			     offsetof(struct fw_hdr, tp_microcode_ver),
948 949 950
			     1, vers, 0);
}

951 952
/* Is the given firmware API compatible with the one the driver was compiled
 * with?
953
 */
954
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
955 956
{

957 958 959
	/* short circuit if it's the exact same firmware version */
	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
		return 1;
960

961 962 963 964 965
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
		return 1;
#undef SAME_INTF
S
Santosh Rastapur 已提交
966

967 968
	return 0;
}
969

970 971 972 973 974 975 976 977 978 979 980 981
/* The firmware in the filesystem is usable, but should it be installed?
 * This routine explains itself in detail if it indicates the filesystem
 * firmware should be installed.
 */
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
				int k, int c)
{
	const char *reason;

	if (!card_fw_usable) {
		reason = "incompatible or unusable";
		goto install;
982 983
	}

984 985 986
	if (k > c) {
		reason = "older than the version supported with this driver";
		goto install;
987 988
	}

989 990 991 992 993
	return 0;

install:
	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
		"installing firmware %u.%u.%u.%u on card.\n",
994 995 996 997
		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
998 999 1000 1001

	return 1;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
	       const u8 *fw_data, unsigned int fw_size,
	       struct fw_hdr *card_fw, enum dev_state state,
	       int *reset)
{
	int ret, card_fw_usable, fs_fw_usable;
	const struct fw_hdr *fs_fw;
	const struct fw_hdr *drv_fw;

	drv_fw = &fw_info->fw_hdr;

	/* Read the header of the firmware on the card */
	ret = -t4_read_flash(adap, FLASH_FW_START,
			    sizeof(*card_fw) / sizeof(uint32_t),
			    (uint32_t *)card_fw, 1);
	if (ret == 0) {
		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
	} else {
		dev_err(adap->pdev_dev,
			"Unable to read card's firmware header: %d\n", ret);
		card_fw_usable = 0;
	}

	if (fw_data != NULL) {
		fs_fw = (const void *)fw_data;
		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
	} else {
		fs_fw = NULL;
		fs_fw_usable = 0;
	}

	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
		/* Common case: the firmware on the card is an exact match and
		 * the filesystem one is an exact match too, or the filesystem
		 * one is absent/incompatible.
		 */
	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
		   should_install_fs_fw(adap, card_fw_usable,
					be32_to_cpu(fs_fw->fw_ver),
					be32_to_cpu(card_fw->fw_ver))) {
		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
				     fw_size, 0);
		if (ret != 0) {
			dev_err(adap->pdev_dev,
				"failed to install firmware: %d\n", ret);
			goto bye;
		}

		/* Installed successfully, update the cached header too. */
		memcpy(card_fw, fs_fw, sizeof(*card_fw));
		card_fw_usable = 1;
		*reset = 0;	/* already reset as part of load_fw */
	}

	if (!card_fw_usable) {
		uint32_t d, c, k;

		d = be32_to_cpu(drv_fw->fw_ver);
		c = be32_to_cpu(card_fw->fw_ver);
		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;

		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
			"chip state %d, "
			"driver compiled with %d.%d.%d.%d, "
			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
			state,
1069 1070 1071 1072 1073 1074
			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		ret = EINVAL;
		goto bye;
	}

	/* We're using whatever's on the card and it's known to be good. */
	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);

bye:
	return ret;
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 *	t4_flash_erase_sectors - erase a range of flash sectors
 *	@adapter: the adapter
 *	@start: the first sector to erase
 *	@end: the last sector to erase
 *
 *	Erases the sectors in the given inclusive range.
 */
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
	int ret = 0;

1099 1100 1101
	if (end >= adapter->params.sf_nsec)
		return -EINVAL;

1102 1103 1104 1105
	while (start <= end) {
		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
		    (ret = sf1_write(adapter, 4, 0, 1,
				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1106
		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1107 1108 1109 1110 1111 1112 1113
			dev_err(adapter->pdev_dev,
				"erase of flash sector %d failed, error %d\n",
				start, ret);
			break;
		}
		start++;
	}
1114
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
1115 1116 1117
	return ret;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 *	t4_flash_cfg_addr - return the address of the flash configuration file
 *	@adapter: the adapter
 *
 *	Return the address within the flash where the Firmware Configuration
 *	File is stored.
 */
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
{
	if (adapter->params.sf_size == 0x100000)
		return FLASH_FPGA_CFG_START;
	else
		return FLASH_CFG_START;
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
 * and emit an error message for mismatched firmware to save our caller the
 * effort ...
 */
static bool t4_fw_matches_chip(const struct adapter *adap,
			       const struct fw_hdr *hdr)
{
	/* The expression below will return FALSE for any unsupported adapter
	 * which will keep us "honest" in the future ...
	 */
	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5))
		return true;

	dev_err(adap->pdev_dev,
		"FW image (%d) is not suitable for this adapter (%d)\n",
		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
	return false;
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
/**
 *	t4_load_fw - download firmware
 *	@adap: the adapter
 *	@fw_data: the firmware image to write
 *	@size: image size
 *
 *	Write the supplied firmware image to the card's serial flash.
 */
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
	u32 csum;
	int ret, addr;
	unsigned int i;
	u8 first_page[SF_PAGE_SIZE];
1168
	const __be32 *p = (const __be32 *)fw_data;
1169
	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1170 1171 1172
	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
	unsigned int fw_img_start = adap->params.sf_fw_start;
	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	if (!size) {
		dev_err(adap->pdev_dev, "FW image has no data\n");
		return -EINVAL;
	}
	if (size & 511) {
		dev_err(adap->pdev_dev,
			"FW image size not multiple of 512 bytes\n");
		return -EINVAL;
	}
	if (ntohs(hdr->len512) * 512 != size) {
		dev_err(adap->pdev_dev,
			"FW image size differs from size in FW header\n");
		return -EINVAL;
	}
	if (size > FW_MAX_SIZE) {
		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
			FW_MAX_SIZE);
		return -EFBIG;
	}
1193 1194
	if (!t4_fw_matches_chip(adap, hdr))
		return -EINVAL;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
		csum += ntohl(p[i]);

	if (csum != 0xffffffff) {
		dev_err(adap->pdev_dev,
			"corrupted firmware image, checksum %#x\n", csum);
		return -EINVAL;
	}

1205 1206
	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (ret)
		goto out;

	/*
	 * We write the correct version at the end so the driver can see a bad
	 * version if the FW write fails.  Start by writing a copy of the
	 * first page with a bad version.
	 */
	memcpy(first_page, fw_data, SF_PAGE_SIZE);
	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1217
	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
1218 1219 1220
	if (ret)
		goto out;

1221
	addr = fw_img_start;
1222 1223 1224 1225 1226 1227 1228 1229 1230
	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
		addr += SF_PAGE_SIZE;
		fw_data += SF_PAGE_SIZE;
		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
		if (ret)
			goto out;
	}

	ret = t4_write_flash(adap,
1231
			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
1232 1233 1234 1235 1236
			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
	if (ret)
		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
			ret);
1237 1238
	else
		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
1239 1240 1241 1242
	return ret;
}

#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1243 1244
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		     FW_PORT_CAP_ANEG)
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

/**
 *	t4_link_start - apply link configuration to MAC/PHY
 *	@phy: the PHY to setup
 *	@mac: the MAC to setup
 *	@lc: the requested link configuration
 *
 *	Set up a port's MAC and PHY according to a desired link configuration.
 *	- If the PHY can auto-negotiate first decide what to advertise, then
 *	  enable/disable auto-negotiation as desired, and reset.
 *	- If the PHY does not auto-negotiate just reset it.
 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *	  otherwise do it later based on the outcome of auto-negotiation.
 */
int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
		  struct link_config *lc)
{
	struct fw_port_cmd c;
1263
	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
1264 1265 1266 1267 1268 1269 1270 1271

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
1272
	c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
1273 1274
			       FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
				  FW_LEN16(c));

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else
		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_restart_aneg - restart autonegotiation
 *	@adap: the adapter
 *	@mbox: mbox to use for the FW command
 *	@port: the port id
 *
 *	Restarts autonegotiation for the selected port.
 */
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));
1302
	c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F |
1303 1304
			       FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
1305 1306 1307 1308 1309
				  FW_LEN16(c));
	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

1310 1311
typedef void (*int_handler_t)(struct adapter *adap);

1312 1313 1314 1315 1316
struct intr_info {
	unsigned int mask;       /* bits to check in interrupt status */
	const char *msg;         /* message to print or NULL */
	short stat_idx;          /* stat counter to increment or -1 */
	unsigned short fatal;    /* whether the condition reported is fatal */
1317
	int_handler_t int_handler; /* platform-specific int handler */
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
};

/**
 *	t4_handle_intr_status - table driven interrupt handler
 *	@adapter: the adapter that generated the interrupt
 *	@reg: the interrupt status register to process
 *	@acts: table of interrupt actions
 *
 *	A table driven interrupt handler that applies a set of masks to an
 *	interrupt status word and performs the corresponding actions if the
L
Lucas De Marchi 已提交
1328
 *	interrupts described by the mask have occurred.  The actions include
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
 *	optionally emitting a warning or alert message.  The table is terminated
 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
 *	conditions.
 */
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
				 const struct intr_info *acts)
{
	int fatal = 0;
	unsigned int mask = 0;
	unsigned int status = t4_read_reg(adapter, reg);

	for ( ; acts->mask; ++acts) {
		if (!(status & acts->mask))
			continue;
		if (acts->fatal) {
			fatal++;
			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				  status & acts->mask);
		} else if (acts->msg && printk_ratelimit())
			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				 status & acts->mask);
1350 1351
		if (acts->int_handler)
			acts->int_handler(adapter);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		mask |= acts->mask;
	}
	status &= mask;
	if (status)                           /* clear processed interrupts */
		t4_write_reg(adapter, reg, status);
	return fatal;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void pcie_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1365
	static const struct intr_info sysbus_intr_info[] = {
1366 1367 1368 1369 1370
		{ RNPP_F, "RXNP array parity error", -1, 1 },
		{ RPCP_F, "RXPC array parity error", -1, 1 },
		{ RCIP_F, "RXCIF array parity error", -1, 1 },
		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
		{ RFTP_F, "RXFT array parity error", -1, 1 },
1371 1372
		{ 0 }
	};
J
Joe Perches 已提交
1373
	static const struct intr_info pcie_port_intr_info[] = {
1374 1375 1376 1377 1378 1379 1380 1381 1382
		{ TPCP_F, "TXPC array parity error", -1, 1 },
		{ TNPP_F, "TXNP array parity error", -1, 1 },
		{ TFTP_F, "TXFT array parity error", -1, 1 },
		{ TCAP_F, "TXCA array parity error", -1, 1 },
		{ TCIP_F, "TXCIF array parity error", -1, 1 },
		{ RCAP_F, "RXCA array parity error", -1, 1 },
		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
		{ RDPE_F, "Rx data parity error", -1, 1 },
		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
1383 1384
		{ 0 }
	};
J
Joe Perches 已提交
1385
	static const struct intr_info pcie_intr_info[] = {
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
		  -1, 0 },
1417 1418 1419
		{ 0 }
	};

S
Santosh Rastapur 已提交
1420
	static struct intr_info t5_pcie_intr_info[] = {
1421
		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
S
Santosh Rastapur 已提交
1422
		  -1, 1 },
1423 1424 1425 1426 1427 1428 1429
		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
S
Santosh Rastapur 已提交
1430
		  -1, 1 },
1431
		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
S
Santosh Rastapur 已提交
1432
		  -1, 1 },
1433 1434 1435 1436 1437
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
S
Santosh Rastapur 已提交
1438
		  -1, 1 },
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
S
Santosh Rastapur 已提交
1450
		  -1, 1 },
1451 1452 1453 1454 1455 1456
		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
		  -1, 1 },
		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
		{ READRSPERR_F, "Outbound read error", -1, 0 },
S
Santosh Rastapur 已提交
1457 1458 1459
		{ 0 }
	};

1460 1461
	int fat;

1462 1463
	if (is_t4(adapter->params.chip))
		fat = t4_handle_intr_status(adapter,
1464 1465
				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
				sysbus_intr_info) +
1466
			t4_handle_intr_status(adapter,
1467 1468 1469
					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
					pcie_port_intr_info) +
			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
1470 1471
					      pcie_intr_info);
	else
1472
		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
1473
					    t5_pcie_intr_info);
S
Santosh Rastapur 已提交
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * TP interrupt handler.
 */
static void tp_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1484
	static const struct intr_info tp_intr_info[] = {
1485
		{ 0x3fffffff, "TP parity error", -1, 1 },
1486
		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
1487 1488 1489
		{ 0 }
	};

1490
	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		t4_fatal_err(adapter);
}

/*
 * SGE interrupt handler.
 */
static void sge_intr_handler(struct adapter *adapter)
{
	u64 v;

J
Joe Perches 已提交
1501
	static const struct intr_info sge_intr_info[] = {
1502
		{ ERR_CPL_EXCEED_IQE_SIZE_F,
1503
		  "SGE received CPL exceeding IQE size", -1, 1 },
1504
		{ ERR_INVALID_CIDX_INC_F,
1505
		  "SGE GTS CIDX increment too large", -1, 0 },
1506 1507 1508 1509 1510
		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
1511
		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
1512
		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
1513
		  0 },
1514
		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
1515
		  0 },
1516
		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
1517
		  0 },
1518
		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
1519
		  0 },
1520
		{ ERR_ING_CTXT_PRIO_F,
1521
		  "SGE too many priority ingress contexts", -1, 0 },
1522
		{ ERR_EGR_CTXT_PRIO_F,
1523
		  "SGE too many priority egress contexts", -1, 0 },
1524 1525
		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
1526 1527 1528
		{ 0 }
	};

1529 1530
	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
1531 1532
	if (v) {
		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
1533
				(unsigned long long)v);
1534 1535
		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
1536 1537
	}

1538
	if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info) ||
1539 1540 1541 1542
	    v != 0)
		t4_fatal_err(adapter);
}

1543 1544 1545 1546 1547
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)

1548 1549 1550 1551 1552
/*
 * CIM interrupt handler.
 */
static void cim_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1553
	static const struct intr_info cim_intr_info[] = {
1554 1555 1556 1557 1558 1559 1560
		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
1561 1562
		{ 0 }
	};
J
Joe Perches 已提交
1563
	static const struct intr_info cim_upintr_info[] = {
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
1592 1593 1594 1595 1596
		{ 0 }
	};

	int fat;

1597
	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
1598 1599
		t4_report_fw_error(adapter);

1600
	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
1601
				    cim_intr_info) +
1602
	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
				    cim_upintr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * ULP RX interrupt handler.
 */
static void ulprx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1613
	static const struct intr_info ulprx_intr_info[] = {
1614
		{ 0x1800000, "ULPRX context error", -1, 1 },
1615 1616 1617 1618
		{ 0x7fffff, "ULPRX parity error", -1, 1 },
		{ 0 }
	};

1619
	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
1620 1621 1622 1623 1624 1625 1626 1627
		t4_fatal_err(adapter);
}

/*
 * ULP TX interrupt handler.
 */
static void ulptx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1628
	static const struct intr_info ulptx_intr_info[] = {
1629
		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
1630
		  0 },
1631
		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
1632
		  0 },
1633
		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
1634
		  0 },
1635
		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
1636 1637 1638 1639 1640
		  0 },
		{ 0xfffffff, "ULPTX parity error", -1, 1 },
		{ 0 }
	};

1641
	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
1642 1643 1644 1645 1646 1647 1648 1649
		t4_fatal_err(adapter);
}

/*
 * PM TX interrupt handler.
 */
static void pmtx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1650
	static const struct intr_info pmtx_intr_info[] = {
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
		  -1, 1 },
		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
1661 1662 1663
		{ 0 }
	};

1664
	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
1665 1666 1667 1668 1669 1670 1671 1672
		t4_fatal_err(adapter);
}

/*
 * PM RX interrupt handler.
 */
static void pmrx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1673
	static const struct intr_info pmrx_intr_info[] = {
1674 1675 1676 1677 1678 1679 1680
		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
		  -1, 1 },
		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
1681 1682 1683
		{ 0 }
	};

1684
	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
1685 1686 1687 1688 1689 1690 1691 1692
		t4_fatal_err(adapter);
}

/*
 * CPL switch interrupt handler.
 */
static void cplsw_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1693
	static const struct intr_info cplsw_intr_info[] = {
1694 1695 1696 1697 1698 1699
		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
1700 1701 1702
		{ 0 }
	};

1703
	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
1704 1705 1706 1707 1708 1709 1710 1711
		t4_fatal_err(adapter);
}

/*
 * LE interrupt handler.
 */
static void le_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1712
	static const struct intr_info le_intr_info[] = {
1713 1714 1715 1716 1717
		{ LIPMISS_F, "LE LIP miss", -1, 0 },
		{ LIP0_F, "LE 0 LIP error", -1, 0 },
		{ PARITYERR_F, "LE parity error", -1, 1 },
		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
1718 1719 1720
		{ 0 }
	};

1721
	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, le_intr_info))
1722 1723 1724 1725 1726 1727 1728 1729
		t4_fatal_err(adap);
}

/*
 * MPS interrupt handler.
 */
static void mps_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
1730
	static const struct intr_info mps_rx_intr_info[] = {
1731 1732 1733
		{ 0xffffff, "MPS Rx parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1734
	static const struct intr_info mps_tx_intr_info[] = {
1735 1736 1737 1738 1739 1740 1741 1742 1743
		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
		  -1, 1 },
		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
		  -1, 1 },
		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
1744 1745
		{ 0 }
	};
J
Joe Perches 已提交
1746
	static const struct intr_info mps_trc_intr_info[] = {
1747 1748 1749 1750
		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
		  -1, 1 },
		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
1751 1752
		{ 0 }
	};
J
Joe Perches 已提交
1753
	static const struct intr_info mps_stat_sram_intr_info[] = {
1754 1755 1756
		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1757
	static const struct intr_info mps_stat_tx_intr_info[] = {
1758 1759 1760
		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1761
	static const struct intr_info mps_stat_rx_intr_info[] = {
1762 1763 1764
		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
1765
	static const struct intr_info mps_cls_intr_info[] = {
1766 1767 1768
		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
1769 1770 1771 1772 1773
		{ 0 }
	};

	int fat;

1774
	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
1775
				    mps_rx_intr_info) +
1776
	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
1777
				    mps_tx_intr_info) +
1778
	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
1779
				    mps_trc_intr_info) +
1780
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
1781
				    mps_stat_sram_intr_info) +
1782
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
1783
				    mps_stat_tx_intr_info) +
1784
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
1785
				    mps_stat_rx_intr_info) +
1786
	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
1787 1788
				    mps_cls_intr_info);

1789 1790
	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
1791 1792 1793 1794
	if (fat)
		t4_fatal_err(adapter);
}

1795 1796
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
		      ECC_UE_INT_CAUSE_F)
1797 1798 1799 1800 1801 1802

/*
 * EDC/MC interrupt handler.
 */
static void mem_intr_handler(struct adapter *adapter, int idx)
{
1803
	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
1804 1805 1806 1807

	unsigned int addr, cnt_addr, v;

	if (idx <= MEM_EDC1) {
1808 1809
		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
1810 1811
	} else if (idx == MEM_MC) {
		if (is_t4(adapter->params.chip)) {
1812 1813
			addr = MC_INT_CAUSE_A;
			cnt_addr = MC_ECC_STATUS_A;
1814
		} else {
1815 1816
			addr = MC_P_INT_CAUSE_A;
			cnt_addr = MC_P_ECC_STATUS_A;
1817
		}
1818
	} else {
1819 1820
		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
1821 1822 1823
	}

	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
1824
	if (v & PERR_INT_CAUSE_F)
1825 1826
		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
			  name[idx]);
1827 1828
	if (v & ECC_CE_INT_CAUSE_F) {
		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
1829

1830
		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
1831 1832 1833 1834 1835
		if (printk_ratelimit())
			dev_warn(adapter->pdev_dev,
				 "%u %s correctable ECC data error%s\n",
				 cnt, name[idx], cnt > 1 ? "s" : "");
	}
1836
	if (v & ECC_UE_INT_CAUSE_F)
1837 1838 1839 1840
		dev_alert(adapter->pdev_dev,
			  "%s uncorrectable ECC data error\n", name[idx]);

	t4_write_reg(adapter, addr, v);
1841
	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
1842 1843 1844 1845 1846 1847 1848 1849
		t4_fatal_err(adapter);
}

/*
 * MA interrupt handler.
 */
static void ma_intr_handler(struct adapter *adap)
{
1850
	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
1851

1852
	if (status & MEM_PERR_INT_CAUSE_F) {
1853 1854
		dev_alert(adap->pdev_dev,
			  "MA parity error, parity status %#x\n",
1855
			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
1856 1857 1858 1859
		if (is_t5(adap->params.chip))
			dev_alert(adap->pdev_dev,
				  "MA parity error, parity status %#x\n",
				  t4_read_reg(adap,
1860
					      MA_PARITY_ERROR_STATUS2_A));
1861
	}
1862 1863
	if (status & MEM_WRAP_INT_CAUSE_F) {
		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
1864 1865
		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
			  "client %u to address %#x\n",
1866 1867
			  MEM_WRAP_CLIENT_NUM_G(v),
			  MEM_WRAP_ADDRESS_G(v) << 4);
1868
	}
1869
	t4_write_reg(adap, MA_INT_CAUSE_A, status);
1870 1871 1872 1873 1874 1875 1876 1877
	t4_fatal_err(adap);
}

/*
 * SMB interrupt handler.
 */
static void smb_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1878
	static const struct intr_info smb_intr_info[] = {
1879 1880 1881
		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
1882 1883 1884
		{ 0 }
	};

1885
	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
1886 1887 1888 1889 1890 1891 1892 1893
		t4_fatal_err(adap);
}

/*
 * NC-SI interrupt handler.
 */
static void ncsi_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1894
	static const struct intr_info ncsi_intr_info[] = {
1895 1896 1897 1898
		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
1899 1900 1901
		{ 0 }
	};

1902
	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
1903 1904 1905 1906 1907 1908 1909 1910
		t4_fatal_err(adap);
}

/*
 * XGMAC interrupt handler.
 */
static void xgmac_intr_handler(struct adapter *adap, int port)
{
S
Santosh Rastapur 已提交
1911 1912
	u32 v, int_cause_reg;

1913
	if (is_t4(adap->params.chip))
1914
		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
1915
	else
1916
		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
1917 1918

	v = t4_read_reg(adap, int_cause_reg);
1919

1920
	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
1921 1922 1923
	if (!v)
		return;

1924
	if (v & TXFIFO_PRTY_ERR_F)
1925 1926
		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
			  port);
1927
	if (v & RXFIFO_PRTY_ERR_F)
1928 1929
		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
			  port);
1930
	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
1931 1932 1933 1934 1935 1936 1937 1938
	t4_fatal_err(adap);
}

/*
 * PL interrupt handler.
 */
static void pl_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
1939
	static const struct intr_info pl_intr_info[] = {
1940 1941
		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
1942 1943 1944
		{ 0 }
	};

1945
	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
1946 1947 1948
		t4_fatal_err(adap);
}

1949 1950 1951 1952
#define PF_INTR_MASK (PFSW_F)
#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
		CPL_SWITCH_F | SGE_F | ULP_TX_F)
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

/**
 *	t4_slow_intr_handler - control path interrupt handler
 *	@adapter: the adapter
 *
 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
 *	The designation 'slow' is because it involves register reads, while
 *	data interrupts typically don't involve any MMIOs.
 */
int t4_slow_intr_handler(struct adapter *adapter)
{
1964
	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
1965 1966 1967

	if (!(cause & GLBL_INTR_MASK))
		return 0;
1968
	if (cause & CIM_F)
1969
		cim_intr_handler(adapter);
1970
	if (cause & MPS_F)
1971
		mps_intr_handler(adapter);
1972
	if (cause & NCSI_F)
1973
		ncsi_intr_handler(adapter);
1974
	if (cause & PL_F)
1975
		pl_intr_handler(adapter);
1976
	if (cause & SMB_F)
1977
		smb_intr_handler(adapter);
1978
	if (cause & XGMAC0_F)
1979
		xgmac_intr_handler(adapter, 0);
1980
	if (cause & XGMAC1_F)
1981
		xgmac_intr_handler(adapter, 1);
1982
	if (cause & XGMAC_KR0_F)
1983
		xgmac_intr_handler(adapter, 2);
1984
	if (cause & XGMAC_KR1_F)
1985
		xgmac_intr_handler(adapter, 3);
1986
	if (cause & PCIE_F)
1987
		pcie_intr_handler(adapter);
1988
	if (cause & MC_F)
1989
		mem_intr_handler(adapter, MEM_MC);
1990
	if (!is_t4(adapter->params.chip) && (cause & MC1_S))
1991
		mem_intr_handler(adapter, MEM_MC1);
1992
	if (cause & EDC0_F)
1993
		mem_intr_handler(adapter, MEM_EDC0);
1994
	if (cause & EDC1_F)
1995
		mem_intr_handler(adapter, MEM_EDC1);
1996
	if (cause & LE_F)
1997
		le_intr_handler(adapter);
1998
	if (cause & TP_F)
1999
		tp_intr_handler(adapter);
2000
	if (cause & MA_F)
2001
		ma_intr_handler(adapter);
2002
	if (cause & PM_TX_F)
2003
		pmtx_intr_handler(adapter);
2004
	if (cause & PM_RX_F)
2005
		pmrx_intr_handler(adapter);
2006
	if (cause & ULP_RX_F)
2007
		ulprx_intr_handler(adapter);
2008
	if (cause & CPL_SWITCH_F)
2009
		cplsw_intr_handler(adapter);
2010
	if (cause & SGE_F)
2011
		sge_intr_handler(adapter);
2012
	if (cause & ULP_TX_F)
2013 2014 2015
		ulptx_intr_handler(adapter);

	/* Clear the interrupts just processed for which we are the master. */
2016 2017
	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	return 1;
}

/**
 *	t4_intr_enable - enable interrupts
 *	@adapter: the adapter whose interrupts should be enabled
 *
 *	Enable PF-specific interrupts for the calling function and the top-level
 *	interrupt concentrator for global interrupts.  Interrupts are already
 *	enabled at each module,	here we just enable the roots of the interrupt
 *	hierarchies.
 *
 *	Note: this function should be called only when the driver manages
 *	non PF-specific interrupts from the various HW modules.  Only one PCI
 *	function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
2036
	u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
2037

2038 2039 2040 2041 2042 2043 2044 2045 2046
	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
		     ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F |
		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
		     ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F |
		     DBFIFO_HP_INT_F | DBFIFO_LP_INT_F |
		     EGRESS_SIZE_ERR_F);
2047 2048
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
}

/**
 *	t4_intr_disable - disable interrupts
 *	@adapter: the adapter whose interrupts should be disabled
 *
 *	Disable interrupts.  We only disable the top-level interrupt
 *	concentrators.  The caller must be a PCI function managing global
 *	interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
2061
	u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
2062

2063 2064
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
}

/**
 *	hash_mac_addr - return the hash value of a MAC address
 *	@addr: the 48-bit Ethernet MAC address
 *
 *	Hashes a MAC address according to the hash function used by HW inexact
 *	(hash) address matching.
 */
static int hash_mac_addr(const u8 *addr)
{
	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
	a ^= b;
	a ^= (a >> 12);
	a ^= (a >> 6);
	return a & 0x3f;
}

/**
 *	t4_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: virtual interface whose RSS subtable is to be written
 *	@start: start entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the response queue lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range allowed for
 *	@viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
2110 2111
	cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2112
			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	cmd.retval_len16 = htonl(FW_LEN16(cmd));

	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
	while (n > 0) {
		int nq = min(n, 32);
		__be32 *qp = &cmd.iq0_to_iq2;

		cmd.niqid = htons(nq);
		cmd.startidx = htons(start);

		start += nq;
		n -= nq;

		while (nq > 0) {
			unsigned int v;

2129
			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
2130 2131
			if (++rsp >= rsp_end)
				rsp = rspq;
2132
			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
2133 2134
			if (++rsp >= rsp_end)
				rsp = rspq;
2135
			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
			if (++rsp >= rsp_end)
				rsp = rspq;

			*qp++ = htonl(v);
			nq -= 3;
		}

		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4_config_glbl_rss - configure the global RSS mode
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@mode: global RSS mode
 *	@flags: mode-specific flags
 *
 *	Sets the global RSS mode.
 */
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
		       unsigned int flags)
{
	struct fw_rss_glb_config_cmd c;

	memset(&c, 0, sizeof(c));
2165 2166
	c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
			      FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2167 2168
	c.retval_len16 = htonl(FW_LEN16(c));
	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2169
		c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
2170 2171
	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
		c.u.basicvirtual.mode_pkd =
2172
			htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
	} else
		return -EINVAL;
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
 *	@adap: the adapter
 *	@v4: holds the TCP/IP counter values
 *	@v6: holds the TCP/IPv6 counter values
 *
 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
 */
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
2191
	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
2192

2193
#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
2194 2195 2196 2197
#define STAT(x)     val[STAT_IDX(x)]
#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))

	if (v4) {
2198 2199
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
2200 2201 2202 2203 2204 2205
		v4->tcpOutRsts = STAT(OUT_RST);
		v4->tcpInSegs  = STAT64(IN_SEG);
		v4->tcpOutSegs = STAT64(OUT_SEG);
		v4->tcpRetransSegs = STAT64(RXT_SEG);
	}
	if (v6) {
2206 2207
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		v6->tcpOutRsts = STAT(OUT_RST);
		v6->tcpInSegs  = STAT64(IN_SEG);
		v6->tcpOutSegs = STAT64(OUT_SEG);
		v6->tcpRetransSegs = STAT64(RXT_SEG);
	}
#undef STAT64
#undef STAT
#undef STAT_IDX
}

/**
 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
 *	@adap: the adapter
 *	@mtus: where to store the MTU values
 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 *	Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
2232 2233 2234 2235
		t4_write_reg(adap, TP_MTU_TABLE_A,
			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
		v = t4_read_reg(adap, TP_MTU_TABLE_A);
		mtus[i] = MTUVALUE_G(v);
2236
		if (mtu_log)
2237
			mtu_log[i] = MTUWIDTH_G(v);
2238 2239 2240
	}
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/**
 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 *	@adap: the adapter
 *	@addr: the indirect TP register address
 *	@mask: specifies the field within the register to modify
 *	@val: new value for the field
 *
 *	Sets a field of an indirect TP register to the given value.
 */
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
			    unsigned int mask, unsigned int val)
{
2253 2254 2255
	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
	t4_write_reg(adap, TP_PIO_DATA_A, val);
2256 2257
}

2258 2259 2260 2261 2262 2263 2264
/**
 *	init_cong_ctrl - initialize congestion control parameters
 *	@a: the alpha values for congestion control
 *	@b: the beta values for congestion control
 *
 *	Initialize the congestion control parameters.
 */
B
Bill Pemberton 已提交
2265
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
{
	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
	b[9] = b[10] = 1;
	b[11] = b[12] = 2;
	b[13] = b[14] = b[15] = b[16] = 3;
	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
	b[28] = b[29] = 6;
	b[30] = b[31] = 7;
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 *	t4_load_mtus - write the MTU and congestion control HW tables
 *	@adap: the adapter
 *	@mtus: the values for the MTU table
 *	@alpha: the values for the congestion control alpha parameter
 *	@beta: the values for the congestion control beta parameter
 *
 *	Write the HW MTU table with the supplied MTUs and the high-speed
 *	congestion control table with the supplied alpha, beta, and MTUs.
 *	We write the two tables together because the additive increments
 *	depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
2334 2335
		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
2336 2337 2338 2339 2340 2341 2342

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

2343
			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

/**
 *	get_mps_bg_map - return the buffer groups associated with a port
 *	@adap: the adapter
 *	@idx: the port index
 *
 *	Returns a bitmap indicating which MPS buffer groups are associated
 *	with the given port.  Bit i is set if buffer group i is used by the
 *	port.
 */
static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
{
2360
	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
2361 2362 2363 2364 2365 2366 2367 2368

	if (n == 0)
		return idx == 0 ? 0xf : 0;
	if (n == 1)
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/**
 *      t4_get_port_type_description - return Port Type string description
 *      @port_type: firmware Port Type enumeration
 */
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
	static const char *const port_type_description[] = {
		"R XFI",
		"R XAUI",
		"T SGMII",
		"T XFI",
		"T XAUI",
		"KX4",
		"CX4",
		"KX",
		"KR",
		"R SFP+",
		"KR/KX",
		"KR/KX/KX4",
		"R QSFP_10G",
2389
		"R QSA",
2390 2391 2392 2393 2394 2395 2396 2397 2398
		"R QSFP",
		"R BP40_BA",
	};

	if (port_type < ARRAY_SIZE(port_type_description))
		return port_type_description[port_type];
	return "UNKNOWN";
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
/**
 *	t4_get_port_stats - collect port statistics
 *	@adap: the adapter
 *	@idx: the port index
 *	@p: the stats structure to fill
 *
 *	Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
	u32 bgmap = get_mps_bg_map(adap, idx);

#define GET_STAT(name) \
S
Santosh Rastapur 已提交
2412
	t4_read_reg64(adap, \
2413
	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
S
Santosh Rastapur 已提交
2414
	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);

	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
 *	t4_wol_magic_enable - enable/disable magic packet WoL
 *	@adap: the adapter
 *	@port: the physical port index
 *	@addr: MAC address expected in magic packets, %NULL to disable
 *
 *	Enables/disables magic packet wake-on-LAN for the selected port.
 */
void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
			 const u8 *addr)
{
S
Santosh Rastapur 已提交
2493 2494
	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;

2495
	if (is_t4(adap->params.chip)) {
S
Santosh Rastapur 已提交
2496 2497
		mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
		mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
2498
		port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
S
Santosh Rastapur 已提交
2499 2500 2501
	} else {
		mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
		mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
2502
		port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
S
Santosh Rastapur 已提交
2503 2504
	}

2505
	if (addr) {
S
Santosh Rastapur 已提交
2506
		t4_write_reg(adap, mag_id_reg_l,
2507 2508
			     (addr[2] << 24) | (addr[3] << 16) |
			     (addr[4] << 8) | addr[5]);
S
Santosh Rastapur 已提交
2509
		t4_write_reg(adap, mag_id_reg_h,
2510 2511
			     (addr[0] << 8) | addr[1]);
	}
2512 2513
	t4_set_reg_field(adap, port_cfg_reg, MAGICEN_F,
			 addr ? MAGICEN_F : 0);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
}

/**
 *	t4_wol_pat_enable - enable/disable pattern-based WoL
 *	@adap: the adapter
 *	@port: the physical port index
 *	@map: bitmap of which HW pattern filters to set
 *	@mask0: byte mask for bytes 0-63 of a packet
 *	@mask1: byte mask for bytes 64-127 of a packet
 *	@crc: Ethernet CRC for selected bytes
 *	@enable: enable/disable switch
 *
 *	Sets the pattern filters indicated in @map to mask out the bytes
 *	specified in @mask0/@mask1 in received packets and compare the CRC of
 *	the resulting packet against @crc.  If @enable is %true pattern-based
 *	WoL is enabled, otherwise disabled.
 */
int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
{
	int i;
S
Santosh Rastapur 已提交
2535 2536
	u32 port_cfg_reg;

2537
	if (is_t4(adap->params.chip))
2538
		port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2_A);
S
Santosh Rastapur 已提交
2539
	else
2540
		port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2_A);
2541 2542

	if (!enable) {
2543
		t4_set_reg_field(adap, port_cfg_reg, PATEN_F, 0);
2544 2545 2546 2547 2548
		return 0;
	}
	if (map > 0xff)
		return -EINVAL;

S
Santosh Rastapur 已提交
2549
#define EPIO_REG(name) \
2550 2551 2552
	(is_t4(adap->params.chip) ? \
	 PORT_REG(port, XGMAC_PORT_EPIO_##name##_A) : \
	 T5_PORT_REG(port, MAC_PORT_EPIO_##name##_A))
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);

	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
		if (!(map & 1))
			continue;

		/* write byte masks */
		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
2564
		t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i) | EPIOWR_F);
2565
		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
2566
		if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
2567 2568 2569 2570
			return -ETIMEDOUT;

		/* write CRC */
		t4_write_reg(adap, EPIO_REG(DATA0), crc);
2571
		t4_write_reg(adap, EPIO_REG(OP), ADDRESS_V(i + 32) | EPIOWR_F);
2572
		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
2573
		if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY_F)
2574 2575 2576 2577
			return -ETIMEDOUT;
	}
#undef EPIO_REG

2578
	t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2_A), 0, PATEN_F);
2579 2580 2581
	return 0;
}

V
Vipul Pandya 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
/*     t4_mk_filtdelwr - create a delete filter WR
 *     @ftid: the filter ID
 *     @wr: the filter work request to populate
 *     @qid: ingress queue to receive the delete notification
 *
 *     Creates a filter work request to delete the supplied filter.  If @qid is
 *     negative the delete notification is suppressed.
 */
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
	memset(wr, 0, sizeof(*wr));
2593 2594
	wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
	wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16));
2595 2596 2597
	wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) |
			FW_FILTER_WR_NOREPLY_V(qid < 0));
	wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F);
V
Vipul Pandya 已提交
2598
	if (qid >= 0)
2599
		wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid));
V
Vipul Pandya 已提交
2600 2601
}

2602
#define INIT_CMD(var, cmd, rd_wr) do { \
2603 2604
	(var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \
				  FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \
2605 2606 2607
	(var).retval_len16 = htonl(FW_LEN16(var)); \
} while (0)

2608 2609 2610 2611 2612 2613
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
			  u32 addr, u32 val)
{
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
2614 2615
	c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F |
2616
			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE));
2617 2618 2619 2620 2621 2622 2623
	c.cycles_to_len16 = htonl(FW_LEN16(c));
	c.u.addrval.addr = htonl(addr);
	c.u.addrval.val = htonl(val);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/**
 *	t4_mdio_rd - read a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to read
 *	@valp: where to store the value
 *
 *	Issues a FW command through the given mailbox to read a PHY register.
 */
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 *valp)
{
	int ret;
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
2642
	c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
2643
		FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
2644
	c.cycles_to_len16 = htonl(FW_LEN16(c));
2645 2646
	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
				   FW_LDST_CMD_MMD_V(mmd));
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	c.u.mdio.raddr = htons(reg);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		*valp = ntohs(c.u.mdio.rval);
	return ret;
}

/**
 *	t4_mdio_wr - write a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to write
 *	@valp: value to write
 *
 *	Issues a FW command through the given mailbox to write a PHY register.
 */
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 val)
{
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
2672
	c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F |
2673
		FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO));
2674
	c.cycles_to_len16 = htonl(FW_LEN16(c));
2675 2676
	c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) |
				   FW_LDST_CMD_MMD_V(mmd));
2677 2678 2679 2680 2681 2682
	c.u.mdio.raddr = htons(reg);
	c.u.mdio.rval = htons(val);

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
/**
 *	t4_sge_decode_idma_state - decode the idma state
 *	@adap: the adapter
 *	@state: the state idma is stuck in
 */
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
{
	static const char * const t4_decode[] = {
		"IDMA_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"Not used",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL_PREP",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
		"IDMA_FL_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATAFL_DONE",
		"IDMA_FL_REQ_HEADERFL_DONE",
	};
	static const char * const t5_decode[] = {
		"IDMA_IDLE",
		"IDMA_ALMOST_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_DROP_SEND_INC",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
	};
	static const u32 sge_regs[] = {
2763 2764 2765
		SGE_DEBUG_DATA_LOW_INDEX_2_A,
		SGE_DEBUG_DATA_LOW_INDEX_3_A,
		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
	};
	const char **sge_idma_decode;
	int sge_idma_decode_nstates;
	int i;

	if (is_t4(adapter->params.chip)) {
		sge_idma_decode = (const char **)t4_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
	} else {
		sge_idma_decode = (const char **)t5_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
	}

	if (state < sge_idma_decode_nstates)
		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
	else
		CH_WARN(adapter, "idma state %d unknown\n", state);

	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
		CH_WARN(adapter, "SGE register %#x value %#x\n",
			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
}

2789
/**
2790 2791 2792 2793 2794 2795
 *      t4_fw_hello - establish communication with FW
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @evt_mbox: mailbox to receive async FW events
 *      @master: specifies the caller's willingness to be the device master
 *	@state: returns the current device state (if non-NULL)
2796
 *
2797 2798
 *	Issues a command to establish communication with FW.  Returns either
 *	an error (negative integer) or the mailbox of the Master PF.
2799 2800 2801 2802 2803 2804
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;
2805 2806 2807
	u32 v;
	unsigned int master_mbox;
	int retries = FW_CMD_HELLO_RETRIES;
2808

2809 2810
retry:
	memset(&c, 0, sizeof(c));
2811
	INIT_CMD(c, HELLO, WRITE);
2812
	c.err_to_clearinit = htonl(
2813 2814 2815 2816 2817 2818 2819
		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox :
				      FW_HELLO_CMD_MBMASTER_M) |
		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
		FW_HELLO_CMD_CLEARINIT_F);
2820

2821 2822 2823
	/*
	 * Issue the HELLO command to the firmware.  If it's not successful
	 * but indicates that we got a "busy" or "timeout" condition, retry
2824 2825 2826
	 * the HELLO until we exhaust our retry limit.  If we do exceed our
	 * retry limit, check to see if the firmware left us any error
	 * information and report that if so.
2827
	 */
2828
	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2829 2830 2831
	if (ret < 0) {
		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
			goto retry;
2832
		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
2833
			t4_report_fw_error(adap);
2834 2835 2836
		return ret;
	}

2837
	v = ntohl(c.err_to_clearinit);
2838
	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
2839
	if (state) {
2840
		if (v & FW_HELLO_CMD_ERR_F)
2841
			*state = DEV_STATE_ERR;
2842
		else if (v & FW_HELLO_CMD_INIT_F)
2843
			*state = DEV_STATE_INIT;
2844 2845 2846
		else
			*state = DEV_STATE_UNINIT;
	}
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856

	/*
	 * If we're not the Master PF then we need to wait around for the
	 * Master PF Driver to finish setting up the adapter.
	 *
	 * Note that we also do this wait if we're a non-Master-capable PF and
	 * there is no current Master PF; a Master PF may show up momentarily
	 * and we wouldn't want to fail pointlessly.  (This can happen when an
	 * OS loads lots of different drivers rapidly at the same time).  In
	 * this case, the Master PF returned by the firmware will be
2857
	 * PCIE_FW_MASTER_M so the test below will work ...
2858
	 */
2859
	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	    master_mbox != mbox) {
		int waiting = FW_CMD_HELLO_TIMEOUT;

		/*
		 * Wait for the firmware to either indicate an error or
		 * initialized state.  If we see either of these we bail out
		 * and report the issue to the caller.  If we exhaust the
		 * "hello timeout" and we haven't exhausted our retries, try
		 * again.  Otherwise bail with a timeout error.
		 */
		for (;;) {
			u32 pcie_fw;

			msleep(50);
			waiting -= 50;

			/*
			 * If neither Error nor Initialialized are indicated
			 * by the firmware keep waiting till we exaust our
			 * timeout ... and then retry if we haven't exhausted
			 * our retries ...
			 */
2882 2883
			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
				if (waiting <= 0) {
					if (retries-- > 0)
						goto retry;

					return -ETIMEDOUT;
				}
				continue;
			}

			/*
			 * We either have an Error or Initialized condition
			 * report errors preferentially.
			 */
			if (state) {
2898
				if (pcie_fw & PCIE_FW_ERR_F)
2899
					*state = DEV_STATE_ERR;
2900
				else if (pcie_fw & PCIE_FW_INIT_F)
2901 2902 2903 2904 2905 2906 2907 2908
					*state = DEV_STATE_INIT;
			}

			/*
			 * If we arrived before a Master PF was selected and
			 * there's not a valid Master PF, grab its identity
			 * for our caller.
			 */
2909
			if (master_mbox == PCIE_FW_MASTER_M &&
2910
			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
2911
				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
2912 2913 2914 2915 2916
			break;
		}
	}

	return master_mbox;
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
}

/**
 *	t4_fw_bye - end communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

2930
	memset(&c, 0, sizeof(c));
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_init_cmd - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

2947
	memset(&c, 0, sizeof(c));
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_reset - issue a reset to FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@reset: specifies the type of reset to perform
 *
 *	Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

2964
	memset(&c, 0, sizeof(c));
2965 2966 2967 2968 2969
	INIT_CMD(c, RESET, WRITE);
	c.val = htonl(reset);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

2970 2971 2972 2973 2974 2975 2976 2977 2978
/**
 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@force: force uP into RESET even if FW RESET command fails
 *
 *	Issues a RESET command to firmware (if desired) with a HALT indication
 *	and then puts the microprocessor into RESET state.  The RESET command
 *	will only be issued if a legitimate mailbox is provided (mbox <=
2979
 *	PCIE_FW_MASTER_M).
2980 2981 2982 2983 2984 2985
 *
 *	This is generally used in order for the host to safely manipulate the
 *	adapter without fear of conflicting with whatever the firmware might
 *	be doing.  The only way out of this state is to RESTART the firmware
 *	...
 */
2986
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
2987 2988 2989 2990 2991 2992 2993
{
	int ret = 0;

	/*
	 * If a legitimate mailbox is provided, issue a RESET command
	 * with a HALT indication.
	 */
2994
	if (mbox <= PCIE_FW_MASTER_M) {
2995 2996 2997 2998
		struct fw_reset_cmd c;

		memset(&c, 0, sizeof(c));
		INIT_CMD(c, RESET, WRITE);
2999
		c.val = htonl(PIORST_F | PIORSTMODE_F);
3000
		c.halt_pkd = htonl(FW_RESET_CMD_HALT_F);
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
	}

	/*
	 * Normally we won't complete the operation if the firmware RESET
	 * command fails but if our caller insists we'll go ahead and put the
	 * uP into RESET.  This can be useful if the firmware is hung or even
	 * missing ...  We'll have to take the risk of putting the uP into
	 * RESET without the cooperation of firmware in that case.
	 *
	 * We also force the firmware's HALT flag to be on in case we bypassed
	 * the firmware RESET command above or we're dealing with old firmware
	 * which doesn't have the HALT capability.  This will serve as a flag
	 * for the incoming firmware to know that it's coming out of a HALT
	 * rather than a RESET ... if it's new enough to understand that ...
	 */
	if (ret == 0 || force) {
3018
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
3019
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
3020
				 PCIE_FW_HALT_F);
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	}

	/*
	 * And we always return the result of the firmware RESET command
	 * even when we force the uP into RESET ...
	 */
	return ret;
}

/**
 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
 *	@adap: the adapter
 *	@reset: if we want to do a RESET to restart things
 *
 *	Restart firmware previously halted by t4_fw_halt().  On successful
 *	return the previous PF Master remains as the new PF Master and there
 *	is no need to issue a new HELLO command, etc.
 *
 *	We do this in two ways:
 *
 *	 1. If we're dealing with newer firmware we'll simply want to take
 *	    the chip's microprocessor out of RESET.  This will cause the
 *	    firmware to start up from its start vector.  And then we'll loop
 *	    until the firmware indicates it's started again (PCIE_FW.HALT
 *	    reset to 0) or we timeout.
 *
 *	 2. If we're dealing with older firmware then we'll need to RESET
 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
 *	    flag and automatically RESET itself on startup.
 */
3051
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3052 3053 3054 3055 3056 3057 3058
{
	if (reset) {
		/*
		 * Since we're directing the RESET instead of the firmware
		 * doing it automatically, we need to clear the PCIE_FW.HALT
		 * bit.
		 */
3059
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
3060 3061 3062 3063 3064 3065 3066 3067

		/*
		 * If we've been given a valid mailbox, first try to get the
		 * firmware to do the RESET.  If that works, great and we can
		 * return success.  Otherwise, if we haven't been given a
		 * valid mailbox or the RESET command failed, fall back to
		 * hitting the chip with a hammer.
		 */
3068
		if (mbox <= PCIE_FW_MASTER_M) {
3069
			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
3070 3071
			msleep(100);
			if (t4_fw_reset(adap, mbox,
3072
					PIORST_F | PIORSTMODE_F) == 0)
3073 3074 3075
				return 0;
		}

3076
		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
3077 3078 3079 3080
		msleep(2000);
	} else {
		int ms;

3081
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
3082
		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3083
			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
				return 0;
			msleep(100);
			ms += 100;
		}
		return -ETIMEDOUT;
	}
	return 0;
}

/**
 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@fw_data: the firmware image to write
 *	@size: image size
 *	@force: force upgrade even if firmware doesn't cooperate
 *
 *	Perform all of the steps necessary for upgrading an adapter's
 *	firmware image.  Normally this requires the cooperation of the
 *	existing firmware in order to halt all existing activities
 *	but if an invalid mailbox token is passed in we skip that step
 *	(though we'll still put the adapter microprocessor into RESET in
 *	that case).
 *
 *	On successful return the new firmware will have been loaded and
 *	the adapter will have been fully RESET losing all previous setup
 *	state.  On unsuccessful return the adapter may be completely hosed ...
 *	positive errno indicates that the adapter is ~probably~ intact, a
 *	negative errno indicates that things are looking bad ...
 */
3114 3115
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
		  const u8 *fw_data, unsigned int size, int force)
3116 3117 3118 3119
{
	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
	int reset, ret;

3120 3121 3122
	if (!t4_fw_matches_chip(adap, fw_hdr))
		return -EINVAL;

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	ret = t4_fw_halt(adap, mbox, force);
	if (ret < 0 && !force)
		return ret;

	ret = t4_load_fw(adap, fw_data, size);
	if (ret < 0)
		return ret;

	/*
	 * Older versions of the firmware don't understand the new
	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
	 * restart.  So for newly loaded older firmware we'll have to do the
	 * RESET for it so it starts up on a clean slate.  We can tell if
	 * the newly loaded firmware will handle this right by checking
	 * its header flags to see if it advertises the capability.
	 */
	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
	return t4_fw_restart(adap, mbox, reset);
}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
/**
 *	t4_fixup_host_params - fix up host-dependent parameters
 *	@adap: the adapter
 *	@page_size: the host's Base Page Size
 *	@cache_line_size: the host's Cache Line Size
 *
 *	Various registers in T4 contain values which are dependent on the
 *	host's Base Page and Cache Line Sizes.  This function will fix all of
 *	those registers with the appropriate values as passed in ...
 */
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
			 unsigned int cache_line_size)
{
	unsigned int page_shift = fls(page_size) - 1;
	unsigned int sge_hps = page_shift - 10;
	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
	unsigned int fl_align_log = fls(fl_align) - 1;

3162 3163 3164 3165 3166 3167 3168 3169 3170
	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
		     HOSTPAGESIZEPF0_V(sge_hps) |
		     HOSTPAGESIZEPF1_V(sge_hps) |
		     HOSTPAGESIZEPF2_V(sge_hps) |
		     HOSTPAGESIZEPF3_V(sge_hps) |
		     HOSTPAGESIZEPF4_V(sge_hps) |
		     HOSTPAGESIZEPF5_V(sge_hps) |
		     HOSTPAGESIZEPF6_V(sge_hps) |
		     HOSTPAGESIZEPF7_V(sge_hps));
3171

3172
	if (is_t4(adap->params.chip)) {
3173 3174 3175 3176 3177 3178
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(fl_align_log -
						  INGPADBOUNDARY_SHIFT_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	} else {
		/* T5 introduced the separation of the Free List Padding and
		 * Packing Boundaries.  Thus, we can select a smaller Padding
		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
		 * Bandwidth, and use a Packing Boundary which is large enough
		 * to avoid false sharing between CPUs, etc.
		 *
		 * For the PCI Link, the smaller the Padding Boundary the
		 * better.  For the Memory Controller, a smaller Padding
		 * Boundary is better until we cross under the Memory Line
		 * Size (the minimum unit of transfer to/from Memory).  If we
		 * have a Padding Boundary which is smaller than the Memory
		 * Line Size, that'll involve a Read-Modify-Write cycle on the
		 * Memory Controller which is never good.  For T5 the smallest
		 * Padding Boundary which we can select is 32 bytes which is
		 * larger than any known Memory Controller Line Size so we'll
		 * use that.
		 *
		 * T5 has a different interpretation of the "0" value for the
		 * Packing Boundary.  This corresponds to 16 bytes instead of
		 * the expected 32 bytes.  We never have a Packing Boundary
		 * less than 32 bytes so we can't use that special value but
		 * on the other hand, if we wanted 32 bytes, the best we can
		 * really do is 64 bytes.
		*/
		if (fl_align <= 32) {
			fl_align = 64;
			fl_align_log = 6;
		}
3208 3209 3210 3211 3212
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
3213 3214 3215
		t4_set_reg_field(adap, SGE_CONTROL2_A,
				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
				 INGPACKBOUNDARY_V(fl_align_log -
3216
						   INGPACKBOUNDARY_SHIFT_X));
3217
	}
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	/*
	 * Adjust various SGE Free List Host Buffer Sizes.
	 *
	 * This is something of a crock since we're using fixed indices into
	 * the array which are also known by the sge.c code and the T4
	 * Firmware Configuration File.  We need to come up with a much better
	 * approach to managing this array.  For now, the first four entries
	 * are:
	 *
	 *   0: Host Page Size
	 *   1: 64KB
	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
	 *
	 * For the single-MTU buffers in unpacked mode we need to include
	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
	 * Padding boundry.  All of these are accommodated in the Factory
	 * Default Firmware Configuration File but we need to adjust it for
	 * this host's cache line size.
	 */
3239 3240 3241
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
3242
		     & ~(fl_align-1));
3243 3244
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
3245 3246
		     & ~(fl_align-1));

3247
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

	return 0;
}

/**
 *	t4_fw_initialize - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/**
 *	t4_query_params - query FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
 *	queried at once.
 */
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	int i, ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
3294
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
3295 3296
			    FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) |
			    FW_PARAMS_CMD_VFN_V(vf));
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	c.retval_len16 = htonl(FW_LEN16(c));
	for (i = 0; i < nparams; i++, p += 2)
		*p = htonl(*params++);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
			*val++ = ntohl(*p);
	return ret;
}

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/**
 *      t4_set_params_nosleep - sets FW or device parameters
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @pf: the PF
 *      @vf: the VF
 *      @nparams: the number of parameters
 *      @params: the parameter names
 *      @val: the parameter values
 *
 *	 Does not ever sleep
 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
 *      specified at once.
 */
int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox,
			  unsigned int pf, unsigned int vf,
			  unsigned int nparams, const u32 *params,
			  const u32 *val)
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
3334 3335
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3336 3337
				FW_PARAMS_CMD_PFN_V(pf) |
				FW_PARAMS_CMD_VFN_V(vf));
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

	while (nparams--) {
		*p++ = cpu_to_be32(*params++);
		*p++ = cpu_to_be32(*val++);
	}

	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
}

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
/**
 *	t4_set_params - sets FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
 *	specified at once.
 */
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
3372
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F |
3373 3374
			    FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) |
			    FW_PARAMS_CMD_VFN_V(vf));
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
	c.retval_len16 = htonl(FW_LEN16(c));
	while (nparams--) {
		*p++ = htonl(*params++);
		*p++ = htonl(*val++);
	}

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_cfg_pfvf - configure PF/VF resource limits
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF being configured
 *	@vf: the VF being configured
 *	@txq: the max number of egress queues
 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
 *	@rxqi: the max number of interrupt-capable ingress queues
 *	@rxq: the max number of interruptless ingress queues
 *	@tc: the PCI traffic class
 *	@vi: the max number of virtual interfaces
 *	@cmask: the channel access rights mask for the PF/VF
 *	@pmask: the port access rights mask for the PF/VF
 *	@nexact: the maximum number of exact MPS filters
 *	@rcaps: read capabilities
 *	@wxcaps: write/execute capabilities
 *
 *	Configures resource limits and capabilities for a physical or virtual
 *	function.
 */
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
		unsigned int rxqi, unsigned int rxq, unsigned int tc,
		unsigned int vi, unsigned int cmask, unsigned int pmask,
		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
	struct fw_pfvf_cmd c;

	memset(&c, 0, sizeof(c));
3414
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
3415 3416
			    FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
			    FW_PFVF_CMD_VFN_V(vf));
3417
	c.retval_len16 = htonl(FW_LEN16(c));
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
			       FW_PFVF_CMD_NIQ_V(rxq));
	c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) |
			       FW_PFVF_CMD_PMASK_V(pmask) |
			       FW_PFVF_CMD_NEQ_V(txq));
	c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) |
				FW_PFVF_CMD_NEXACTF_V(nexact));
	c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) |
				     FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
				     FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_alloc_vi - allocate a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@port: physical port associated with the VI
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@nmac: number of MAC addresses needed (1 to 5)
 *	@mac: the MAC addresses of the VI
 *	@rss_size: size of RSS table slice associated with this VI
 *
 *	Allocates a virtual interface for the given physical port.  If @mac is
 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
 *	stored consecutively so the space needed is @nmac * 6 bytes.
 *	Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
3456 3457
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
3458 3459 3460
			    FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
		}
	}
	if (rss_size)
3481 3482
		*rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd));
	return FW_VI_CMD_VIID_G(ntohs(c.type_viid));
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
}

/**
 *	t4_set_rxmode - set Rx properties of a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@mtu: the new MTU or -1
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3494
 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
3495 3496 3497 3498 3499
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3500 3501
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
3502 3503 3504 3505 3506 3507 3508
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_RXMODE_MTU_NO_CHG;
	if (promisc < 0)
3509
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
3510
	if (all_multi < 0)
3511
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
3512
	if (bcast < 0)
3513
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
3514
	if (vlanex < 0)
3515
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
3516 3517

	memset(&c, 0, sizeof(c));
3518
	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F |
3519
			     FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid));
3520
	c.retval_len16 = htonl(FW_LEN16(c));
3521 3522 3523 3524 3525
	c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) |
				  FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
				  FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
				  FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
				  FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
		      unsigned int viid, bool free, unsigned int naddr,
		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
	int i, ret;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p;
3558
	unsigned int max_naddr = is_t4(adap->params.chip) ?
S
Santosh Rastapur 已提交
3559 3560
				       NUM_MPS_CLS_SRAM_L_INSTANCES :
				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
3561 3562 3563 3564 3565

	if (naddr > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
3566 3567
	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
			     FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) |
3568 3569
			     FW_VI_MAC_CMD_VIID_V(viid));
	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) |
3570
				    FW_CMD_LEN16_V((naddr + 2) / 2));
3571 3572

	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3573 3574
		p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
3575 3576 3577 3578 3579 3580 3581 3582
		memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
	}

	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
	if (ret)
		return ret;

	for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
3583
		u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
3584 3585

		if (idx)
S
Santosh Rastapur 已提交
3586 3587
			idx[i] = index >= max_naddr ? 0xffff : index;
		if (index < max_naddr)
3588 3589
			ret++;
		else if (hash)
3590
			*hash |= (1ULL << hash_mac_addr(addr[i]));
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	}
	return ret;
}

/**
 *	t4_change_mac - modifies the exact-match filter for a MAC address
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: whether a new MAC allocation should be persistent
 *	@add_smt: if true also add the address to the HW SMT
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the one
 *	being used by the old address value and allocate a new filter for the
 *	new address value.  @idx can be -1 if the address is a new addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;
3620
	unsigned int max_mac_addr = is_t4(adap->params.chip) ?
S
Santosh Rastapur 已提交
3621 3622
				    NUM_MPS_CLS_SRAM_L_INSTANCES :
				    NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
3623 3624 3625 3626 3627 3628

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
3629
	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
3630
			     FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid));
3631
	c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1));
3632 3633 3634
	p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F |
				FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
				FW_VI_MAC_CMD_IDX_V(idx));
3635 3636 3637 3638
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
3639
		ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx));
S
Santosh Rastapur 已提交
3640
		if (ret >= max_mac_addr)
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4_set_addr_hash - program the MAC inexact-match hash filter
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd c;

	memset(&c, 0, sizeof(c));
3663
	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F |
3664 3665 3666
			     FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid));
	c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F |
				    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
3667
				    FW_CMD_LEN16_V(1));
3668 3669 3670 3671
	c.u.hash.hashvec = cpu_to_be64(vec);
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
/**
 *      t4_enable_vi_params - enable/disable a virtual interface
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @viid: the VI id
 *      @rx_en: 1=enable Rx, 0=disable Rx
 *      @tx_en: 1=enable Tx, 0=disable Tx
 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
 *
 *      Enables/disables a virtual interface.  Note that setting DCB Enable
 *      only makes sense when enabling a Virtual Interface ...
 */
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
3690
	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
3691
			     FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
3692

3693 3694 3695
	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
			       FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) |
			       FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en));
3696
	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3697 3698
}

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
/**
 *	t4_enable_vi - enable/disable a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
3712
	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
}

/**
 *	t4_identify_port - identify a VI's port by blinking its LED
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     unsigned int nblinks)
{
	struct fw_vi_enable_cmd c;

3729
	memset(&c, 0, sizeof(c));
3730
	c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F |
3731 3732
			     FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
	c.blinkdur = htons(nblinks);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_iq_free - free an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
3757
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
3758 3759 3760 3761
			    FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
			    FW_IQ_CMD_VFN_V(vf));
	c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c));
	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype));
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	c.iqid = htons(iqid);
	c.fl0id = htons(fl0id);
	c.fl1id = htons(fl1id);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_eth_eq_free - free an Ethernet egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
3784
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
3785 3786 3787 3788
			    FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) |
			    FW_EQ_ETH_CMD_VFN_V(vf));
	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid));
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ctrl_eq_free - free a control egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ctrl_cmd c;

	memset(&c, 0, sizeof(c));
3808
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
3809 3810 3811 3812
			    FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) |
			    FW_EQ_CTRL_CMD_VFN_V(vf));
	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid));
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ofld_eq_free - free an offload egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ofld_cmd c;

	memset(&c, 0, sizeof(c));
3832
	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
3833 3834 3835 3836
			    FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) |
			    FW_EQ_OFLD_CMD_VFN_V(vf));
	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid));
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_handle_fw_rpl - process a FW reply message
 *	@adap: the adapter
 *	@rpl: start of the FW message
 *
 *	Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
		int speed = 0, fc = 0;
		const struct fw_port_cmd *p = (void *)rpl;
3854
		int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid));
3855 3856 3857 3858
		int port = adap->chan_map[chan];
		struct port_info *pi = adap2pinfo(adap, port);
		struct link_config *lc = &pi->link_cfg;
		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
3859 3860
		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
3861

3862
		if (stat & FW_PORT_CMD_RXPAUSE_F)
3863
			fc |= PAUSE_RX;
3864
		if (stat & FW_PORT_CMD_TXPAUSE_F)
3865
			fc |= PAUSE_TX;
3866
		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
3867
			speed = 100;
3868
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
3869
			speed = 1000;
3870
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
3871
			speed = 10000;
3872
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
3873
			speed = 40000;
3874 3875 3876 3877 3878 3879

		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
3880
			lc->supported = be16_to_cpu(p->u.info.pcap);
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
			t4_os_link_changed(adap, port, link_ok);
		}
		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, port);
		}
	}
	return 0;
}

3891
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3892 3893 3894
{
	u16 val;

3895 3896
	if (pci_is_pcie(adapter->pdev)) {
		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		p->speed = val & PCI_EXP_LNKSTA_CLS;
		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
	}
}

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
3910
static void init_link_config(struct link_config *lc, unsigned int caps)
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

3926 3927 3928
#define CIM_PF_NOACCESS 0xeeeeeeee

int t4_wait_dev_ready(void __iomem *regs)
3929
{
3930 3931
	u32 whoami;

3932
	whoami = readl(regs + PL_WHOAMI_A);
3933
	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
3934
		return 0;
3935

3936
	msleep(500);
3937
	whoami = readl(regs + PL_WHOAMI_A);
3938
	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
3939 3940
}

3941 3942 3943 3944 3945
struct flash_desc {
	u32 vendor_and_model_id;
	u32 size_mb;
};

B
Bill Pemberton 已提交
3946
static int get_flash_params(struct adapter *adap)
3947
{
3948 3949 3950 3951 3952 3953 3954
	/* Table for non-Numonix supported flash parts.  Numonix parts are left
	 * to the preexisting code.  All flash parts have 64KB sectors.
	 */
	static struct flash_desc supported_flash[] = {
		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
	};

3955 3956 3957 3958 3959 3960
	int ret;
	u32 info;

	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adap, 3, 0, 1, &info);
3961
	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
3962 3963 3964
	if (ret)
		return ret;

3965 3966 3967 3968 3969 3970 3971 3972
	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
		if (supported_flash[ret].vendor_and_model_id == info) {
			adap->params.sf_size = supported_flash[ret].size_mb;
			adap->params.sf_nsec =
				adap->params.sf_size / SF_SEC_SIZE;
			return 0;
		}

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adap->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adap->params.sf_nsec = 64;
	else
		return -EINVAL;
	adap->params.sf_size = 1 << info;
	adap->params.sf_fw_start =
3984
		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
3985 3986 3987 3988

	if (adap->params.sf_size < FLASH_MIN_SIZE)
		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
			 adap->params.sf_size, FLASH_MIN_SIZE);
3989 3990 3991
	return 0;
}

3992 3993 3994 3995 3996 3997 3998 3999 4000
/**
 *	t4_prep_adapter - prepare SW and HW for operation
 *	@adapter: the adapter
 *	@reset: if true perform a HW reset
 *
 *	Initialize adapter SW state for the various HW modules, set initial
 *	values for some adapter tunables, take PHYs out of reset, and
 *	initialize the MDIO interface.
 */
B
Bill Pemberton 已提交
4001
int t4_prep_adapter(struct adapter *adapter)
4002
{
S
Santosh Rastapur 已提交
4003 4004
	int ret, ver;
	uint16_t device_id;
4005
	u32 pl_rev;
4006 4007

	get_pci_mode(adapter, &adapter->params.pci);
4008
	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
4009

4010 4011 4012 4013 4014 4015
	ret = get_flash_params(adapter);
	if (ret < 0) {
		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
		return ret;
	}

S
Santosh Rastapur 已提交
4016 4017 4018 4019
	/* Retrieve adapter's device ID
	 */
	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
	ver = device_id >> 12;
4020
	adapter->params.chip = 0;
S
Santosh Rastapur 已提交
4021 4022
	switch (ver) {
	case CHELSIO_T4:
4023
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
S
Santosh Rastapur 已提交
4024 4025
		break;
	case CHELSIO_T5:
4026
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
S
Santosh Rastapur 已提交
4027 4028 4029 4030 4031 4032 4033
		break;
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
			device_id);
		return -EINVAL;
	}

4034
	adapter->params.cim_la_size = CIMLA_SIZE;
4035 4036 4037 4038 4039 4040 4041
	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
4042
	adapter->params.vpd.cclk = 50000;
4043 4044 4045
	return 0;
}

4046
/**
4047
 *	cxgb4_t4_bar2_sge_qregs - return BAR2 SGE Queue register information
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
 *	@adapter: the adapter
 *	@qid: the Queue ID
 *	@qtype: the Ingress or Egress type for @qid
 *	@pbar2_qoffset: BAR2 Queue Offset
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 *	Returns the BAR2 SGE Queue Registers information associated with the
 *	indicated Absolute Queue ID.  These are passed back in return value
 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 *	This may return an error which indicates that BAR2 SGE Queue
 *	registers aren't available.  If an error is not returned, then the
 *	following values are returned:
 *
 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 *	require the "Inferred Queue ID" ability may be used.  E.g. the
 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 *	then these "Inferred Queue ID" register may not be used.
 */
4071
int cxgb4_t4_bar2_sge_qregs(struct adapter *adapter,
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		      unsigned int qid,
		      enum t4_bar2_qtype qtype,
		      u64 *pbar2_qoffset,
		      unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

	/* T4 doesn't support BAR2 SGE Queue registers.
	 */
	if (is_t4(adapter->params.chip))
		return -EINVAL;

	/* Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.hps + 10;
	page_size = 1 << page_shift;

	/* Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
		     ? adapter->params.sge.eq_qpp
		     : adapter->params.sge.iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/*  Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

/**
 *	t4_init_sge_params - initialize adap->params.sge
 *	@adapter: the adapter
 *
 *	Initialize various fields of the adapter's SGE Parameters structure.
 */
int t4_init_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 hps, qpp;
	unsigned int s_hps, s_qpp;

	/* Extract the SGE Page Size for our PF.
	 */
4149
	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
4150 4151 4152 4153 4154 4155 4156 4157
	s_hps = (HOSTPAGESIZEPF0_S +
		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn);
	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);

	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
	 */
	s_qpp = (QUEUESPERPAGEPF0_S +
		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn);
4158 4159
	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
4160
	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
4161
	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
4162 4163 4164 4165

	return 0;
}

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
/**
 *      t4_init_tp_params - initialize adap->params.tp
 *      @adap: the adapter
 *
 *      Initialize various fields of the adapter's TP Parameters structure.
 */
int t4_init_tp_params(struct adapter *adap)
{
	int chan;
	u32 v;

4177 4178 4179
	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
	adap->params.tp.tre = TIMERRESOLUTION_G(v);
	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
4180 4181 4182 4183 4184 4185 4186 4187

	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
	for (chan = 0; chan < NCHAN; chan++)
		adap->params.tp.tx_modq[chan] = chan;

	/* Cache the adapter's Compressed Filter Mode and global Incress
	 * Configuration.
	 */
4188
	t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4189
			 &adap->params.tp.vlan_pri_map, 1,
4190 4191
			 TP_VLAN_PRI_MAP_A);
	t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4192
			 &adap->params.tp.ingress_config, 1,
4193
			 TP_INGRESS_CONFIG_A);
4194 4195 4196 4197 4198

	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
	 * shift positions of several elements of the Compressed Filter Tuple
	 * for this adapter which we need frequently ...
	 */
4199 4200 4201
	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
4202
	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
4203
							       PROTOCOL_F);
4204 4205 4206 4207

	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
	 * represents the presense of an Outer VLAN instead of a VNIC ID.
	 */
4208
	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
		adap->params.tp.vnic_shift = -1;

	return 0;
}

/**
 *      t4_filter_field_shift - calculate filter field shift
 *      @adap: the adapter
 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
 *
 *      Return the shift position of a filter field within the Compressed
 *      Filter Tuple.  The filter field is specified via its selection bit
 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
 */
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
	unsigned int sel;
	int field_shift;

	if ((filter_mode & filter_sel) == 0)
		return -1;

	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
		switch (filter_mode & sel) {
4234 4235
		case FCOE_F:
			field_shift += FT_FCOE_W;
4236
			break;
4237 4238
		case PORT_F:
			field_shift += FT_PORT_W;
4239
			break;
4240 4241
		case VNIC_ID_F:
			field_shift += FT_VNIC_ID_W;
4242
			break;
4243 4244
		case VLAN_F:
			field_shift += FT_VLAN_W;
4245
			break;
4246 4247
		case TOS_F:
			field_shift += FT_TOS_W;
4248
			break;
4249 4250
		case PROTOCOL_F:
			field_shift += FT_PROTOCOL_W;
4251
			break;
4252 4253
		case ETHERTYPE_F:
			field_shift += FT_ETHERTYPE_W;
4254
			break;
4255 4256
		case MACMATCH_F:
			field_shift += FT_MACMATCH_W;
4257
			break;
4258 4259
		case MPSHITTYPE_F:
			field_shift += FT_MPSHITTYPE_W;
4260
			break;
4261 4262
		case FRAGMENTATION_F:
			field_shift += FT_FRAGMENTATION_W;
4263 4264 4265 4266 4267 4268
			break;
		}
	}
	return field_shift;
}

B
Bill Pemberton 已提交
4269
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
4270 4271 4272 4273
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;
4274
	struct fw_rss_vi_config_cmd rvc;
4275 4276

	memset(&c, 0, sizeof(c));
4277
	memset(&rvc, 0, sizeof(rvc));
4278 4279 4280 4281 4282 4283 4284 4285

	for_each_port(adap, i) {
		unsigned int rss_size;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

4286 4287
		c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) |
				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
4288
				       FW_PORT_CMD_PORTID_V(j));
4289
		c.action_to_len16 = htonl(
4290
			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
			FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->lport = j;
		p->rss_size = rss_size;
		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
4305
		adap->port[i]->dev_port = j;
4306 4307

		ret = ntohl(c.u.info.lstatus_to_modtype);
4308 4309 4310
		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
4311
		p->mod_type = FW_PORT_MOD_TYPE_NA;
4312

4313 4314
		rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
4315 4316 4317 4318 4319 4320 4321
				       FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = htonl(FW_LEN16(rvc));
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
		p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);

4322 4323 4324 4325 4326
		init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
		j++;
	}
	return 0;
}
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

/**
 *	t4_cim_read - read a block from CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to read
 *	@valp: where to store the result
 *
 *	Reads a block of 4-byte words from the CIM intenal address space.
 */
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
		unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
		if (!ret)
			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
	}
	return ret;
}

/**
 *	t4_cim_write - write a block into CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to write
 *	@valp: set of values to write
 *
 *	Writes a block of 4-byte words into the CIM intenal address space.
 */
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
		 const unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
	}
	return ret;
}

static int t4_cim_write1(struct adapter *adap, unsigned int addr,
			 unsigned int val)
{
	return t4_cim_write(adap, addr, 1, &val);
}

/**
 *	t4_cim_read_la - read CIM LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the CIM LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We try to leave the LA in the running state we find it in.
 */
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
{
	int i, ret;
	unsigned int cfg, val, idx;

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
	if (ret)
		return ret;

	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
		if (ret)
			return ret;
	}

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
	if (ret)
		goto restart;

	idx = UPDBGLAWRPTR_G(val);
	if (wrptr)
		*wrptr = idx;

	for (i = 0; i < adap->params.cim_la_size; i++) {
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
		if (ret)
			break;
		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
		if (ret)
			break;
		if (val & UPDBGLARDEN_F) {
			ret = -ETIMEDOUT;
			break;
		}
		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
		if (ret)
			break;
		idx = (idx + 1) & UPDBGLARDPTR_M;
	}
restart:
	if (cfg & UPDBGLAEN_F) {
		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				      cfg & ~UPDBGLARDEN_F);
		if (!ret)
			ret = r;
	}
	return ret;
}