t4_hw.c 199.6 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/delay.h>
#include "cxgb4.h"
#include "t4_regs.h"
38
#include "t4_values.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "t4fw_api.h"

/**
 *	t4_wait_op_done_val - wait until an operation is completed
 *	@adapter: the adapter performing the operation
 *	@reg: the register to check for completion
 *	@mask: a single-bit field within @reg that indicates completion
 *	@polarity: the value of the field when the operation is completed
 *	@attempts: number of check iterations
 *	@delay: delay in usecs between iterations
 *	@valp: where to store the value of the register at completion time
 *
 *	Wait until an operation is completed by checking a bit in a register
 *	up to @attempts times.  If @valp is not NULL the value of the register
 *	at the time it indicated completion is stored there.  Returns 0 if the
 *	operation completes and	-EAGAIN	otherwise.
 */
56 57
static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
			       int polarity, int attempts, int delay, u32 *valp)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
{
	while (1) {
		u32 val = t4_read_reg(adapter, reg);

		if (!!(val & mask) == polarity) {
			if (valp)
				*valp = val;
			return 0;
		}
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			udelay(delay);
	}
}

static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
				  int polarity, int attempts, int delay)
{
	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
				   delay, NULL);
}

/**
 *	t4_set_reg_field - set a register field to a value
 *	@adapter: the adapter to program
 *	@addr: the register address
 *	@mask: specifies the portion of the register to modify
 *	@val: the new value for the register field
 *
 *	Sets a register field specified by the supplied mask to the
 *	given value.
 */
void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
		      u32 val)
{
	u32 v = t4_read_reg(adapter, addr) & ~mask;

	t4_write_reg(adapter, addr, v | val);
	(void) t4_read_reg(adapter, addr);      /* flush */
}

/**
 *	t4_read_indirect - read indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect address
 *	@data_reg: register holding the value of the indirect register
 *	@vals: where the read register values are stored
 *	@nregs: how many indirect registers to read
 *	@start_idx: index of first indirect register to read
 *
 *	Reads registers that are accessed indirectly through an address/data
 *	register pair.
 */
V
Vipul Pandya 已提交
112
void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 114
			     unsigned int data_reg, u32 *vals,
			     unsigned int nregs, unsigned int start_idx)
115 116 117 118 119 120 121 122
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx);
		*vals++ = t4_read_reg(adap, data_reg);
		start_idx++;
	}
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/**
 *	t4_write_indirect - write indirectly addressed registers
 *	@adap: the adapter
 *	@addr_reg: register holding the indirect addresses
 *	@data_reg: register holding the value for the indirect registers
 *	@vals: values to write
 *	@nregs: how many indirect registers to write
 *	@start_idx: address of first indirect register to write
 *
 *	Writes a sequential block of registers that are accessed indirectly
 *	through an address/data register pair.
 */
void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
		       unsigned int data_reg, const u32 *vals,
		       unsigned int nregs, unsigned int start_idx)
{
	while (nregs--) {
		t4_write_reg(adap, addr_reg, start_idx++);
		t4_write_reg(adap, data_reg, *vals++);
	}
}

145 146 147 148 149 150 151 152
/*
 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
 * mechanism.  This guarantees that we get the real value even if we're
 * operating within a Virtual Machine and the Hypervisor is trapping our
 * Configuration Space accesses.
 */
void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
{
153 154 155 156 157 158
	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);

	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		req |= ENABLE_F;
	else
		req |= T6_ENABLE_F;
159 160

	if (is_t4(adap->params.chip))
161
		req |= LOCALCFG_F;
162

163 164
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
165 166 167 168 169 170

	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
	 * Configuration Space read.  (None of the other fields matter when
	 * ENABLE is 0 so a simple register write is easier than a
	 * read-modify-write via t4_set_reg_field().)
	 */
171
	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
172 173
}

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * t4_report_fw_error - report firmware error
 * @adap: the adapter
 *
 * The adapter firmware can indicate error conditions to the host.
 * If the firmware has indicated an error, print out the reason for
 * the firmware error.
 */
static void t4_report_fw_error(struct adapter *adap)
{
	static const char *const reason[] = {
		"Crash",                        /* PCIE_FW_EVAL_CRASH */
		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
		"Reserved",                     /* reserved */
	};
	u32 pcie_fw;

196 197
	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
	if (pcie_fw & PCIE_FW_ERR_F)
198
		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
199
			reason[PCIE_FW_EVAL_G(pcie_fw)]);
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
 */
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
			 u32 mbox_addr)
{
	for ( ; nflit; nflit--, mbox_addr += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}

/*
 * Handle a FW assertion reported in a mailbox.
 */
static void fw_asrt(struct adapter *adap, u32 mbox_addr)
{
	struct fw_debug_cmd asrt;

	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
	dev_alert(adap->pdev_dev,
		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
222 223
		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
{
	dev_err(adap->pdev_dev,
		"mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
		(unsigned long long)t4_read_reg64(adap, data_reg),
		(unsigned long long)t4_read_reg64(adap, data_reg + 8),
		(unsigned long long)t4_read_reg64(adap, data_reg + 16),
		(unsigned long long)t4_read_reg64(adap, data_reg + 24),
		(unsigned long long)t4_read_reg64(adap, data_reg + 32),
		(unsigned long long)t4_read_reg64(adap, data_reg + 40),
		(unsigned long long)t4_read_reg64(adap, data_reg + 48),
		(unsigned long long)t4_read_reg64(adap, data_reg + 56));
}

/**
241
 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
242 243 244 245 246 247
 *	@adap: the adapter
 *	@mbox: index of the mailbox to use
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
248
 *	@timeout: time to wait for command to finish before timing out
249 250 251 252 253 254 255 256 257 258 259 260 261 262
 *
 *	Sends the given command to FW through the selected mailbox and waits
 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
 *	store the FW's reply to the command.  The command and its optional
 *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
 *	to respond.  @sleep_ok determines whether we may sleep while awaiting
 *	the response.  If sleeping is allowed we use progressive backoff
 *	otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
263 264
int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
			    int size, void *rpl, bool sleep_ok, int timeout)
265
{
J
Joe Perches 已提交
266
	static const int delay[] = {
267 268 269 270 271 272 273
		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
	};

	u32 v;
	u64 res;
	int i, ms, delay_idx;
	const __be64 *p = cmd;
274 275
	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
276 277 278 279

	if ((size & 15) || size > MBOX_LEN)
		return -EINVAL;

D
Dimitris Michailidis 已提交
280 281 282 283 284 285 286
	/*
	 * If the device is off-line, as in EEH, commands will time out.
	 * Fail them early so we don't waste time waiting.
	 */
	if (adap->pdev->error_state != pci_channel_io_normal)
		return -EIO;

287
	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
288
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
289
		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
290 291 292 293 294 295 296

	if (v != MBOX_OWNER_DRV)
		return v ? -EBUSY : -ETIMEDOUT;

	for (i = 0; i < size; i += 8)
		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));

297
	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
298 299 300 301 302
	t4_read_reg(adap, ctl_reg);          /* flush write */

	delay_idx = 0;
	ms = delay[0];

303
	for (i = 0; i < timeout; i += ms) {
304 305 306 307 308 309 310 311 312
		if (sleep_ok) {
			ms = delay[delay_idx];  /* last element may repeat */
			if (delay_idx < ARRAY_SIZE(delay) - 1)
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		v = t4_read_reg(adap, ctl_reg);
313 314
		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
			if (!(v & MBMSGVALID_F)) {
315 316 317 318 319
				t4_write_reg(adap, ctl_reg, 0);
				continue;
			}

			res = t4_read_reg64(adap, data_reg);
320
			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
321
				fw_asrt(adap, data_reg);
322 323
				res = FW_CMD_RETVAL_V(EIO);
			} else if (rpl) {
324
				get_mbox_rpl(adap, rpl, size / 8, data_reg);
325
			}
326

327
			if (FW_CMD_RETVAL_G((int)res))
328 329
				dump_mbox(adap, mbox, data_reg);
			t4_write_reg(adap, ctl_reg, 0);
330
			return -FW_CMD_RETVAL_G((int)res);
331 332 333 334 335 336
		}
	}

	dump_mbox(adap, mbox, data_reg);
	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
		*(const u8 *)cmd, mbox);
337
	t4_report_fw_error(adap);
338 339 340
	return -ETIMEDOUT;
}

341 342
int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
		    void *rpl, bool sleep_ok)
343
{
344 345
	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
				       FW_CMD_MAX_TIMEOUT);
346 347
}

348 349 350
/**
 *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
 *	@adap: the adapter
351
 *	@win: PCI-E Memory Window to use
352 353 354
 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
 *	@addr: address within indicated memory type
 *	@len: amount of memory to transfer
355
 *	@hbuf: host memory buffer
356
 *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
357 358
 *
 *	Reads/writes an [almost] arbitrary memory region in the firmware: the
359 360 361 362 363
 *	firmware memory address and host buffer must be aligned on 32-bit
 *	boudaries; the length may be arbitrary.  The memory is transferred as
 *	a raw byte sequence from/to the firmware's memory.  If this memory
 *	contains data structures which contain multi-byte integers, it's the
 *	caller's responsibility to perform appropriate byte order conversions.
364
 */
365
int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
366
		 u32 len, void *hbuf, int dir)
367
{
368 369
	u32 pos, offset, resid, memoffset;
	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
370
	u32 *buf;
371

372
	/* Argument sanity checks ...
373
	 */
374
	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
375
		return -EINVAL;
376
	buf = (u32 *)hbuf;
377

378 379 380 381 382 383 384
	/* It's convenient to be able to handle lengths which aren't a
	 * multiple of 32-bits because we often end up transferring files to
	 * the firmware.  So we'll handle that by normalizing the length here
	 * and then handling any residual transfer at the end.
	 */
	resid = len & 0x3;
	len -= resid;
385

S
Santosh Rastapur 已提交
386
	/* Offset into the region of memory which is being accessed
387 388
	 * MEM_EDC0 = 0
	 * MEM_EDC1 = 1
389 390
	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
391
	 */
392
	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
S
Santosh Rastapur 已提交
393 394 395
	if (mtype != MEM_MC1)
		memoffset = (mtype * (edc_size * 1024 * 1024));
	else {
396
		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
397
						      MA_EXT_MEMORY0_BAR_A));
S
Santosh Rastapur 已提交
398 399
		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
	}
400 401 402 403

	/* Determine the PCIE_MEM_ACCESS_OFFSET */
	addr = addr + memoffset;

404 405 406 407 408 409 410
	/* Each PCI-E Memory Window is programmed with a window size -- or
	 * "aperture" -- which controls the granularity of its mapping onto
	 * adapter memory.  We need to grab that aperture in order to know
	 * how to use the specified window.  The window is also programmed
	 * with the base address of the Memory Window in BAR0's address
	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
	 * the address is relative to BAR0.
411
	 */
412
	mem_reg = t4_read_reg(adap,
413
			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
414
						  win));
415 416
	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
417 418
	if (is_t4(adap->params.chip))
		mem_base -= adap->t4_bar0;
419
	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
420

421 422 423 424 425
	/* Calculate our initial PCI-E Memory Window Position and Offset into
	 * that Window.
	 */
	pos = addr & ~(mem_aperture-1);
	offset = addr - pos;
426

427 428 429 430 431
	/* Set up initial PCI-E Memory Window to cover the start of our
	 * transfer.  (Read it back to ensure that changes propagate before we
	 * attempt to use the new value.)
	 */
	t4_write_reg(adap,
432
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
433 434
		     pos | win_pf);
	t4_read_reg(adap,
435
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
436 437 438

	/* Transfer data to/from the adapter as long as there's an integral
	 * number of 32-bit transfers to complete.
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	 *
	 * A note on Endianness issues:
	 *
	 * The "register" reads and writes below from/to the PCI-E Memory
	 * Window invoke the standard adapter Big-Endian to PCI-E Link
	 * Little-Endian "swizzel."  As a result, if we have the following
	 * data in adapter memory:
	 *
	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
	 *     Address:      i+0  i+1  i+2  i+3
	 *
	 * Then a read of the adapter memory via the PCI-E Memory Window
	 * will yield:
	 *
	 *     x = readl(i)
	 *         31                  0
	 *         [ b3 | b2 | b1 | b0 ]
	 *
	 * If this value is stored into local memory on a Little-Endian system
	 * it will show up correctly in local memory as:
	 *
	 *     ( ..., b0, b1, b2, b3, ... )
	 *
	 * But on a Big-Endian system, the store will show up in memory
	 * incorrectly swizzled as:
	 *
	 *     ( ..., b3, b2, b1, b0, ... )
	 *
	 * So we need to account for this in the reads and writes to the
	 * PCI-E Memory Window below by undoing the register read/write
	 * swizzels.
470 471 472
	 */
	while (len > 0) {
		if (dir == T4_MEMORY_READ)
473 474
			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
						mem_base + offset));
475 476
		else
			t4_write_reg(adap, mem_base + offset,
477
				     (__force u32)cpu_to_le32(*buf++));
478 479 480 481 482 483 484 485
		offset += sizeof(__be32);
		len -= sizeof(__be32);

		/* If we've reached the end of our current window aperture,
		 * move the PCI-E Memory Window on to the next.  Note that
		 * doing this here after "len" may be 0 allows us to set up
		 * the PCI-E Memory Window for a possible final residual
		 * transfer below ...
486
		 */
487 488 489 490
		if (offset == mem_aperture) {
			pos += mem_aperture;
			offset = 0;
			t4_write_reg(adap,
491 492
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win), pos | win_pf);
493
			t4_read_reg(adap,
494 495
				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
						    win));
496 497 498
		}
	}

499 500 501 502 503 504 505
	/* If the original transfer had a length which wasn't a multiple of
	 * 32-bits, now's where we need to finish off the transfer of the
	 * residual amount.  The PCI-E Memory Window has already been moved
	 * above (if necessary) to cover this final transfer.
	 */
	if (resid) {
		union {
506
			u32 word;
507 508 509 510 511
			char byte[4];
		} last;
		unsigned char *bp;
		int i;

512
		if (dir == T4_MEMORY_READ) {
513 514 515
			last.word = le32_to_cpu(
					(__force __le32)t4_read_reg(adap,
						mem_base + offset));
516 517 518 519 520 521 522
			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
				bp[i] = last.byte[i];
		} else {
			last.word = *buf;
			for (i = resid; i < 4; i++)
				last.byte[i] = 0;
			t4_write_reg(adap, mem_base + offset,
523
				     (__force u32)cpu_to_le32(last.word));
524 525
		}
	}
526

527
	return 0;
528 529
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Return the specified PCI-E Configuration Space register from our Physical
 * Function.  We try first via a Firmware LDST Command since we prefer to let
 * the firmware own all of these registers, but if that fails we go for it
 * directly ourselves.
 */
u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
{
	u32 val, ldst_addrspace;

	/* If fw_attach != 0, construct and send the Firmware LDST Command to
	 * retrieve the specified PCI-E Configuration Space register.
	 */
	struct fw_ldst_cmd ldst_cmd;
	int ret;

	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					       FW_CMD_REQUEST_F |
					       FW_CMD_READ_F |
					       ldst_addrspace);
	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
	ldst_cmd.u.pcie.ctrl_to_fn =
554
		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	ldst_cmd.u.pcie.r = reg;

	/* If the LDST Command succeeds, return the result, otherwise
	 * fall through to reading it directly ourselves ...
	 */
	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
			 &ldst_cmd);
	if (ret == 0)
		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
	else
		/* Read the desired Configuration Space register via the PCI-E
		 * Backdoor mechanism.
		 */
		t4_hw_pci_read_cfg4(adap, reg, &val);
	return val;
}

/* Get the window based on base passed to it.
 * Window aperture is currently unhandled, but there is no use case for it
 * right now
 */
static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
			 u32 memwin_base)
{
	u32 ret;

	if (is_t4(adap->params.chip)) {
		u32 bar0;

		/* Truncation intentional: we only read the bottom 32-bits of
		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
		 * mechanism to read BAR0 instead of using
		 * pci_resource_start() because we could be operating from
		 * within a Virtual Machine which is trapping our accesses to
		 * our Configuration Space and we need to set up the PCI-E
		 * Memory Window decoders with the actual addresses which will
		 * be coming across the PCI-E link.
		 */
		bar0 = t4_read_pcie_cfg4(adap, pci_base);
		bar0 &= pci_mask;
		adap->t4_bar0 = bar0;

		ret = bar0 + memwin_base;
	} else {
		/* For T5, only relative offset inside the PCIe BAR is passed */
		ret = memwin_base;
	}
	return ret;
}

/* Get the default utility window (win0) used by everyone */
u32 t4_get_util_window(struct adapter *adap)
{
	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
}

/* Set up memory window for accessing adapter memory ranges.  (Read
 * back MA register to ensure that changes propagate before we attempt
 * to use the new values.)
 */
void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
{
	t4_write_reg(adap,
		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
		     memwin_base | BIR_V(0) |
		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
	t4_read_reg(adap,
		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/**
 *	t4_get_regs_len - return the size of the chips register set
 *	@adapter: the adapter
 *
 *	Returns the size of the chip's BAR0 register space.
 */
unsigned int t4_get_regs_len(struct adapter *adapter)
{
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);

	switch (chip_version) {
	case CHELSIO_T4:
		return T4_REGMAP_SIZE;

	case CHELSIO_T5:
641
	case CHELSIO_T6:
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
		return T5_REGMAP_SIZE;
	}

	dev_err(adapter->pdev_dev,
		"Unsupported chip version %d\n", chip_version);
	return 0;
}

/**
 *	t4_get_regs - read chip registers into provided buffer
 *	@adap: the adapter
 *	@buf: register buffer
 *	@buf_size: size (in bytes) of register buffer
 *
 *	If the provided register buffer isn't large enough for the chip's
 *	full register range, the register dump will be truncated to the
 *	register buffer's size.
 */
void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
{
	static const unsigned int t4_reg_ranges[] = {
		0x1008, 0x1108,
		0x1180, 0x11b4,
		0x11fc, 0x123c,
		0x1300, 0x173c,
		0x1800, 0x18fc,
668 669
		0x3000, 0x305c,
		0x3068, 0x30d8,
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
		0x30e0, 0x5924,
		0x5960, 0x59d4,
		0x5a00, 0x5af8,
		0x6000, 0x6098,
		0x6100, 0x6150,
		0x6200, 0x6208,
		0x6240, 0x6248,
		0x6280, 0x6338,
		0x6370, 0x638c,
		0x6400, 0x643c,
		0x6500, 0x6524,
		0x6a00, 0x6a38,
		0x6a60, 0x6a78,
		0x6b00, 0x6b84,
		0x6bf0, 0x6c84,
		0x6cf0, 0x6d84,
		0x6df0, 0x6e84,
		0x6ef0, 0x6f84,
		0x6ff0, 0x7084,
		0x70f0, 0x7184,
		0x71f0, 0x7284,
		0x72f0, 0x7384,
		0x73f0, 0x7450,
		0x7500, 0x7530,
		0x7600, 0x761c,
		0x7680, 0x76cc,
		0x7700, 0x7798,
		0x77c0, 0x77fc,
		0x7900, 0x79fc,
		0x7b00, 0x7c38,
		0x7d00, 0x7efc,
		0x8dc0, 0x8e1c,
		0x8e30, 0x8e78,
		0x8ea0, 0x8f6c,
		0x8fc0, 0x9074,
		0x90fc, 0x90fc,
		0x9400, 0x9458,
		0x9600, 0x96bc,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0x9fec,
		0xd004, 0xd03c,
		0xdfc0, 0xdfe0,
		0xe000, 0xea7c,
		0xf000, 0x11110,
		0x11118, 0x11190,
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
		0x19238, 0x1924c,
		0x193f8, 0x19474,
		0x19490, 0x194f8,
732
		0x19800, 0x19f4c,
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e28c,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e68c,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea8c,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee8c,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f28c,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f68c,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa8c,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe8c,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x20000, 0x2002c,
		0x20100, 0x2013c,
		0x20190, 0x201c8,
		0x20200, 0x20318,
		0x20400, 0x20528,
		0x20540, 0x20614,
		0x21000, 0x21040,
		0x2104c, 0x21060,
		0x210c0, 0x210ec,
		0x21200, 0x21268,
		0x21270, 0x21284,
		0x212fc, 0x21388,
		0x21400, 0x21404,
		0x21500, 0x21518,
		0x2152c, 0x2153c,
		0x21550, 0x21554,
		0x21600, 0x21600,
		0x21608, 0x21628,
		0x21630, 0x2163c,
		0x21700, 0x2171c,
		0x21780, 0x2178c,
		0x21800, 0x21c38,
		0x21c80, 0x21d7c,
		0x21e00, 0x21e04,
		0x22000, 0x2202c,
		0x22100, 0x2213c,
		0x22190, 0x221c8,
		0x22200, 0x22318,
		0x22400, 0x22528,
		0x22540, 0x22614,
		0x23000, 0x23040,
		0x2304c, 0x23060,
		0x230c0, 0x230ec,
		0x23200, 0x23268,
		0x23270, 0x23284,
		0x232fc, 0x23388,
		0x23400, 0x23404,
		0x23500, 0x23518,
		0x2352c, 0x2353c,
		0x23550, 0x23554,
		0x23600, 0x23600,
		0x23608, 0x23628,
		0x23630, 0x2363c,
		0x23700, 0x2371c,
		0x23780, 0x2378c,
		0x23800, 0x23c38,
		0x23c80, 0x23d7c,
		0x23e00, 0x23e04,
		0x24000, 0x2402c,
		0x24100, 0x2413c,
		0x24190, 0x241c8,
		0x24200, 0x24318,
		0x24400, 0x24528,
		0x24540, 0x24614,
		0x25000, 0x25040,
		0x2504c, 0x25060,
		0x250c0, 0x250ec,
		0x25200, 0x25268,
		0x25270, 0x25284,
		0x252fc, 0x25388,
		0x25400, 0x25404,
		0x25500, 0x25518,
		0x2552c, 0x2553c,
		0x25550, 0x25554,
		0x25600, 0x25600,
		0x25608, 0x25628,
		0x25630, 0x2563c,
		0x25700, 0x2571c,
		0x25780, 0x2578c,
		0x25800, 0x25c38,
		0x25c80, 0x25d7c,
		0x25e00, 0x25e04,
		0x26000, 0x2602c,
		0x26100, 0x2613c,
		0x26190, 0x261c8,
		0x26200, 0x26318,
		0x26400, 0x26528,
		0x26540, 0x26614,
		0x27000, 0x27040,
		0x2704c, 0x27060,
		0x270c0, 0x270ec,
		0x27200, 0x27268,
		0x27270, 0x27284,
		0x272fc, 0x27388,
		0x27400, 0x27404,
		0x27500, 0x27518,
		0x2752c, 0x2753c,
		0x27550, 0x27554,
		0x27600, 0x27600,
		0x27608, 0x27628,
		0x27630, 0x2763c,
		0x27700, 0x2771c,
		0x27780, 0x2778c,
		0x27800, 0x27c38,
		0x27c80, 0x27d7c,
881
		0x27e00, 0x27e04,
882 883 884 885 886 887 888 889 890
	};

	static const unsigned int t5_reg_ranges[] = {
		0x1008, 0x1148,
		0x1180, 0x11b4,
		0x11fc, 0x123c,
		0x1280, 0x173c,
		0x1800, 0x18fc,
		0x3000, 0x3028,
891
		0x3068, 0x30d8,
892 893 894 895 896 897 898 899 900 901 902
		0x30e0, 0x30fc,
		0x3140, 0x357c,
		0x35a8, 0x35cc,
		0x35ec, 0x35ec,
		0x3600, 0x5624,
		0x56cc, 0x575c,
		0x580c, 0x5814,
		0x5890, 0x58bc,
		0x5940, 0x59dc,
		0x59fc, 0x5a18,
		0x5a60, 0x5a9c,
903
		0x5b94, 0x5bfc,
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		0x6000, 0x6040,
		0x6058, 0x614c,
		0x7700, 0x7798,
		0x77c0, 0x78fc,
		0x7b00, 0x7c54,
		0x7d00, 0x7efc,
		0x8dc0, 0x8de0,
		0x8df8, 0x8e84,
		0x8ea0, 0x8f84,
		0x8fc0, 0x90f8,
		0x9400, 0x9470,
		0x9600, 0x96f4,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0xa020,
		0xd004, 0xd03c,
		0xdfc0, 0xdfe0,
		0xe000, 0x11088,
		0x1109c, 0x11110,
		0x11118, 0x1117c,
		0x11190, 0x11204,
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
		0x19238, 0x19290,
		0x193f8, 0x19474,
		0x19490, 0x194cc,
		0x194f0, 0x194f8,
		0x19c00, 0x19c60,
		0x19c94, 0x19e10,
		0x19e50, 0x19f34,
		0x19f40, 0x19f50,
		0x19f90, 0x19fe4,
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e008, 0x1e00c,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e290,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e408, 0x1e40c,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e690,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e808, 0x1e80c,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea90,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec08, 0x1ec0c,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee90,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f008, 0x1f00c,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f290,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f408, 0x1f40c,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f690,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f808, 0x1f80c,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa90,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc08, 0x1fc0c,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe90,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x30000, 0x30030,
		0x30100, 0x30144,
		0x30190, 0x301d0,
		0x30200, 0x30318,
		0x30400, 0x3052c,
		0x30540, 0x3061c,
		0x30800, 0x30834,
		0x308c0, 0x30908,
		0x30910, 0x309ac,
1017
		0x30a00, 0x30a2c,
1018 1019
		0x30a44, 0x30a50,
		0x30a74, 0x30c24,
1020
		0x30d00, 0x30d00,
1021 1022 1023 1024 1025 1026
		0x30d08, 0x30d14,
		0x30d1c, 0x30d20,
		0x30d3c, 0x30d50,
		0x31200, 0x3120c,
		0x31220, 0x31220,
		0x31240, 0x31240,
1027
		0x31600, 0x3160c,
1028
		0x31a00, 0x31a1c,
1029
		0x31e00, 0x31e20,
1030 1031 1032 1033 1034 1035
		0x31e38, 0x31e3c,
		0x31e80, 0x31e80,
		0x31e88, 0x31ea8,
		0x31eb0, 0x31eb4,
		0x31ec8, 0x31ed4,
		0x31fb8, 0x32004,
1036 1037 1038 1039 1040
		0x32200, 0x32200,
		0x32208, 0x32240,
		0x32248, 0x32280,
		0x32288, 0x322c0,
		0x322c8, 0x322fc,
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		0x32600, 0x32630,
		0x32a00, 0x32abc,
		0x32b00, 0x32b70,
		0x33000, 0x33048,
		0x33060, 0x3309c,
		0x330f0, 0x33148,
		0x33160, 0x3319c,
		0x331f0, 0x332e4,
		0x332f8, 0x333e4,
		0x333f8, 0x33448,
		0x33460, 0x3349c,
		0x334f0, 0x33548,
		0x33560, 0x3359c,
		0x335f0, 0x336e4,
		0x336f8, 0x337e4,
		0x337f8, 0x337fc,
		0x33814, 0x33814,
		0x3382c, 0x3382c,
		0x33880, 0x3388c,
		0x338e8, 0x338ec,
		0x33900, 0x33948,
		0x33960, 0x3399c,
		0x339f0, 0x33ae4,
		0x33af8, 0x33b10,
		0x33b28, 0x33b28,
		0x33b3c, 0x33b50,
		0x33bf0, 0x33c10,
		0x33c28, 0x33c28,
		0x33c3c, 0x33c50,
		0x33cf0, 0x33cfc,
		0x34000, 0x34030,
		0x34100, 0x34144,
		0x34190, 0x341d0,
		0x34200, 0x34318,
		0x34400, 0x3452c,
		0x34540, 0x3461c,
		0x34800, 0x34834,
		0x348c0, 0x34908,
		0x34910, 0x349ac,
1080
		0x34a00, 0x34a2c,
1081 1082
		0x34a44, 0x34a50,
		0x34a74, 0x34c24,
1083
		0x34d00, 0x34d00,
1084 1085 1086 1087 1088 1089
		0x34d08, 0x34d14,
		0x34d1c, 0x34d20,
		0x34d3c, 0x34d50,
		0x35200, 0x3520c,
		0x35220, 0x35220,
		0x35240, 0x35240,
1090
		0x35600, 0x3560c,
1091
		0x35a00, 0x35a1c,
1092
		0x35e00, 0x35e20,
1093 1094 1095 1096 1097 1098
		0x35e38, 0x35e3c,
		0x35e80, 0x35e80,
		0x35e88, 0x35ea8,
		0x35eb0, 0x35eb4,
		0x35ec8, 0x35ed4,
		0x35fb8, 0x36004,
1099 1100 1101 1102 1103
		0x36200, 0x36200,
		0x36208, 0x36240,
		0x36248, 0x36280,
		0x36288, 0x362c0,
		0x362c8, 0x362fc,
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
		0x36600, 0x36630,
		0x36a00, 0x36abc,
		0x36b00, 0x36b70,
		0x37000, 0x37048,
		0x37060, 0x3709c,
		0x370f0, 0x37148,
		0x37160, 0x3719c,
		0x371f0, 0x372e4,
		0x372f8, 0x373e4,
		0x373f8, 0x37448,
		0x37460, 0x3749c,
		0x374f0, 0x37548,
		0x37560, 0x3759c,
		0x375f0, 0x376e4,
		0x376f8, 0x377e4,
		0x377f8, 0x377fc,
		0x37814, 0x37814,
		0x3782c, 0x3782c,
		0x37880, 0x3788c,
		0x378e8, 0x378ec,
		0x37900, 0x37948,
		0x37960, 0x3799c,
		0x379f0, 0x37ae4,
		0x37af8, 0x37b10,
		0x37b28, 0x37b28,
		0x37b3c, 0x37b50,
		0x37bf0, 0x37c10,
		0x37c28, 0x37c28,
		0x37c3c, 0x37c50,
		0x37cf0, 0x37cfc,
		0x38000, 0x38030,
		0x38100, 0x38144,
		0x38190, 0x381d0,
		0x38200, 0x38318,
		0x38400, 0x3852c,
		0x38540, 0x3861c,
		0x38800, 0x38834,
		0x388c0, 0x38908,
		0x38910, 0x389ac,
1143
		0x38a00, 0x38a2c,
1144 1145
		0x38a44, 0x38a50,
		0x38a74, 0x38c24,
1146
		0x38d00, 0x38d00,
1147 1148 1149 1150 1151 1152
		0x38d08, 0x38d14,
		0x38d1c, 0x38d20,
		0x38d3c, 0x38d50,
		0x39200, 0x3920c,
		0x39220, 0x39220,
		0x39240, 0x39240,
1153
		0x39600, 0x3960c,
1154
		0x39a00, 0x39a1c,
1155
		0x39e00, 0x39e20,
1156 1157 1158 1159 1160 1161
		0x39e38, 0x39e3c,
		0x39e80, 0x39e80,
		0x39e88, 0x39ea8,
		0x39eb0, 0x39eb4,
		0x39ec8, 0x39ed4,
		0x39fb8, 0x3a004,
1162 1163 1164 1165 1166
		0x3a200, 0x3a200,
		0x3a208, 0x3a240,
		0x3a248, 0x3a280,
		0x3a288, 0x3a2c0,
		0x3a2c8, 0x3a2fc,
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		0x3a600, 0x3a630,
		0x3aa00, 0x3aabc,
		0x3ab00, 0x3ab70,
		0x3b000, 0x3b048,
		0x3b060, 0x3b09c,
		0x3b0f0, 0x3b148,
		0x3b160, 0x3b19c,
		0x3b1f0, 0x3b2e4,
		0x3b2f8, 0x3b3e4,
		0x3b3f8, 0x3b448,
		0x3b460, 0x3b49c,
		0x3b4f0, 0x3b548,
		0x3b560, 0x3b59c,
		0x3b5f0, 0x3b6e4,
		0x3b6f8, 0x3b7e4,
		0x3b7f8, 0x3b7fc,
		0x3b814, 0x3b814,
		0x3b82c, 0x3b82c,
		0x3b880, 0x3b88c,
		0x3b8e8, 0x3b8ec,
		0x3b900, 0x3b948,
		0x3b960, 0x3b99c,
		0x3b9f0, 0x3bae4,
		0x3baf8, 0x3bb10,
		0x3bb28, 0x3bb28,
		0x3bb3c, 0x3bb50,
		0x3bbf0, 0x3bc10,
		0x3bc28, 0x3bc28,
		0x3bc3c, 0x3bc50,
		0x3bcf0, 0x3bcfc,
		0x3c000, 0x3c030,
		0x3c100, 0x3c144,
		0x3c190, 0x3c1d0,
		0x3c200, 0x3c318,
		0x3c400, 0x3c52c,
		0x3c540, 0x3c61c,
		0x3c800, 0x3c834,
		0x3c8c0, 0x3c908,
		0x3c910, 0x3c9ac,
1206
		0x3ca00, 0x3ca2c,
1207 1208
		0x3ca44, 0x3ca50,
		0x3ca74, 0x3cc24,
1209
		0x3cd00, 0x3cd00,
1210 1211 1212 1213 1214 1215
		0x3cd08, 0x3cd14,
		0x3cd1c, 0x3cd20,
		0x3cd3c, 0x3cd50,
		0x3d200, 0x3d20c,
		0x3d220, 0x3d220,
		0x3d240, 0x3d240,
1216
		0x3d600, 0x3d60c,
1217
		0x3da00, 0x3da1c,
1218
		0x3de00, 0x3de20,
1219 1220 1221 1222 1223 1224
		0x3de38, 0x3de3c,
		0x3de80, 0x3de80,
		0x3de88, 0x3dea8,
		0x3deb0, 0x3deb4,
		0x3dec8, 0x3ded4,
		0x3dfb8, 0x3e004,
1225 1226 1227 1228 1229
		0x3e200, 0x3e200,
		0x3e208, 0x3e240,
		0x3e248, 0x3e280,
		0x3e288, 0x3e2c0,
		0x3e2c8, 0x3e2fc,
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		0x3e600, 0x3e630,
		0x3ea00, 0x3eabc,
		0x3eb00, 0x3eb70,
		0x3f000, 0x3f048,
		0x3f060, 0x3f09c,
		0x3f0f0, 0x3f148,
		0x3f160, 0x3f19c,
		0x3f1f0, 0x3f2e4,
		0x3f2f8, 0x3f3e4,
		0x3f3f8, 0x3f448,
		0x3f460, 0x3f49c,
		0x3f4f0, 0x3f548,
		0x3f560, 0x3f59c,
		0x3f5f0, 0x3f6e4,
		0x3f6f8, 0x3f7e4,
		0x3f7f8, 0x3f7fc,
		0x3f814, 0x3f814,
		0x3f82c, 0x3f82c,
		0x3f880, 0x3f88c,
		0x3f8e8, 0x3f8ec,
		0x3f900, 0x3f948,
		0x3f960, 0x3f99c,
		0x3f9f0, 0x3fae4,
		0x3faf8, 0x3fb10,
		0x3fb28, 0x3fb28,
		0x3fb3c, 0x3fb50,
		0x3fbf0, 0x3fc10,
		0x3fc28, 0x3fc28,
		0x3fc3c, 0x3fc50,
		0x3fcf0, 0x3fcfc,
		0x40000, 0x4000c,
		0x40040, 0x40068,
1262
		0x4007c, 0x40144,
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		0x40180, 0x4018c,
		0x40200, 0x40298,
		0x402ac, 0x4033c,
		0x403f8, 0x403fc,
		0x41304, 0x413c4,
		0x41400, 0x4141c,
		0x41480, 0x414d0,
		0x44000, 0x44078,
		0x440c0, 0x44278,
		0x442c0, 0x44478,
		0x444c0, 0x44678,
		0x446c0, 0x44878,
		0x448c0, 0x449fc,
		0x45000, 0x45068,
		0x45080, 0x45084,
		0x450a0, 0x450b0,
		0x45200, 0x45268,
		0x45280, 0x45284,
		0x452a0, 0x452b0,
		0x460c0, 0x460e4,
		0x47000, 0x4708c,
		0x47200, 0x47250,
		0x47400, 0x47420,
		0x47600, 0x47618,
		0x47800, 0x47814,
		0x48000, 0x4800c,
		0x48040, 0x48068,
1290
		0x4807c, 0x48144,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		0x48180, 0x4818c,
		0x48200, 0x48298,
		0x482ac, 0x4833c,
		0x483f8, 0x483fc,
		0x49304, 0x493c4,
		0x49400, 0x4941c,
		0x49480, 0x494d0,
		0x4c000, 0x4c078,
		0x4c0c0, 0x4c278,
		0x4c2c0, 0x4c478,
		0x4c4c0, 0x4c678,
		0x4c6c0, 0x4c878,
		0x4c8c0, 0x4c9fc,
		0x4d000, 0x4d068,
		0x4d080, 0x4d084,
		0x4d0a0, 0x4d0b0,
		0x4d200, 0x4d268,
		0x4d280, 0x4d284,
		0x4d2a0, 0x4d2b0,
		0x4e0c0, 0x4e0e4,
		0x4f000, 0x4f08c,
		0x4f200, 0x4f250,
		0x4f400, 0x4f420,
		0x4f600, 0x4f618,
		0x4f800, 0x4f814,
		0x50000, 0x500cc,
		0x50400, 0x50400,
		0x50800, 0x508cc,
		0x50c00, 0x50c00,
		0x51000, 0x5101c,
		0x51300, 0x51308,
	};

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	static const unsigned int t6_reg_ranges[] = {
		0x1008, 0x114c,
		0x1180, 0x11b4,
		0x11fc, 0x1250,
		0x1280, 0x133c,
		0x1800, 0x18fc,
		0x3000, 0x302c,
		0x3060, 0x30d8,
		0x30e0, 0x30fc,
		0x3140, 0x357c,
		0x35a8, 0x35cc,
		0x35ec, 0x35ec,
		0x3600, 0x5624,
		0x56cc, 0x575c,
		0x580c, 0x5814,
		0x5890, 0x58bc,
		0x5940, 0x595c,
		0x5980, 0x598c,
		0x59b0, 0x59dc,
		0x59fc, 0x5a18,
		0x5a60, 0x5a6c,
		0x5a80, 0x5a9c,
		0x5b94, 0x5bfc,
		0x5c10, 0x5ec0,
1348
		0x5ec8, 0x5ecc,
1349
		0x6000, 0x6040,
1350
		0x6058, 0x615c,
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		0x7700, 0x7798,
		0x77c0, 0x7880,
		0x78cc, 0x78fc,
		0x7b00, 0x7c54,
		0x7d00, 0x7efc,
		0x8dc0, 0x8de0,
		0x8df8, 0x8e84,
		0x8ea0, 0x8f88,
		0x8fb8, 0x911c,
		0x9400, 0x9470,
		0x9600, 0x971c,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0xa020,
		0xd004, 0xd03c,
1374 1375
		0xd100, 0xd118,
		0xd200, 0xd31c,
1376 1377 1378 1379 1380
		0xdfc0, 0xdfe0,
		0xe000, 0xf008,
		0x11000, 0x11014,
		0x11048, 0x11110,
		0x11118, 0x1117c,
1381
		0x11190, 0x11264,
1382
		0x11300, 0x1130c,
1383
		0x12000, 0x1206c,
1384 1385 1386 1387 1388
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
1389
		0x19238, 0x192bc,
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		0x193f8, 0x19474,
		0x19490, 0x194cc,
		0x194f0, 0x194f8,
		0x19c00, 0x19c80,
		0x19c94, 0x19cbc,
		0x19ce4, 0x19d28,
		0x19d50, 0x19d78,
		0x19d94, 0x19dc8,
		0x19df0, 0x19e10,
		0x19e50, 0x19e6c,
		0x19ea0, 0x19f34,
		0x19f40, 0x19f50,
		0x19f90, 0x19fac,
		0x19fc4, 0x19fe4,
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e008, 0x1e00c,
		0x1e040, 0x1e04c,
		0x1e284, 0x1e290,
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e408, 0x1e40c,
		0x1e440, 0x1e44c,
		0x1e684, 0x1e690,
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e808, 0x1e80c,
		0x1e840, 0x1e84c,
		0x1ea84, 0x1ea90,
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec08, 0x1ec0c,
		0x1ec40, 0x1ec4c,
		0x1ee84, 0x1ee90,
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f008, 0x1f00c,
		0x1f040, 0x1f04c,
		0x1f284, 0x1f290,
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f408, 0x1f40c,
		0x1f440, 0x1f44c,
		0x1f684, 0x1f690,
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f808, 0x1f80c,
		0x1f840, 0x1f84c,
		0x1fa84, 0x1fa90,
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc08, 0x1fc0c,
		0x1fc40, 0x1fc4c,
		0x1fe84, 0x1fe90,
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x30000, 0x30070,
		0x30100, 0x3015c,
		0x30190, 0x301d0,
		0x30200, 0x30318,
		0x30400, 0x3052c,
		0x30540, 0x3061c,
1471
		0x30800, 0x30890,
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		0x308c0, 0x30908,
		0x30910, 0x309b8,
		0x30a00, 0x30a04,
		0x30a0c, 0x30a2c,
		0x30a44, 0x30a50,
		0x30a74, 0x30c24,
		0x30d00, 0x30d3c,
		0x30d44, 0x30d7c,
		0x30de0, 0x30de0,
		0x30e00, 0x30ed4,
		0x30f00, 0x30fa4,
		0x30fc0, 0x30fc4,
		0x31000, 0x31004,
		0x31080, 0x310fc,
		0x31208, 0x31220,
		0x3123c, 0x31254,
		0x31300, 0x31300,
		0x31308, 0x3131c,
		0x31338, 0x3133c,
		0x31380, 0x31380,
		0x31388, 0x313a8,
		0x313b4, 0x313b4,
		0x31400, 0x31420,
		0x31438, 0x3143c,
		0x31480, 0x31480,
		0x314a8, 0x314a8,
		0x314b0, 0x314b4,
		0x314c8, 0x314d4,
		0x31a40, 0x31a4c,
		0x31af0, 0x31b20,
		0x31b38, 0x31b3c,
		0x31b80, 0x31b80,
		0x31ba8, 0x31ba8,
		0x31bb0, 0x31bb4,
		0x31bc8, 0x31bd4,
		0x32140, 0x3218c,
		0x321f0, 0x32200,
		0x32218, 0x32218,
		0x32400, 0x32400,
		0x32408, 0x3241c,
		0x32618, 0x32620,
		0x32664, 0x32664,
		0x326a8, 0x326a8,
		0x326ec, 0x326ec,
		0x32a00, 0x32abc,
		0x32b00, 0x32b78,
		0x32c00, 0x32c00,
		0x32c08, 0x32c3c,
		0x32e00, 0x32e2c,
		0x32f00, 0x32f2c,
		0x33000, 0x330ac,
		0x330c0, 0x331ac,
		0x331c0, 0x332c4,
		0x332e4, 0x333c4,
		0x333e4, 0x334ac,
		0x334c0, 0x335ac,
		0x335c0, 0x336c4,
		0x336e4, 0x337c4,
		0x337e4, 0x337fc,
		0x33814, 0x33814,
		0x33854, 0x33868,
		0x33880, 0x3388c,
		0x338c0, 0x338d0,
		0x338e8, 0x338ec,
		0x33900, 0x339ac,
		0x339c0, 0x33ac4,
		0x33ae4, 0x33b10,
		0x33b24, 0x33b50,
		0x33bf0, 0x33c10,
		0x33c24, 0x33c50,
		0x33cf0, 0x33cfc,
		0x34000, 0x34070,
		0x34100, 0x3415c,
		0x34190, 0x341d0,
		0x34200, 0x34318,
		0x34400, 0x3452c,
		0x34540, 0x3461c,
1549
		0x34800, 0x34890,
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		0x348c0, 0x34908,
		0x34910, 0x349b8,
		0x34a00, 0x34a04,
		0x34a0c, 0x34a2c,
		0x34a44, 0x34a50,
		0x34a74, 0x34c24,
		0x34d00, 0x34d3c,
		0x34d44, 0x34d7c,
		0x34de0, 0x34de0,
		0x34e00, 0x34ed4,
		0x34f00, 0x34fa4,
		0x34fc0, 0x34fc4,
		0x35000, 0x35004,
		0x35080, 0x350fc,
		0x35208, 0x35220,
		0x3523c, 0x35254,
		0x35300, 0x35300,
		0x35308, 0x3531c,
		0x35338, 0x3533c,
		0x35380, 0x35380,
		0x35388, 0x353a8,
		0x353b4, 0x353b4,
		0x35400, 0x35420,
		0x35438, 0x3543c,
		0x35480, 0x35480,
		0x354a8, 0x354a8,
		0x354b0, 0x354b4,
		0x354c8, 0x354d4,
		0x35a40, 0x35a4c,
		0x35af0, 0x35b20,
		0x35b38, 0x35b3c,
		0x35b80, 0x35b80,
		0x35ba8, 0x35ba8,
		0x35bb0, 0x35bb4,
		0x35bc8, 0x35bd4,
		0x36140, 0x3618c,
		0x361f0, 0x36200,
		0x36218, 0x36218,
		0x36400, 0x36400,
		0x36408, 0x3641c,
		0x36618, 0x36620,
		0x36664, 0x36664,
		0x366a8, 0x366a8,
		0x366ec, 0x366ec,
		0x36a00, 0x36abc,
		0x36b00, 0x36b78,
		0x36c00, 0x36c00,
		0x36c08, 0x36c3c,
		0x36e00, 0x36e2c,
		0x36f00, 0x36f2c,
		0x37000, 0x370ac,
		0x370c0, 0x371ac,
		0x371c0, 0x372c4,
		0x372e4, 0x373c4,
		0x373e4, 0x374ac,
		0x374c0, 0x375ac,
		0x375c0, 0x376c4,
		0x376e4, 0x377c4,
		0x377e4, 0x377fc,
		0x37814, 0x37814,
		0x37854, 0x37868,
		0x37880, 0x3788c,
		0x378c0, 0x378d0,
		0x378e8, 0x378ec,
		0x37900, 0x379ac,
		0x379c0, 0x37ac4,
		0x37ae4, 0x37b10,
		0x37b24, 0x37b50,
		0x37bf0, 0x37c10,
		0x37c24, 0x37c50,
		0x37cf0, 0x37cfc,
		0x40040, 0x40040,
		0x40080, 0x40084,
		0x40100, 0x40100,
		0x40140, 0x401bc,
		0x40200, 0x40214,
		0x40228, 0x40228,
		0x40240, 0x40258,
		0x40280, 0x40280,
		0x40304, 0x40304,
		0x40330, 0x4033c,
		0x41304, 0x413dc,
		0x41400, 0x4141c,
		0x41480, 0x414d0,
		0x44000, 0x4407c,
		0x440c0, 0x4427c,
		0x442c0, 0x4447c,
		0x444c0, 0x4467c,
		0x446c0, 0x4487c,
		0x448c0, 0x44a7c,
		0x44ac0, 0x44c7c,
		0x44cc0, 0x44e7c,
		0x44ec0, 0x4507c,
		0x450c0, 0x451fc,
		0x45800, 0x45868,
		0x45880, 0x45884,
		0x458a0, 0x458b0,
		0x45a00, 0x45a68,
		0x45a80, 0x45a84,
		0x45aa0, 0x45ab0,
		0x460c0, 0x460e4,
		0x47000, 0x4708c,
		0x47200, 0x47250,
		0x47400, 0x47420,
		0x47600, 0x47618,
		0x47800, 0x4782c,
		0x50000, 0x500cc,
		0x50400, 0x50400,
		0x50800, 0x508cc,
		0x50c00, 0x50c00,
		0x51000, 0x510b0,
		0x51300, 0x51324,
	};

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	u32 *buf_end = (u32 *)((char *)buf + buf_size);
	const unsigned int *reg_ranges;
	int reg_ranges_size, range;
	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);

	/* Select the right set of register ranges to dump depending on the
	 * adapter chip type.
	 */
	switch (chip_version) {
	case CHELSIO_T4:
		reg_ranges = t4_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
		break;

	case CHELSIO_T5:
		reg_ranges = t5_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
		break;

1683 1684 1685 1686 1687
	case CHELSIO_T6:
		reg_ranges = t6_reg_ranges;
		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
		break;

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	default:
		dev_err(adap->pdev_dev,
			"Unsupported chip version %d\n", chip_version);
		return;
	}

	/* Clear the register buffer and insert the appropriate register
	 * values selected by the above register ranges.
	 */
	memset(buf, 0, buf_size);
	for (range = 0; range < reg_ranges_size; range += 2) {
		unsigned int reg = reg_ranges[range];
		unsigned int last_reg = reg_ranges[range + 1];
		u32 *bufp = (u32 *)((char *)buf + reg);

		/* Iterate across the register range filling in the register
		 * buffer but don't write past the end of the register buffer.
		 */
		while (reg <= last_reg && bufp < buf_end) {
			*bufp++ = t4_read_reg(adap, reg);
			reg += sizeof(u32);
		}
	}
}

1713
#define EEPROM_STAT_ADDR   0x7bfc
1714 1715
#define VPD_BASE           0x400
#define VPD_BASE_OLD       0
S
Santosh Rastapur 已提交
1716
#define VPD_LEN            1024
1717
#define CHELSIO_VPD_UNIQUE_ID 0x82
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

/**
 *	t4_seeprom_wp - enable/disable EEPROM write protection
 *	@adapter: the adapter
 *	@enable: whether to enable or disable write protection
 *
 *	Enables or disables write protection on the serial EEPROM.
 */
int t4_seeprom_wp(struct adapter *adapter, bool enable)
{
	unsigned int v = enable ? 0xc : 0;
	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
	return ret < 0 ? ret : 0;
}

/**
1734
 *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
1735 1736 1737 1738 1739
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM.
 */
1740
int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
1741
{
1742 1743
	int i, ret = 0, addr;
	int ec, sn, pn, na;
1744
	u8 *vpd, csum;
D
Dimitris Michailidis 已提交
1745
	unsigned int vpdr_len, kw_offset, id_len;
1746

1747 1748 1749 1750
	vpd = vmalloc(VPD_LEN);
	if (!vpd)
		return -ENOMEM;

1751 1752 1753
	/* Card information normally starts at VPD_BASE but early cards had
	 * it at 0.
	 */
1754 1755 1756
	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
	if (ret < 0)
		goto out;
1757 1758 1759 1760 1761 1762 1763 1764

	/* The VPD shall have a unique identifier specified by the PCI SIG.
	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
	 * is expected to automatically put this entry at the
	 * beginning of the VPD.
	 */
	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
1765 1766

	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
1767
	if (ret < 0)
1768
		goto out;
1769

D
Dimitris Michailidis 已提交
1770 1771
	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
1772 1773
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782
	}

	id_len = pci_vpd_lrdt_size(vpd);
	if (id_len > ID_LEN)
		id_len = ID_LEN;

	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
	if (i < 0) {
		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
1783 1784
		ret = -EINVAL;
		goto out;
D
Dimitris Michailidis 已提交
1785 1786 1787 1788 1789
	}

	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
	if (vpdr_len + kw_offset > VPD_LEN) {
1790
		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
1791 1792
		ret = -EINVAL;
		goto out;
1793 1794 1795
	}

#define FIND_VPD_KW(var, name) do { \
D
Dimitris Michailidis 已提交
1796
	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
1797 1798
	if (var < 0) { \
		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
1799 1800
		ret = -EINVAL; \
		goto out; \
1801 1802 1803 1804 1805 1806 1807
	} \
	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
} while (0)

	FIND_VPD_KW(i, "RV");
	for (csum = 0; i >= 0; i--)
		csum += vpd[i];
1808 1809 1810 1811

	if (csum) {
		dev_err(adapter->pdev_dev,
			"corrupted VPD EEPROM, actual csum %u\n", csum);
1812 1813
		ret = -EINVAL;
		goto out;
1814 1815
	}

1816 1817
	FIND_VPD_KW(ec, "EC");
	FIND_VPD_KW(sn, "SN");
1818
	FIND_VPD_KW(pn, "PN");
1819
	FIND_VPD_KW(na, "NA");
1820 1821
#undef FIND_VPD_KW

D
Dimitris Michailidis 已提交
1822
	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
1823
	strim(p->id);
1824
	memcpy(p->ec, vpd + ec, EC_LEN);
1825
	strim(p->ec);
1826 1827
	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
1828
	strim(p->sn);
1829
	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
1830 1831
	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
	strim(p->pn);
1832 1833
	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
	strim((char *)p->na);
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
out:
	vfree(vpd);
	return ret;
}

/**
 *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
 *	@adapter: adapter to read
 *	@p: where to store the parameters
 *
 *	Reads card parameters stored in VPD EEPROM and retrieves the Core
 *	Clock.  This can only be called after a connection to the firmware
 *	is established.
 */
int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
{
	u32 cclk_param, cclk_val;
	int ret;

	/* Grab the raw VPD parameters.
	 */
	ret = t4_get_raw_vpd_params(adapter, p);
	if (ret)
		return ret;

	/* Ask firmware for the Core Clock since it knows how to translate the
1861 1862
	 * Reference Clock ('V2') VPD field into a Core Clock value ...
	 */
1863 1864
	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
1865
	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1866
			      1, &cclk_param, &cclk_val);
1867

1868 1869 1870 1871
	if (ret)
		return ret;
	p->cclk = cclk_val;

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	return 0;
}

/* serial flash and firmware constants */
enum {
	SF_ATTEMPTS = 10,             /* max retries for SF operations */

	/* flash command opcodes */
	SF_PROG_PAGE    = 2,          /* program page */
	SF_WR_DISABLE   = 4,          /* disable writes */
	SF_RD_STATUS    = 5,          /* read status register */
	SF_WR_ENABLE    = 6,          /* enable writes */
	SF_RD_DATA_FAST = 0xb,        /* read flash */
1885
	SF_RD_ID        = 0x9f,       /* read ID */
1886 1887
	SF_ERASE_SECTOR = 0xd8,       /* erase sector */

1888
	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
};

/**
 *	sf1_read - read data from the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to read
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@valp: where to store the read data
 *
 *	Reads up to 4 bytes of data from the serial flash.  The location of
 *	the read needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
		    int lock, u32 *valp)
{
	int ret;

	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
1910
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1911
		return -EBUSY;
1912 1913 1914
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1915
	if (!ret)
1916
		*valp = t4_read_reg(adapter, SF_DATA_A);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	return ret;
}

/**
 *	sf1_write - write data to the serial flash
 *	@adapter: the adapter
 *	@byte_cnt: number of bytes to write
 *	@cont: whether another operation will be chained
 *	@lock: whether to lock SF for PL access only
 *	@val: value to write
 *
 *	Writes up to 4 bytes of data to the serial flash.  The location of
 *	the write needs to be specified prior to calling this by issuing the
 *	appropriate commands to the serial flash.
 */
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
		     int lock, u32 val)
{
	if (!byte_cnt || byte_cnt > 4)
		return -EINVAL;
1937
	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
1938
		return -EBUSY;
1939 1940 1941 1942
	t4_write_reg(adapter, SF_DATA_A, val);
	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
}

/**
 *	flash_wait_op - wait for a flash operation to complete
 *	@adapter: the adapter
 *	@attempts: max number of polls of the status register
 *	@delay: delay between polls in ms
 *
 *	Wait for a flash operation to complete by polling the status register.
 */
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
{
	int ret;
	u32 status;

	while (1) {
		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
			return ret;
		if (!(status & 1))
			return 0;
		if (--attempts == 0)
			return -EAGAIN;
		if (delay)
			msleep(delay);
	}
}

/**
 *	t4_read_flash - read words from serial flash
 *	@adapter: the adapter
 *	@addr: the start address for the read
 *	@nwords: how many 32-bit words to read
 *	@data: where to store the read data
 *	@byte_oriented: whether to store data as bytes or as words
 *
 *	Read the specified number of 32-bit words from the serial flash.
 *	If @byte_oriented is set the read data is stored as a byte array
 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
1982
 *	natural endianness.
1983
 */
1984 1985
int t4_read_flash(struct adapter *adapter, unsigned int addr,
		  unsigned int nwords, u32 *data, int byte_oriented)
1986 1987 1988
{
	int ret;

1989
	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
		return -EINVAL;

	addr = swab32(addr) | SF_RD_DATA_FAST;

	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
		return ret;

	for ( ; nwords; nwords--, data++) {
		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
		if (nwords == 1)
2001
			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2002 2003 2004
		if (ret)
			return ret;
		if (byte_oriented)
2005
			*data = (__force __u32)(cpu_to_be32(*data));
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	}
	return 0;
}

/**
 *	t4_write_flash - write up to a page of data to the serial flash
 *	@adapter: the adapter
 *	@addr: the start address to write
 *	@n: length of data to write in bytes
 *	@data: the data to write
 *
 *	Writes up to a page of data (256 bytes) to the serial flash starting
 *	at the given address.  All the data must be written to the same page.
 */
static int t4_write_flash(struct adapter *adapter, unsigned int addr,
			  unsigned int n, const u8 *data)
{
	int ret;
	u32 buf[64];
	unsigned int i, c, left, val, offset = addr & 0xff;

2027
	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		return -EINVAL;

	val = swab32(addr) | SF_PROG_PAGE;

	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
		goto unlock;

	for (left = n; left; left -= c) {
		c = min(left, 4U);
		for (val = 0, i = 0; i < c; ++i)
			val = (val << 8) + *data++;

		ret = sf1_write(adapter, c, c != left, 1, val);
		if (ret)
			goto unlock;
	}
2045
	ret = flash_wait_op(adapter, 8, 1);
2046 2047 2048
	if (ret)
		goto unlock;

2049
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	/* Read the page to verify the write succeeded */
	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
	if (ret)
		return ret;

	if (memcmp(data - n, (u8 *)buf + offset, n)) {
		dev_err(adapter->pdev_dev,
			"failed to correctly write the flash page at %#x\n",
			addr);
		return -EIO;
	}
	return 0;

unlock:
2065
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2066 2067 2068 2069
	return ret;
}

/**
2070
 *	t4_get_fw_version - read the firmware version
2071 2072 2073 2074 2075
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the FW version from flash.
 */
2076
int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2077
{
2078 2079 2080
	return t4_read_flash(adapter, FLASH_FW_START +
			     offsetof(struct fw_hdr, fw_ver), 1,
			     vers, 0);
2081 2082 2083
}

/**
2084
 *	t4_get_tp_version - read the TP microcode version
2085 2086 2087 2088 2089
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the TP microcode version from flash.
 */
2090
int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2091
{
2092
	return t4_read_flash(adapter, FLASH_FW_START +
2093
			     offsetof(struct fw_hdr, tp_microcode_ver),
2094 2095 2096
			     1, vers, 0);
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/**
 *	t4_get_exprom_version - return the Expansion ROM version (if any)
 *	@adapter: the adapter
 *	@vers: where to place the version
 *
 *	Reads the Expansion ROM header from FLASH and returns the version
 *	number (if present) through the @vers return value pointer.  We return
 *	this in the Firmware Version Format since it's convenient.  Return
 *	0 on success, -ENOENT if no Expansion ROM is present.
 */
int t4_get_exprom_version(struct adapter *adap, u32 *vers)
{
	struct exprom_header {
		unsigned char hdr_arr[16];	/* must start with 0x55aa */
		unsigned char hdr_ver[4];	/* Expansion ROM version */
	} *hdr;
	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
					   sizeof(u32))];
	int ret;

	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
			    0);
	if (ret)
		return ret;

	hdr = (struct exprom_header *)exprom_header_buf;
	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
		return -ENOENT;

	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
	return 0;
}

2134 2135
/* Is the given firmware API compatible with the one the driver was compiled
 * with?
2136
 */
2137
static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2138 2139
{

2140 2141 2142
	/* short circuit if it's the exact same firmware version */
	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
		return 1;
2143

2144 2145 2146 2147 2148
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
		return 1;
#undef SAME_INTF
S
Santosh Rastapur 已提交
2149

2150 2151
	return 0;
}
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
/* The firmware in the filesystem is usable, but should it be installed?
 * This routine explains itself in detail if it indicates the filesystem
 * firmware should be installed.
 */
static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
				int k, int c)
{
	const char *reason;

	if (!card_fw_usable) {
		reason = "incompatible or unusable";
		goto install;
2165 2166
	}

2167 2168 2169
	if (k > c) {
		reason = "older than the version supported with this driver";
		goto install;
2170 2171
	}

2172 2173 2174 2175 2176
	return 0;

install:
	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
		"installing firmware %u.%u.%u.%u on card.\n",
2177 2178 2179 2180
		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2181 2182 2183 2184

	return 1;
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
	       const u8 *fw_data, unsigned int fw_size,
	       struct fw_hdr *card_fw, enum dev_state state,
	       int *reset)
{
	int ret, card_fw_usable, fs_fw_usable;
	const struct fw_hdr *fs_fw;
	const struct fw_hdr *drv_fw;

	drv_fw = &fw_info->fw_hdr;

	/* Read the header of the firmware on the card */
	ret = -t4_read_flash(adap, FLASH_FW_START,
			    sizeof(*card_fw) / sizeof(uint32_t),
			    (uint32_t *)card_fw, 1);
	if (ret == 0) {
		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
	} else {
		dev_err(adap->pdev_dev,
			"Unable to read card's firmware header: %d\n", ret);
		card_fw_usable = 0;
	}

	if (fw_data != NULL) {
		fs_fw = (const void *)fw_data;
		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
	} else {
		fs_fw = NULL;
		fs_fw_usable = 0;
	}

	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
		/* Common case: the firmware on the card is an exact match and
		 * the filesystem one is an exact match too, or the filesystem
		 * one is absent/incompatible.
		 */
	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
		   should_install_fs_fw(adap, card_fw_usable,
					be32_to_cpu(fs_fw->fw_ver),
					be32_to_cpu(card_fw->fw_ver))) {
		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
				     fw_size, 0);
		if (ret != 0) {
			dev_err(adap->pdev_dev,
				"failed to install firmware: %d\n", ret);
			goto bye;
		}

		/* Installed successfully, update the cached header too. */
2235
		*card_fw = *fs_fw;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
		card_fw_usable = 1;
		*reset = 0;	/* already reset as part of load_fw */
	}

	if (!card_fw_usable) {
		uint32_t d, c, k;

		d = be32_to_cpu(drv_fw->fw_ver);
		c = be32_to_cpu(card_fw->fw_ver);
		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;

		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
			"chip state %d, "
			"driver compiled with %d.%d.%d.%d, "
			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
			state,
2252 2253 2254 2255 2256 2257
			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		ret = EINVAL;
		goto bye;
	}

	/* We're using whatever's on the card and it's known to be good. */
	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);

bye:
	return ret;
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 *	t4_flash_erase_sectors - erase a range of flash sectors
 *	@adapter: the adapter
 *	@start: the first sector to erase
 *	@end: the last sector to erase
 *
 *	Erases the sectors in the given inclusive range.
 */
static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
{
	int ret = 0;

2282 2283 2284
	if (end >= adapter->params.sf_nsec)
		return -EINVAL;

2285 2286 2287 2288
	while (start <= end) {
		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
		    (ret = sf1_write(adapter, 4, 0, 1,
				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
2289
		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
2290 2291 2292 2293 2294 2295 2296
			dev_err(adapter->pdev_dev,
				"erase of flash sector %d failed, error %d\n",
				start, ret);
			break;
		}
		start++;
	}
2297
	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2298 2299 2300
	return ret;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/**
 *	t4_flash_cfg_addr - return the address of the flash configuration file
 *	@adapter: the adapter
 *
 *	Return the address within the flash where the Firmware Configuration
 *	File is stored.
 */
unsigned int t4_flash_cfg_addr(struct adapter *adapter)
{
	if (adapter->params.sf_size == 0x100000)
		return FLASH_FPGA_CFG_START;
	else
		return FLASH_CFG_START;
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
/* Return TRUE if the specified firmware matches the adapter.  I.e. T4
 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
 * and emit an error message for mismatched firmware to save our caller the
 * effort ...
 */
static bool t4_fw_matches_chip(const struct adapter *adap,
			       const struct fw_hdr *hdr)
{
	/* The expression below will return FALSE for any unsupported adapter
	 * which will keep us "honest" in the future ...
	 */
	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
2328 2329
	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
2330 2331 2332 2333 2334 2335 2336 2337
		return true;

	dev_err(adap->pdev_dev,
		"FW image (%d) is not suitable for this adapter (%d)\n",
		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
	return false;
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
/**
 *	t4_load_fw - download firmware
 *	@adap: the adapter
 *	@fw_data: the firmware image to write
 *	@size: image size
 *
 *	Write the supplied firmware image to the card's serial flash.
 */
int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
{
	u32 csum;
	int ret, addr;
	unsigned int i;
	u8 first_page[SF_PAGE_SIZE];
2352
	const __be32 *p = (const __be32 *)fw_data;
2353
	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
2354 2355 2356
	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
	unsigned int fw_img_start = adap->params.sf_fw_start;
	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

	if (!size) {
		dev_err(adap->pdev_dev, "FW image has no data\n");
		return -EINVAL;
	}
	if (size & 511) {
		dev_err(adap->pdev_dev,
			"FW image size not multiple of 512 bytes\n");
		return -EINVAL;
	}
2367
	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
2368 2369 2370 2371 2372 2373 2374 2375 2376
		dev_err(adap->pdev_dev,
			"FW image size differs from size in FW header\n");
		return -EINVAL;
	}
	if (size > FW_MAX_SIZE) {
		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
			FW_MAX_SIZE);
		return -EFBIG;
	}
2377 2378
	if (!t4_fw_matches_chip(adap, hdr))
		return -EINVAL;
2379 2380

	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
2381
		csum += be32_to_cpu(p[i]);
2382 2383 2384 2385 2386 2387 2388

	if (csum != 0xffffffff) {
		dev_err(adap->pdev_dev,
			"corrupted firmware image, checksum %#x\n", csum);
		return -EINVAL;
	}

2389 2390
	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
2391 2392 2393 2394 2395 2396 2397 2398 2399
	if (ret)
		goto out;

	/*
	 * We write the correct version at the end so the driver can see a bad
	 * version if the FW write fails.  Start by writing a copy of the
	 * first page with a bad version.
	 */
	memcpy(first_page, fw_data, SF_PAGE_SIZE);
2400
	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
2401
	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
2402 2403 2404
	if (ret)
		goto out;

2405
	addr = fw_img_start;
2406 2407 2408 2409 2410 2411 2412 2413 2414
	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
		addr += SF_PAGE_SIZE;
		fw_data += SF_PAGE_SIZE;
		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
		if (ret)
			goto out;
	}

	ret = t4_write_flash(adap,
2415
			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
2416 2417 2418 2419 2420
			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
out:
	if (ret)
		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
			ret);
2421 2422
	else
		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2423 2424 2425
	return ret;
}

2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/**
 *	t4_phy_fw_ver - return current PHY firmware version
 *	@adap: the adapter
 *	@phy_fw_ver: return value buffer for PHY firmware version
 *
 *	Returns the current version of external PHY firmware on the
 *	adapter.
 */
int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
{
	u32 param, val;
	int ret;

	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
2443
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
			      &param, &val);
	if (ret < 0)
		return ret;
	*phy_fw_ver = val;
	return 0;
}

/**
 *	t4_load_phy_fw - download port PHY firmware
 *	@adap: the adapter
 *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
 *	@win_lock: the lock to use to guard the memory copy
 *	@phy_fw_version: function to check PHY firmware versions
 *	@phy_fw_data: the PHY firmware image to write
 *	@phy_fw_size: image size
 *
 *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
 *	@phy_fw_version is supplied, then it will be used to determine if
 *	it's necessary to perform the transfer by comparing the version
 *	of any existing adapter PHY firmware with that of the passed in
 *	PHY firmware image.  If @win_lock is non-NULL then it will be used
 *	around the call to t4_memory_rw() which transfers the PHY firmware
 *	to the adapter.
 *
 *	A negative error number will be returned if an error occurs.  If
 *	version number support is available and there's no need to upgrade
 *	the firmware, 0 will be returned.  If firmware is successfully
 *	transferred to the adapter, 1 will be retured.
 *
 *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
 *	a result, a RESET of the adapter would cause that RAM to lose its
 *	contents.  Thus, loading PHY firmware on such adapters must happen
 *	after any FW_RESET_CMDs ...
 */
int t4_load_phy_fw(struct adapter *adap,
		   int win, spinlock_t *win_lock,
		   int (*phy_fw_version)(const u8 *, size_t),
		   const u8 *phy_fw_data, size_t phy_fw_size)
{
	unsigned long mtype = 0, maddr = 0;
	u32 param, val;
	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
	int ret;

	/* If we have version number support, then check to see if the adapter
	 * already has up-to-date PHY firmware loaded.
	 */
	 if (phy_fw_version) {
		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
		if (ret < 0)
			return ret;

		if (cur_phy_fw_ver >= new_phy_fw_vers) {
			CH_WARN(adap, "PHY Firmware already up-to-date, "
				"version %#x\n", cur_phy_fw_ver);
			return 0;
		}
	}

	/* Ask the firmware where it wants us to copy the PHY firmware image.
	 * The size of the file requires a special version of the READ coommand
	 * which will pass the file size via the values field in PARAMS_CMD and
	 * retrieve the return value from firmware and place it in the same
	 * buffer values
	 */
	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
	val = phy_fw_size;
2515
	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
				 &param, &val, 1);
	if (ret < 0)
		return ret;
	mtype = val >> 8;
	maddr = (val & 0xff) << 16;

	/* Copy the supplied PHY Firmware image to the adapter memory location
	 * allocated by the adapter firmware.
	 */
	if (win_lock)
		spin_lock_bh(win_lock);
	ret = t4_memory_rw(adap, win, mtype, maddr,
			   phy_fw_size, (__be32 *)phy_fw_data,
			   T4_MEMORY_WRITE);
	if (win_lock)
		spin_unlock_bh(win_lock);
	if (ret)
		return ret;

	/* Tell the firmware that the PHY firmware image has been written to
	 * RAM and it can now start copying it over to the PHYs.  The chip
	 * firmware will RESET the affected PHYs as part of this operation
	 * leaving them running the new PHY firmware image.
	 */
	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
2544
	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
				    &param, &val, 30000);

	/* If we have version number support, then check to see that the new
	 * firmware got loaded properly.
	 */
	if (phy_fw_version) {
		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
		if (ret < 0)
			return ret;

		if (cur_phy_fw_ver != new_phy_fw_vers) {
			CH_WARN(adap, "PHY Firmware did not update: "
				"version on adapter %#x, "
				"version flashed %#x\n",
				cur_phy_fw_ver, new_phy_fw_vers);
			return -ENXIO;
		}
	}

	return 1;
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
/**
 *	t4_fwcache - firmware cache operation
 *	@adap: the adapter
 *	@op  : the operation (flush or flush and invalidate)
 */
int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
{
	struct fw_params_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn =
		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
2580
			    FW_PARAMS_CMD_PFN_V(adap->pf) |
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
			    FW_PARAMS_CMD_VFN_V(0));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.param[0].mnem =
		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
	c.param[0].val = (__force __be32)op;

	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
			unsigned int *pif_req_wrptr,
			unsigned int *pif_rsp_wrptr)
{
	int i, j;
	u32 cfg, val, req, rsp;

	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
	if (cfg & LADBGEN_F)
		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);

	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
	req = POLADBGWRPTR_G(val);
	rsp = PILADBGWRPTR_G(val);
	if (pif_req_wrptr)
		*pif_req_wrptr = req;
	if (pif_rsp_wrptr)
		*pif_rsp_wrptr = rsp;

	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
		for (j = 0; j < 6; j++) {
			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
				     PILADBGRDPTR_V(rsp));
			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
			req++;
			rsp++;
		}
		req = (req + 2) & POLADBGRDPTR_M;
		rsp = (rsp + 2) & PILADBGRDPTR_M;
	}
	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
{
	u32 cfg;
	int i, j, idx;

	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
	if (cfg & LADBGEN_F)
		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);

	for (i = 0; i < CIM_MALA_SIZE; i++) {
		for (j = 0; j < 5; j++) {
			idx = 8 * i + j;
			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
				     PILADBGRDPTR_V(idx));
			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
		}
	}
	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
{
	unsigned int i, j;

	for (i = 0; i < 8; i++) {
		u32 *p = la_buf + i;

		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
	}
}

2661
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
2662 2663
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		     FW_PORT_CAP_ANEG)
2664 2665

/**
2666
 *	t4_link_l1cfg - apply link configuration to MAC/PHY
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
 *	@phy: the PHY to setup
 *	@mac: the MAC to setup
 *	@lc: the requested link configuration
 *
 *	Set up a port's MAC and PHY according to a desired link configuration.
 *	- If the PHY can auto-negotiate first decide what to advertise, then
 *	  enable/disable auto-negotiation as desired, and reset.
 *	- If the PHY does not auto-negotiate just reset it.
 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
 *	  otherwise do it later based on the outcome of auto-negotiation.
 */
2678
int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2679 2680 2681
		  struct link_config *lc)
{
	struct fw_port_cmd c;
2682
	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
2683 2684 2685 2686 2687 2688 2689 2690

	lc->link_ok = 0;
	if (lc->requested_fc & PAUSE_RX)
		fc |= FW_PORT_CAP_FC_RX;
	if (lc->requested_fc & PAUSE_TX)
		fc |= FW_PORT_CAP_FC_TX;

	memset(&c, 0, sizeof(c));
2691 2692 2693 2694 2695 2696
	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				     FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));
2697 2698

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2699 2700
		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
					     fc);
2701 2702
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else if (lc->autoneg == AUTONEG_DISABLE) {
2703
		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
2704 2705
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
	} else
2706
		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_restart_aneg - restart autonegotiation
 *	@adap: the adapter
 *	@mbox: mbox to use for the FW command
 *	@port: the port id
 *
 *	Restarts autonegotiation for the selected port.
 */
int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
{
	struct fw_port_cmd c;

	memset(&c, 0, sizeof(c));
2724 2725 2726 2727 2728 2729 2730
	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				     FW_PORT_CMD_PORTID_V(port));
	c.action_to_len16 =
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
			    FW_LEN16(c));
	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
2731 2732 2733
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

2734 2735
typedef void (*int_handler_t)(struct adapter *adap);

2736 2737 2738 2739 2740
struct intr_info {
	unsigned int mask;       /* bits to check in interrupt status */
	const char *msg;         /* message to print or NULL */
	short stat_idx;          /* stat counter to increment or -1 */
	unsigned short fatal;    /* whether the condition reported is fatal */
2741
	int_handler_t int_handler; /* platform-specific int handler */
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
};

/**
 *	t4_handle_intr_status - table driven interrupt handler
 *	@adapter: the adapter that generated the interrupt
 *	@reg: the interrupt status register to process
 *	@acts: table of interrupt actions
 *
 *	A table driven interrupt handler that applies a set of masks to an
 *	interrupt status word and performs the corresponding actions if the
L
Lucas De Marchi 已提交
2752
 *	interrupts described by the mask have occurred.  The actions include
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
 *	optionally emitting a warning or alert message.  The table is terminated
 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
 *	conditions.
 */
static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
				 const struct intr_info *acts)
{
	int fatal = 0;
	unsigned int mask = 0;
	unsigned int status = t4_read_reg(adapter, reg);

	for ( ; acts->mask; ++acts) {
		if (!(status & acts->mask))
			continue;
		if (acts->fatal) {
			fatal++;
			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				  status & acts->mask);
		} else if (acts->msg && printk_ratelimit())
			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
				 status & acts->mask);
2774 2775
		if (acts->int_handler)
			acts->int_handler(adapter);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		mask |= acts->mask;
	}
	status &= mask;
	if (status)                           /* clear processed interrupts */
		t4_write_reg(adapter, reg, status);
	return fatal;
}

/*
 * Interrupt handler for the PCIE module.
 */
static void pcie_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
2789
	static const struct intr_info sysbus_intr_info[] = {
2790 2791 2792 2793 2794
		{ RNPP_F, "RXNP array parity error", -1, 1 },
		{ RPCP_F, "RXPC array parity error", -1, 1 },
		{ RCIP_F, "RXCIF array parity error", -1, 1 },
		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
		{ RFTP_F, "RXFT array parity error", -1, 1 },
2795 2796
		{ 0 }
	};
J
Joe Perches 已提交
2797
	static const struct intr_info pcie_port_intr_info[] = {
2798 2799 2800 2801 2802 2803 2804 2805 2806
		{ TPCP_F, "TXPC array parity error", -1, 1 },
		{ TNPP_F, "TXNP array parity error", -1, 1 },
		{ TFTP_F, "TXFT array parity error", -1, 1 },
		{ TCAP_F, "TXCA array parity error", -1, 1 },
		{ TCIP_F, "TXCIF array parity error", -1, 1 },
		{ RCAP_F, "RXCA array parity error", -1, 1 },
		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
		{ RDPE_F, "Rx data parity error", -1, 1 },
		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
2807 2808
		{ 0 }
	};
J
Joe Perches 已提交
2809
	static const struct intr_info pcie_intr_info[] = {
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
		  -1, 0 },
2841 2842 2843
		{ 0 }
	};

S
Santosh Rastapur 已提交
2844
	static struct intr_info t5_pcie_intr_info[] = {
2845
		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
S
Santosh Rastapur 已提交
2846
		  -1, 1 },
2847 2848 2849 2850 2851 2852 2853
		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
S
Santosh Rastapur 已提交
2854
		  -1, 1 },
2855
		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
S
Santosh Rastapur 已提交
2856
		  -1, 1 },
2857 2858 2859 2860 2861
		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
S
Santosh Rastapur 已提交
2862
		  -1, 1 },
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
S
Santosh Rastapur 已提交
2874
		  -1, 1 },
2875 2876 2877 2878 2879 2880
		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
		  -1, 1 },
		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
		{ READRSPERR_F, "Outbound read error", -1, 0 },
S
Santosh Rastapur 已提交
2881 2882 2883
		{ 0 }
	};

2884 2885
	int fat;

2886 2887
	if (is_t4(adapter->params.chip))
		fat = t4_handle_intr_status(adapter,
2888 2889
				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
				sysbus_intr_info) +
2890
			t4_handle_intr_status(adapter,
2891 2892 2893
					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
					pcie_port_intr_info) +
			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2894 2895
					      pcie_intr_info);
	else
2896
		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
2897
					    t5_pcie_intr_info);
S
Santosh Rastapur 已提交
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * TP interrupt handler.
 */
static void tp_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
2908
	static const struct intr_info tp_intr_info[] = {
2909
		{ 0x3fffffff, "TP parity error", -1, 1 },
2910
		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2911 2912 2913
		{ 0 }
	};

2914
	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
2915 2916 2917 2918 2919 2920 2921 2922 2923
		t4_fatal_err(adapter);
}

/*
 * SGE interrupt handler.
 */
static void sge_intr_handler(struct adapter *adapter)
{
	u64 v;
2924
	u32 err;
2925

J
Joe Perches 已提交
2926
	static const struct intr_info sge_intr_info[] = {
2927
		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2928
		  "SGE received CPL exceeding IQE size", -1, 1 },
2929
		{ ERR_INVALID_CIDX_INC_F,
2930
		  "SGE GTS CIDX increment too large", -1, 0 },
2931 2932 2933
		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2934
		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2935
		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2936
		  0 },
2937
		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2938
		  0 },
2939
		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2940
		  0 },
2941
		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2942
		  0 },
2943
		{ ERR_ING_CTXT_PRIO_F,
2944
		  "SGE too many priority ingress contexts", -1, 0 },
2945 2946
		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2947 2948 2949
		{ 0 }
	};

2950 2951 2952 2953 2954 2955 2956 2957
	static struct intr_info t4t5_sge_intr_info[] = {
		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
		{ ERR_EGR_CTXT_PRIO_F,
		  "SGE too many priority egress contexts", -1, 0 },
		{ 0 }
	};

2958 2959
	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
2960 2961
	if (v) {
		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
2962
				(unsigned long long)v);
2963 2964
		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
2965 2966
	}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
					   t4t5_sge_intr_info);

	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
	if (err & ERROR_QID_VALID_F) {
		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
			ERROR_QID_G(err));
		if (err & UNCAPTURED_ERROR_F)
			dev_err(adapter->pdev_dev,
				"SGE UNCAPTURED_ERROR set (clearing)\n");
		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
			     UNCAPTURED_ERROR_F);
	}

	if (v != 0)
2984 2985 2986
		t4_fatal_err(adapter);
}

2987 2988 2989 2990 2991
#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)

2992 2993 2994 2995 2996
/*
 * CIM interrupt handler.
 */
static void cim_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
2997
	static const struct intr_info cim_intr_info[] = {
2998 2999 3000 3001 3002 3003 3004
		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3005 3006
		{ 0 }
	};
J
Joe Perches 已提交
3007
	static const struct intr_info cim_upintr_info[] = {
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3036 3037 3038 3039 3040
		{ 0 }
	};

	int fat;

3041
	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3042 3043
		t4_report_fw_error(adapter);

3044
	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3045
				    cim_intr_info) +
3046
	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
				    cim_upintr_info);
	if (fat)
		t4_fatal_err(adapter);
}

/*
 * ULP RX interrupt handler.
 */
static void ulprx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3057
	static const struct intr_info ulprx_intr_info[] = {
3058
		{ 0x1800000, "ULPRX context error", -1, 1 },
3059 3060 3061 3062
		{ 0x7fffff, "ULPRX parity error", -1, 1 },
		{ 0 }
	};

3063
	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3064 3065 3066 3067 3068 3069 3070 3071
		t4_fatal_err(adapter);
}

/*
 * ULP TX interrupt handler.
 */
static void ulptx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3072
	static const struct intr_info ulptx_intr_info[] = {
3073
		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3074
		  0 },
3075
		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3076
		  0 },
3077
		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3078
		  0 },
3079
		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3080 3081 3082 3083 3084
		  0 },
		{ 0xfffffff, "ULPTX parity error", -1, 1 },
		{ 0 }
	};

3085
	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3086 3087 3088 3089 3090 3091 3092 3093
		t4_fatal_err(adapter);
}

/*
 * PM TX interrupt handler.
 */
static void pmtx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3094
	static const struct intr_info pmtx_intr_info[] = {
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
		  -1, 1 },
		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3105 3106 3107
		{ 0 }
	};

3108
	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3109 3110 3111 3112 3113 3114 3115 3116
		t4_fatal_err(adapter);
}

/*
 * PM RX interrupt handler.
 */
static void pmrx_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3117
	static const struct intr_info pmrx_intr_info[] = {
3118 3119 3120 3121 3122 3123 3124
		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
		  -1, 1 },
		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3125 3126 3127
		{ 0 }
	};

3128
	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3129 3130 3131 3132 3133 3134 3135 3136
		t4_fatal_err(adapter);
}

/*
 * CPL switch interrupt handler.
 */
static void cplsw_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3137
	static const struct intr_info cplsw_intr_info[] = {
3138 3139 3140 3141 3142 3143
		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3144 3145 3146
		{ 0 }
	};

3147
	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
3148 3149 3150 3151 3152 3153 3154 3155
		t4_fatal_err(adapter);
}

/*
 * LE interrupt handler.
 */
static void le_intr_handler(struct adapter *adap)
{
3156
	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
J
Joe Perches 已提交
3157
	static const struct intr_info le_intr_info[] = {
3158 3159 3160 3161 3162
		{ LIPMISS_F, "LE LIP miss", -1, 0 },
		{ LIP0_F, "LE 0 LIP error", -1, 0 },
		{ PARITYERR_F, "LE parity error", -1, 1 },
		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3163 3164 3165
		{ 0 }
	};

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	static struct intr_info t6_le_intr_info[] = {
		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
		{ 0 }
	};

	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
				  (chip <= CHELSIO_T5) ?
				  le_intr_info : t6_le_intr_info))
3178 3179 3180 3181 3182 3183 3184 3185
		t4_fatal_err(adap);
}

/*
 * MPS interrupt handler.
 */
static void mps_intr_handler(struct adapter *adapter)
{
J
Joe Perches 已提交
3186
	static const struct intr_info mps_rx_intr_info[] = {
3187 3188 3189
		{ 0xffffff, "MPS Rx parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3190
	static const struct intr_info mps_tx_intr_info[] = {
3191 3192 3193 3194 3195 3196 3197 3198 3199
		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
		  -1, 1 },
		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
		  -1, 1 },
		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3200 3201
		{ 0 }
	};
J
Joe Perches 已提交
3202
	static const struct intr_info mps_trc_intr_info[] = {
3203 3204 3205 3206
		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
		  -1, 1 },
		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3207 3208
		{ 0 }
	};
J
Joe Perches 已提交
3209
	static const struct intr_info mps_stat_sram_intr_info[] = {
3210 3211 3212
		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3213
	static const struct intr_info mps_stat_tx_intr_info[] = {
3214 3215 3216
		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3217
	static const struct intr_info mps_stat_rx_intr_info[] = {
3218 3219 3220
		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
		{ 0 }
	};
J
Joe Perches 已提交
3221
	static const struct intr_info mps_cls_intr_info[] = {
3222 3223 3224
		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3225 3226 3227 3228 3229
		{ 0 }
	};

	int fat;

3230
	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
3231
				    mps_rx_intr_info) +
3232
	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
3233
				    mps_tx_intr_info) +
3234
	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
3235
				    mps_trc_intr_info) +
3236
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3237
				    mps_stat_sram_intr_info) +
3238
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3239
				    mps_stat_tx_intr_info) +
3240
	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3241
				    mps_stat_rx_intr_info) +
3242
	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
3243 3244
				    mps_cls_intr_info);

3245 3246
	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
3247 3248 3249 3250
	if (fat)
		t4_fatal_err(adapter);
}

3251 3252
#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
		      ECC_UE_INT_CAUSE_F)
3253 3254 3255 3256 3257 3258

/*
 * EDC/MC interrupt handler.
 */
static void mem_intr_handler(struct adapter *adapter, int idx)
{
3259
	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
3260 3261 3262 3263

	unsigned int addr, cnt_addr, v;

	if (idx <= MEM_EDC1) {
3264 3265
		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3266 3267
	} else if (idx == MEM_MC) {
		if (is_t4(adapter->params.chip)) {
3268 3269
			addr = MC_INT_CAUSE_A;
			cnt_addr = MC_ECC_STATUS_A;
3270
		} else {
3271 3272
			addr = MC_P_INT_CAUSE_A;
			cnt_addr = MC_P_ECC_STATUS_A;
3273
		}
3274
	} else {
3275 3276
		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
3277 3278 3279
	}

	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
3280
	if (v & PERR_INT_CAUSE_F)
3281 3282
		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
			  name[idx]);
3283 3284
	if (v & ECC_CE_INT_CAUSE_F) {
		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
3285

3286
		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
3287 3288 3289 3290 3291
		if (printk_ratelimit())
			dev_warn(adapter->pdev_dev,
				 "%u %s correctable ECC data error%s\n",
				 cnt, name[idx], cnt > 1 ? "s" : "");
	}
3292
	if (v & ECC_UE_INT_CAUSE_F)
3293 3294 3295 3296
		dev_alert(adapter->pdev_dev,
			  "%s uncorrectable ECC data error\n", name[idx]);

	t4_write_reg(adapter, addr, v);
3297
	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3298 3299 3300 3301 3302 3303 3304 3305
		t4_fatal_err(adapter);
}

/*
 * MA interrupt handler.
 */
static void ma_intr_handler(struct adapter *adap)
{
3306
	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
3307

3308
	if (status & MEM_PERR_INT_CAUSE_F) {
3309 3310
		dev_alert(adap->pdev_dev,
			  "MA parity error, parity status %#x\n",
3311
			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
3312 3313 3314 3315
		if (is_t5(adap->params.chip))
			dev_alert(adap->pdev_dev,
				  "MA parity error, parity status %#x\n",
				  t4_read_reg(adap,
3316
					      MA_PARITY_ERROR_STATUS2_A));
3317
	}
3318 3319
	if (status & MEM_WRAP_INT_CAUSE_F) {
		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
3320 3321
		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
			  "client %u to address %#x\n",
3322 3323
			  MEM_WRAP_CLIENT_NUM_G(v),
			  MEM_WRAP_ADDRESS_G(v) << 4);
3324
	}
3325
	t4_write_reg(adap, MA_INT_CAUSE_A, status);
3326 3327 3328 3329 3330 3331 3332 3333
	t4_fatal_err(adap);
}

/*
 * SMB interrupt handler.
 */
static void smb_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
3334
	static const struct intr_info smb_intr_info[] = {
3335 3336 3337
		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3338 3339 3340
		{ 0 }
	};

3341
	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
3342 3343 3344 3345 3346 3347 3348 3349
		t4_fatal_err(adap);
}

/*
 * NC-SI interrupt handler.
 */
static void ncsi_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
3350
	static const struct intr_info ncsi_intr_info[] = {
3351 3352 3353 3354
		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3355 3356 3357
		{ 0 }
	};

3358
	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
3359 3360 3361 3362 3363 3364 3365 3366
		t4_fatal_err(adap);
}

/*
 * XGMAC interrupt handler.
 */
static void xgmac_intr_handler(struct adapter *adap, int port)
{
S
Santosh Rastapur 已提交
3367 3368
	u32 v, int_cause_reg;

3369
	if (is_t4(adap->params.chip))
3370
		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
3371
	else
3372
		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
S
Santosh Rastapur 已提交
3373 3374

	v = t4_read_reg(adap, int_cause_reg);
3375

3376
	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3377 3378 3379
	if (!v)
		return;

3380
	if (v & TXFIFO_PRTY_ERR_F)
3381 3382
		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
			  port);
3383
	if (v & RXFIFO_PRTY_ERR_F)
3384 3385
		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
			  port);
3386
	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
3387 3388 3389 3390 3391 3392 3393 3394
	t4_fatal_err(adap);
}

/*
 * PL interrupt handler.
 */
static void pl_intr_handler(struct adapter *adap)
{
J
Joe Perches 已提交
3395
	static const struct intr_info pl_intr_info[] = {
3396 3397
		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3398 3399 3400
		{ 0 }
	};

3401
	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
3402 3403 3404
		t4_fatal_err(adap);
}

3405 3406 3407 3408
#define PF_INTR_MASK (PFSW_F)
#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
		CPL_SWITCH_F | SGE_F | ULP_TX_F)
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

/**
 *	t4_slow_intr_handler - control path interrupt handler
 *	@adapter: the adapter
 *
 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
 *	The designation 'slow' is because it involves register reads, while
 *	data interrupts typically don't involve any MMIOs.
 */
int t4_slow_intr_handler(struct adapter *adapter)
{
3420
	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
3421 3422 3423

	if (!(cause & GLBL_INTR_MASK))
		return 0;
3424
	if (cause & CIM_F)
3425
		cim_intr_handler(adapter);
3426
	if (cause & MPS_F)
3427
		mps_intr_handler(adapter);
3428
	if (cause & NCSI_F)
3429
		ncsi_intr_handler(adapter);
3430
	if (cause & PL_F)
3431
		pl_intr_handler(adapter);
3432
	if (cause & SMB_F)
3433
		smb_intr_handler(adapter);
3434
	if (cause & XGMAC0_F)
3435
		xgmac_intr_handler(adapter, 0);
3436
	if (cause & XGMAC1_F)
3437
		xgmac_intr_handler(adapter, 1);
3438
	if (cause & XGMAC_KR0_F)
3439
		xgmac_intr_handler(adapter, 2);
3440
	if (cause & XGMAC_KR1_F)
3441
		xgmac_intr_handler(adapter, 3);
3442
	if (cause & PCIE_F)
3443
		pcie_intr_handler(adapter);
3444
	if (cause & MC_F)
3445
		mem_intr_handler(adapter, MEM_MC);
3446
	if (is_t5(adapter->params.chip) && (cause & MC1_F))
3447
		mem_intr_handler(adapter, MEM_MC1);
3448
	if (cause & EDC0_F)
3449
		mem_intr_handler(adapter, MEM_EDC0);
3450
	if (cause & EDC1_F)
3451
		mem_intr_handler(adapter, MEM_EDC1);
3452
	if (cause & LE_F)
3453
		le_intr_handler(adapter);
3454
	if (cause & TP_F)
3455
		tp_intr_handler(adapter);
3456
	if (cause & MA_F)
3457
		ma_intr_handler(adapter);
3458
	if (cause & PM_TX_F)
3459
		pmtx_intr_handler(adapter);
3460
	if (cause & PM_RX_F)
3461
		pmrx_intr_handler(adapter);
3462
	if (cause & ULP_RX_F)
3463
		ulprx_intr_handler(adapter);
3464
	if (cause & CPL_SWITCH_F)
3465
		cplsw_intr_handler(adapter);
3466
	if (cause & SGE_F)
3467
		sge_intr_handler(adapter);
3468
	if (cause & ULP_TX_F)
3469 3470 3471
		ulptx_intr_handler(adapter);

	/* Clear the interrupts just processed for which we are the master. */
3472 3473
	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	return 1;
}

/**
 *	t4_intr_enable - enable interrupts
 *	@adapter: the adapter whose interrupts should be enabled
 *
 *	Enable PF-specific interrupts for the calling function and the top-level
 *	interrupt concentrator for global interrupts.  Interrupts are already
 *	enabled at each module,	here we just enable the roots of the interrupt
 *	hierarchies.
 *
 *	Note: this function should be called only when the driver manages
 *	non PF-specific interrupts from the various HW modules.  Only one PCI
 *	function at a time should be doing this.
 */
void t4_intr_enable(struct adapter *adapter)
{
3492
	u32 val = 0;
3493
	u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
3494

3495 3496
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
3497 3498
	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3499
		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
3500 3501 3502
		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3503
		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
3504 3505
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
}

/**
 *	t4_intr_disable - disable interrupts
 *	@adapter: the adapter whose interrupts should be disabled
 *
 *	Disable interrupts.  We only disable the top-level interrupt
 *	concentrators.  The caller must be a PCI function managing global
 *	interrupts.
 */
void t4_intr_disable(struct adapter *adapter)
{
3518
	u32 pf = SOURCEPF_G(t4_read_reg(adapter, PL_WHOAMI_A));
3519

3520 3521
	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
}

/**
 *	hash_mac_addr - return the hash value of a MAC address
 *	@addr: the 48-bit Ethernet MAC address
 *
 *	Hashes a MAC address according to the hash function used by HW inexact
 *	(hash) address matching.
 */
static int hash_mac_addr(const u8 *addr)
{
	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
	a ^= b;
	a ^= (a >> 12);
	a ^= (a >> 6);
	return a & 0x3f;
}

/**
 *	t4_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: virtual interface whose RSS subtable is to be written
 *	@start: start entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the response queue lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range allowed for
 *	@viid.
 */
int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
			int start, int n, const u16 *rspq, unsigned int nrspq)
{
	int ret;
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq + nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
3567
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
3568
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3569
			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
3570
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
3571 3572 3573 3574 3575 3576

	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
	while (n > 0) {
		int nq = min(n, 32);
		__be32 *qp = &cmd.iq0_to_iq2;

3577 3578
		cmd.niqid = cpu_to_be16(nq);
		cmd.startidx = cpu_to_be16(start);
3579 3580 3581 3582 3583 3584 3585

		start += nq;
		n -= nq;

		while (nq > 0) {
			unsigned int v;

3586
			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
3587 3588
			if (++rsp >= rsp_end)
				rsp = rspq;
3589
			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
3590 3591
			if (++rsp >= rsp_end)
				rsp = rspq;
3592
			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
3593 3594 3595
			if (++rsp >= rsp_end)
				rsp = rspq;

3596
			*qp++ = cpu_to_be32(v);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
			nq -= 3;
		}

		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4_config_glbl_rss - configure the global RSS mode
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@mode: global RSS mode
 *	@flags: mode-specific flags
 *
 *	Sets the global RSS mode.
 */
int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
		       unsigned int flags)
{
	struct fw_rss_glb_config_cmd c;

	memset(&c, 0, sizeof(c));
3622 3623 3624
	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3625
	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
3626 3627
		c.u.manual.mode_pkd =
			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
3628 3629
	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
		c.u.basicvirtual.mode_pkd =
3630 3631
			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
3632 3633 3634 3635 3636
	} else
		return -EINVAL;
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/**
 *	t4_config_vi_rss - configure per VI RSS settings
 *	@adapter: the adapter
 *	@mbox: mbox to use for the FW command
 *	@viid: the VI id
 *	@flags: RSS flags
 *	@defq: id of the default RSS queue for the VI.
 *
 *	Configures VI-specific RSS properties.
 */
int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
		     unsigned int flags, unsigned int defq)
{
	struct fw_rss_vi_config_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
/* Read an RSS table row */
static int rd_rss_row(struct adapter *adap, int row, u32 *val)
{
	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
				   5, 0, val);
}

/**
 *	t4_read_rss - read the contents of the RSS mapping table
 *	@adapter: the adapter
 *	@map: holds the contents of the RSS mapping table
 *
 *	Reads the contents of the RSS hash->queue mapping table.
 */
int t4_read_rss(struct adapter *adapter, u16 *map)
{
	u32 val;
	int i, ret;

	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
		ret = rd_rss_row(adapter, i, &val);
		if (ret)
			return ret;
		*map++ = LKPTBLQUEUE0_G(val);
		*map++ = LKPTBLQUEUE1_G(val);
	}
	return 0;
}

3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/**
 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
 *	@adap: the adapter
 *	@vals: where the indirect register values are stored/written
 *	@nregs: how many indirect registers to read/write
 *	@start_idx: index of first indirect register to read/write
 *	@rw: Read (1) or Write (0)
 *
 *	Access TP PIO registers through LDST
 */
static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
			    unsigned int start_index, unsigned int rw)
{
	int ret, i;
	int cmd = FW_LDST_ADDRSPC_TP_PIO;
	struct fw_ldst_cmd c;

	for (i = 0 ; i < nregs; i++) {
		memset(&c, 0, sizeof(c));
		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
						FW_CMD_REQUEST_F |
						(rw ? FW_CMD_READ_F :
						      FW_CMD_WRITE_F) |
						FW_LDST_CMD_ADDRSPACE_V(cmd));
		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));

		c.u.addrval.addr = cpu_to_be32(start_index + i);
		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
		if (!ret && rw)
			vals[i] = be32_to_cpu(c.u.addrval.val);
	}
}

3726 3727 3728 3729 3730 3731 3732 3733 3734
/**
 *	t4_read_rss_key - read the global RSS key
 *	@adap: the adapter
 *	@key: 10-entry array holding the 320-bit RSS key
 *
 *	Reads the global 320-bit RSS key.
 */
void t4_read_rss_key(struct adapter *adap, u32 *key)
{
3735 3736 3737 3738 3739
	if (adap->flags & FW_OK)
		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
	else
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
				 TP_RSS_SECRET_KEY0_A);
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
}

/**
 *	t4_write_rss_key - program one of the RSS keys
 *	@adap: the adapter
 *	@key: 10-entry array holding the 320-bit RSS key
 *	@idx: which RSS key to write
 *
 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
 *	0..15 the corresponding entry in the RSS key table is written,
 *	otherwise the global RSS key is written.
 */
void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
{
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	u8 rss_key_addr_cnt = 16;
	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);

	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
	 * allows access to key addresses 16-63 by using KeyWrAddrX
	 * as index[5:4](upper 2) into key table
	 */
	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
		rss_key_addr_cnt = 32;

3765 3766 3767 3768 3769
	if (adap->flags & FW_OK)
		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
	else
		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
				  TP_RSS_SECRET_KEY0_A);
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

	if (idx >= 0 && idx < rss_key_addr_cnt) {
		if (rss_key_addr_cnt > 16)
			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
				     KEYWRADDRX_V(idx >> 4) |
				     T6_VFWRADDR_V(idx) | KEYWREN_F);
		else
			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
				     KEYWRADDR_V(idx) | KEYWREN_F);
	}
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
}

/**
 *	t4_read_rss_pf_config - read PF RSS Configuration Table
 *	@adapter: the adapter
 *	@index: the entry in the PF RSS table to read
 *	@valp: where to store the returned value
 *
 *	Reads the PF RSS Configuration Table at the specified index and returns
 *	the value found there.
 */
void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
			   u32 *valp)
{
3794 3795 3796 3797 3798 3799
	if (adapter->flags & FW_OK)
		t4_fw_tp_pio_rw(adapter, valp, 1,
				TP_RSS_PF0_CONFIG_A + index, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
}

/**
 *	t4_read_rss_vf_config - read VF RSS Configuration Table
 *	@adapter: the adapter
 *	@index: the entry in the VF RSS table to read
 *	@vfl: where to store the returned VFL
 *	@vfh: where to store the returned VFH
 *
 *	Reads the VF RSS Configuration Table at the specified index and returns
 *	the (VFL, VFH) values found there.
 */
void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
			   u32 *vfl, u32 *vfh)
{
	u32 vrt, mask, data;

3817 3818 3819 3820 3821 3822 3823
	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
		mask = VFWRADDR_V(VFWRADDR_M);
		data = VFWRADDR_V(index);
	} else {
		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
		 data = T6_VFWRADDR_V(index);
	}
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

	/* Request that the index'th VF Table values be read into VFL/VFH.
	 */
	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
	vrt |= data | VFRDEN_F;
	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);

	/* Grab the VFL/VFH values ...
	 */
3834 3835 3836 3837 3838 3839 3840 3841 3842
	if (adapter->flags & FW_OK) {
		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
	} else {
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 vfl, 1, TP_RSS_VFL_CONFIG_A);
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 vfh, 1, TP_RSS_VFH_CONFIG_A);
	}
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
}

/**
 *	t4_read_rss_pf_map - read PF RSS Map
 *	@adapter: the adapter
 *
 *	Reads the PF RSS Map register and returns its value.
 */
u32 t4_read_rss_pf_map(struct adapter *adapter)
{
	u32 pfmap;

3855 3856 3857 3858 3859
	if (adapter->flags & FW_OK)
		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &pfmap, 1, TP_RSS_PF_MAP_A);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
	return pfmap;
}

/**
 *	t4_read_rss_pf_mask - read PF RSS Mask
 *	@adapter: the adapter
 *
 *	Reads the PF RSS Mask register and returns its value.
 */
u32 t4_read_rss_pf_mask(struct adapter *adapter)
{
	u32 pfmask;

3873 3874 3875 3876 3877
	if (adapter->flags & FW_OK)
		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
	else
		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &pfmask, 1, TP_RSS_PF_MSK_A);
3878 3879 3880
	return pfmask;
}

3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
/**
 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
 *	@adap: the adapter
 *	@v4: holds the TCP/IP counter values
 *	@v6: holds the TCP/IPv6 counter values
 *
 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
 */
void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
3893
	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
3894

3895
#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
3896 3897 3898 3899
#define STAT(x)     val[STAT_IDX(x)]
#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))

	if (v4) {
3900 3901
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
3902 3903 3904 3905
		v4->tcp_out_rsts = STAT(OUT_RST);
		v4->tcp_in_segs  = STAT64(IN_SEG);
		v4->tcp_out_segs = STAT64(OUT_SEG);
		v4->tcp_retrans_segs = STAT64(RXT_SEG);
3906 3907
	}
	if (v6) {
3908 3909
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
3910 3911 3912 3913
		v6->tcp_out_rsts = STAT(OUT_RST);
		v6->tcp_in_segs  = STAT64(IN_SEG);
		v6->tcp_out_segs = STAT64(OUT_SEG);
		v6->tcp_retrans_segs = STAT64(RXT_SEG);
3914 3915 3916 3917 3918 3919
	}
#undef STAT64
#undef STAT
#undef STAT_IDX
}

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
/**
 *	t4_tp_get_err_stats - read TP's error MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's error counters.
 */
void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
{
	/* T6 and later has 2 channels */
	if (adap->params.arch.nchan == NCHAN) {
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->mac_in_errs, 12, TP_MIB_MAC_IN_ERR_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tnl_cong_drops, 8,
				 TP_MIB_TNL_CNG_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tnl_tx_drops, 4,
				 TP_MIB_TNL_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->ofld_vlan_drops, 4,
				 TP_MIB_OFD_VLN_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tcp6_in_errs, 4,
				 TP_MIB_TCP_V6IN_ERR_0_A);
	} else {
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->mac_in_errs, 2, TP_MIB_MAC_IN_ERR_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->hdr_in_errs, 2, TP_MIB_HDR_IN_ERR_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tcp_in_errs, 2, TP_MIB_TCP_IN_ERR_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tnl_cong_drops, 2,
				 TP_MIB_TNL_CNG_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->ofld_chan_drops, 2,
				 TP_MIB_OFD_CHN_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tnl_tx_drops, 2, TP_MIB_TNL_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->ofld_vlan_drops, 2,
				 TP_MIB_OFD_VLN_DROP_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
				 st->tcp6_in_errs, 2, TP_MIB_TCP_V6IN_ERR_0_A);
	}
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
}

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
/**
 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's CPL counters.
 */
void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
{
	/* T6 and later has 2 channels */
	if (adap->params.arch.nchan == NCHAN) {
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
				 8, TP_MIB_CPL_IN_REQ_0_A);
	} else {
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
				 2, TP_MIB_CPL_IN_REQ_0_A);
		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
				 2, TP_MIB_CPL_OUT_RSP_0_A);
	}
}

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
/**
 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's RDMA counters.
 */
void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
{
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
			 2, TP_MIB_RQE_DFR_PKT_A);
}

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
/**
 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
 *	@adap: the adapter
 *	@idx: the port index
 *	@st: holds the counter values
 *
 *	Returns the values of TP's FCoE counters for the selected port.
 */
void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
		       struct tp_fcoe_stats *st)
{
	u32 val[2];

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
			 1, TP_MIB_FCOE_DDP_0_A + idx);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
			 1, TP_MIB_FCOE_DROP_0_A + idx);
	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
	st->octets_ddp = ((u64)val[0] << 32) | val[1];
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
/**
 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
 *	@adap: the adapter
 *	@st: holds the counter values
 *
 *	Returns the values of TP's counters for non-TCP directly-placed packets.
 */
void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
{
	u32 val[4];

	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
			 TP_MIB_USM_PKTS_A);
	st->frames = val[0];
	st->drops = val[1];
	st->octets = ((u64)val[2] << 32) | val[3];
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
/**
 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
 *	@adap: the adapter
 *	@mtus: where to store the MTU values
 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
 *
 *	Reads the HW path MTU table.
 */
void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
{
	u32 v;
	int i;

	for (i = 0; i < NMTUS; ++i) {
4058 4059 4060 4061
		t4_write_reg(adap, TP_MTU_TABLE_A,
			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
		v = t4_read_reg(adap, TP_MTU_TABLE_A);
		mtus[i] = MTUVALUE_G(v);
4062
		if (mtu_log)
4063
			mtu_log[i] = MTUWIDTH_G(v);
4064 4065 4066
	}
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
/**
 *	t4_read_cong_tbl - reads the congestion control table
 *	@adap: the adapter
 *	@incr: where to store the alpha values
 *
 *	Reads the additive increments programmed into the HW congestion
 *	control table.
 */
void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
{
	unsigned int mtu, w;

	for (mtu = 0; mtu < NMTUS; ++mtu)
		for (w = 0; w < NCCTRL_WIN; ++w) {
			t4_write_reg(adap, TP_CCTRL_TABLE_A,
				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
			incr[mtu][w] = (u16)t4_read_reg(adap,
						TP_CCTRL_TABLE_A) & 0x1fff;
		}
}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
/**
 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
 *	@adap: the adapter
 *	@addr: the indirect TP register address
 *	@mask: specifies the field within the register to modify
 *	@val: new value for the field
 *
 *	Sets a field of an indirect TP register to the given value.
 */
void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
			    unsigned int mask, unsigned int val)
{
4100 4101 4102
	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
	t4_write_reg(adap, TP_PIO_DATA_A, val);
4103 4104
}

4105 4106 4107 4108 4109 4110 4111
/**
 *	init_cong_ctrl - initialize congestion control parameters
 *	@a: the alpha values for congestion control
 *	@b: the beta values for congestion control
 *
 *	Initialize the congestion control parameters.
 */
B
Bill Pemberton 已提交
4112
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
{
	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
	a[9] = 2;
	a[10] = 3;
	a[11] = 4;
	a[12] = 5;
	a[13] = 6;
	a[14] = 7;
	a[15] = 8;
	a[16] = 9;
	a[17] = 10;
	a[18] = 14;
	a[19] = 17;
	a[20] = 21;
	a[21] = 25;
	a[22] = 30;
	a[23] = 35;
	a[24] = 45;
	a[25] = 60;
	a[26] = 80;
	a[27] = 100;
	a[28] = 200;
	a[29] = 300;
	a[30] = 400;
	a[31] = 500;

	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
	b[9] = b[10] = 1;
	b[11] = b[12] = 2;
	b[13] = b[14] = b[15] = b[16] = 3;
	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
	b[28] = b[29] = 6;
	b[30] = b[31] = 7;
}

/* The minimum additive increment value for the congestion control table */
#define CC_MIN_INCR 2U

/**
 *	t4_load_mtus - write the MTU and congestion control HW tables
 *	@adap: the adapter
 *	@mtus: the values for the MTU table
 *	@alpha: the values for the congestion control alpha parameter
 *	@beta: the values for the congestion control beta parameter
 *
 *	Write the HW MTU table with the supplied MTUs and the high-speed
 *	congestion control table with the supplied alpha, beta, and MTUs.
 *	We write the two tables together because the additive increments
 *	depend on the MTUs.
 */
void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
		  const unsigned short *alpha, const unsigned short *beta)
{
	static const unsigned int avg_pkts[NCCTRL_WIN] = {
		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
		28672, 40960, 57344, 81920, 114688, 163840, 229376
	};

	unsigned int i, w;

	for (i = 0; i < NMTUS; ++i) {
		unsigned int mtu = mtus[i];
		unsigned int log2 = fls(mtu);

		if (!(mtu & ((1 << log2) >> 2)))     /* round */
			log2--;
4181 4182
		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
4183 4184 4185 4186 4187 4188 4189

		for (w = 0; w < NCCTRL_WIN; ++w) {
			unsigned int inc;

			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
				  CC_MIN_INCR);

4190
			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
4191 4192 4193 4194 4195
				     (w << 16) | (beta[w] << 13) | inc);
		}
	}
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
 * clocks.  The formula is
 *
 * bytes/s = bytes256 * 256 * ClkFreq / 4096
 *
 * which is equivalent to
 *
 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
 */
static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
{
	u64 v = bytes256 * adap->params.vpd.cclk;

	return v * 62 + v / 2;
}

/**
 *	t4_get_chan_txrate - get the current per channel Tx rates
 *	@adap: the adapter
 *	@nic_rate: rates for NIC traffic
 *	@ofld_rate: rates for offloaded traffic
 *
 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
 *	for each channel.
 */
void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
{
	u32 v;

	v = t4_read_reg(adap, TP_TX_TRATE_A);
	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
	if (adap->params.arch.nchan == NCHAN) {
		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
	}

	v = t4_read_reg(adap, TP_TX_ORATE_A);
	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
	if (adap->params.arch.nchan == NCHAN) {
		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
	}
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
/**
 *	t4_pmtx_get_stats - returns the HW stats from PMTX
 *	@adap: the adapter
 *	@cnt: where to store the count statistics
 *	@cycles: where to store the cycle statistics
 *
 *	Returns performance statistics from PMTX.
 */
void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
	int i;
	u32 data[2];

	for (i = 0; i < PM_NSTATS; i++) {
		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
		if (is_t4(adap->params.chip)) {
			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
		} else {
			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
					 PM_TX_DBG_DATA_A, data, 2,
					 PM_TX_DBG_STAT_MSB_A);
			cycles[i] = (((u64)data[0] << 32) | data[1]);
		}
	}
}

/**
 *	t4_pmrx_get_stats - returns the HW stats from PMRX
 *	@adap: the adapter
 *	@cnt: where to store the count statistics
 *	@cycles: where to store the cycle statistics
 *
 *	Returns performance statistics from PMRX.
 */
void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
{
	int i;
	u32 data[2];

	for (i = 0; i < PM_NSTATS; i++) {
		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
		if (is_t4(adap->params.chip)) {
			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
		} else {
			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
					 PM_RX_DBG_DATA_A, data, 2,
					 PM_RX_DBG_STAT_MSB_A);
			cycles[i] = (((u64)data[0] << 32) | data[1]);
		}
	}
}

4296
/**
4297
 *	t4_get_mps_bg_map - return the buffer groups associated with a port
4298 4299 4300 4301 4302 4303 4304
 *	@adap: the adapter
 *	@idx: the port index
 *
 *	Returns a bitmap indicating which MPS buffer groups are associated
 *	with the given port.  Bit i is set if buffer group i is used by the
 *	port.
 */
4305
unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
4306
{
4307
	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
4308 4309 4310 4311 4312 4313 4314 4315

	if (n == 0)
		return idx == 0 ? 0xf : 0;
	if (n == 1)
		return idx < 2 ? (3 << (2 * idx)) : 0;
	return 1 << idx;
}

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
/**
 *      t4_get_port_type_description - return Port Type string description
 *      @port_type: firmware Port Type enumeration
 */
const char *t4_get_port_type_description(enum fw_port_type port_type)
{
	static const char *const port_type_description[] = {
		"R XFI",
		"R XAUI",
		"T SGMII",
		"T XFI",
		"T XAUI",
		"KX4",
		"CX4",
		"KX",
		"KR",
		"R SFP+",
		"KR/KX",
		"KR/KX/KX4",
		"R QSFP_10G",
4336
		"R QSA",
4337 4338 4339 4340 4341 4342 4343 4344 4345
		"R QSFP",
		"R BP40_BA",
	};

	if (port_type < ARRAY_SIZE(port_type_description))
		return port_type_description[port_type];
	return "UNKNOWN";
}

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
/**
 *      t4_get_port_stats_offset - collect port stats relative to a previous
 *                                 snapshot
 *      @adap: The adapter
 *      @idx: The port
 *      @stats: Current stats to fill
 *      @offset: Previous stats snapshot
 */
void t4_get_port_stats_offset(struct adapter *adap, int idx,
			      struct port_stats *stats,
			      struct port_stats *offset)
{
	u64 *s, *o;
	int i;

	t4_get_port_stats(adap, idx, stats);
	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
			i < (sizeof(struct port_stats) / sizeof(u64));
			i++, s++, o++)
		*s -= *o;
}

4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
/**
 *	t4_get_port_stats - collect port statistics
 *	@adap: the adapter
 *	@idx: the port index
 *	@p: the stats structure to fill
 *
 *	Collect statistics related to the given port from HW.
 */
void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
{
4378
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4379 4380

#define GET_STAT(name) \
S
Santosh Rastapur 已提交
4381
	t4_read_reg64(adap, \
4382
	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
S
Santosh Rastapur 已提交
4383
	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)

	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
	p->tx_drop             = GET_STAT(TX_PORT_DROP);
	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);

	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);

	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;

#undef GET_STAT
#undef GET_STAT_COM
}

/**
4452
 *	t4_get_lb_stats - collect loopback port statistics
4453
 *	@adap: the adapter
4454 4455
 *	@idx: the loopback port index
 *	@p: the stats structure to fill
4456
 *
4457
 *	Return HW statistics for the given loopback port.
4458
 */
4459
void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
4460
{
4461
	u32 bgmap = t4_get_mps_bg_map(adap, idx);
4462

4463 4464
#define GET_STAT(name) \
	t4_read_reg64(adap, \
4465
	(is_t4(adap->params.chip) ? \
4466 4467 4468
	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	p->octets           = GET_STAT(BYTES);
	p->frames           = GET_STAT(FRAMES);
	p->bcast_frames     = GET_STAT(BCAST);
	p->mcast_frames     = GET_STAT(MCAST);
	p->ucast_frames     = GET_STAT(UCAST);
	p->error_frames     = GET_STAT(ERROR);

	p->frames_64        = GET_STAT(64B);
	p->frames_65_127    = GET_STAT(65B_127B);
	p->frames_128_255   = GET_STAT(128B_255B);
	p->frames_256_511   = GET_STAT(256B_511B);
	p->frames_512_1023  = GET_STAT(512B_1023B);
	p->frames_1024_1518 = GET_STAT(1024B_1518B);
	p->frames_1519_max  = GET_STAT(1519B_MAX);
	p->drop             = GET_STAT(DROP_FRAMES);

	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4494

4495 4496
#undef GET_STAT
#undef GET_STAT_COM
4497 4498
}

V
Vipul Pandya 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
/*     t4_mk_filtdelwr - create a delete filter WR
 *     @ftid: the filter ID
 *     @wr: the filter work request to populate
 *     @qid: ingress queue to receive the delete notification
 *
 *     Creates a filter work request to delete the supplied filter.  If @qid is
 *     negative the delete notification is suppressed.
 */
void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
{
	memset(wr, 0, sizeof(*wr));
4510 4511 4512 4513 4514
	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
				    FW_FILTER_WR_NOREPLY_V(qid < 0));
	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
V
Vipul Pandya 已提交
4515
	if (qid >= 0)
4516 4517
		wr->rx_chan_rx_rpl_iq =
			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
V
Vipul Pandya 已提交
4518 4519
}

4520
#define INIT_CMD(var, cmd, rd_wr) do { \
4521 4522 4523 4524
	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
					FW_CMD_REQUEST_F | \
					FW_CMD_##rd_wr##_F); \
	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
4525 4526
} while (0)

4527 4528 4529
int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
			  u32 addr, u32 val)
{
4530
	u32 ldst_addrspace;
4531 4532 4533
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
4534 4535 4536 4537 4538 4539 4540 4541
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_WRITE_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.addrval.addr = cpu_to_be32(addr);
	c.u.addrval.val = cpu_to_be32(val);
4542 4543 4544 4545

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
/**
 *	t4_mdio_rd - read a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to read
 *	@valp: where to store the value
 *
 *	Issues a FW command through the given mailbox to read a PHY register.
 */
int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 *valp)
{
	int ret;
4561
	u32 ldst_addrspace;
4562 4563 4564
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
4565 4566 4567 4568 4569 4570 4571 4572
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_READ_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
					 FW_LDST_CMD_MMD_V(mmd));
	c.u.mdio.raddr = cpu_to_be16(reg);
4573 4574 4575

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
4576
		*valp = be16_to_cpu(c.u.mdio.rval);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	return ret;
}

/**
 *	t4_mdio_wr - write a PHY register through MDIO
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@phy_addr: the PHY address
 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
 *	@reg: the register to write
 *	@valp: value to write
 *
 *	Issues a FW command through the given mailbox to write a PHY register.
 */
int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
	       unsigned int mmd, unsigned int reg, u16 val)
{
4594
	u32 ldst_addrspace;
4595 4596 4597
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
4598 4599 4600 4601 4602 4603 4604 4605 4606
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
					 FW_LDST_CMD_MMD_V(mmd));
	c.u.mdio.raddr = cpu_to_be16(reg);
	c.u.mdio.rval = cpu_to_be16(val);
4607 4608 4609 4610

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
/**
 *	t4_sge_decode_idma_state - decode the idma state
 *	@adap: the adapter
 *	@state: the state idma is stuck in
 */
void t4_sge_decode_idma_state(struct adapter *adapter, int state)
{
	static const char * const t4_decode[] = {
		"IDMA_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"Not used",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL_PREP",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
		"IDMA_FL_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATAFL_DONE",
		"IDMA_FL_REQ_HEADERFL_DONE",
	};
	static const char * const t5_decode[] = {
		"IDMA_IDLE",
		"IDMA_ALMOST_IDLE",
		"IDMA_PUSH_MORE_CPL_FIFO",
		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PCIEHDR",
		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
		"IDMA_PHYSADDR_SEND_PAYLOAD",
		"IDMA_SEND_FIFO_TO_IMSG",
		"IDMA_FL_REQ_DATA_FL",
		"IDMA_FL_DROP",
		"IDMA_FL_DROP_SEND_INC",
		"IDMA_FL_H_REQ_HEADER_FL",
		"IDMA_FL_H_SEND_PCIEHDR",
		"IDMA_FL_H_PUSH_CPL_FIFO",
		"IDMA_FL_H_SEND_CPL",
		"IDMA_FL_H_SEND_IP_HDR_FIRST",
		"IDMA_FL_H_SEND_IP_HDR",
		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
		"IDMA_FL_H_SEND_IP_HDR_PADDING",
		"IDMA_FL_D_SEND_PCIEHDR",
		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
		"IDMA_FL_D_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_PCIEHDR",
		"IDMA_FL_PUSH_CPL_FIFO",
		"IDMA_FL_SEND_CPL",
		"IDMA_FL_SEND_PAYLOAD_FIRST",
		"IDMA_FL_SEND_PAYLOAD",
		"IDMA_FL_REQ_NEXT_DATA_FL",
		"IDMA_FL_SEND_NEXT_PCIEHDR",
		"IDMA_FL_SEND_PADDING",
		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
	};
	static const u32 sge_regs[] = {
4691 4692 4693
		SGE_DEBUG_DATA_LOW_INDEX_2_A,
		SGE_DEBUG_DATA_LOW_INDEX_3_A,
		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	};
	const char **sge_idma_decode;
	int sge_idma_decode_nstates;
	int i;

	if (is_t4(adapter->params.chip)) {
		sge_idma_decode = (const char **)t4_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
	} else {
		sge_idma_decode = (const char **)t5_decode;
		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
	}

	if (state < sge_idma_decode_nstates)
		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
	else
		CH_WARN(adapter, "idma state %d unknown\n", state);

	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
		CH_WARN(adapter, "SGE register %#x value %#x\n",
			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
}

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
/**
 *      t4_sge_ctxt_flush - flush the SGE context cache
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *
 *      Issues a FW command through the given mailbox to flush the
 *      SGE context cache.
 */
int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
{
	int ret;
	u32 ldst_addrspace;
	struct fw_ldst_cmd c;

	memset(&c, 0, sizeof(c));
	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
					FW_CMD_REQUEST_F | FW_CMD_READ_F |
					ldst_addrspace);
	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	return ret;
}

4743
/**
4744 4745 4746 4747 4748 4749
 *      t4_fw_hello - establish communication with FW
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @evt_mbox: mailbox to receive async FW events
 *      @master: specifies the caller's willingness to be the device master
 *	@state: returns the current device state (if non-NULL)
4750
 *
4751 4752
 *	Issues a command to establish communication with FW.  Returns either
 *	an error (negative integer) or the mailbox of the Master PF.
4753 4754 4755 4756 4757 4758
 */
int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
		enum dev_master master, enum dev_state *state)
{
	int ret;
	struct fw_hello_cmd c;
4759 4760 4761
	u32 v;
	unsigned int master_mbox;
	int retries = FW_CMD_HELLO_RETRIES;
4762

4763 4764
retry:
	memset(&c, 0, sizeof(c));
4765
	INIT_CMD(c, HELLO, WRITE);
4766
	c.err_to_clearinit = cpu_to_be32(
4767 4768
		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
4769 4770
		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
					mbox : FW_HELLO_CMD_MBMASTER_M) |
4771 4772 4773
		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
		FW_HELLO_CMD_CLEARINIT_F);
4774

4775 4776 4777
	/*
	 * Issue the HELLO command to the firmware.  If it's not successful
	 * but indicates that we got a "busy" or "timeout" condition, retry
4778 4779 4780
	 * the HELLO until we exhaust our retry limit.  If we do exceed our
	 * retry limit, check to see if the firmware left us any error
	 * information and report that if so.
4781
	 */
4782
	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4783 4784 4785
	if (ret < 0) {
		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
			goto retry;
4786
		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
4787
			t4_report_fw_error(adap);
4788 4789 4790
		return ret;
	}

4791
	v = be32_to_cpu(c.err_to_clearinit);
4792
	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
4793
	if (state) {
4794
		if (v & FW_HELLO_CMD_ERR_F)
4795
			*state = DEV_STATE_ERR;
4796
		else if (v & FW_HELLO_CMD_INIT_F)
4797
			*state = DEV_STATE_INIT;
4798 4799 4800
		else
			*state = DEV_STATE_UNINIT;
	}
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

	/*
	 * If we're not the Master PF then we need to wait around for the
	 * Master PF Driver to finish setting up the adapter.
	 *
	 * Note that we also do this wait if we're a non-Master-capable PF and
	 * there is no current Master PF; a Master PF may show up momentarily
	 * and we wouldn't want to fail pointlessly.  (This can happen when an
	 * OS loads lots of different drivers rapidly at the same time).  In
	 * this case, the Master PF returned by the firmware will be
4811
	 * PCIE_FW_MASTER_M so the test below will work ...
4812
	 */
4813
	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	    master_mbox != mbox) {
		int waiting = FW_CMD_HELLO_TIMEOUT;

		/*
		 * Wait for the firmware to either indicate an error or
		 * initialized state.  If we see either of these we bail out
		 * and report the issue to the caller.  If we exhaust the
		 * "hello timeout" and we haven't exhausted our retries, try
		 * again.  Otherwise bail with a timeout error.
		 */
		for (;;) {
			u32 pcie_fw;

			msleep(50);
			waiting -= 50;

			/*
			 * If neither Error nor Initialialized are indicated
			 * by the firmware keep waiting till we exaust our
			 * timeout ... and then retry if we haven't exhausted
			 * our retries ...
			 */
4836 4837
			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
				if (waiting <= 0) {
					if (retries-- > 0)
						goto retry;

					return -ETIMEDOUT;
				}
				continue;
			}

			/*
			 * We either have an Error or Initialized condition
			 * report errors preferentially.
			 */
			if (state) {
4852
				if (pcie_fw & PCIE_FW_ERR_F)
4853
					*state = DEV_STATE_ERR;
4854
				else if (pcie_fw & PCIE_FW_INIT_F)
4855 4856 4857 4858 4859 4860 4861 4862
					*state = DEV_STATE_INIT;
			}

			/*
			 * If we arrived before a Master PF was selected and
			 * there's not a valid Master PF, grab its identity
			 * for our caller.
			 */
4863
			if (master_mbox == PCIE_FW_MASTER_M &&
4864
			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
4865
				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
4866 4867 4868 4869 4870
			break;
		}
	}

	return master_mbox;
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
}

/**
 *	t4_fw_bye - end communication with FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to terminate communication with FW.
 */
int t4_fw_bye(struct adapter *adap, unsigned int mbox)
{
	struct fw_bye_cmd c;

4884
	memset(&c, 0, sizeof(c));
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
	INIT_CMD(c, BYE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_init_cmd - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_early_init(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

4901
	memset(&c, 0, sizeof(c));
4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_fw_reset - issue a reset to FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@reset: specifies the type of reset to perform
 *
 *	Issues a reset command of the specified type to FW.
 */
int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
{
	struct fw_reset_cmd c;

4918
	memset(&c, 0, sizeof(c));
4919
	INIT_CMD(c, RESET, WRITE);
4920
	c.val = cpu_to_be32(reset);
4921 4922 4923
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

4924 4925 4926 4927 4928 4929 4930 4931 4932
/**
 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@force: force uP into RESET even if FW RESET command fails
 *
 *	Issues a RESET command to firmware (if desired) with a HALT indication
 *	and then puts the microprocessor into RESET state.  The RESET command
 *	will only be issued if a legitimate mailbox is provided (mbox <=
4933
 *	PCIE_FW_MASTER_M).
4934 4935 4936 4937 4938 4939
 *
 *	This is generally used in order for the host to safely manipulate the
 *	adapter without fear of conflicting with whatever the firmware might
 *	be doing.  The only way out of this state is to RESTART the firmware
 *	...
 */
4940
static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4941 4942 4943 4944 4945 4946 4947
{
	int ret = 0;

	/*
	 * If a legitimate mailbox is provided, issue a RESET command
	 * with a HALT indication.
	 */
4948
	if (mbox <= PCIE_FW_MASTER_M) {
4949 4950 4951 4952
		struct fw_reset_cmd c;

		memset(&c, 0, sizeof(c));
		INIT_CMD(c, RESET, WRITE);
4953 4954
		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
	}

	/*
	 * Normally we won't complete the operation if the firmware RESET
	 * command fails but if our caller insists we'll go ahead and put the
	 * uP into RESET.  This can be useful if the firmware is hung or even
	 * missing ...  We'll have to take the risk of putting the uP into
	 * RESET without the cooperation of firmware in that case.
	 *
	 * We also force the firmware's HALT flag to be on in case we bypassed
	 * the firmware RESET command above or we're dealing with old firmware
	 * which doesn't have the HALT capability.  This will serve as a flag
	 * for the incoming firmware to know that it's coming out of a HALT
	 * rather than a RESET ... if it's new enough to understand that ...
	 */
	if (ret == 0 || force) {
4972
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
4973
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
4974
				 PCIE_FW_HALT_F);
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
	}

	/*
	 * And we always return the result of the firmware RESET command
	 * even when we force the uP into RESET ...
	 */
	return ret;
}

/**
 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
 *	@adap: the adapter
 *	@reset: if we want to do a RESET to restart things
 *
 *	Restart firmware previously halted by t4_fw_halt().  On successful
 *	return the previous PF Master remains as the new PF Master and there
 *	is no need to issue a new HELLO command, etc.
 *
 *	We do this in two ways:
 *
 *	 1. If we're dealing with newer firmware we'll simply want to take
 *	    the chip's microprocessor out of RESET.  This will cause the
 *	    firmware to start up from its start vector.  And then we'll loop
 *	    until the firmware indicates it's started again (PCIE_FW.HALT
 *	    reset to 0) or we timeout.
 *
 *	 2. If we're dealing with older firmware then we'll need to RESET
 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
 *	    flag and automatically RESET itself on startup.
 */
5005
static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
5006 5007 5008 5009 5010 5011 5012
{
	if (reset) {
		/*
		 * Since we're directing the RESET instead of the firmware
		 * doing it automatically, we need to clear the PCIE_FW.HALT
		 * bit.
		 */
5013
		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
5014 5015 5016 5017 5018 5019 5020 5021

		/*
		 * If we've been given a valid mailbox, first try to get the
		 * firmware to do the RESET.  If that works, great and we can
		 * return success.  Otherwise, if we haven't been given a
		 * valid mailbox or the RESET command failed, fall back to
		 * hitting the chip with a hammer.
		 */
5022
		if (mbox <= PCIE_FW_MASTER_M) {
5023
			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5024 5025
			msleep(100);
			if (t4_fw_reset(adap, mbox,
5026
					PIORST_F | PIORSTMODE_F) == 0)
5027 5028 5029
				return 0;
		}

5030
		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
5031 5032 5033 5034
		msleep(2000);
	} else {
		int ms;

5035
		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
5036
		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
5037
			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
				return 0;
			msleep(100);
			ms += 100;
		}
		return -ETIMEDOUT;
	}
	return 0;
}

/**
 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW RESET command (if desired)
 *	@fw_data: the firmware image to write
 *	@size: image size
 *	@force: force upgrade even if firmware doesn't cooperate
 *
 *	Perform all of the steps necessary for upgrading an adapter's
 *	firmware image.  Normally this requires the cooperation of the
 *	existing firmware in order to halt all existing activities
 *	but if an invalid mailbox token is passed in we skip that step
 *	(though we'll still put the adapter microprocessor into RESET in
 *	that case).
 *
 *	On successful return the new firmware will have been loaded and
 *	the adapter will have been fully RESET losing all previous setup
 *	state.  On unsuccessful return the adapter may be completely hosed ...
 *	positive errno indicates that the adapter is ~probably~ intact, a
 *	negative errno indicates that things are looking bad ...
 */
5068 5069
int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
		  const u8 *fw_data, unsigned int size, int force)
5070 5071 5072 5073
{
	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
	int reset, ret;

5074 5075 5076
	if (!t4_fw_matches_chip(adap, fw_hdr))
		return -EINVAL;

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	ret = t4_fw_halt(adap, mbox, force);
	if (ret < 0 && !force)
		return ret;

	ret = t4_load_fw(adap, fw_data, size);
	if (ret < 0)
		return ret;

	/*
	 * Older versions of the firmware don't understand the new
	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
	 * restart.  So for newly loaded older firmware we'll have to do the
	 * RESET for it so it starts up on a clean slate.  We can tell if
	 * the newly loaded firmware will handle this right by checking
	 * its header flags to see if it advertises the capability.
	 */
5093
	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
5094 5095 5096
	return t4_fw_restart(adap, mbox, reset);
}

5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
/**
 *	t4_fixup_host_params - fix up host-dependent parameters
 *	@adap: the adapter
 *	@page_size: the host's Base Page Size
 *	@cache_line_size: the host's Cache Line Size
 *
 *	Various registers in T4 contain values which are dependent on the
 *	host's Base Page and Cache Line Sizes.  This function will fix all of
 *	those registers with the appropriate values as passed in ...
 */
int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
			 unsigned int cache_line_size)
{
	unsigned int page_shift = fls(page_size) - 1;
	unsigned int sge_hps = page_shift - 10;
	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
	unsigned int fl_align_log = fls(fl_align) - 1;

5116 5117 5118 5119 5120 5121 5122 5123 5124
	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
		     HOSTPAGESIZEPF0_V(sge_hps) |
		     HOSTPAGESIZEPF1_V(sge_hps) |
		     HOSTPAGESIZEPF2_V(sge_hps) |
		     HOSTPAGESIZEPF3_V(sge_hps) |
		     HOSTPAGESIZEPF4_V(sge_hps) |
		     HOSTPAGESIZEPF5_V(sge_hps) |
		     HOSTPAGESIZEPF6_V(sge_hps) |
		     HOSTPAGESIZEPF7_V(sge_hps));
5125

5126
	if (is_t4(adap->params.chip)) {
5127 5128 5129 5130 5131 5132
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(fl_align_log -
						  INGPADBOUNDARY_SHIFT_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	} else {
		/* T5 introduced the separation of the Free List Padding and
		 * Packing Boundaries.  Thus, we can select a smaller Padding
		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
		 * Bandwidth, and use a Packing Boundary which is large enough
		 * to avoid false sharing between CPUs, etc.
		 *
		 * For the PCI Link, the smaller the Padding Boundary the
		 * better.  For the Memory Controller, a smaller Padding
		 * Boundary is better until we cross under the Memory Line
		 * Size (the minimum unit of transfer to/from Memory).  If we
		 * have a Padding Boundary which is smaller than the Memory
		 * Line Size, that'll involve a Read-Modify-Write cycle on the
		 * Memory Controller which is never good.  For T5 the smallest
		 * Padding Boundary which we can select is 32 bytes which is
		 * larger than any known Memory Controller Line Size so we'll
		 * use that.
		 *
		 * T5 has a different interpretation of the "0" value for the
		 * Packing Boundary.  This corresponds to 16 bytes instead of
		 * the expected 32 bytes.  We never have a Packing Boundary
		 * less than 32 bytes so we can't use that special value but
		 * on the other hand, if we wanted 32 bytes, the best we can
		 * really do is 64 bytes.
		*/
		if (fl_align <= 32) {
			fl_align = 64;
			fl_align_log = 6;
		}
5162 5163 5164 5165 5166
		t4_set_reg_field(adap, SGE_CONTROL_A,
				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
				 EGRSTATUSPAGESIZE_F,
				 INGPADBOUNDARY_V(INGPCIEBOUNDARY_32B_X) |
				 EGRSTATUSPAGESIZE_V(stat_len != 64));
5167 5168 5169
		t4_set_reg_field(adap, SGE_CONTROL2_A,
				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
				 INGPACKBOUNDARY_V(fl_align_log -
5170
						   INGPACKBOUNDARY_SHIFT_X));
5171
	}
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	/*
	 * Adjust various SGE Free List Host Buffer Sizes.
	 *
	 * This is something of a crock since we're using fixed indices into
	 * the array which are also known by the sge.c code and the T4
	 * Firmware Configuration File.  We need to come up with a much better
	 * approach to managing this array.  For now, the first four entries
	 * are:
	 *
	 *   0: Host Page Size
	 *   1: 64KB
	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
	 *
	 * For the single-MTU buffers in unpacked mode we need to include
	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
5189
	 * Padding boundary.  All of these are accommodated in the Factory
5190 5191 5192
	 * Default Firmware Configuration File but we need to adjust it for
	 * this host's cache line size.
	 */
5193 5194 5195
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
5196
		     & ~(fl_align-1));
5197 5198
	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
5199 5200
		     & ~(fl_align-1));

5201
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222

	return 0;
}

/**
 *	t4_fw_initialize - ask FW to initialize the device
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *
 *	Issues a command to FW to partially initialize the device.  This
 *	performs initialization that generally doesn't depend on user input.
 */
int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
{
	struct fw_initialize_cmd c;

	memset(&c, 0, sizeof(c));
	INIT_CMD(c, INITIALIZE, WRITE);
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

5223
/**
5224
 *	t4_query_params_rw - query FW or device parameters
5225 5226 5227 5228 5229 5230 5231
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
5232
 *	@rw: Write and read flag
5233 5234 5235 5236
 *
 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
 *	queried at once.
 */
5237 5238 5239
int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
		       unsigned int vf, unsigned int nparams, const u32 *params,
		       u32 *val, int rw)
5240 5241 5242 5243 5244 5245 5246 5247 5248
{
	int i, ret;
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
5249 5250 5251 5252 5253 5254
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
				  FW_PARAMS_CMD_PFN_V(pf) |
				  FW_PARAMS_CMD_VFN_V(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

5255 5256 5257 5258 5259 5260
	for (i = 0; i < nparams; i++) {
		*p++ = cpu_to_be32(*params++);
		if (rw)
			*p = cpu_to_be32(*(val + i));
		p++;
	}
5261 5262 5263 5264

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0)
		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
5265
			*val++ = be32_to_cpu(*p);
5266 5267 5268
	return ret;
}

5269 5270 5271 5272 5273 5274 5275
int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int nparams, const u32 *params,
		    u32 *val)
{
	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
}

5276
/**
5277
 *      t4_set_params_timeout - sets FW or device parameters
5278 5279 5280 5281 5282 5283 5284
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @pf: the PF
 *      @vf: the VF
 *      @nparams: the number of parameters
 *      @params: the parameter names
 *      @val: the parameter values
5285
 *      @timeout: the timeout time
5286 5287 5288 5289
 *
 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
 *      specified at once.
 */
5290
int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
5291 5292
			  unsigned int pf, unsigned int vf,
			  unsigned int nparams, const u32 *params,
5293
			  const u32 *val, int timeout)
5294 5295 5296 5297 5298 5299 5300 5301
{
	struct fw_params_cmd c;
	__be32 *p = &c.param[0].mnem;

	if (nparams > 7)
		return -EINVAL;

	memset(&c, 0, sizeof(c));
5302
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
5303 5304 5305
				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				  FW_PARAMS_CMD_PFN_V(pf) |
				  FW_PARAMS_CMD_VFN_V(vf));
5306 5307 5308 5309 5310 5311 5312
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));

	while (nparams--) {
		*p++ = cpu_to_be32(*params++);
		*p++ = cpu_to_be32(*val++);
	}

5313
	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
5314 5315
}

5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
/**
 *	t4_set_params - sets FW or device parameters
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF
 *	@vf: the VF
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@val: the parameter values
 *
 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
 *	specified at once.
 */
int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
		  unsigned int vf, unsigned int nparams, const u32 *params,
		  const u32 *val)
{
5333 5334
	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
				     FW_CMD_MAX_TIMEOUT);
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
}

/**
 *	t4_cfg_pfvf - configure PF/VF resource limits
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF being configured
 *	@vf: the VF being configured
 *	@txq: the max number of egress queues
 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
 *	@rxqi: the max number of interrupt-capable ingress queues
 *	@rxq: the max number of interruptless ingress queues
 *	@tc: the PCI traffic class
 *	@vi: the max number of virtual interfaces
 *	@cmask: the channel access rights mask for the PF/VF
 *	@pmask: the port access rights mask for the PF/VF
 *	@nexact: the maximum number of exact MPS filters
 *	@rcaps: read capabilities
 *	@wxcaps: write/execute capabilities
 *
 *	Configures resource limits and capabilities for a physical or virtual
 *	function.
 */
int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
		unsigned int rxqi, unsigned int rxq, unsigned int tc,
		unsigned int vi, unsigned int cmask, unsigned int pmask,
		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
{
	struct fw_pfvf_cmd c;

	memset(&c, 0, sizeof(c));
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
				  FW_PFVF_CMD_VFN_V(vf));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
				     FW_PFVF_CMD_NIQ_V(rxq));
	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
				    FW_PFVF_CMD_PMASK_V(pmask) |
				    FW_PFVF_CMD_NEQ_V(txq));
	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
				      FW_PFVF_CMD_NVI_V(vi) |
				      FW_PFVF_CMD_NEXACTF_V(nexact));
	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_alloc_vi - allocate a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@port: physical port associated with the VI
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@nmac: number of MAC addresses needed (1 to 5)
 *	@mac: the MAC addresses of the VI
 *	@rss_size: size of RSS table slice associated with this VI
 *
 *	Allocates a virtual interface for the given physical port.  If @mac is
 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
 *	stored consecutively so the space needed is @nmac * 6 bytes.
 *	Returns a negative error number or the non-negative VI id.
 */
int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
		unsigned int *rss_size)
{
	int ret;
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
5410 5411 5412 5413
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
5414
	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	c.nmac = nmac - 1;

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret)
		return ret;

	if (mac) {
		memcpy(mac, c.mac, sizeof(c.mac));
		switch (nmac) {
		case 5:
			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
		case 4:
			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
		case 3:
			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
		case 2:
			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
		}
	}
	if (rss_size)
5435 5436
		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
5437 5438
}

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
/**
 *	t4_free_vi - free a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the VI
 *	@vf: the VF owning the VI
 *	@viid: virtual interface identifiler
 *
 *	Free a previously allocated virtual interface.
 */
int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int viid)
{
	struct fw_vi_cmd c;

	memset(&c, 0, sizeof(c));
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				  FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F |
				  FW_VI_CMD_PFN_V(pf) |
				  FW_VI_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));

	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
}

/**
 *	t4_set_rxmode - set Rx properties of a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@mtu: the new MTU or -1
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
5475
 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
5476 5477 5478 5479 5480
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
5481 5482
		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
		  bool sleep_ok)
5483 5484 5485 5486 5487 5488 5489
{
	struct fw_vi_rxmode_cmd c;

	/* convert to FW values */
	if (mtu < 0)
		mtu = FW_RXMODE_MTU_NO_CHG;
	if (promisc < 0)
5490
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
5491
	if (all_multi < 0)
5492
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
5493
	if (bcast < 0)
5494
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
5495
	if (vlanex < 0)
5496
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
5497 5498

	memset(&c, 0, sizeof(c));
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_RXMODE_CMD_VIID_V(viid));
	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
	c.mtu_to_vlanexen =
		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

/**
 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
		      unsigned int viid, bool free, unsigned int naddr,
		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
{
5538
	int offset, ret = 0;
5539
	struct fw_vi_mac_cmd c;
5540 5541 5542
	unsigned int nfilters = 0;
	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
	unsigned int rem = naddr;
5543

5544
	if (naddr > max_naddr)
5545 5546
		return -EINVAL;

5547 5548 5549 5550 5551 5552 5553
	for (offset = 0; offset < naddr ; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
					 rem : ARRAY_SIZE(c.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;
5554

5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
		memset(&c, 0, sizeof(c));
		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
					   FW_CMD_REQUEST_F |
					   FW_CMD_WRITE_F |
					   FW_CMD_EXEC_V(free) |
					   FW_VI_MAC_CMD_VIID_V(viid));
		c.freemacs_to_len16 =
			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
				    FW_CMD_LEN16_V(len16));

		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			p->valid_to_idx =
				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
					    FW_VI_MAC_CMD_IDX_V(
						    FW_VI_MAC_ADD_MAC));
			memcpy(p->macaddr, addr[offset + i],
			       sizeof(p->macaddr));
		}
5573

5574 5575 5576 5577 5578 5579 5580
		/* It's okay if we run out of space in our MAC address arena.
		 * Some of the addresses we submit may get stored so we need
		 * to run through the reply to see what the results were ...
		 */
		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
		if (ret && ret != -FW_ENOMEM)
			break;
5581

5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
			u16 index = FW_VI_MAC_CMD_IDX_G(
					be16_to_cpu(p->valid_to_idx));

			if (idx)
				idx[offset + i] = (index >= max_naddr ?
						   0xffff : index);
			if (index < max_naddr)
				nfilters++;
			else if (hash)
				*hash |= (1ULL <<
					  hash_mac_addr(addr[offset + i]));
		}
5595

5596 5597 5598
		free = false;
		offset += fw_naddr;
		rem -= fw_naddr;
5599
	}
5600 5601 5602

	if (ret == 0 || ret == -FW_ENOMEM)
		ret = nfilters;
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
	return ret;
}

/**
 *	t4_change_mac - modifies the exact-match filter for a MAC address
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: whether a new MAC allocation should be persistent
 *	@add_smt: if true also add the address to the HW SMT
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the one
 *	being used by the old address value and allocate a new filter for the
 *	new address value.  @idx can be -1 if the address is a new addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
		  int idx, const u8 *addr, bool persist, bool add_smt)
{
	int ret, mode;
	struct fw_vi_mac_cmd c;
	struct fw_vi_mac_exact *p = c.u.exact;
5631
	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
5632 5633 5634 5635 5636 5637

	if (idx < 0)                             /* new allocation */
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;

	memset(&c, 0, sizeof(c));
5638 5639 5640 5641 5642 5643 5644
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_MAC_CMD_VIID_V(viid));
	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
				      FW_VI_MAC_CMD_IDX_V(idx));
5645 5646 5647 5648
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
	if (ret == 0) {
5649
		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
S
Santosh Rastapur 已提交
5650
		if (ret >= max_mac_addr)
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4_set_addr_hash - program the MAC inexact-match hash filter
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd c;

	memset(&c, 0, sizeof(c));
5673 5674 5675 5676 5677 5678
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
					  FW_CMD_LEN16_V(1));
5679 5680 5681 5682
	c.u.hash.hashvec = cpu_to_be64(vec);
	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
}

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
/**
 *      t4_enable_vi_params - enable/disable a virtual interface
 *      @adap: the adapter
 *      @mbox: mailbox to use for the FW command
 *      @viid: the VI id
 *      @rx_en: 1=enable Rx, 0=disable Rx
 *      @tx_en: 1=enable Tx, 0=disable Tx
 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
 *
 *      Enables/disables a virtual interface.  Note that setting DCB Enable
 *      only makes sense when enabling a Virtual Interface ...
 */
int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
{
	struct fw_vi_enable_cmd c;

	memset(&c, 0, sizeof(c));
5701 5702 5703 5704 5705 5706 5707
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
				     FW_LEN16(c));
5708
	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
5709 5710
}

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
/**
 *	t4_enable_vi - enable/disable a virtual interface
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
		 bool rx_en, bool tx_en)
{
5724
	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
}

/**
 *	t4_identify_port - identify a VI's port by blinking its LED
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@viid: the VI id
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
		     unsigned int nblinks)
{
	struct fw_vi_enable_cmd c;

5741
	memset(&c, 0, sizeof(c));
5742 5743 5744 5745 5746
	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				   FW_VI_ENABLE_CMD_VIID_V(viid));
	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
	c.blinkdur = cpu_to_be16(nblinks);
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_iq_free - free an ingress queue and its FLs
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queues
 *	@vf: the VF owning the queues
 *	@iqtype: the ingress queue type
 *	@iqid: ingress queue id
 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated FLs, if any.
 */
int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
	       unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd c;

	memset(&c, 0, sizeof(c));
5770 5771 5772 5773 5774 5775 5776 5777
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
				  FW_IQ_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
	c.iqid = cpu_to_be16(iqid);
	c.fl0id = cpu_to_be16(fl0id);
	c.fl1id = cpu_to_be16(fl1id);
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_eth_eq_free - free an Ethernet egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees an Ethernet egress queue.
 */
int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		   unsigned int vf, unsigned int eqid)
{
	struct fw_eq_eth_cmd c;

	memset(&c, 0, sizeof(c));
5797 5798 5799 5800 5801 5802
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_ETH_CMD_PFN_V(pf) |
				  FW_EQ_ETH_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ctrl_eq_free - free a control egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ctrl_cmd c;

	memset(&c, 0, sizeof(c));
5822 5823 5824 5825 5826 5827
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_CTRL_CMD_PFN_V(pf) |
				  FW_EQ_CTRL_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_ofld_eq_free - free an offload egress queue
 *	@adap: the adapter
 *	@mbox: mailbox to use for the FW command
 *	@pf: the PF owning the queue
 *	@vf: the VF owning the queue
 *	@eqid: egress queue id
 *
 *	Frees a control egress queue.
 */
int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
		    unsigned int vf, unsigned int eqid)
{
	struct fw_eq_ofld_cmd c;

	memset(&c, 0, sizeof(c));
5847 5848 5849 5850 5851 5852
	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
				  FW_EQ_OFLD_CMD_PFN_V(pf) |
				  FW_EQ_OFLD_CMD_VFN_V(vf));
	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
}

/**
 *	t4_handle_fw_rpl - process a FW reply message
 *	@adap: the adapter
 *	@rpl: start of the FW message
 *
 *	Processes a FW message, such as link state change messages.
 */
int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
{
	u8 opcode = *(const u8 *)rpl;

	if (opcode == FW_PORT_CMD) {    /* link/module state change message */
		int speed = 0, fc = 0;
		const struct fw_port_cmd *p = (void *)rpl;
5870
		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
5871 5872 5873
		int port = adap->chan_map[chan];
		struct port_info *pi = adap2pinfo(adap, port);
		struct link_config *lc = &pi->link_cfg;
5874
		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
5875 5876
		int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
		u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
5877

5878
		if (stat & FW_PORT_CMD_RXPAUSE_F)
5879
			fc |= PAUSE_RX;
5880
		if (stat & FW_PORT_CMD_TXPAUSE_F)
5881
			fc |= PAUSE_TX;
5882
		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
5883
			speed = 100;
5884
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
5885
			speed = 1000;
5886
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
5887
			speed = 10000;
5888
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
5889
			speed = 40000;
5890 5891 5892 5893 5894 5895

		if (link_ok != lc->link_ok || speed != lc->speed ||
		    fc != lc->fc) {                    /* something changed */
			lc->link_ok = link_ok;
			lc->speed = speed;
			lc->fc = fc;
5896
			lc->supported = be16_to_cpu(p->u.info.pcap);
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
			t4_os_link_changed(adap, port, link_ok);
		}
		if (mod != pi->mod_type) {
			pi->mod_type = mod;
			t4_os_portmod_changed(adap, port);
		}
	}
	return 0;
}

5907
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
5908 5909 5910
{
	u16 val;

5911 5912
	if (pci_is_pcie(adapter->pdev)) {
		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
		p->speed = val & PCI_EXP_LNKSTA_CLS;
		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
	}
}

/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
5926
static void init_link_config(struct link_config *lc, unsigned int caps)
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

5942 5943 5944
#define CIM_PF_NOACCESS 0xeeeeeeee

int t4_wait_dev_ready(void __iomem *regs)
5945
{
5946 5947
	u32 whoami;

5948
	whoami = readl(regs + PL_WHOAMI_A);
5949
	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
5950
		return 0;
5951

5952
	msleep(500);
5953
	whoami = readl(regs + PL_WHOAMI_A);
5954
	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
5955 5956
}

5957 5958 5959 5960 5961
struct flash_desc {
	u32 vendor_and_model_id;
	u32 size_mb;
};

B
Bill Pemberton 已提交
5962
static int get_flash_params(struct adapter *adap)
5963
{
5964 5965 5966 5967 5968 5969 5970
	/* Table for non-Numonix supported flash parts.  Numonix parts are left
	 * to the preexisting code.  All flash parts have 64KB sectors.
	 */
	static struct flash_desc supported_flash[] = {
		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
	};

5971 5972 5973 5974 5975 5976
	int ret;
	u32 info;

	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
	if (!ret)
		ret = sf1_read(adap, 3, 0, 1, &info);
5977
	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
5978 5979 5980
	if (ret)
		return ret;

5981 5982 5983 5984 5985 5986 5987 5988
	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
		if (supported_flash[ret].vendor_and_model_id == info) {
			adap->params.sf_size = supported_flash[ret].size_mb;
			adap->params.sf_nsec =
				adap->params.sf_size / SF_SEC_SIZE;
			return 0;
		}

5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
		return -EINVAL;
	info >>= 16;                           /* log2 of size */
	if (info >= 0x14 && info < 0x18)
		adap->params.sf_nsec = 1 << (info - 16);
	else if (info == 0x18)
		adap->params.sf_nsec = 64;
	else
		return -EINVAL;
	adap->params.sf_size = 1 << info;
	adap->params.sf_fw_start =
6000
		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
6001 6002 6003 6004

	if (adap->params.sf_size < FLASH_MIN_SIZE)
		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
			 adap->params.sf_size, FLASH_MIN_SIZE);
6005 6006 6007
	return 0;
}

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
{
	u16 val;
	u32 pcie_cap;

	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
	if (pcie_cap) {
		pci_read_config_word(adapter->pdev,
				     pcie_cap + PCI_EXP_DEVCTL2, &val);
		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
		val |= range;
		pci_write_config_word(adapter->pdev,
				      pcie_cap + PCI_EXP_DEVCTL2, val);
	}
}

6024 6025 6026 6027 6028 6029 6030 6031 6032
/**
 *	t4_prep_adapter - prepare SW and HW for operation
 *	@adapter: the adapter
 *	@reset: if true perform a HW reset
 *
 *	Initialize adapter SW state for the various HW modules, set initial
 *	values for some adapter tunables, take PHYs out of reset, and
 *	initialize the MDIO interface.
 */
B
Bill Pemberton 已提交
6033
int t4_prep_adapter(struct adapter *adapter)
6034
{
S
Santosh Rastapur 已提交
6035 6036
	int ret, ver;
	uint16_t device_id;
6037
	u32 pl_rev;
6038 6039

	get_pci_mode(adapter, &adapter->params.pci);
6040
	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
6041

6042 6043 6044 6045 6046 6047
	ret = get_flash_params(adapter);
	if (ret < 0) {
		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
		return ret;
	}

S
Santosh Rastapur 已提交
6048 6049 6050 6051
	/* Retrieve adapter's device ID
	 */
	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
	ver = device_id >> 12;
6052
	adapter->params.chip = 0;
S
Santosh Rastapur 已提交
6053 6054
	switch (ver) {
	case CHELSIO_T4:
6055
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6056 6057 6058 6059 6060 6061
		adapter->params.arch.sge_fl_db = DBPRIO_F;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
		adapter->params.arch.vfcount = 128;
S
Santosh Rastapur 已提交
6062 6063
		break;
	case CHELSIO_T5:
6064
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 128;
		adapter->params.arch.nchan = NCHAN;
		adapter->params.arch.vfcount = 128;
		break;
	case CHELSIO_T6:
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
		adapter->params.arch.sge_fl_db = 0;
		adapter->params.arch.mps_tcam_size =
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
		adapter->params.arch.mps_rplc_size = 256;
		adapter->params.arch.nchan = 2;
		adapter->params.arch.vfcount = 256;
S
Santosh Rastapur 已提交
6080 6081 6082 6083 6084 6085 6086
		break;
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
			device_id);
		return -EINVAL;
	}

6087
	adapter->params.cim_la_size = CIMLA_SIZE;
6088 6089 6090 6091 6092 6093 6094
	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);

	/*
	 * Default port for debugging in case we can't reach FW.
	 */
	adapter->params.nports = 1;
	adapter->params.portvec = 1;
6095
	adapter->params.vpd.cclk = 50000;
6096 6097 6098

	/* Set pci completion timeout value to 4 seconds. */
	set_pcie_completion_timeout(adapter, 0xd);
6099 6100 6101
	return 0;
}

6102
/**
6103
 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
6104 6105 6106
 *	@adapter: the adapter
 *	@qid: the Queue ID
 *	@qtype: the Ingress or Egress type for @qid
6107
 *	@user: true if this request is for a user mode queue
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
 *	@pbar2_qoffset: BAR2 Queue Offset
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 *	Returns the BAR2 SGE Queue Registers information associated with the
 *	indicated Absolute Queue ID.  These are passed back in return value
 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 *	This may return an error which indicates that BAR2 SGE Queue
 *	registers aren't available.  If an error is not returned, then the
 *	following values are returned:
 *
 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 *	require the "Inferred Queue ID" ability may be used.  E.g. the
 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 *	then these "Inferred Queue ID" register may not be used.
 */
6128
int t4_bar2_sge_qregs(struct adapter *adapter,
6129 6130
		      unsigned int qid,
		      enum t4_bar2_qtype qtype,
6131
		      int user,
6132 6133 6134 6135 6136 6137 6138
		      u64 *pbar2_qoffset,
		      unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

6139 6140
	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
	if (!user && is_t4(adapter->params.chip))
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
		return -EINVAL;

	/* Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.hps + 10;
	page_size = 1 << page_shift;

	/* Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
		     ? adapter->params.sge.eq_qpp
		     : adapter->params.sge.iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/*  Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
6160
	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
/**
 *	t4_init_devlog_params - initialize adapter->params.devlog
 *	@adap: the adapter
 *
 *	Initialize various fields of the adapter's Firmware Device Log
 *	Parameters structure.
 */
int t4_init_devlog_params(struct adapter *adap)
{
	struct devlog_params *dparams = &adap->params.devlog;
	u32 pf_dparams;
	unsigned int devlog_meminfo;
	struct fw_devlog_cmd devlog_cmd;
	int ret;

	/* If we're dealing with newer firmware, the Device Log Paramerters
	 * are stored in a designated register which allows us to access the
	 * Device Log even if we can't talk to the firmware.
	 */
	pf_dparams =
		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
	if (pf_dparams) {
		unsigned int nentries, nentries128;

		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;

		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
		nentries = (nentries128 + 1) * 128;
		dparams->size = nentries * sizeof(struct fw_devlog_e);

		return 0;
	}

	/* Otherwise, ask the firmware for it's Device Log Parameters.
	 */
	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
6229 6230 6231
	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
6232 6233 6234 6235 6236
	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
			 &devlog_cmd);
	if (ret)
		return ret;

6237 6238
	devlog_meminfo =
		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
6239 6240
	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
6241
	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
6242 6243 6244 6245

	return 0;
}

6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
/**
 *	t4_init_sge_params - initialize adap->params.sge
 *	@adapter: the adapter
 *
 *	Initialize various fields of the adapter's SGE Parameters structure.
 */
int t4_init_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 hps, qpp;
	unsigned int s_hps, s_qpp;

	/* Extract the SGE Page Size for our PF.
	 */
6260
	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
6261
	s_hps = (HOSTPAGESIZEPF0_S +
6262
		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
6263 6264 6265 6266 6267
	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);

	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
	 */
	s_qpp = (QUEUESPERPAGEPF0_S +
6268
		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
6269 6270
	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6271
	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
6272
	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
6273 6274 6275 6276

	return 0;
}

6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
/**
 *      t4_init_tp_params - initialize adap->params.tp
 *      @adap: the adapter
 *
 *      Initialize various fields of the adapter's TP Parameters structure.
 */
int t4_init_tp_params(struct adapter *adap)
{
	int chan;
	u32 v;

6288 6289 6290
	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
	adap->params.tp.tre = TIMERRESOLUTION_G(v);
	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
6291 6292 6293 6294 6295 6296 6297 6298

	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
	for (chan = 0; chan < NCHAN; chan++)
		adap->params.tp.tx_modq[chan] = chan;

	/* Cache the adapter's Compressed Filter Mode and global Incress
	 * Configuration.
	 */
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
	if (adap->flags & FW_OK) {
		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
				TP_VLAN_PRI_MAP_A, 1);
		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
				TP_INGRESS_CONFIG_A, 1);
	} else {
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &adap->params.tp.vlan_pri_map, 1,
				 TP_VLAN_PRI_MAP_A);
		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
				 &adap->params.tp.ingress_config, 1,
				 TP_INGRESS_CONFIG_A);
	}
6312 6313 6314 6315 6316

	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
	 * shift positions of several elements of the Compressed Filter Tuple
	 * for this adapter which we need frequently ...
	 */
6317 6318 6319
	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
6320
	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
6321
							       PROTOCOL_F);
6322 6323

	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
6324
	 * represents the presence of an Outer VLAN instead of a VNIC ID.
6325
	 */
6326
	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
		adap->params.tp.vnic_shift = -1;

	return 0;
}

/**
 *      t4_filter_field_shift - calculate filter field shift
 *      @adap: the adapter
 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
 *
 *      Return the shift position of a filter field within the Compressed
 *      Filter Tuple.  The filter field is specified via its selection bit
 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
 */
int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
{
	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
	unsigned int sel;
	int field_shift;

	if ((filter_mode & filter_sel) == 0)
		return -1;

	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
		switch (filter_mode & sel) {
6352 6353
		case FCOE_F:
			field_shift += FT_FCOE_W;
6354
			break;
6355 6356
		case PORT_F:
			field_shift += FT_PORT_W;
6357
			break;
6358 6359
		case VNIC_ID_F:
			field_shift += FT_VNIC_ID_W;
6360
			break;
6361 6362
		case VLAN_F:
			field_shift += FT_VLAN_W;
6363
			break;
6364 6365
		case TOS_F:
			field_shift += FT_TOS_W;
6366
			break;
6367 6368
		case PROTOCOL_F:
			field_shift += FT_PROTOCOL_W;
6369
			break;
6370 6371
		case ETHERTYPE_F:
			field_shift += FT_ETHERTYPE_W;
6372
			break;
6373 6374
		case MACMATCH_F:
			field_shift += FT_MACMATCH_W;
6375
			break;
6376 6377
		case MPSHITTYPE_F:
			field_shift += FT_MPSHITTYPE_W;
6378
			break;
6379 6380
		case FRAGMENTATION_F:
			field_shift += FT_FRAGMENTATION_W;
6381 6382 6383 6384 6385 6386
			break;
		}
	}
	return field_shift;
}

6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
int t4_init_rss_mode(struct adapter *adap, int mbox)
{
	int i, ret;
	struct fw_rss_vi_config_cmd rvc;

	memset(&rvc, 0, sizeof(rvc));

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

6397 6398 6399 6400 6401
		rvc.op_to_viid =
			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6402 6403 6404
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
6405
		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6406 6407 6408 6409
	}
	return 0;
}

B
Bill Pemberton 已提交
6410
int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
6411 6412 6413 6414
{
	u8 addr[6];
	int ret, i, j = 0;
	struct fw_port_cmd c;
6415
	struct fw_rss_vi_config_cmd rvc;
6416 6417

	memset(&c, 0, sizeof(c));
6418
	memset(&rvc, 0, sizeof(rvc));
6419 6420 6421 6422 6423 6424 6425 6426

	for_each_port(adap, i) {
		unsigned int rss_size;
		struct port_info *p = adap2pinfo(adap, i);

		while ((adap->params.portvec & (1 << j)) == 0)
			j++;

6427 6428 6429 6430
		c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					     FW_CMD_REQUEST_F | FW_CMD_READ_F |
					     FW_PORT_CMD_PORTID_V(j));
		c.action_to_len16 = cpu_to_be32(
6431
			FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
			FW_LEN16(c));
		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
		if (ret)
			return ret;

		ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
		if (ret < 0)
			return ret;

		p->viid = ret;
		p->tx_chan = j;
		p->lport = j;
		p->rss_size = rss_size;
		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
6446
		adap->port[i]->dev_port = j;
6447

6448
		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
6449 6450 6451
		p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
			FW_PORT_CMD_MDIOADDR_G(ret) : -1;
		p->port_type = FW_PORT_CMD_PTYPE_G(ret);
6452
		p->mod_type = FW_PORT_MOD_TYPE_NA;
6453

6454 6455 6456 6457 6458
		rvc.op_to_viid =
			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
				    FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
6459 6460 6461
		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
		if (ret)
			return ret;
6462
		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
6463

6464
		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
6465 6466 6467 6468
		j++;
	}
	return 0;
}
6469

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
/**
 *	t4_read_cimq_cfg - read CIM queue configuration
 *	@adap: the adapter
 *	@base: holds the queue base addresses in bytes
 *	@size: holds the queue sizes in bytes
 *	@thres: holds the queue full thresholds in bytes
 *
 *	Returns the current configuration of the CIM queues, starting with
 *	the IBQs, then the OBQs.
 */
void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
{
	unsigned int i, v;
	int cim_num_obq = is_t4(adap->params.chip) ?
				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;

	for (i = 0; i < CIM_NUM_IBQ; i++) {
		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
			     QUENUMSELECT_V(i));
		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
		/* value is in 256-byte units */
		*base++ = CIMQBASE_G(v) * 256;
		*size++ = CIMQSIZE_G(v) * 256;
		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
	}
	for (i = 0; i < cim_num_obq; i++) {
		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
			     QUENUMSELECT_V(i));
		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
		/* value is in 256-byte units */
		*base++ = CIMQBASE_G(v) * 256;
		*size++ = CIMQSIZE_G(v) * 256;
	}
}

6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
/**
 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
 *	@adap: the adapter
 *	@qid: the queue index
 *	@data: where to store the queue contents
 *	@n: capacity of @data in 32-bit words
 *
 *	Reads the contents of the selected CIM queue starting at address 0 up
 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
 *	error and the number of 32-bit words actually read on success.
 */
int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
	int i, err, attempts;
	unsigned int addr;
	const unsigned int nwords = CIM_IBQ_SIZE * 4;

	if (qid > 5 || (n & 3))
		return -EINVAL;

	addr = qid * nwords;
	if (n > nwords)
		n = nwords;

	/* It might take 3-10ms before the IBQ debug read access is allowed.
	 * Wait for 1 Sec with a delay of 1 usec.
	 */
	attempts = 1000000;

	for (i = 0; i < n; i++, addr++) {
		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
			     IBQDBGEN_F);
		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
				      attempts, 1);
		if (err)
			return err;
		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
	}
	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
	return i;
}

/**
 *	t4_read_cim_obq - read the contents of a CIM outbound queue
 *	@adap: the adapter
 *	@qid: the queue index
 *	@data: where to store the queue contents
 *	@n: capacity of @data in 32-bit words
 *
 *	Reads the contents of the selected CIM queue starting at address 0 up
 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
 *	error and the number of 32-bit words actually read on success.
 */
int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
{
	int i, err;
	unsigned int addr, v, nwords;
	int cim_num_obq = is_t4(adap->params.chip) ?
				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;

	if ((qid > (cim_num_obq - 1)) || (n & 3))
		return -EINVAL;

	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
		     QUENUMSELECT_V(qid));
	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);

	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
	nwords = CIMQSIZE_G(v) * 64;  /* same */
	if (n > nwords)
		n = nwords;

	for (i = 0; i < n; i++, addr++) {
		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
			     OBQDBGEN_F);
		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
				      2, 1);
		if (err)
			return err;
		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
	}
	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
6587 6588 6589
	return i;
}

6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
/**
 *	t4_cim_read - read a block from CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to read
 *	@valp: where to store the result
 *
 *	Reads a block of 4-byte words from the CIM intenal address space.
 */
int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
		unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
		if (!ret)
			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
	}
	return ret;
}

/**
 *	t4_cim_write - write a block into CIM internal address space
 *	@adap: the adapter
 *	@addr: the start address within the CIM address space
 *	@n: number of words to write
 *	@valp: set of values to write
 *
 *	Writes a block of 4-byte words into the CIM intenal address space.
 */
int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
		 const unsigned int *valp)
{
	int ret = 0;

	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
		return -EBUSY;

	for ( ; !ret && n--; addr += 4) {
		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
				      0, 5, 2);
	}
	return ret;
}

static int t4_cim_write1(struct adapter *adap, unsigned int addr,
			 unsigned int val)
{
	return t4_cim_write(adap, addr, 1, &val);
}

/**
 *	t4_cim_read_la - read CIM LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the CIM LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We try to leave the LA in the running state we find it in.
 */
int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
{
	int i, ret;
	unsigned int cfg, val, idx;

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
	if (ret)
		return ret;

	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
		if (ret)
			return ret;
	}

	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
	if (ret)
		goto restart;

	idx = UPDBGLAWRPTR_G(val);
	if (wrptr)
		*wrptr = idx;

	for (i = 0; i < adap->params.cim_la_size; i++) {
		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
		if (ret)
			break;
		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
		if (ret)
			break;
		if (val & UPDBGLARDEN_F) {
			ret = -ETIMEDOUT;
			break;
		}
		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
		if (ret)
			break;
		idx = (idx + 1) & UPDBGLARDPTR_M;
	}
restart:
	if (cfg & UPDBGLAEN_F) {
		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
				      cfg & ~UPDBGLARDEN_F);
		if (!ret)
			ret = r;
	}
	return ret;
}
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754

/**
 *	t4_tp_read_la - read TP LA capture buffer
 *	@adap: the adapter
 *	@la_buf: where to store the LA data
 *	@wrptr: the HW write pointer within the capture buffer
 *
 *	Reads the contents of the TP LA buffer with the most recent entry at
 *	the end	of the returned data and with the entry at @wrptr first.
 *	We leave the LA in the running state we find it in.
 */
void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
{
	bool last_incomplete;
	unsigned int i, cfg, val, idx;

	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
	if (cfg & DBGLAENABLE_F)			/* freeze LA */
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));

	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
	idx = DBGLAWPTR_G(val);
	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
	if (last_incomplete)
		idx = (idx + 1) & DBGLARPTR_M;
	if (wrptr)
		*wrptr = idx;

	val &= 0xffff;
	val &= ~DBGLARPTR_V(DBGLARPTR_M);
	val |= adap->params.tp.la_mask;

	for (i = 0; i < TPLA_SIZE; i++) {
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
		idx = (idx + 1) & DBGLARPTR_M;
	}

	/* Wipe out last entry if it isn't valid */
	if (last_incomplete)
		la_buf[TPLA_SIZE - 1] = ~0ULL;

	if (cfg & DBGLAENABLE_F)                    /* restore running state */
		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
			     cfg | adap->params.tp.la_mask);
}
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881

/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
 * state for more than the Warning Threshold then we'll issue a warning about
 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
 * appears to be hung every Warning Repeat second till the situation clears.
 * If the situation clears, we'll note that as well.
 */
#define SGE_IDMA_WARN_THRESH 1
#define SGE_IDMA_WARN_REPEAT 300

/**
 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
 *	@adapter: the adapter
 *	@idma: the adapter IDMA Monitor state
 *
 *	Initialize the state of an SGE Ingress DMA Monitor.
 */
void t4_idma_monitor_init(struct adapter *adapter,
			  struct sge_idma_monitor_state *idma)
{
	/* Initialize the state variables for detecting an SGE Ingress DMA
	 * hang.  The SGE has internal counters which count up on each clock
	 * tick whenever the SGE finds its Ingress DMA State Engines in the
	 * same state they were on the previous clock tick.  The clock used is
	 * the Core Clock so we have a limit on the maximum "time" they can
	 * record; typically a very small number of seconds.  For instance,
	 * with a 600MHz Core Clock, we can only count up to a bit more than
	 * 7s.  So we'll synthesize a larger counter in order to not run the
	 * risk of having the "timers" overflow and give us the flexibility to
	 * maintain a Hung SGE State Machine of our own which operates across
	 * a longer time frame.
	 */
	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
	idma->idma_stalled[0] = 0;
	idma->idma_stalled[1] = 0;
}

/**
 *	t4_idma_monitor - monitor SGE Ingress DMA state
 *	@adapter: the adapter
 *	@idma: the adapter IDMA Monitor state
 *	@hz: number of ticks/second
 *	@ticks: number of ticks since the last IDMA Monitor call
 */
void t4_idma_monitor(struct adapter *adapter,
		     struct sge_idma_monitor_state *idma,
		     int hz, int ticks)
{
	int i, idma_same_state_cnt[2];

	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
	  * are counters inside the SGE which count up on each clock when the
	  * SGE finds its Ingress DMA State Engines in the same states they
	  * were in the previous clock.  The counters will peg out at
	  * 0xffffffff without wrapping around so once they pass the 1s
	  * threshold they'll stay above that till the IDMA state changes.
	  */
	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);

	for (i = 0; i < 2; i++) {
		u32 debug0, debug11;

		/* If the Ingress DMA Same State Counter ("timer") is less
		 * than 1s, then we can reset our synthesized Stall Timer and
		 * continue.  If we have previously emitted warnings about a
		 * potential stalled Ingress Queue, issue a note indicating
		 * that the Ingress Queue has resumed forward progress.
		 */
		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
					 "resumed after %d seconds\n",
					 i, idma->idma_qid[i],
					 idma->idma_stalled[i] / hz);
			idma->idma_stalled[i] = 0;
			continue;
		}

		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
		 * domain.  The first time we get here it'll be because we
		 * passed the 1s Threshold; each additional time it'll be
		 * because the RX Timer Callback is being fired on its regular
		 * schedule.
		 *
		 * If the stall is below our Potential Hung Ingress Queue
		 * Warning Threshold, continue.
		 */
		if (idma->idma_stalled[i] == 0) {
			idma->idma_stalled[i] = hz;
			idma->idma_warn[i] = 0;
		} else {
			idma->idma_stalled[i] += ticks;
			idma->idma_warn[i] -= ticks;
		}

		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
			continue;

		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
		 */
		if (idma->idma_warn[i] > 0)
			continue;
		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;

		/* Read and save the SGE IDMA State and Queue ID information.
		 * We do this every time in case it changes across time ...
		 * can't be too careful ...
		 */
		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;

		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;

		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
			 i, idma->idma_qid[i], idma->idma_state[i],
			 idma->idma_stalled[i] / hz,
			 debug0, debug11);
		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
	}
}