dma-iommu.c 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * A fairly generic DMA-API to IOMMU-API glue layer.
 *
 * Copyright (C) 2014-2015 ARM Ltd.
 *
 * based in part on arch/arm/mm/dma-mapping.c:
 * Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

22
#include <linux/acpi_iort.h>
23 24
#include <linux/device.h>
#include <linux/dma-iommu.h>
25
#include <linux/gfp.h>
26 27 28
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
29
#include <linux/irq.h>
30
#include <linux/mm.h>
31
#include <linux/pci.h>
32 33
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
34

35 36 37 38 39 40
struct iommu_dma_msi_page {
	struct list_head	list;
	dma_addr_t		iova;
	phys_addr_t		phys;
};

R
Robin Murphy 已提交
41 42 43 44 45
enum iommu_dma_cookie_type {
	IOMMU_DMA_IOVA_COOKIE,
	IOMMU_DMA_MSI_COOKIE,
};

46
struct iommu_dma_cookie {
R
Robin Murphy 已提交
47 48 49 50 51 52 53 54 55
	enum iommu_dma_cookie_type	type;
	union {
		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
		struct iova_domain	iovad;
		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
		dma_addr_t		msi_iova;
	};
	struct list_head		msi_page_list;
	spinlock_t			msi_lock;
56 57 58

	/* Domain for flush queue callback; NULL if flush queue not in use */
	struct iommu_domain		*fq_domain;
59 60
};

R
Robin Murphy 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
		return cookie->iovad.granule;
	return PAGE_SIZE;
}

static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
	struct iommu_dma_cookie *cookie;

	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
	if (cookie) {
		spin_lock_init(&cookie->msi_lock);
		INIT_LIST_HEAD(&cookie->msi_page_list);
		cookie->type = type;
	}
	return cookie;
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93
int iommu_dma_init(void)
{
	return iova_cache_get();
}

/**
 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 * @domain: IOMMU domain to prepare for DMA-API usage
 *
 * IOMMU drivers should normally call this from their domain_alloc
 * callback when domain->type == IOMMU_DOMAIN_DMA.
 */
int iommu_get_dma_cookie(struct iommu_domain *domain)
R
Robin Murphy 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
{
	if (domain->iova_cookie)
		return -EEXIST;

	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
	if (!domain->iova_cookie)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);

/**
 * iommu_get_msi_cookie - Acquire just MSI remapping resources
 * @domain: IOMMU domain to prepare
 * @base: Start address of IOVA region for MSI mappings
 *
 * Users who manage their own IOVA allocation and do not want DMA API support,
 * but would still like to take advantage of automatic MSI remapping, can use
 * this to initialise their own domain appropriately. Users should reserve a
 * contiguous IOVA region, starting at @base, large enough to accommodate the
 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 * used by the devices attached to @domain.
 */
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
119
{
120
	struct iommu_dma_cookie *cookie;
121

R
Robin Murphy 已提交
122 123 124
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

125 126 127
	if (domain->iova_cookie)
		return -EEXIST;

R
Robin Murphy 已提交
128
	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
129 130
	if (!cookie)
		return -ENOMEM;
131

R
Robin Murphy 已提交
132
	cookie->msi_iova = base;
133 134
	domain->iova_cookie = cookie;
	return 0;
135
}
R
Robin Murphy 已提交
136
EXPORT_SYMBOL(iommu_get_msi_cookie);
137 138 139

/**
 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
R
Robin Murphy 已提交
140 141
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 *          iommu_get_msi_cookie()
142 143 144 145 146
 *
 * IOMMU drivers should normally call this from their domain_free callback.
 */
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
147 148
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi, *tmp;
149

150
	if (!cookie)
151 152
		return;

R
Robin Murphy 已提交
153
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
154 155 156 157 158 159 160
		put_iova_domain(&cookie->iovad);

	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
		list_del(&msi->list);
		kfree(msi);
	}
	kfree(cookie);
161 162 163 164
	domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);

165 166 167 168 169 170
/**
 * iommu_dma_get_resv_regions - Reserved region driver helper
 * @dev: Device from iommu_get_resv_regions()
 * @list: Reserved region list from iommu_get_resv_regions()
 *
 * IOMMU drivers can use this to implement their .get_resv_regions callback
171 172 173
 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 * reservation.
174 175
 */
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
176 177
{

178
	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
179
		iort_iommu_msi_get_resv_regions(dev, list);
180

181
}
182
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
		phys_addr_t start, phys_addr_t end)
{
	struct iova_domain *iovad = &cookie->iovad;
	struct iommu_dma_msi_page *msi_page;
	int i, num_pages;

	start -= iova_offset(iovad, start);
	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);

	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
	if (!msi_page)
		return -ENOMEM;

	for (i = 0; i < num_pages; i++) {
		msi_page[i].phys = start;
		msi_page[i].iova = start;
		INIT_LIST_HEAD(&msi_page[i].list);
		list_add(&msi_page[i].list, &cookie->msi_page_list);
		start += iovad->granule;
	}

	return 0;
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static void iova_reserve_pci_windows(struct pci_dev *dev,
		struct iova_domain *iovad)
{
	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
	struct resource_entry *window;
	unsigned long lo, hi;

	resource_list_for_each_entry(window, &bridge->windows) {
		if (resource_type(window->res) != IORESOURCE_MEM)
			continue;

		lo = iova_pfn(iovad, window->res->start - window->offset);
		hi = iova_pfn(iovad, window->res->end - window->offset);
		reserve_iova(iovad, lo, hi);
	}
}

226 227 228 229 230 231 232 233 234
static int iova_reserve_iommu_regions(struct device *dev,
		struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
	struct iommu_resv_region *region;
	LIST_HEAD(resv_regions);
	int ret = 0;

235 236 237
	if (dev_is_pci(dev))
		iova_reserve_pci_windows(to_pci_dev(dev), iovad);

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	iommu_get_resv_regions(dev, &resv_regions);
	list_for_each_entry(region, &resv_regions, list) {
		unsigned long lo, hi;

		/* We ARE the software that manages these! */
		if (region->type == IOMMU_RESV_SW_MSI)
			continue;

		lo = iova_pfn(iovad, region->start);
		hi = iova_pfn(iovad, region->start + region->length - 1);
		reserve_iova(iovad, lo, hi);

		if (region->type == IOMMU_RESV_MSI)
			ret = cookie_init_hw_msi_region(cookie, region->start,
					region->start + region->length);
		if (ret)
			break;
	}
	iommu_put_resv_regions(dev, &resv_regions);

	return ret;
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274
static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
{
	struct iommu_dma_cookie *cookie;
	struct iommu_domain *domain;

	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
	domain = cookie->fq_domain;
	/*
	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
	 * implies that ops->flush_iotlb_all must be non-NULL.
	 */
	domain->ops->flush_iotlb_all(domain);
}

275 276 277 278 279
/**
 * iommu_dma_init_domain - Initialise a DMA mapping domain
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 * @base: IOVA at which the mappable address space starts
 * @size: Size of IOVA space
280
 * @dev: Device the domain is being initialised for
281 282 283 284 285 286
 *
 * @base and @size should be exact multiples of IOMMU page granularity to
 * avoid rounding surprises. If necessary, we reserve the page at address 0
 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 * any change which could make prior IOVAs invalid will fail.
 */
287 288
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
		u64 size, struct device *dev)
289
{
R
Robin Murphy 已提交
290 291
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
292
	unsigned long order, base_pfn, end_pfn;
293
	int attr;
294

R
Robin Murphy 已提交
295 296
	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
		return -EINVAL;
297 298

	/* Use the smallest supported page size for IOVA granularity */
299
	order = __ffs(domain->pgsize_bitmap);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	base_pfn = max_t(unsigned long, 1, base >> order);
	end_pfn = (base + size - 1) >> order;

	/* Check the domain allows at least some access to the device... */
	if (domain->geometry.force_aperture) {
		if (base > domain->geometry.aperture_end ||
		    base + size <= domain->geometry.aperture_start) {
			pr_warn("specified DMA range outside IOMMU capability\n");
			return -EFAULT;
		}
		/* ...then finally give it a kicking to make sure it fits */
		base_pfn = max_t(unsigned long, base_pfn,
				domain->geometry.aperture_start >> order);
	}

315
	/* start_pfn is always nonzero for an already-initialised domain */
316 317
	if (iovad->start_pfn) {
		if (1UL << order != iovad->granule ||
318
		    base_pfn != iovad->start_pfn) {
319 320 321
			pr_warn("Incompatible range for DMA domain\n");
			return -EFAULT;
		}
322 323

		return 0;
324
	}
325

326
	init_iova_domain(iovad, 1UL << order, base_pfn);
327 328 329 330 331 332 333

	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
		cookie->fq_domain = domain;
		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
	}

334 335 336 337
	if (!dev)
		return 0;

	return iova_reserve_iommu_regions(dev, domain);
338 339 340 341
}
EXPORT_SYMBOL(iommu_dma_init_domain);

/**
342 343
 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 *                    page flags.
344 345
 * @dir: Direction of DMA transfer
 * @coherent: Is the DMA master cache-coherent?
346
 * @attrs: DMA attributes for the mapping
347 348 349
 *
 * Return: corresponding IOMMU API page protection flags
 */
350 351
int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
		     unsigned long attrs)
352 353 354
{
	int prot = coherent ? IOMMU_CACHE : 0;

355 356 357
	if (attrs & DMA_ATTR_PRIVILEGED)
		prot |= IOMMU_PRIV;

358 359 360 361 362 363 364 365 366 367 368 369
	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return 0;
	}
}

370 371
static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
		size_t size, dma_addr_t dma_limit, struct device *dev)
372
{
373 374
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
375
	unsigned long shift, iova_len, iova = 0;
376

377 378 379 380 381 382 383
	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
		cookie->msi_iova += size;
		return cookie->msi_iova - size;
	}

	shift = iova_shift(iovad);
	iova_len = size >> shift;
384 385 386 387 388 389 390 391
	/*
	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
	 * will come back to bite us badly, so we have to waste a bit of space
	 * rounding up anything cacheable to make sure that can't happen. The
	 * order of the unadjusted size will still match upon freeing.
	 */
	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
		iova_len = roundup_pow_of_two(iova_len);
392

393 394 395
	if (dev->bus_dma_mask)
		dma_limit &= dev->bus_dma_mask;

396 397
	if (domain->geometry.force_aperture)
		dma_limit = min(dma_limit, domain->geometry.aperture_end);
398 399 400

	/* Try to get PCI devices a SAC address */
	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
401 402
		iova = alloc_iova_fast(iovad, iova_len,
				       DMA_BIT_MASK(32) >> shift, false);
403

404
	if (!iova)
405 406
		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
				       true);
407

408
	return (dma_addr_t)iova << shift;
409 410
}

411 412
static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
		dma_addr_t iova, size_t size)
413
{
414
	struct iova_domain *iovad = &cookie->iovad;
415

416
	/* The MSI case is only ever cleaning up its most recent allocation */
417
	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
418
		cookie->msi_iova -= size;
419 420 421
	else if (cookie->fq_domain)	/* non-strict mode */
		queue_iova(iovad, iova_pfn(iovad, iova),
				size >> iova_shift(iovad), 0);
422
	else
423 424
		free_iova_fast(iovad, iova_pfn(iovad, iova),
				size >> iova_shift(iovad));
425 426 427 428 429
}

static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
		size_t size)
{
430 431
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
432 433 434 435 436
	size_t iova_off = iova_offset(iovad, dma_addr);

	dma_addr -= iova_off;
	size = iova_align(iovad, size + iova_off);

437 438 439
	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
	if (!cookie->fq_domain)
		iommu_tlb_sync(domain);
440
	iommu_dma_free_iova(cookie, dma_addr, size);
441 442 443 444 445 446 447 448 449
}

static void __iommu_dma_free_pages(struct page **pages, int count)
{
	while (count--)
		__free_page(pages[count]);
	kvfree(pages);
}

450 451
static struct page **__iommu_dma_alloc_pages(struct device *dev,
		unsigned int count, unsigned long order_mask, gfp_t gfp)
452 453
{
	struct page **pages;
454
	unsigned int i = 0, nid = dev_to_node(dev);
455 456 457 458

	order_mask &= (2U << MAX_ORDER) - 1;
	if (!order_mask)
		return NULL;
459

460
	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
461 462 463 464 465 466 467 468
	if (!pages)
		return NULL;

	/* IOMMU can map any pages, so himem can also be used here */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	while (count) {
		struct page *page = NULL;
469
		unsigned int order_size;
470 471 472 473

		/*
		 * Higher-order allocations are a convenience rather
		 * than a necessity, hence using __GFP_NORETRY until
474
		 * falling back to minimum-order allocations.
475
		 */
476 477 478
		for (order_mask &= (2U << __fls(count)) - 1;
		     order_mask; order_mask &= ~order_size) {
			unsigned int order = __fls(order_mask);
479
			gfp_t alloc_flags = gfp;
480 481

			order_size = 1U << order;
482 483 484
			if (order_mask > order_size)
				alloc_flags |= __GFP_NORETRY;
			page = alloc_pages_node(nid, alloc_flags, order);
485 486
			if (!page)
				continue;
487 488 489
			if (!order)
				break;
			if (!PageCompound(page)) {
490 491
				split_page(page, order);
				break;
492 493
			} else if (!split_huge_page(page)) {
				break;
494
			}
495
			__free_pages(page, order);
496 497 498 499 500
		}
		if (!page) {
			__iommu_dma_free_pages(pages, i);
			return NULL;
		}
501 502
		count -= order_size;
		while (order_size--)
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
			pages[i++] = page++;
	}
	return pages;
}

/**
 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
 * @dev: Device which owns this buffer
 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @handle: DMA address of buffer
 *
 * Frees both the pages associated with the buffer, and the array
 * describing them
 */
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
		dma_addr_t *handle)
{
521
	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
522
	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
523
	*handle = DMA_MAPPING_ERROR;
524 525 526 527 528 529 530 531
}

/**
 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
 * @dev: Device to allocate memory for. Must be a real device
 *	 attached to an iommu_dma_domain
 * @size: Size of buffer in bytes
 * @gfp: Allocation flags
532
 * @attrs: DMA attributes for this allocation
533 534 535 536 537 538 539 540 541 542 543
 * @prot: IOMMU mapping flags
 * @handle: Out argument for allocated DMA handle
 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
 *		given VA/PA are visible to the given non-coherent device.
 *
 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 * but an IOMMU which supports smaller pages might not map the whole thing.
 *
 * Return: Array of struct page pointers describing the buffer,
 *	   or NULL on failure.
 */
544
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
545
		unsigned long attrs, int prot, dma_addr_t *handle,
546 547
		void (*flush_page)(struct device *, const void *, phys_addr_t))
{
548
	struct iommu_domain *domain = iommu_get_dma_domain(dev);
549 550
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
551 552
	struct page **pages;
	struct sg_table sgt;
553
	dma_addr_t iova;
554
	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
555

556
	*handle = DMA_MAPPING_ERROR;
557

558 559 560 561 562 563 564
	min_size = alloc_sizes & -alloc_sizes;
	if (min_size < PAGE_SIZE) {
		min_size = PAGE_SIZE;
		alloc_sizes |= PAGE_SIZE;
	} else {
		size = ALIGN(size, min_size);
	}
565
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
566 567 568
		alloc_sizes = min_size;

	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
569 570
	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
					gfp);
571 572 573
	if (!pages)
		return NULL;

574 575
	size = iova_align(iovad, size);
	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	if (!iova)
		goto out_free_pages;

	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
		goto out_free_iova;

	if (!(prot & IOMMU_CACHE)) {
		struct sg_mapping_iter miter;
		/*
		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
		 * sufficient here, so skip it by using the "wrong" direction.
		 */
		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
		while (sg_miter_next(&miter))
			flush_page(dev, miter.addr, page_to_phys(miter.page));
		sg_miter_stop(&miter);
	}

594
	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
595 596 597
			< size)
		goto out_free_sg;

598
	*handle = iova;
599 600 601 602 603 604
	sg_free_table(&sgt);
	return pages;

out_free_sg:
	sg_free_table(&sgt);
out_free_iova:
605
	iommu_dma_free_iova(cookie, iova, size);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
out_free_pages:
	__iommu_dma_free_pages(pages, count);
	return NULL;
}

/**
 * iommu_dma_mmap - Map a buffer into provided user VMA
 * @pages: Array representing buffer from iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @vma: VMA describing requested userspace mapping
 *
 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 * for verifying the correct size and protection of @vma beforehand.
 */

int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
	unsigned long uaddr = vma->vm_start;
	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	int ret = -ENXIO;

	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
		ret = vm_insert_page(vma, uaddr, pages[i]);
		if (ret)
			break;
		uaddr += PAGE_SIZE;
	}
	return ret;
}

636
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
637
		size_t size, int prot, struct iommu_domain *domain)
638
{
639
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
640
	size_t iova_off = 0;
641
	dma_addr_t iova;
642

643 644 645 646 647
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
		iova_off = iova_offset(&cookie->iovad, phys);
		size = iova_align(&cookie->iovad, size + iova_off);
	}

648
	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
649
	if (!iova)
650
		return DMA_MAPPING_ERROR;
651

652 653
	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
		iommu_dma_free_iova(cookie, iova, size);
654
		return DMA_MAPPING_ERROR;
655
	}
656
	return iova + iova_off;
657 658
}

659 660 661
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
		unsigned long offset, size_t size, int prot)
{
662 663
	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
			iommu_get_dma_domain(dev));
664 665
}

666
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
667
		enum dma_data_direction dir, unsigned long attrs)
668
{
669
	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
670 671 672 673
}

/*
 * Prepare a successfully-mapped scatterlist to give back to the caller.
674 675 676 677
 *
 * At this point the segments are already laid out by iommu_dma_map_sg() to
 * avoid individually crossing any boundaries, so we merely need to check a
 * segment's start address to avoid concatenating across one.
678 679 680 681
 */
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
		dma_addr_t dma_addr)
{
682 683 684 685
	struct scatterlist *s, *cur = sg;
	unsigned long seg_mask = dma_get_seg_boundary(dev);
	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
	int i, count = 0;
686 687

	for_each_sg(sg, s, nents, i) {
688 689
		/* Restore this segment's original unaligned fields first */
		unsigned int s_iova_off = sg_dma_address(s);
690
		unsigned int s_length = sg_dma_len(s);
691
		unsigned int s_iova_len = s->length;
692

693
		s->offset += s_iova_off;
694
		s->length = s_length;
695
		sg_dma_address(s) = DMA_MAPPING_ERROR;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
		sg_dma_len(s) = 0;

		/*
		 * Now fill in the real DMA data. If...
		 * - there is a valid output segment to append to
		 * - and this segment starts on an IOVA page boundary
		 * - but doesn't fall at a segment boundary
		 * - and wouldn't make the resulting output segment too long
		 */
		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
		    (cur_len + s_length <= max_len)) {
			/* ...then concatenate it with the previous one */
			cur_len += s_length;
		} else {
			/* Otherwise start the next output segment */
			if (i > 0)
				cur = sg_next(cur);
			cur_len = s_length;
			count++;

			sg_dma_address(cur) = dma_addr + s_iova_off;
		}

		sg_dma_len(cur) = cur_len;
		dma_addr += s_iova_len;

		if (s_length + s_iova_off < s_iova_len)
			cur_len = 0;
724
	}
725
	return count;
726 727 728 729 730 731 732 733 734 735 736 737
}

/*
 * If mapping failed, then just restore the original list,
 * but making sure the DMA fields are invalidated.
 */
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
738
		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
739
			s->offset += sg_dma_address(s);
740 741
		if (sg_dma_len(s))
			s->length = sg_dma_len(s);
742
		sg_dma_address(s) = DMA_MAPPING_ERROR;
743 744 745 746 747 748 749 750 751 752 753 754 755 756
		sg_dma_len(s) = 0;
	}
}

/*
 * The DMA API client is passing in a scatterlist which could describe
 * any old buffer layout, but the IOMMU API requires everything to be
 * aligned to IOMMU pages. Hence the need for this complicated bit of
 * impedance-matching, to be able to hand off a suitably-aligned list,
 * but still preserve the original offsets and sizes for the caller.
 */
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, int prot)
{
757
	struct iommu_domain *domain = iommu_get_dma_domain(dev);
758 759
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
760
	struct scatterlist *s, *prev = NULL;
761
	dma_addr_t iova;
762
	size_t iova_len = 0;
763
	unsigned long mask = dma_get_seg_boundary(dev);
764 765 766 767 768 769
	int i;

	/*
	 * Work out how much IOVA space we need, and align the segments to
	 * IOVA granules for the IOMMU driver to handle. With some clever
	 * trickery we can modify the list in-place, but reversibly, by
770
	 * stashing the unaligned parts in the as-yet-unused DMA fields.
771 772
	 */
	for_each_sg(sg, s, nents, i) {
773
		size_t s_iova_off = iova_offset(iovad, s->offset);
774
		size_t s_length = s->length;
775
		size_t pad_len = (mask - iova_len + 1) & mask;
776

777
		sg_dma_address(s) = s_iova_off;
778
		sg_dma_len(s) = s_length;
779 780
		s->offset -= s_iova_off;
		s_length = iova_align(iovad, s_length + s_iova_off);
781 782 783
		s->length = s_length;

		/*
784 785 786 787 788 789 790 791 792 793 794
		 * Due to the alignment of our single IOVA allocation, we can
		 * depend on these assumptions about the segment boundary mask:
		 * - If mask size >= IOVA size, then the IOVA range cannot
		 *   possibly fall across a boundary, so we don't care.
		 * - If mask size < IOVA size, then the IOVA range must start
		 *   exactly on a boundary, therefore we can lay things out
		 *   based purely on segment lengths without needing to know
		 *   the actual addresses beforehand.
		 * - The mask must be a power of 2, so pad_len == 0 if
		 *   iova_len == 0, thus we cannot dereference prev the first
		 *   time through here (i.e. before it has a meaningful value).
795
		 */
796
		if (pad_len && pad_len < s_length - 1) {
797 798 799 800 801 802 803 804
			prev->length += pad_len;
			iova_len += pad_len;
		}

		iova_len += s_length;
		prev = s;
	}

805
	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
806 807 808 809 810 811 812
	if (!iova)
		goto out_restore_sg;

	/*
	 * We'll leave any physical concatenation to the IOMMU driver's
	 * implementation - it knows better than we do.
	 */
813
	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
814 815
		goto out_free_iova;

816
	return __finalise_sg(dev, sg, nents, iova);
817 818

out_free_iova:
819
	iommu_dma_free_iova(cookie, iova, iova_len);
820 821 822 823 824 825
out_restore_sg:
	__invalidate_sg(sg, nents);
	return 0;
}

void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
826
		enum dma_data_direction dir, unsigned long attrs)
827
{
828 829 830
	dma_addr_t start, end;
	struct scatterlist *tmp;
	int i;
831 832 833 834
	/*
	 * The scatterlist segments are mapped into a single
	 * contiguous IOVA allocation, so this is incredibly easy.
	 */
835 836 837 838 839 840 841
	start = sg_dma_address(sg);
	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
		if (sg_dma_len(tmp) == 0)
			break;
		sg = tmp;
	}
	end = sg_dma_address(sg) + sg_dma_len(sg);
842
	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
843 844
}

845 846 847 848
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return __iommu_dma_map(dev, phys, size,
849 850
			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
			iommu_get_dma_domain(dev));
851 852 853 854 855
}

void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
856
	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
857 858
}

859 860 861 862 863
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
		phys_addr_t msi_addr, struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi_page;
864
	dma_addr_t iova;
865
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
R
Robin Murphy 已提交
866
	size_t size = cookie_msi_granule(cookie);
867

R
Robin Murphy 已提交
868
	msi_addr &= ~(phys_addr_t)(size - 1);
869 870 871 872 873 874 875 876
	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
		if (msi_page->phys == msi_addr)
			return msi_page;

	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
	if (!msi_page)
		return NULL;

877
	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
878
	if (iova == DMA_MAPPING_ERROR)
879
		goto out_free_page;
880 881

	INIT_LIST_HEAD(&msi_page->list);
882 883
	msi_page->phys = msi_addr;
	msi_page->iova = iova;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	list_add(&msi_page->list, &cookie->msi_page_list);
	return msi_page;

out_free_page:
	kfree(msi_page);
	return NULL;
}

void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct iommu_dma_cookie *cookie;
	struct iommu_dma_msi_page *msi_page;
	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
	unsigned long flags;

	if (!domain || !domain->iova_cookie)
		return;

	cookie = domain->iova_cookie;

	/*
	 * We disable IRQs to rule out a possible inversion against
	 * irq_desc_lock if, say, someone tries to retarget the affinity
	 * of an MSI from within an IPI handler.
	 */
	spin_lock_irqsave(&cookie->msi_lock, flags);
	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
	spin_unlock_irqrestore(&cookie->msi_lock, flags);

	if (WARN_ON(!msi_page)) {
		/*
		 * We're called from a void callback, so the best we can do is
		 * 'fail' by filling the message with obviously bogus values.
		 * Since we got this far due to an IOMMU being present, it's
		 * not like the existing address would have worked anyway...
		 */
		msg->address_hi = ~0U;
		msg->address_lo = ~0U;
		msg->data = ~0U;
	} else {
		msg->address_hi = upper_32_bits(msi_page->iova);
R
Robin Murphy 已提交
927
		msg->address_lo &= cookie_msi_granule(cookie) - 1;
928 929 930
		msg->address_lo += lower_32_bits(msi_page->iova);
	}
}