dma-iommu.c 25.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * A fairly generic DMA-API to IOMMU-API glue layer.
 *
 * Copyright (C) 2014-2015 ARM Ltd.
 *
 * based in part on arch/arm/mm/dma-mapping.c:
 * Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/device.h>
#include <linux/dma-iommu.h>
24
#include <linux/gfp.h>
25 26 27
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
28
#include <linux/irq.h>
29
#include <linux/mm.h>
30
#include <linux/pci.h>
31 32
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
33

34 35 36 37 38 39
struct iommu_dma_msi_page {
	struct list_head	list;
	dma_addr_t		iova;
	phys_addr_t		phys;
};

R
Robin Murphy 已提交
40 41 42 43 44
enum iommu_dma_cookie_type {
	IOMMU_DMA_IOVA_COOKIE,
	IOMMU_DMA_MSI_COOKIE,
};

45
struct iommu_dma_cookie {
R
Robin Murphy 已提交
46 47 48 49 50 51 52 53 54
	enum iommu_dma_cookie_type	type;
	union {
		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
		struct iova_domain	iovad;
		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
		dma_addr_t		msi_iova;
	};
	struct list_head		msi_page_list;
	spinlock_t			msi_lock;
55 56
};

R
Robin Murphy 已提交
57 58 59 60 61 62 63
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
		return cookie->iovad.granule;
	return PAGE_SIZE;
}

64 65
static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
{
R
Robin Murphy 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	struct iommu_dma_cookie *cookie = domain->iova_cookie;

	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
		return &cookie->iovad;
	return NULL;
}

static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
	struct iommu_dma_cookie *cookie;

	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
	if (cookie) {
		spin_lock_init(&cookie->msi_lock);
		INIT_LIST_HEAD(&cookie->msi_page_list);
		cookie->type = type;
	}
	return cookie;
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98
int iommu_dma_init(void)
{
	return iova_cache_get();
}

/**
 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 * @domain: IOMMU domain to prepare for DMA-API usage
 *
 * IOMMU drivers should normally call this from their domain_alloc
 * callback when domain->type == IOMMU_DOMAIN_DMA.
 */
int iommu_get_dma_cookie(struct iommu_domain *domain)
R
Robin Murphy 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
{
	if (domain->iova_cookie)
		return -EEXIST;

	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
	if (!domain->iova_cookie)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);

/**
 * iommu_get_msi_cookie - Acquire just MSI remapping resources
 * @domain: IOMMU domain to prepare
 * @base: Start address of IOVA region for MSI mappings
 *
 * Users who manage their own IOVA allocation and do not want DMA API support,
 * but would still like to take advantage of automatic MSI remapping, can use
 * this to initialise their own domain appropriately. Users should reserve a
 * contiguous IOVA region, starting at @base, large enough to accommodate the
 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 * used by the devices attached to @domain.
 */
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
124
{
125
	struct iommu_dma_cookie *cookie;
126

R
Robin Murphy 已提交
127 128 129
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

130 131 132
	if (domain->iova_cookie)
		return -EEXIST;

R
Robin Murphy 已提交
133
	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
134 135
	if (!cookie)
		return -ENOMEM;
136

R
Robin Murphy 已提交
137
	cookie->msi_iova = base;
138 139
	domain->iova_cookie = cookie;
	return 0;
140
}
R
Robin Murphy 已提交
141
EXPORT_SYMBOL(iommu_get_msi_cookie);
142 143 144

/**
 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
R
Robin Murphy 已提交
145 146
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 *          iommu_get_msi_cookie()
147 148 149 150 151
 *
 * IOMMU drivers should normally call this from their domain_free callback.
 */
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
152 153
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi, *tmp;
154

155
	if (!cookie)
156 157
		return;

R
Robin Murphy 已提交
158
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
159 160 161 162 163 164 165
		put_iova_domain(&cookie->iovad);

	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
		list_del(&msi->list);
		kfree(msi);
	}
	kfree(cookie);
166 167 168 169
	domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);

170 171 172 173 174 175 176 177 178 179
/**
 * iommu_dma_get_resv_regions - Reserved region driver helper
 * @dev: Device from iommu_get_resv_regions()
 * @list: Reserved region list from iommu_get_resv_regions()
 *
 * IOMMU drivers can use this to implement their .get_resv_regions callback
 * for general non-IOMMU-specific reservations. Currently, this covers host
 * bridge windows for PCI devices.
 */
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
180
{
181
	struct pci_host_bridge *bridge;
182 183
	struct resource_entry *window;

184 185 186 187
	if (!dev_is_pci(dev))
		return;

	bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
188
	resource_list_for_each_entry(window, &bridge->windows) {
189 190 191 192
		struct iommu_resv_region *region;
		phys_addr_t start;
		size_t length;

193
		if (resource_type(window->res) != IORESOURCE_MEM)
194 195
			continue;

196 197 198 199 200 201 202 203
		start = window->res->start - window->offset;
		length = window->res->end - window->res->start + 1;
		region = iommu_alloc_resv_region(start, length, 0,
				IOMMU_RESV_RESERVED);
		if (!region)
			return;

		list_add_tail(&region->list, list);
204 205
	}
}
206
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
		phys_addr_t start, phys_addr_t end)
{
	struct iova_domain *iovad = &cookie->iovad;
	struct iommu_dma_msi_page *msi_page;
	int i, num_pages;

	start -= iova_offset(iovad, start);
	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);

	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
	if (!msi_page)
		return -ENOMEM;

	for (i = 0; i < num_pages; i++) {
		msi_page[i].phys = start;
		msi_page[i].iova = start;
		INIT_LIST_HEAD(&msi_page[i].list);
		list_add(&msi_page[i].list, &cookie->msi_page_list);
		start += iovad->granule;
	}

	return 0;
}

static int iova_reserve_iommu_regions(struct device *dev,
		struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
	struct iommu_resv_region *region;
	LIST_HEAD(resv_regions);
	int ret = 0;

	iommu_get_resv_regions(dev, &resv_regions);
	list_for_each_entry(region, &resv_regions, list) {
		unsigned long lo, hi;

		/* We ARE the software that manages these! */
		if (region->type == IOMMU_RESV_SW_MSI)
			continue;

		lo = iova_pfn(iovad, region->start);
		hi = iova_pfn(iovad, region->start + region->length - 1);
		reserve_iova(iovad, lo, hi);

		if (region->type == IOMMU_RESV_MSI)
			ret = cookie_init_hw_msi_region(cookie, region->start,
					region->start + region->length);
		if (ret)
			break;
	}
	iommu_put_resv_regions(dev, &resv_regions);

	return ret;
}

265 266 267 268 269
/**
 * iommu_dma_init_domain - Initialise a DMA mapping domain
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 * @base: IOVA at which the mappable address space starts
 * @size: Size of IOVA space
270
 * @dev: Device the domain is being initialised for
271 272 273 274 275 276
 *
 * @base and @size should be exact multiples of IOMMU page granularity to
 * avoid rounding surprises. If necessary, we reserve the page at address 0
 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 * any change which could make prior IOVAs invalid will fail.
 */
277 278
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
		u64 size, struct device *dev)
279
{
R
Robin Murphy 已提交
280 281
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
282 283
	unsigned long order, base_pfn, end_pfn;

R
Robin Murphy 已提交
284 285
	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
		return -EINVAL;
286 287

	/* Use the smallest supported page size for IOVA granularity */
288
	order = __ffs(domain->pgsize_bitmap);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	base_pfn = max_t(unsigned long, 1, base >> order);
	end_pfn = (base + size - 1) >> order;

	/* Check the domain allows at least some access to the device... */
	if (domain->geometry.force_aperture) {
		if (base > domain->geometry.aperture_end ||
		    base + size <= domain->geometry.aperture_start) {
			pr_warn("specified DMA range outside IOMMU capability\n");
			return -EFAULT;
		}
		/* ...then finally give it a kicking to make sure it fits */
		base_pfn = max_t(unsigned long, base_pfn,
				domain->geometry.aperture_start >> order);
		end_pfn = min_t(unsigned long, end_pfn,
				domain->geometry.aperture_end >> order);
	}
305 306 307 308 309 310 311
	/*
	 * PCI devices may have larger DMA masks, but still prefer allocating
	 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
	 * apply to the typical platform device, so for those we may as well
	 * leave the cache limit at the top of their range to save an rb_last()
	 * traversal on every allocation.
	 */
312
	if (dev && dev_is_pci(dev))
313
		end_pfn &= DMA_BIT_MASK(32) >> order;
314

315
	/* start_pfn is always nonzero for an already-initialised domain */
316 317
	if (iovad->start_pfn) {
		if (1UL << order != iovad->granule ||
318
		    base_pfn != iovad->start_pfn) {
319 320 321
			pr_warn("Incompatible range for DMA domain\n");
			return -EFAULT;
		}
322 323 324 325 326
		/*
		 * If we have devices with different DMA masks, move the free
		 * area cache limit down for the benefit of the smaller one.
		 */
		iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn);
327 328

		return 0;
329
	}
330 331 332 333 334 335

	init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
	if (!dev)
		return 0;

	return iova_reserve_iommu_regions(dev, domain);
336 337 338 339
}
EXPORT_SYMBOL(iommu_dma_init_domain);

/**
340 341
 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 *                    page flags.
342 343
 * @dir: Direction of DMA transfer
 * @coherent: Is the DMA master cache-coherent?
344
 * @attrs: DMA attributes for the mapping
345 346 347
 *
 * Return: corresponding IOMMU API page protection flags
 */
348 349
int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
		     unsigned long attrs)
350 351 352
{
	int prot = coherent ? IOMMU_CACHE : 0;

353 354 355
	if (attrs & DMA_ATTR_PRIVILEGED)
		prot |= IOMMU_PRIV;

356 357 358 359 360 361 362 363 364 365 366 367
	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return 0;
	}
}

368
static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
369
		dma_addr_t dma_limit, struct device *dev)
370
{
371
	struct iova_domain *iovad = cookie_iovad(domain);
372 373
	unsigned long shift = iova_shift(iovad);
	unsigned long length = iova_align(iovad, size) >> shift;
374
	struct iova *iova = NULL;
375

376 377
	if (domain->geometry.force_aperture)
		dma_limit = min(dma_limit, domain->geometry.aperture_end);
378 379 380 381 382

	/* Try to get PCI devices a SAC address */
	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
		iova = alloc_iova(iovad, length, DMA_BIT_MASK(32) >> shift,
				  true);
383 384 385 386
	/*
	 * Enforce size-alignment to be safe - there could perhaps be an
	 * attribute to control this per-device, or at least per-domain...
	 */
387 388 389 390
	if (!iova)
		iova = alloc_iova(iovad, length, dma_limit >> shift, true);

	return iova;
391 392 393 394 395
}

/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
{
396
	struct iova_domain *iovad = cookie_iovad(domain);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	unsigned long shift = iova_shift(iovad);
	unsigned long pfn = dma_addr >> shift;
	struct iova *iova = find_iova(iovad, pfn);
	size_t size;

	if (WARN_ON(!iova))
		return;

	size = iova_size(iova) << shift;
	size -= iommu_unmap(domain, pfn << shift, size);
	/* ...and if we can't, then something is horribly, horribly wrong */
	WARN_ON(size > 0);
	__free_iova(iovad, iova);
}

static void __iommu_dma_free_pages(struct page **pages, int count)
{
	while (count--)
		__free_page(pages[count]);
	kvfree(pages);
}

419 420
static struct page **__iommu_dma_alloc_pages(unsigned int count,
		unsigned long order_mask, gfp_t gfp)
421 422 423
{
	struct page **pages;
	unsigned int i = 0, array_size = count * sizeof(*pages);
424 425 426 427

	order_mask &= (2U << MAX_ORDER) - 1;
	if (!order_mask)
		return NULL;
428 429 430 431 432 433 434 435 436 437 438 439 440

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, GFP_KERNEL);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	/* IOMMU can map any pages, so himem can also be used here */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	while (count) {
		struct page *page = NULL;
441
		unsigned int order_size;
442 443 444 445

		/*
		 * Higher-order allocations are a convenience rather
		 * than a necessity, hence using __GFP_NORETRY until
446
		 * falling back to minimum-order allocations.
447
		 */
448 449 450 451 452 453 454
		for (order_mask &= (2U << __fls(count)) - 1;
		     order_mask; order_mask &= ~order_size) {
			unsigned int order = __fls(order_mask);

			order_size = 1U << order;
			page = alloc_pages((order_mask - order_size) ?
					   gfp | __GFP_NORETRY : gfp, order);
455 456
			if (!page)
				continue;
457 458 459
			if (!order)
				break;
			if (!PageCompound(page)) {
460 461
				split_page(page, order);
				break;
462 463
			} else if (!split_huge_page(page)) {
				break;
464
			}
465
			__free_pages(page, order);
466 467 468 469 470
		}
		if (!page) {
			__iommu_dma_free_pages(pages, i);
			return NULL;
		}
471 472
		count -= order_size;
		while (order_size--)
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
			pages[i++] = page++;
	}
	return pages;
}

/**
 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
 * @dev: Device which owns this buffer
 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @handle: DMA address of buffer
 *
 * Frees both the pages associated with the buffer, and the array
 * describing them
 */
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
		dma_addr_t *handle)
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
	*handle = DMA_ERROR_CODE;
}

/**
 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
 * @dev: Device to allocate memory for. Must be a real device
 *	 attached to an iommu_dma_domain
 * @size: Size of buffer in bytes
 * @gfp: Allocation flags
502
 * @attrs: DMA attributes for this allocation
503 504 505 506 507 508 509 510 511 512 513
 * @prot: IOMMU mapping flags
 * @handle: Out argument for allocated DMA handle
 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
 *		given VA/PA are visible to the given non-coherent device.
 *
 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 * but an IOMMU which supports smaller pages might not map the whole thing.
 *
 * Return: Array of struct page pointers describing the buffer,
 *	   or NULL on failure.
 */
514
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
515
		unsigned long attrs, int prot, dma_addr_t *handle,
516 517 518
		void (*flush_page)(struct device *, const void *, phys_addr_t))
{
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
519
	struct iova_domain *iovad = cookie_iovad(domain);
520 521 522 523
	struct iova *iova;
	struct page **pages;
	struct sg_table sgt;
	dma_addr_t dma_addr;
524
	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
525 526 527

	*handle = DMA_ERROR_CODE;

528 529 530 531 532 533 534
	min_size = alloc_sizes & -alloc_sizes;
	if (min_size < PAGE_SIZE) {
		min_size = PAGE_SIZE;
		alloc_sizes |= PAGE_SIZE;
	} else {
		size = ALIGN(size, min_size);
	}
535
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
536 537 538 539
		alloc_sizes = min_size;

	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
540 541 542
	if (!pages)
		return NULL;

543
	iova = __alloc_iova(domain, size, dev->coherent_dma_mask, dev);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	if (!iova)
		goto out_free_pages;

	size = iova_align(iovad, size);
	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
		goto out_free_iova;

	if (!(prot & IOMMU_CACHE)) {
		struct sg_mapping_iter miter;
		/*
		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
		 * sufficient here, so skip it by using the "wrong" direction.
		 */
		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
		while (sg_miter_next(&miter))
			flush_page(dev, miter.addr, page_to_phys(miter.page));
		sg_miter_stop(&miter);
	}

	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
			< size)
		goto out_free_sg;

	*handle = dma_addr;
	sg_free_table(&sgt);
	return pages;

out_free_sg:
	sg_free_table(&sgt);
out_free_iova:
	__free_iova(iovad, iova);
out_free_pages:
	__iommu_dma_free_pages(pages, count);
	return NULL;
}

/**
 * iommu_dma_mmap - Map a buffer into provided user VMA
 * @pages: Array representing buffer from iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @vma: VMA describing requested userspace mapping
 *
 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 * for verifying the correct size and protection of @vma beforehand.
 */

int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
	unsigned long uaddr = vma->vm_start;
	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	int ret = -ENXIO;

	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
		ret = vm_insert_page(vma, uaddr, pages[i]);
		if (ret)
			break;
		uaddr += PAGE_SIZE;
	}
	return ret;
}

606 607
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
		size_t size, int prot)
608 609 610
{
	dma_addr_t dma_addr;
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
611
	struct iova_domain *iovad = cookie_iovad(domain);
612 613
	size_t iova_off = iova_offset(iovad, phys);
	size_t len = iova_align(iovad, size + iova_off);
614
	struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev), dev);
615 616 617 618 619 620 621 622 623 624 625 626

	if (!iova)
		return DMA_ERROR_CODE;

	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
		__free_iova(iovad, iova);
		return DMA_ERROR_CODE;
	}
	return dma_addr + iova_off;
}

627 628 629 630 631 632
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
		unsigned long offset, size_t size, int prot)
{
	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
}

633
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
634
		enum dma_data_direction dir, unsigned long attrs)
635 636 637 638 639 640
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
}

/*
 * Prepare a successfully-mapped scatterlist to give back to the caller.
641 642 643 644
 *
 * At this point the segments are already laid out by iommu_dma_map_sg() to
 * avoid individually crossing any boundaries, so we merely need to check a
 * segment's start address to avoid concatenating across one.
645 646 647 648
 */
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
		dma_addr_t dma_addr)
{
649 650 651 652
	struct scatterlist *s, *cur = sg;
	unsigned long seg_mask = dma_get_seg_boundary(dev);
	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
	int i, count = 0;
653 654

	for_each_sg(sg, s, nents, i) {
655 656
		/* Restore this segment's original unaligned fields first */
		unsigned int s_iova_off = sg_dma_address(s);
657
		unsigned int s_length = sg_dma_len(s);
658
		unsigned int s_iova_len = s->length;
659

660
		s->offset += s_iova_off;
661
		s->length = s_length;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		sg_dma_address(s) = DMA_ERROR_CODE;
		sg_dma_len(s) = 0;

		/*
		 * Now fill in the real DMA data. If...
		 * - there is a valid output segment to append to
		 * - and this segment starts on an IOVA page boundary
		 * - but doesn't fall at a segment boundary
		 * - and wouldn't make the resulting output segment too long
		 */
		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
		    (cur_len + s_length <= max_len)) {
			/* ...then concatenate it with the previous one */
			cur_len += s_length;
		} else {
			/* Otherwise start the next output segment */
			if (i > 0)
				cur = sg_next(cur);
			cur_len = s_length;
			count++;

			sg_dma_address(cur) = dma_addr + s_iova_off;
		}

		sg_dma_len(cur) = cur_len;
		dma_addr += s_iova_len;

		if (s_length + s_iova_off < s_iova_len)
			cur_len = 0;
691
	}
692
	return count;
693 694 695 696 697 698 699 700 701 702 703 704 705
}

/*
 * If mapping failed, then just restore the original list,
 * but making sure the DMA fields are invalidated.
 */
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_address(s) != DMA_ERROR_CODE)
706
			s->offset += sg_dma_address(s);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		if (sg_dma_len(s))
			s->length = sg_dma_len(s);
		sg_dma_address(s) = DMA_ERROR_CODE;
		sg_dma_len(s) = 0;
	}
}

/*
 * The DMA API client is passing in a scatterlist which could describe
 * any old buffer layout, but the IOMMU API requires everything to be
 * aligned to IOMMU pages. Hence the need for this complicated bit of
 * impedance-matching, to be able to hand off a suitably-aligned list,
 * but still preserve the original offsets and sizes for the caller.
 */
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, int prot)
{
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
725
	struct iova_domain *iovad = cookie_iovad(domain);
726 727 728 729
	struct iova *iova;
	struct scatterlist *s, *prev = NULL;
	dma_addr_t dma_addr;
	size_t iova_len = 0;
730
	unsigned long mask = dma_get_seg_boundary(dev);
731 732 733 734 735 736
	int i;

	/*
	 * Work out how much IOVA space we need, and align the segments to
	 * IOVA granules for the IOMMU driver to handle. With some clever
	 * trickery we can modify the list in-place, but reversibly, by
737
	 * stashing the unaligned parts in the as-yet-unused DMA fields.
738 739
	 */
	for_each_sg(sg, s, nents, i) {
740
		size_t s_iova_off = iova_offset(iovad, s->offset);
741
		size_t s_length = s->length;
742
		size_t pad_len = (mask - iova_len + 1) & mask;
743

744
		sg_dma_address(s) = s_iova_off;
745
		sg_dma_len(s) = s_length;
746 747
		s->offset -= s_iova_off;
		s_length = iova_align(iovad, s_length + s_iova_off);
748 749 750
		s->length = s_length;

		/*
751 752 753 754 755 756 757 758 759 760 761
		 * Due to the alignment of our single IOVA allocation, we can
		 * depend on these assumptions about the segment boundary mask:
		 * - If mask size >= IOVA size, then the IOVA range cannot
		 *   possibly fall across a boundary, so we don't care.
		 * - If mask size < IOVA size, then the IOVA range must start
		 *   exactly on a boundary, therefore we can lay things out
		 *   based purely on segment lengths without needing to know
		 *   the actual addresses beforehand.
		 * - The mask must be a power of 2, so pad_len == 0 if
		 *   iova_len == 0, thus we cannot dereference prev the first
		 *   time through here (i.e. before it has a meaningful value).
762
		 */
763
		if (pad_len && pad_len < s_length - 1) {
764 765 766 767 768 769 770 771
			prev->length += pad_len;
			iova_len += pad_len;
		}

		iova_len += s_length;
		prev = s;
	}

772
	iova = __alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	if (!iova)
		goto out_restore_sg;

	/*
	 * We'll leave any physical concatenation to the IOMMU driver's
	 * implementation - it knows better than we do.
	 */
	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
		goto out_free_iova;

	return __finalise_sg(dev, sg, nents, dma_addr);

out_free_iova:
	__free_iova(iovad, iova);
out_restore_sg:
	__invalidate_sg(sg, nents);
	return 0;
}

void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
794
		enum dma_data_direction dir, unsigned long attrs)
795 796 797 798 799 800 801 802
{
	/*
	 * The scatterlist segments are mapped into a single
	 * contiguous IOVA allocation, so this is incredibly easy.
	 */
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
}

803 804 805 806
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return __iommu_dma_map(dev, phys, size,
807
			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
808 809 810 811 812 813 814 815
}

void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
}

816 817 818 819
int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == DMA_ERROR_CODE;
}
820 821 822 823 824 825

static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
		phys_addr_t msi_addr, struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi_page;
R
Robin Murphy 已提交
826
	struct iova_domain *iovad = cookie_iovad(domain);
827 828
	struct iova *iova;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
R
Robin Murphy 已提交
829
	size_t size = cookie_msi_granule(cookie);
830

R
Robin Murphy 已提交
831
	msi_addr &= ~(phys_addr_t)(size - 1);
832 833 834 835 836 837 838 839 840
	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
		if (msi_page->phys == msi_addr)
			return msi_page;

	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
	if (!msi_page)
		return NULL;

	msi_page->phys = msi_addr;
R
Robin Murphy 已提交
841
	if (iovad) {
842
		iova = __alloc_iova(domain, size, dma_get_mask(dev), dev);
R
Robin Murphy 已提交
843 844 845 846 847 848 849 850 851
		if (!iova)
			goto out_free_page;
		msi_page->iova = iova_dma_addr(iovad, iova);
	} else {
		msi_page->iova = cookie->msi_iova;
		cookie->msi_iova += size;
	}

	if (iommu_map(domain, msi_page->iova, msi_addr, size, prot))
852 853 854 855 856 857 858
		goto out_free_iova;

	INIT_LIST_HEAD(&msi_page->list);
	list_add(&msi_page->list, &cookie->msi_page_list);
	return msi_page;

out_free_iova:
R
Robin Murphy 已提交
859 860 861 862
	if (iovad)
		__free_iova(iovad, iova);
	else
		cookie->msi_iova -= size;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
out_free_page:
	kfree(msi_page);
	return NULL;
}

void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct iommu_dma_cookie *cookie;
	struct iommu_dma_msi_page *msi_page;
	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
	unsigned long flags;

	if (!domain || !domain->iova_cookie)
		return;

	cookie = domain->iova_cookie;

	/*
	 * We disable IRQs to rule out a possible inversion against
	 * irq_desc_lock if, say, someone tries to retarget the affinity
	 * of an MSI from within an IPI handler.
	 */
	spin_lock_irqsave(&cookie->msi_lock, flags);
	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
	spin_unlock_irqrestore(&cookie->msi_lock, flags);

	if (WARN_ON(!msi_page)) {
		/*
		 * We're called from a void callback, so the best we can do is
		 * 'fail' by filling the message with obviously bogus values.
		 * Since we got this far due to an IOMMU being present, it's
		 * not like the existing address would have worked anyway...
		 */
		msg->address_hi = ~0U;
		msg->address_lo = ~0U;
		msg->data = ~0U;
	} else {
		msg->address_hi = upper_32_bits(msi_page->iova);
R
Robin Murphy 已提交
903
		msg->address_lo &= cookie_msi_granule(cookie) - 1;
904 905 906
		msg->address_lo += lower_32_bits(msi_page->iova);
	}
}