dma-iommu.c 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * A fairly generic DMA-API to IOMMU-API glue layer.
 *
 * Copyright (C) 2014-2015 ARM Ltd.
 *
 * based in part on arch/arm/mm/dma-mapping.c:
 * Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/device.h>
#include <linux/dma-iommu.h>
24
#include <linux/gfp.h>
25 26 27
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
28
#include <linux/irq.h>
29
#include <linux/mm.h>
30
#include <linux/pci.h>
31 32
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
struct iommu_dma_msi_page {
	struct list_head	list;
	dma_addr_t		iova;
	phys_addr_t		phys;
};

struct iommu_dma_cookie {
	struct iova_domain	iovad;
	struct list_head	msi_page_list;
	spinlock_t		msi_lock;
};

static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
{
	return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64
int iommu_dma_init(void)
{
	return iova_cache_get();
}

/**
 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 * @domain: IOMMU domain to prepare for DMA-API usage
 *
 * IOMMU drivers should normally call this from their domain_alloc
 * callback when domain->type == IOMMU_DOMAIN_DMA.
 */
int iommu_get_dma_cookie(struct iommu_domain *domain)
{
65
	struct iommu_dma_cookie *cookie;
66 67 68 69

	if (domain->iova_cookie)
		return -EEXIST;

70 71 72
	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
	if (!cookie)
		return -ENOMEM;
73

74 75 76 77
	spin_lock_init(&cookie->msi_lock);
	INIT_LIST_HEAD(&cookie->msi_page_list);
	domain->iova_cookie = cookie;
	return 0;
78 79 80 81 82 83 84 85 86 87 88
}
EXPORT_SYMBOL(iommu_get_dma_cookie);

/**
 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 *
 * IOMMU drivers should normally call this from their domain_free callback.
 */
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
89 90
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi, *tmp;
91

92
	if (!cookie)
93 94
		return;

95 96 97 98 99 100 101 102
	if (cookie->iovad.granule)
		put_iova_domain(&cookie->iovad);

	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
		list_del(&msi->list);
		kfree(msi);
	}
	kfree(cookie);
103 104 105 106
	domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
static void iova_reserve_pci_windows(struct pci_dev *dev,
		struct iova_domain *iovad)
{
	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
	struct resource_entry *window;
	unsigned long lo, hi;

	resource_list_for_each_entry(window, &bridge->windows) {
		if (resource_type(window->res) != IORESOURCE_MEM &&
		    resource_type(window->res) != IORESOURCE_IO)
			continue;

		lo = iova_pfn(iovad, window->res->start - window->offset);
		hi = iova_pfn(iovad, window->res->end - window->offset);
		reserve_iova(iovad, lo, hi);
	}
}

125 126 127 128 129
/**
 * iommu_dma_init_domain - Initialise a DMA mapping domain
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 * @base: IOVA at which the mappable address space starts
 * @size: Size of IOVA space
130
 * @dev: Device the domain is being initialised for
131 132 133 134 135 136
 *
 * @base and @size should be exact multiples of IOMMU page granularity to
 * avoid rounding surprises. If necessary, we reserve the page at address 0
 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 * any change which could make prior IOVAs invalid will fail.
 */
137 138
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
		u64 size, struct device *dev)
139
{
140
	struct iova_domain *iovad = cookie_iovad(domain);
141 142 143 144 145 146
	unsigned long order, base_pfn, end_pfn;

	if (!iovad)
		return -ENODEV;

	/* Use the smallest supported page size for IOVA granularity */
147
	order = __ffs(domain->pgsize_bitmap);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	base_pfn = max_t(unsigned long, 1, base >> order);
	end_pfn = (base + size - 1) >> order;

	/* Check the domain allows at least some access to the device... */
	if (domain->geometry.force_aperture) {
		if (base > domain->geometry.aperture_end ||
		    base + size <= domain->geometry.aperture_start) {
			pr_warn("specified DMA range outside IOMMU capability\n");
			return -EFAULT;
		}
		/* ...then finally give it a kicking to make sure it fits */
		base_pfn = max_t(unsigned long, base_pfn,
				domain->geometry.aperture_start >> order);
		end_pfn = min_t(unsigned long, end_pfn,
				domain->geometry.aperture_end >> order);
	}

	/* All we can safely do with an existing domain is enlarge it */
	if (iovad->start_pfn) {
		if (1UL << order != iovad->granule ||
		    base_pfn != iovad->start_pfn ||
		    end_pfn < iovad->dma_32bit_pfn) {
			pr_warn("Incompatible range for DMA domain\n");
			return -EFAULT;
		}
		iovad->dma_32bit_pfn = end_pfn;
	} else {
		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
176 177
		if (dev && dev_is_pci(dev))
			iova_reserve_pci_windows(to_pci_dev(dev), iovad);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
	}
	return 0;
}
EXPORT_SYMBOL(iommu_dma_init_domain);

/**
 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
 * @dir: Direction of DMA transfer
 * @coherent: Is the DMA master cache-coherent?
 *
 * Return: corresponding IOMMU API page protection flags
 */
int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
{
	int prot = coherent ? IOMMU_CACHE : 0;

	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return 0;
	}
}

206
static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
207 208
		dma_addr_t dma_limit)
{
209
	struct iova_domain *iovad = cookie_iovad(domain);
210 211 212
	unsigned long shift = iova_shift(iovad);
	unsigned long length = iova_align(iovad, size) >> shift;

213 214
	if (domain->geometry.force_aperture)
		dma_limit = min(dma_limit, domain->geometry.aperture_end);
215 216 217 218 219 220 221 222 223 224
	/*
	 * Enforce size-alignment to be safe - there could perhaps be an
	 * attribute to control this per-device, or at least per-domain...
	 */
	return alloc_iova(iovad, length, dma_limit >> shift, true);
}

/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
{
225
	struct iova_domain *iovad = cookie_iovad(domain);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	unsigned long shift = iova_shift(iovad);
	unsigned long pfn = dma_addr >> shift;
	struct iova *iova = find_iova(iovad, pfn);
	size_t size;

	if (WARN_ON(!iova))
		return;

	size = iova_size(iova) << shift;
	size -= iommu_unmap(domain, pfn << shift, size);
	/* ...and if we can't, then something is horribly, horribly wrong */
	WARN_ON(size > 0);
	__free_iova(iovad, iova);
}

static void __iommu_dma_free_pages(struct page **pages, int count)
{
	while (count--)
		__free_page(pages[count]);
	kvfree(pages);
}

248 249
static struct page **__iommu_dma_alloc_pages(unsigned int count,
		unsigned long order_mask, gfp_t gfp)
250 251 252
{
	struct page **pages;
	unsigned int i = 0, array_size = count * sizeof(*pages);
253 254 255 256

	order_mask &= (2U << MAX_ORDER) - 1;
	if (!order_mask)
		return NULL;
257 258 259 260 261 262 263 264 265 266 267 268 269

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, GFP_KERNEL);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	/* IOMMU can map any pages, so himem can also be used here */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	while (count) {
		struct page *page = NULL;
270
		unsigned int order_size;
271 272 273 274

		/*
		 * Higher-order allocations are a convenience rather
		 * than a necessity, hence using __GFP_NORETRY until
275
		 * falling back to minimum-order allocations.
276
		 */
277 278 279 280 281 282 283
		for (order_mask &= (2U << __fls(count)) - 1;
		     order_mask; order_mask &= ~order_size) {
			unsigned int order = __fls(order_mask);

			order_size = 1U << order;
			page = alloc_pages((order_mask - order_size) ?
					   gfp | __GFP_NORETRY : gfp, order);
284 285
			if (!page)
				continue;
286 287 288
			if (!order)
				break;
			if (!PageCompound(page)) {
289 290
				split_page(page, order);
				break;
291 292
			} else if (!split_huge_page(page)) {
				break;
293
			}
294
			__free_pages(page, order);
295 296 297 298 299
		}
		if (!page) {
			__iommu_dma_free_pages(pages, i);
			return NULL;
		}
300 301
		count -= order_size;
		while (order_size--)
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
			pages[i++] = page++;
	}
	return pages;
}

/**
 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
 * @dev: Device which owns this buffer
 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @handle: DMA address of buffer
 *
 * Frees both the pages associated with the buffer, and the array
 * describing them
 */
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
		dma_addr_t *handle)
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
	*handle = DMA_ERROR_CODE;
}

/**
 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
 * @dev: Device to allocate memory for. Must be a real device
 *	 attached to an iommu_dma_domain
 * @size: Size of buffer in bytes
 * @gfp: Allocation flags
331
 * @attrs: DMA attributes for this allocation
332 333 334 335 336 337 338 339 340 341 342
 * @prot: IOMMU mapping flags
 * @handle: Out argument for allocated DMA handle
 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
 *		given VA/PA are visible to the given non-coherent device.
 *
 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 * but an IOMMU which supports smaller pages might not map the whole thing.
 *
 * Return: Array of struct page pointers describing the buffer,
 *	   or NULL on failure.
 */
343
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
344
		unsigned long attrs, int prot, dma_addr_t *handle,
345 346 347
		void (*flush_page)(struct device *, const void *, phys_addr_t))
{
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
348
	struct iova_domain *iovad = cookie_iovad(domain);
349 350 351 352
	struct iova *iova;
	struct page **pages;
	struct sg_table sgt;
	dma_addr_t dma_addr;
353
	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
354 355 356

	*handle = DMA_ERROR_CODE;

357 358 359 360 361 362 363
	min_size = alloc_sizes & -alloc_sizes;
	if (min_size < PAGE_SIZE) {
		min_size = PAGE_SIZE;
		alloc_sizes |= PAGE_SIZE;
	} else {
		size = ALIGN(size, min_size);
	}
364
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
365 366 367 368
		alloc_sizes = min_size;

	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
369 370 371
	if (!pages)
		return NULL;

372
	iova = __alloc_iova(domain, size, dev->coherent_dma_mask);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	if (!iova)
		goto out_free_pages;

	size = iova_align(iovad, size);
	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
		goto out_free_iova;

	if (!(prot & IOMMU_CACHE)) {
		struct sg_mapping_iter miter;
		/*
		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
		 * sufficient here, so skip it by using the "wrong" direction.
		 */
		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
		while (sg_miter_next(&miter))
			flush_page(dev, miter.addr, page_to_phys(miter.page));
		sg_miter_stop(&miter);
	}

	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
			< size)
		goto out_free_sg;

	*handle = dma_addr;
	sg_free_table(&sgt);
	return pages;

out_free_sg:
	sg_free_table(&sgt);
out_free_iova:
	__free_iova(iovad, iova);
out_free_pages:
	__iommu_dma_free_pages(pages, count);
	return NULL;
}

/**
 * iommu_dma_mmap - Map a buffer into provided user VMA
 * @pages: Array representing buffer from iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @vma: VMA describing requested userspace mapping
 *
 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 * for verifying the correct size and protection of @vma beforehand.
 */

int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
	unsigned long uaddr = vma->vm_start;
	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	int ret = -ENXIO;

	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
		ret = vm_insert_page(vma, uaddr, pages[i]);
		if (ret)
			break;
		uaddr += PAGE_SIZE;
	}
	return ret;
}

435 436
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
		size_t size, int prot)
437 438 439
{
	dma_addr_t dma_addr;
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
440
	struct iova_domain *iovad = cookie_iovad(domain);
441 442
	size_t iova_off = iova_offset(iovad, phys);
	size_t len = iova_align(iovad, size + iova_off);
443
	struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev));
444 445 446 447 448 449 450 451 452 453 454 455

	if (!iova)
		return DMA_ERROR_CODE;

	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
		__free_iova(iovad, iova);
		return DMA_ERROR_CODE;
	}
	return dma_addr + iova_off;
}

456 457 458 459 460 461
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
		unsigned long offset, size_t size, int prot)
{
	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
}

462
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
463
		enum dma_data_direction dir, unsigned long attrs)
464 465 466 467 468 469
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
}

/*
 * Prepare a successfully-mapped scatterlist to give back to the caller.
470 471 472 473
 *
 * At this point the segments are already laid out by iommu_dma_map_sg() to
 * avoid individually crossing any boundaries, so we merely need to check a
 * segment's start address to avoid concatenating across one.
474 475 476 477
 */
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
		dma_addr_t dma_addr)
{
478 479 480 481
	struct scatterlist *s, *cur = sg;
	unsigned long seg_mask = dma_get_seg_boundary(dev);
	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
	int i, count = 0;
482 483

	for_each_sg(sg, s, nents, i) {
484 485
		/* Restore this segment's original unaligned fields first */
		unsigned int s_iova_off = sg_dma_address(s);
486
		unsigned int s_length = sg_dma_len(s);
487
		unsigned int s_iova_len = s->length;
488

489
		s->offset += s_iova_off;
490
		s->length = s_length;
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
		sg_dma_address(s) = DMA_ERROR_CODE;
		sg_dma_len(s) = 0;

		/*
		 * Now fill in the real DMA data. If...
		 * - there is a valid output segment to append to
		 * - and this segment starts on an IOVA page boundary
		 * - but doesn't fall at a segment boundary
		 * - and wouldn't make the resulting output segment too long
		 */
		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
		    (cur_len + s_length <= max_len)) {
			/* ...then concatenate it with the previous one */
			cur_len += s_length;
		} else {
			/* Otherwise start the next output segment */
			if (i > 0)
				cur = sg_next(cur);
			cur_len = s_length;
			count++;

			sg_dma_address(cur) = dma_addr + s_iova_off;
		}

		sg_dma_len(cur) = cur_len;
		dma_addr += s_iova_len;

		if (s_length + s_iova_off < s_iova_len)
			cur_len = 0;
520
	}
521
	return count;
522 523 524 525 526 527 528 529 530 531 532 533 534
}

/*
 * If mapping failed, then just restore the original list,
 * but making sure the DMA fields are invalidated.
 */
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_address(s) != DMA_ERROR_CODE)
535
			s->offset += sg_dma_address(s);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		if (sg_dma_len(s))
			s->length = sg_dma_len(s);
		sg_dma_address(s) = DMA_ERROR_CODE;
		sg_dma_len(s) = 0;
	}
}

/*
 * The DMA API client is passing in a scatterlist which could describe
 * any old buffer layout, but the IOMMU API requires everything to be
 * aligned to IOMMU pages. Hence the need for this complicated bit of
 * impedance-matching, to be able to hand off a suitably-aligned list,
 * but still preserve the original offsets and sizes for the caller.
 */
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, int prot)
{
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
554
	struct iova_domain *iovad = cookie_iovad(domain);
555 556 557 558
	struct iova *iova;
	struct scatterlist *s, *prev = NULL;
	dma_addr_t dma_addr;
	size_t iova_len = 0;
559
	unsigned long mask = dma_get_seg_boundary(dev);
560 561 562 563 564 565
	int i;

	/*
	 * Work out how much IOVA space we need, and align the segments to
	 * IOVA granules for the IOMMU driver to handle. With some clever
	 * trickery we can modify the list in-place, but reversibly, by
566
	 * stashing the unaligned parts in the as-yet-unused DMA fields.
567 568
	 */
	for_each_sg(sg, s, nents, i) {
569
		size_t s_iova_off = iova_offset(iovad, s->offset);
570
		size_t s_length = s->length;
571
		size_t pad_len = (mask - iova_len + 1) & mask;
572

573
		sg_dma_address(s) = s_iova_off;
574
		sg_dma_len(s) = s_length;
575 576
		s->offset -= s_iova_off;
		s_length = iova_align(iovad, s_length + s_iova_off);
577 578 579
		s->length = s_length;

		/*
580 581 582 583 584 585 586 587 588 589 590
		 * Due to the alignment of our single IOVA allocation, we can
		 * depend on these assumptions about the segment boundary mask:
		 * - If mask size >= IOVA size, then the IOVA range cannot
		 *   possibly fall across a boundary, so we don't care.
		 * - If mask size < IOVA size, then the IOVA range must start
		 *   exactly on a boundary, therefore we can lay things out
		 *   based purely on segment lengths without needing to know
		 *   the actual addresses beforehand.
		 * - The mask must be a power of 2, so pad_len == 0 if
		 *   iova_len == 0, thus we cannot dereference prev the first
		 *   time through here (i.e. before it has a meaningful value).
591
		 */
592
		if (pad_len && pad_len < s_length - 1) {
593 594 595 596 597 598 599 600
			prev->length += pad_len;
			iova_len += pad_len;
		}

		iova_len += s_length;
		prev = s;
	}

601
	iova = __alloc_iova(domain, iova_len, dma_get_mask(dev));
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	if (!iova)
		goto out_restore_sg;

	/*
	 * We'll leave any physical concatenation to the IOMMU driver's
	 * implementation - it knows better than we do.
	 */
	dma_addr = iova_dma_addr(iovad, iova);
	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
		goto out_free_iova;

	return __finalise_sg(dev, sg, nents, dma_addr);

out_free_iova:
	__free_iova(iovad, iova);
out_restore_sg:
	__invalidate_sg(sg, nents);
	return 0;
}

void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
623
		enum dma_data_direction dir, unsigned long attrs)
624 625 626 627 628 629 630 631
{
	/*
	 * The scatterlist segments are mapped into a single
	 * contiguous IOVA allocation, so this is incredibly easy.
	 */
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
}

632 633 634 635 636 637 638 639 640 641 642 643 644
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return __iommu_dma_map(dev, phys, size,
			dma_direction_to_prot(dir, false) | IOMMU_MMIO);
}

void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658
int iommu_dma_supported(struct device *dev, u64 mask)
{
	/*
	 * 'Special' IOMMUs which don't have the same addressing capability
	 * as the CPU will have to wait until we have some way to query that
	 * before they'll be able to use this framework.
	 */
	return 1;
}

int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == DMA_ERROR_CODE;
}
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736

static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
		phys_addr_t msi_addr, struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi_page;
	struct iova_domain *iovad = &cookie->iovad;
	struct iova *iova;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	msi_addr &= ~(phys_addr_t)iova_mask(iovad);
	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
		if (msi_page->phys == msi_addr)
			return msi_page;

	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
	if (!msi_page)
		return NULL;

	iova = __alloc_iova(domain, iovad->granule, dma_get_mask(dev));
	if (!iova)
		goto out_free_page;

	msi_page->phys = msi_addr;
	msi_page->iova = iova_dma_addr(iovad, iova);
	if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot))
		goto out_free_iova;

	INIT_LIST_HEAD(&msi_page->list);
	list_add(&msi_page->list, &cookie->msi_page_list);
	return msi_page;

out_free_iova:
	__free_iova(iovad, iova);
out_free_page:
	kfree(msi_page);
	return NULL;
}

void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct iommu_dma_cookie *cookie;
	struct iommu_dma_msi_page *msi_page;
	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
	unsigned long flags;

	if (!domain || !domain->iova_cookie)
		return;

	cookie = domain->iova_cookie;

	/*
	 * We disable IRQs to rule out a possible inversion against
	 * irq_desc_lock if, say, someone tries to retarget the affinity
	 * of an MSI from within an IPI handler.
	 */
	spin_lock_irqsave(&cookie->msi_lock, flags);
	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
	spin_unlock_irqrestore(&cookie->msi_lock, flags);

	if (WARN_ON(!msi_page)) {
		/*
		 * We're called from a void callback, so the best we can do is
		 * 'fail' by filling the message with obviously bogus values.
		 * Since we got this far due to an IOMMU being present, it's
		 * not like the existing address would have worked anyway...
		 */
		msg->address_hi = ~0U;
		msg->address_lo = ~0U;
		msg->data = ~0U;
	} else {
		msg->address_hi = upper_32_bits(msi_page->iova);
		msg->address_lo &= iova_mask(&cookie->iovad);
		msg->address_lo += lower_32_bits(msi_page->iova);
	}
}