dma-iommu.c 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * A fairly generic DMA-API to IOMMU-API glue layer.
 *
 * Copyright (C) 2014-2015 ARM Ltd.
 *
 * based in part on arch/arm/mm/dma-mapping.c:
 * Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

22
#include <linux/acpi_iort.h>
23 24
#include <linux/device.h>
#include <linux/dma-iommu.h>
25
#include <linux/gfp.h>
26 27 28
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
29
#include <linux/irq.h>
30
#include <linux/mm.h>
31
#include <linux/pci.h>
32 33
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
34

35 36
#define IOMMU_MAPPING_ERROR	0

37 38 39 40 41 42
struct iommu_dma_msi_page {
	struct list_head	list;
	dma_addr_t		iova;
	phys_addr_t		phys;
};

R
Robin Murphy 已提交
43 44 45 46 47
enum iommu_dma_cookie_type {
	IOMMU_DMA_IOVA_COOKIE,
	IOMMU_DMA_MSI_COOKIE,
};

48
struct iommu_dma_cookie {
R
Robin Murphy 已提交
49 50 51 52 53 54 55 56 57
	enum iommu_dma_cookie_type	type;
	union {
		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
		struct iova_domain	iovad;
		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
		dma_addr_t		msi_iova;
	};
	struct list_head		msi_page_list;
	spinlock_t			msi_lock;
58 59 60

	/* Domain for flush queue callback; NULL if flush queue not in use */
	struct iommu_domain		*fq_domain;
61 62
};

R
Robin Murphy 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
		return cookie->iovad.granule;
	return PAGE_SIZE;
}

static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
	struct iommu_dma_cookie *cookie;

	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
	if (cookie) {
		spin_lock_init(&cookie->msi_lock);
		INIT_LIST_HEAD(&cookie->msi_page_list);
		cookie->type = type;
	}
	return cookie;
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95
int iommu_dma_init(void)
{
	return iova_cache_get();
}

/**
 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 * @domain: IOMMU domain to prepare for DMA-API usage
 *
 * IOMMU drivers should normally call this from their domain_alloc
 * callback when domain->type == IOMMU_DOMAIN_DMA.
 */
int iommu_get_dma_cookie(struct iommu_domain *domain)
R
Robin Murphy 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
{
	if (domain->iova_cookie)
		return -EEXIST;

	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
	if (!domain->iova_cookie)
		return -ENOMEM;

	return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);

/**
 * iommu_get_msi_cookie - Acquire just MSI remapping resources
 * @domain: IOMMU domain to prepare
 * @base: Start address of IOVA region for MSI mappings
 *
 * Users who manage their own IOVA allocation and do not want DMA API support,
 * but would still like to take advantage of automatic MSI remapping, can use
 * this to initialise their own domain appropriately. Users should reserve a
 * contiguous IOVA region, starting at @base, large enough to accommodate the
 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 * used by the devices attached to @domain.
 */
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
121
{
122
	struct iommu_dma_cookie *cookie;
123

R
Robin Murphy 已提交
124 125 126
	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

127 128 129
	if (domain->iova_cookie)
		return -EEXIST;

R
Robin Murphy 已提交
130
	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
131 132
	if (!cookie)
		return -ENOMEM;
133

R
Robin Murphy 已提交
134
	cookie->msi_iova = base;
135 136
	domain->iova_cookie = cookie;
	return 0;
137
}
R
Robin Murphy 已提交
138
EXPORT_SYMBOL(iommu_get_msi_cookie);
139 140 141

/**
 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
R
Robin Murphy 已提交
142 143
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 *          iommu_get_msi_cookie()
144 145 146 147 148
 *
 * IOMMU drivers should normally call this from their domain_free callback.
 */
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
149 150
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi, *tmp;
151

152
	if (!cookie)
153 154
		return;

R
Robin Murphy 已提交
155
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
156 157 158 159 160 161 162
		put_iova_domain(&cookie->iovad);

	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
		list_del(&msi->list);
		kfree(msi);
	}
	kfree(cookie);
163 164 165 166
	domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);

167 168 169 170 171 172
/**
 * iommu_dma_get_resv_regions - Reserved region driver helper
 * @dev: Device from iommu_get_resv_regions()
 * @list: Reserved region list from iommu_get_resv_regions()
 *
 * IOMMU drivers can use this to implement their .get_resv_regions callback
173 174 175
 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 * reservation.
176 177
 */
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
178 179
{

180 181
	if (!is_of_node(dev->iommu_fwspec->iommu_fwnode))
		iort_iommu_msi_get_resv_regions(dev, list);
182

183
}
184
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
		phys_addr_t start, phys_addr_t end)
{
	struct iova_domain *iovad = &cookie->iovad;
	struct iommu_dma_msi_page *msi_page;
	int i, num_pages;

	start -= iova_offset(iovad, start);
	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);

	msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
	if (!msi_page)
		return -ENOMEM;

	for (i = 0; i < num_pages; i++) {
		msi_page[i].phys = start;
		msi_page[i].iova = start;
		INIT_LIST_HEAD(&msi_page[i].list);
		list_add(&msi_page[i].list, &cookie->msi_page_list);
		start += iovad->granule;
	}

	return 0;
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static void iova_reserve_pci_windows(struct pci_dev *dev,
		struct iova_domain *iovad)
{
	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
	struct resource_entry *window;
	unsigned long lo, hi;

	resource_list_for_each_entry(window, &bridge->windows) {
		if (resource_type(window->res) != IORESOURCE_MEM)
			continue;

		lo = iova_pfn(iovad, window->res->start - window->offset);
		hi = iova_pfn(iovad, window->res->end - window->offset);
		reserve_iova(iovad, lo, hi);
	}
}

228 229 230 231 232 233 234 235 236
static int iova_reserve_iommu_regions(struct device *dev,
		struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
	struct iommu_resv_region *region;
	LIST_HEAD(resv_regions);
	int ret = 0;

237 238 239
	if (dev_is_pci(dev))
		iova_reserve_pci_windows(to_pci_dev(dev), iovad);

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	iommu_get_resv_regions(dev, &resv_regions);
	list_for_each_entry(region, &resv_regions, list) {
		unsigned long lo, hi;

		/* We ARE the software that manages these! */
		if (region->type == IOMMU_RESV_SW_MSI)
			continue;

		lo = iova_pfn(iovad, region->start);
		hi = iova_pfn(iovad, region->start + region->length - 1);
		reserve_iova(iovad, lo, hi);

		if (region->type == IOMMU_RESV_MSI)
			ret = cookie_init_hw_msi_region(cookie, region->start,
					region->start + region->length);
		if (ret)
			break;
	}
	iommu_put_resv_regions(dev, &resv_regions);

	return ret;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
{
	struct iommu_dma_cookie *cookie;
	struct iommu_domain *domain;

	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
	domain = cookie->fq_domain;
	/*
	 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
	 * implies that ops->flush_iotlb_all must be non-NULL.
	 */
	domain->ops->flush_iotlb_all(domain);
}

277 278 279 280 281
/**
 * iommu_dma_init_domain - Initialise a DMA mapping domain
 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 * @base: IOVA at which the mappable address space starts
 * @size: Size of IOVA space
282
 * @dev: Device the domain is being initialised for
283 284 285 286 287 288
 *
 * @base and @size should be exact multiples of IOMMU page granularity to
 * avoid rounding surprises. If necessary, we reserve the page at address 0
 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 * any change which could make prior IOVAs invalid will fail.
 */
289 290
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
		u64 size, struct device *dev)
291
{
R
Robin Murphy 已提交
292 293
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
294
	unsigned long order, base_pfn, end_pfn;
295
	int attr;
296

R
Robin Murphy 已提交
297 298
	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
		return -EINVAL;
299 300

	/* Use the smallest supported page size for IOVA granularity */
301
	order = __ffs(domain->pgsize_bitmap);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	base_pfn = max_t(unsigned long, 1, base >> order);
	end_pfn = (base + size - 1) >> order;

	/* Check the domain allows at least some access to the device... */
	if (domain->geometry.force_aperture) {
		if (base > domain->geometry.aperture_end ||
		    base + size <= domain->geometry.aperture_start) {
			pr_warn("specified DMA range outside IOMMU capability\n");
			return -EFAULT;
		}
		/* ...then finally give it a kicking to make sure it fits */
		base_pfn = max_t(unsigned long, base_pfn,
				domain->geometry.aperture_start >> order);
	}

317
	/* start_pfn is always nonzero for an already-initialised domain */
318 319
	if (iovad->start_pfn) {
		if (1UL << order != iovad->granule ||
320
		    base_pfn != iovad->start_pfn) {
321 322 323
			pr_warn("Incompatible range for DMA domain\n");
			return -EFAULT;
		}
324 325

		return 0;
326
	}
327

328
	init_iova_domain(iovad, 1UL << order, base_pfn);
329 330 331 332 333 334 335

	if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
			DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
		cookie->fq_domain = domain;
		init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
	}

336 337 338 339
	if (!dev)
		return 0;

	return iova_reserve_iommu_regions(dev, domain);
340 341 342 343
}
EXPORT_SYMBOL(iommu_dma_init_domain);

/**
344 345
 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 *                    page flags.
346 347
 * @dir: Direction of DMA transfer
 * @coherent: Is the DMA master cache-coherent?
348
 * @attrs: DMA attributes for the mapping
349 350 351
 *
 * Return: corresponding IOMMU API page protection flags
 */
352 353
int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
		     unsigned long attrs)
354 355 356
{
	int prot = coherent ? IOMMU_CACHE : 0;

357 358 359
	if (attrs & DMA_ATTR_PRIVILEGED)
		prot |= IOMMU_PRIV;

360 361 362 363 364 365 366 367 368 369 370 371
	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return prot | IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return prot | IOMMU_READ;
	case DMA_FROM_DEVICE:
		return prot | IOMMU_WRITE;
	default:
		return 0;
	}
}

372 373
static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
		size_t size, dma_addr_t dma_limit, struct device *dev)
374
{
375 376
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
377
	unsigned long shift, iova_len, iova = 0;
378

379 380 381 382 383 384 385
	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
		cookie->msi_iova += size;
		return cookie->msi_iova - size;
	}

	shift = iova_shift(iovad);
	iova_len = size >> shift;
386 387 388 389 390 391 392 393
	/*
	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
	 * will come back to bite us badly, so we have to waste a bit of space
	 * rounding up anything cacheable to make sure that can't happen. The
	 * order of the unadjusted size will still match upon freeing.
	 */
	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
		iova_len = roundup_pow_of_two(iova_len);
394

395 396 397
	if (dev->bus_dma_mask)
		dma_limit &= dev->bus_dma_mask;

398 399
	if (domain->geometry.force_aperture)
		dma_limit = min(dma_limit, domain->geometry.aperture_end);
400 401 402

	/* Try to get PCI devices a SAC address */
	if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
403 404
		iova = alloc_iova_fast(iovad, iova_len,
				       DMA_BIT_MASK(32) >> shift, false);
405

406
	if (!iova)
407 408
		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
				       true);
409

410
	return (dma_addr_t)iova << shift;
411 412
}

413 414
static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
		dma_addr_t iova, size_t size)
415
{
416
	struct iova_domain *iovad = &cookie->iovad;
417

418
	/* The MSI case is only ever cleaning up its most recent allocation */
419
	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
420
		cookie->msi_iova -= size;
421 422 423
	else if (cookie->fq_domain)	/* non-strict mode */
		queue_iova(iovad, iova_pfn(iovad, iova),
				size >> iova_shift(iovad), 0);
424
	else
425 426
		free_iova_fast(iovad, iova_pfn(iovad, iova),
				size >> iova_shift(iovad));
427 428 429 430 431
}

static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
		size_t size)
{
432 433
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
434 435 436 437 438
	size_t iova_off = iova_offset(iovad, dma_addr);

	dma_addr -= iova_off;
	size = iova_align(iovad, size + iova_off);

439 440 441
	WARN_ON(iommu_unmap_fast(domain, dma_addr, size) != size);
	if (!cookie->fq_domain)
		iommu_tlb_sync(domain);
442
	iommu_dma_free_iova(cookie, dma_addr, size);
443 444 445 446 447 448 449 450 451
}

static void __iommu_dma_free_pages(struct page **pages, int count)
{
	while (count--)
		__free_page(pages[count]);
	kvfree(pages);
}

452 453
static struct page **__iommu_dma_alloc_pages(unsigned int count,
		unsigned long order_mask, gfp_t gfp)
454 455 456
{
	struct page **pages;
	unsigned int i = 0, array_size = count * sizeof(*pages);
457 458 459 460

	order_mask &= (2U << MAX_ORDER) - 1;
	if (!order_mask)
		return NULL;
461 462 463 464 465 466 467 468 469 470 471 472 473

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, GFP_KERNEL);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	/* IOMMU can map any pages, so himem can also be used here */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	while (count) {
		struct page *page = NULL;
474
		unsigned int order_size;
475 476 477 478

		/*
		 * Higher-order allocations are a convenience rather
		 * than a necessity, hence using __GFP_NORETRY until
479
		 * falling back to minimum-order allocations.
480
		 */
481 482 483 484 485 486 487
		for (order_mask &= (2U << __fls(count)) - 1;
		     order_mask; order_mask &= ~order_size) {
			unsigned int order = __fls(order_mask);

			order_size = 1U << order;
			page = alloc_pages((order_mask - order_size) ?
					   gfp | __GFP_NORETRY : gfp, order);
488 489
			if (!page)
				continue;
490 491 492
			if (!order)
				break;
			if (!PageCompound(page)) {
493 494
				split_page(page, order);
				break;
495 496
			} else if (!split_huge_page(page)) {
				break;
497
			}
498
			__free_pages(page, order);
499 500 501 502 503
		}
		if (!page) {
			__iommu_dma_free_pages(pages, i);
			return NULL;
		}
504 505
		count -= order_size;
		while (order_size--)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
			pages[i++] = page++;
	}
	return pages;
}

/**
 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
 * @dev: Device which owns this buffer
 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @handle: DMA address of buffer
 *
 * Frees both the pages associated with the buffer, and the array
 * describing them
 */
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
		dma_addr_t *handle)
{
524
	__iommu_dma_unmap(iommu_get_dma_domain(dev), *handle, size);
525
	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
526
	*handle = IOMMU_MAPPING_ERROR;
527 528 529 530 531 532 533 534
}

/**
 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
 * @dev: Device to allocate memory for. Must be a real device
 *	 attached to an iommu_dma_domain
 * @size: Size of buffer in bytes
 * @gfp: Allocation flags
535
 * @attrs: DMA attributes for this allocation
536 537 538 539 540 541 542 543 544 545 546
 * @prot: IOMMU mapping flags
 * @handle: Out argument for allocated DMA handle
 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
 *		given VA/PA are visible to the given non-coherent device.
 *
 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
 * but an IOMMU which supports smaller pages might not map the whole thing.
 *
 * Return: Array of struct page pointers describing the buffer,
 *	   or NULL on failure.
 */
547
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
548
		unsigned long attrs, int prot, dma_addr_t *handle,
549 550
		void (*flush_page)(struct device *, const void *, phys_addr_t))
{
551
	struct iommu_domain *domain = iommu_get_dma_domain(dev);
552 553
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
554 555
	struct page **pages;
	struct sg_table sgt;
556
	dma_addr_t iova;
557
	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
558

559
	*handle = IOMMU_MAPPING_ERROR;
560

561 562 563 564 565 566 567
	min_size = alloc_sizes & -alloc_sizes;
	if (min_size < PAGE_SIZE) {
		min_size = PAGE_SIZE;
		alloc_sizes |= PAGE_SIZE;
	} else {
		size = ALIGN(size, min_size);
	}
568
	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
569 570 571 572
		alloc_sizes = min_size;

	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
573 574 575
	if (!pages)
		return NULL;

576 577
	size = iova_align(iovad, size);
	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	if (!iova)
		goto out_free_pages;

	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
		goto out_free_iova;

	if (!(prot & IOMMU_CACHE)) {
		struct sg_mapping_iter miter;
		/*
		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
		 * sufficient here, so skip it by using the "wrong" direction.
		 */
		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
		while (sg_miter_next(&miter))
			flush_page(dev, miter.addr, page_to_phys(miter.page));
		sg_miter_stop(&miter);
	}

596
	if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
597 598 599
			< size)
		goto out_free_sg;

600
	*handle = iova;
601 602 603 604 605 606
	sg_free_table(&sgt);
	return pages;

out_free_sg:
	sg_free_table(&sgt);
out_free_iova:
607
	iommu_dma_free_iova(cookie, iova, size);
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
out_free_pages:
	__iommu_dma_free_pages(pages, count);
	return NULL;
}

/**
 * iommu_dma_mmap - Map a buffer into provided user VMA
 * @pages: Array representing buffer from iommu_dma_alloc()
 * @size: Size of buffer in bytes
 * @vma: VMA describing requested userspace mapping
 *
 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
 * for verifying the correct size and protection of @vma beforehand.
 */

int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
	unsigned long uaddr = vma->vm_start;
	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	int ret = -ENXIO;

	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
		ret = vm_insert_page(vma, uaddr, pages[i]);
		if (ret)
			break;
		uaddr += PAGE_SIZE;
	}
	return ret;
}

638
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
639
		size_t size, int prot, struct iommu_domain *domain)
640
{
641
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
642
	size_t iova_off = 0;
643
	dma_addr_t iova;
644

645 646 647 648 649
	if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
		iova_off = iova_offset(&cookie->iovad, phys);
		size = iova_align(&cookie->iovad, size + iova_off);
	}

650
	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
651
	if (!iova)
652
		return IOMMU_MAPPING_ERROR;
653

654 655
	if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
		iommu_dma_free_iova(cookie, iova, size);
656
		return IOMMU_MAPPING_ERROR;
657
	}
658
	return iova + iova_off;
659 660
}

661 662 663
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
		unsigned long offset, size_t size, int prot)
{
664 665
	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot,
			iommu_get_dma_domain(dev));
666 667
}

668
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
669
		enum dma_data_direction dir, unsigned long attrs)
670
{
671
	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
672 673 674 675
}

/*
 * Prepare a successfully-mapped scatterlist to give back to the caller.
676 677 678 679
 *
 * At this point the segments are already laid out by iommu_dma_map_sg() to
 * avoid individually crossing any boundaries, so we merely need to check a
 * segment's start address to avoid concatenating across one.
680 681 682 683
 */
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
		dma_addr_t dma_addr)
{
684 685 686 687
	struct scatterlist *s, *cur = sg;
	unsigned long seg_mask = dma_get_seg_boundary(dev);
	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
	int i, count = 0;
688 689

	for_each_sg(sg, s, nents, i) {
690 691
		/* Restore this segment's original unaligned fields first */
		unsigned int s_iova_off = sg_dma_address(s);
692
		unsigned int s_length = sg_dma_len(s);
693
		unsigned int s_iova_len = s->length;
694

695
		s->offset += s_iova_off;
696
		s->length = s_length;
697
		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
		sg_dma_len(s) = 0;

		/*
		 * Now fill in the real DMA data. If...
		 * - there is a valid output segment to append to
		 * - and this segment starts on an IOVA page boundary
		 * - but doesn't fall at a segment boundary
		 * - and wouldn't make the resulting output segment too long
		 */
		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
		    (cur_len + s_length <= max_len)) {
			/* ...then concatenate it with the previous one */
			cur_len += s_length;
		} else {
			/* Otherwise start the next output segment */
			if (i > 0)
				cur = sg_next(cur);
			cur_len = s_length;
			count++;

			sg_dma_address(cur) = dma_addr + s_iova_off;
		}

		sg_dma_len(cur) = cur_len;
		dma_addr += s_iova_len;

		if (s_length + s_iova_off < s_iova_len)
			cur_len = 0;
726
	}
727
	return count;
728 729 730 731 732 733 734 735 736 737 738 739
}

/*
 * If mapping failed, then just restore the original list,
 * but making sure the DMA fields are invalidated.
 */
static void __invalidate_sg(struct scatterlist *sg, int nents)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
740
		if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
741
			s->offset += sg_dma_address(s);
742 743
		if (sg_dma_len(s))
			s->length = sg_dma_len(s);
744
		sg_dma_address(s) = IOMMU_MAPPING_ERROR;
745 746 747 748 749 750 751 752 753 754 755 756 757 758
		sg_dma_len(s) = 0;
	}
}

/*
 * The DMA API client is passing in a scatterlist which could describe
 * any old buffer layout, but the IOMMU API requires everything to be
 * aligned to IOMMU pages. Hence the need for this complicated bit of
 * impedance-matching, to be able to hand off a suitably-aligned list,
 * but still preserve the original offsets and sizes for the caller.
 */
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, int prot)
{
759
	struct iommu_domain *domain = iommu_get_dma_domain(dev);
760 761
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iova_domain *iovad = &cookie->iovad;
762
	struct scatterlist *s, *prev = NULL;
763
	dma_addr_t iova;
764
	size_t iova_len = 0;
765
	unsigned long mask = dma_get_seg_boundary(dev);
766 767 768 769 770 771
	int i;

	/*
	 * Work out how much IOVA space we need, and align the segments to
	 * IOVA granules for the IOMMU driver to handle. With some clever
	 * trickery we can modify the list in-place, but reversibly, by
772
	 * stashing the unaligned parts in the as-yet-unused DMA fields.
773 774
	 */
	for_each_sg(sg, s, nents, i) {
775
		size_t s_iova_off = iova_offset(iovad, s->offset);
776
		size_t s_length = s->length;
777
		size_t pad_len = (mask - iova_len + 1) & mask;
778

779
		sg_dma_address(s) = s_iova_off;
780
		sg_dma_len(s) = s_length;
781 782
		s->offset -= s_iova_off;
		s_length = iova_align(iovad, s_length + s_iova_off);
783 784 785
		s->length = s_length;

		/*
786 787 788 789 790 791 792 793 794 795 796
		 * Due to the alignment of our single IOVA allocation, we can
		 * depend on these assumptions about the segment boundary mask:
		 * - If mask size >= IOVA size, then the IOVA range cannot
		 *   possibly fall across a boundary, so we don't care.
		 * - If mask size < IOVA size, then the IOVA range must start
		 *   exactly on a boundary, therefore we can lay things out
		 *   based purely on segment lengths without needing to know
		 *   the actual addresses beforehand.
		 * - The mask must be a power of 2, so pad_len == 0 if
		 *   iova_len == 0, thus we cannot dereference prev the first
		 *   time through here (i.e. before it has a meaningful value).
797
		 */
798
		if (pad_len && pad_len < s_length - 1) {
799 800 801 802 803 804 805 806
			prev->length += pad_len;
			iova_len += pad_len;
		}

		iova_len += s_length;
		prev = s;
	}

807
	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
808 809 810 811 812 813 814
	if (!iova)
		goto out_restore_sg;

	/*
	 * We'll leave any physical concatenation to the IOMMU driver's
	 * implementation - it knows better than we do.
	 */
815
	if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
816 817
		goto out_free_iova;

818
	return __finalise_sg(dev, sg, nents, iova);
819 820

out_free_iova:
821
	iommu_dma_free_iova(cookie, iova, iova_len);
822 823 824 825 826 827
out_restore_sg:
	__invalidate_sg(sg, nents);
	return 0;
}

void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
828
		enum dma_data_direction dir, unsigned long attrs)
829
{
830 831 832
	dma_addr_t start, end;
	struct scatterlist *tmp;
	int i;
833 834 835 836
	/*
	 * The scatterlist segments are mapped into a single
	 * contiguous IOVA allocation, so this is incredibly easy.
	 */
837 838 839 840 841 842 843
	start = sg_dma_address(sg);
	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
		if (sg_dma_len(tmp) == 0)
			break;
		sg = tmp;
	}
	end = sg_dma_address(sg) + sg_dma_len(sg);
844
	__iommu_dma_unmap(iommu_get_dma_domain(dev), start, end - start);
845 846
}

847 848 849 850
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	return __iommu_dma_map(dev, phys, size,
851 852
			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
			iommu_get_dma_domain(dev));
853 854 855 856 857
}

void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
858
	__iommu_dma_unmap(iommu_get_dma_domain(dev), handle, size);
859 860
}

861 862
int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
863
	return dma_addr == IOMMU_MAPPING_ERROR;
864
}
865 866 867 868 869 870

static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
		phys_addr_t msi_addr, struct iommu_domain *domain)
{
	struct iommu_dma_cookie *cookie = domain->iova_cookie;
	struct iommu_dma_msi_page *msi_page;
871
	dma_addr_t iova;
872
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
R
Robin Murphy 已提交
873
	size_t size = cookie_msi_granule(cookie);
874

R
Robin Murphy 已提交
875
	msi_addr &= ~(phys_addr_t)(size - 1);
876 877 878 879 880 881 882 883
	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
		if (msi_page->phys == msi_addr)
			return msi_page;

	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
	if (!msi_page)
		return NULL;

884
	iova = __iommu_dma_map(dev, msi_addr, size, prot, domain);
885 886
	if (iommu_dma_mapping_error(dev, iova))
		goto out_free_page;
887 888

	INIT_LIST_HEAD(&msi_page->list);
889 890
	msi_page->phys = msi_addr;
	msi_page->iova = iova;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	list_add(&msi_page->list, &cookie->msi_page_list);
	return msi_page;

out_free_page:
	kfree(msi_page);
	return NULL;
}

void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
	struct iommu_dma_cookie *cookie;
	struct iommu_dma_msi_page *msi_page;
	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
	unsigned long flags;

	if (!domain || !domain->iova_cookie)
		return;

	cookie = domain->iova_cookie;

	/*
	 * We disable IRQs to rule out a possible inversion against
	 * irq_desc_lock if, say, someone tries to retarget the affinity
	 * of an MSI from within an IPI handler.
	 */
	spin_lock_irqsave(&cookie->msi_lock, flags);
	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
	spin_unlock_irqrestore(&cookie->msi_lock, flags);

	if (WARN_ON(!msi_page)) {
		/*
		 * We're called from a void callback, so the best we can do is
		 * 'fail' by filling the message with obviously bogus values.
		 * Since we got this far due to an IOMMU being present, it's
		 * not like the existing address would have worked anyway...
		 */
		msg->address_hi = ~0U;
		msg->address_lo = ~0U;
		msg->data = ~0U;
	} else {
		msg->address_hi = upper_32_bits(msi_page->iova);
R
Robin Murphy 已提交
934
		msg->address_lo &= cookie_msi_granule(cookie) - 1;
935 936 937
		msg->address_lo += lower_32_bits(msi_page->iova);
	}
}