slab.c 118.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
L
Linus Torvalds 已提交
117 118 119 120 121 122

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
123
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
144
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
145 146 147 148 149 150 151

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 153 154
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
155
 */
156
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
176
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
177
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178
			 SLAB_CACHE_DMA | \
179
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
180
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
L
Linus Torvalds 已提交
183
#else
184
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
185
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
186
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
L
Linus Torvalds 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

210
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
211 212
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
213 214
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
215 216 217 218 219 220 221 222 223

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
224 225 226 227 228 229
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
249
	struct rcu_head head;
250
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
251
	void *addr;
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
271
	spinlock_t lock;
272
	void *entry[];	/*
A
Andrew Morton 已提交
273 274 275 276
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
277 278
};

A
Andrew Morton 已提交
279 280 281
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
282 283 284 285
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
286
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
287 288 289
};

/*
290
 * The slab lists for all objects.
L
Linus Torvalds 已提交
291 292
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
293 294 295 296 297
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
298
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
299 300 301
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
302 303
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
304 305
};

306 307 308 309 310 311
/*
 * The slab allocator is initialized with interrupts disabled. Therefore, make
 * sure early boot allocations don't accidentally enable interrupts.
 */
static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;

312 313 314
/*
 * Need this for bootstrapping a per node allocator.
 */
315
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
316 317
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
318 319
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
320

321 322 323 324
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
325
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
326
static void cache_reap(struct work_struct *unused);
327

328
/*
A
Andrew Morton 已提交
329 330
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
331
 */
332
static __always_inline int index_of(const size_t size)
333
{
334 335
	extern void __bad_size(void);

336 337 338 339 340 341 342 343
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
344
#include <linux/kmalloc_sizes.h>
345
#undef CACHE
346
		__bad_size();
347
	} else
348
		__bad_size();
349 350 351
	return 0;
}

352 353
static int slab_early_init = 1;

354 355
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
356

P
Pekka Enberg 已提交
357
static void kmem_list3_init(struct kmem_list3 *parent)
358 359 360 361 362 363
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
364
	parent->colour_next = 0;
365 366 367 368 369
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
370 371 372 373
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
374 375
	} while (0)

A
Andrew Morton 已提交
376 377
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
378 379 380 381
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
382 383

/*
384
 * struct kmem_cache
L
Linus Torvalds 已提交
385 386 387
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
388

389
struct kmem_cache {
L
Linus Torvalds 已提交
390
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
391
	struct array_cache *array[NR_CPUS];
392
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
393 394 395
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
396

397
	unsigned int buffer_size;
398
	u32 reciprocal_buffer_size;
399 400
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
401 402
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
403

404
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
405
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
406
	unsigned int gfporder;
L
Linus Torvalds 已提交
407 408

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
409
	gfp_t gfpflags;
L
Linus Torvalds 已提交
410

A
Andrew Morton 已提交
411
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
412
	unsigned int colour_off;	/* colour offset */
413
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
414
	unsigned int slab_size;
A
Andrew Morton 已提交
415
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
416 417

	/* constructor func */
418
	void (*ctor)(void *obj);
L
Linus Torvalds 已提交
419

420
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
421 422
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
423

424
/* 6) statistics */
L
Linus Torvalds 已提交
425
#if STATS
P
Pekka Enberg 已提交
426 427 428 429 430 431 432 433 434
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
435
	unsigned long node_overflow;
P
Pekka Enberg 已提交
436 437 438 439
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
440 441
#endif
#if DEBUG
442 443 444 445 446 447 448 449
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
450
#endif
E
Eric Dumazet 已提交
451 452 453 454 455 456 457 458 459 460 461
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
462 463 464 465 466 467
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
468 469 470
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
471
 *
A
Adrian Bunk 已提交
472
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480 481 482
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
483
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
484 485 486 487 488
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
489 490
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
491
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
492
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
493 494 495 496 497
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
498 499 500 501 502 503 504 505 506
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
507
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
508 509 510
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
511
#define	STATS_INC_NODEFREES(x)	do { } while (0)
512
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
513
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
522 523
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
524
 * 0		: objp
525
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
526 527
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
528
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
529
 * 		redzone word.
530 531
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
532 533
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
534
 */
535
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
536
{
537
	return cachep->obj_offset;
L
Linus Torvalds 已提交
538 539
}

540
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
541
{
542
	return cachep->obj_size;
L
Linus Torvalds 已提交
543 544
}

545
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 549
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
550 551
}

552
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
553 554 555
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
556 557
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
558
					      REDZONE_ALIGN);
559 560
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
561 562
}

563
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
564 565
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
566
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
567 568 569 570
}

#else

571 572
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
573 574
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
575 576 577 578
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

E
Eduard - Gabriel Munteanu 已提交
579 580 581 582 583 584 585 586
#ifdef CONFIG_KMEMTRACE
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
587 588 589 590 591 592 593
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
594 595 596 597
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
598
 */
599 600 601 602 603 604 605
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
606
	page = compound_head(page);
607
	BUG_ON(!PageSlab(page));
608 609 610 611 612 613 614 615 616 617
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
618
	BUG_ON(!PageSlab(page));
619 620
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
621

622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
624
	struct page *page = virt_to_head_page(obj);
625 626 627 628 629
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
630
	struct page *page = virt_to_head_page(obj);
631 632 633
	return page_get_slab(page);
}

634 635 636 637 638 639
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

640 641 642 643 644 645 646 647
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
648
{
649 650
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
651 652
}

A
Andrew Morton 已提交
653 654 655
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
673
	{NULL,}
L
Linus Torvalds 已提交
674 675 676 677
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
678
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
679
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
680
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
681 682

/* internal cache of cache description objs */
683
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
684 685 686
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
687
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
688
	.name = "kmem_cache",
L
Linus Torvalds 已提交
689 690
};

691 692
#define BAD_ALIEN_MAGIC 0x01020304ul

693 694 695 696 697 698 699 700
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
701 702 703 704
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
705
 */
706 707 708 709
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
710 711 712

{
	int q;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
740 741 742
	}
}
#else
743
static inline void init_lock_keys(void)
744 745 746 747
{
}
#endif

748
/*
749
 * Guard access to the cache-chain.
750
 */
I
Ingo Molnar 已提交
751
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
752 753 754 755 756 757 758 759
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
760 761
	PARTIAL_AC,
	PARTIAL_L3,
762
	EARLY,
L
Linus Torvalds 已提交
763 764 765
	FULL
} g_cpucache_up;

766 767 768 769 770
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
771
	return g_cpucache_up >= EARLY;
772 773
}

774
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
775

776
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
777 778 779 780
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
781 782
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
783 784 785 786 787
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
788 789 790
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
791
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
792
#endif
793 794 795
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
796 797 798 799
	while (size > csizep->cs_size)
		csizep++;

	/*
800
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
801 802 803
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
804
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
805 806
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
807
#endif
L
Linus Torvalds 已提交
808 809 810
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
811
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
812 813 814 815
{
	return __find_general_cachep(size, gfpflags);
}

816
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
817
{
818 819
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
820

A
Andrew Morton 已提交
821 822 823
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
824 825 826 827 828 829 830
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
880 881
}

882
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
883

A
Andrew Morton 已提交
884 885
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
886 887
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
888
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
889 890 891
	dump_stack();
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
923
		node = first_node(node_online_map);
924

925
	per_cpu(reap_node, cpu) = node;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
943 944 945 946 947 948 949
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
950
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
951
{
952
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
953 954 955 956 957 958

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
959
	if (keventd_up() && reap_work->work.func == NULL) {
960
		init_reap_node(cpu);
961
		INIT_DELAYED_WORK(reap_work, cache_reap);
962 963
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
964 965 966
	}
}

967
static struct array_cache *alloc_arraycache(int node, int entries,
968
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
969
{
P
Pekka Enberg 已提交
970
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
971 972
	struct array_cache *nc = NULL;

973
	nc = kmalloc_node(memsize, gfp, node);
974 975 976 977 978 979 980 981
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
982 983 984 985 986
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
987
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
988 989 990 991
	}
	return nc;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1016 1017 1018 1019 1020
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1021
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1041
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1042 1043 1044 1045 1046 1047 1048
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1049
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1050
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1051

1052
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1053 1054
{
	struct array_cache **ac_ptr;
1055
	int memsize = sizeof(void *) * nr_node_ids;
1056 1057 1058 1059
	int i;

	if (limit > 1)
		limit = 12;
1060
	ac_ptr = kmalloc_node(memsize, gfp, node);
1061 1062 1063 1064 1065 1066
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
1067
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1068
			if (!ac_ptr[i]) {
1069
				for (i--; i >= 0; i--)
1070 1071 1072 1073 1074 1075 1076 1077 1078
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1079
static void free_alien_cache(struct array_cache **ac_ptr)
1080 1081 1082 1083 1084 1085
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1086
	    kfree(ac_ptr[i]);
1087 1088 1089
	kfree(ac_ptr);
}

1090
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1091
				struct array_cache *ac, int node)
1092 1093 1094 1095 1096
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1097 1098 1099 1100 1101
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1102 1103
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1104

1105
		free_block(cachep, ac->entry, ac->avail, node);
1106 1107 1108 1109 1110
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1120 1121

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1122 1123 1124 1125 1126 1127
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1128 1129
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1130
{
P
Pekka Enberg 已提交
1131
	int i = 0;
1132 1133 1134 1135
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1136
		ac = alien[i];
1137 1138 1139 1140 1141 1142 1143
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1144

1145
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1146 1147 1148 1149 1150
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1151 1152 1153
	int node;

	node = numa_node_id();
1154 1155 1156 1157 1158

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1159
	if (likely(slabp->nodeid == node))
1160 1161
		return 0;

P
Pekka Enberg 已提交
1162
	l3 = cachep->nodelists[node];
1163 1164 1165
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1166
		spin_lock(&alien->lock);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1180 1181
#endif

1182 1183 1184 1185 1186
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1187
	const struct cpumask *mask = cpumask_of_node(node);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1209
		if (!cpus_empty(*mask)) {
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1248
{
1249
	struct kmem_cache *cachep;
1250 1251
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1252
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1253

1254 1255 1256 1257 1258 1259 1260 1261
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1262
		/*
1263 1264 1265
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1266
		 */
1267 1268 1269 1270 1271 1272 1273
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1274

A
Andrew Morton 已提交
1275
			/*
1276 1277 1278
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1279
			 */
1280
			cachep->nodelists[node] = l3;
1281 1282
		}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1300
					cachep->batchcount, GFP_KERNEL);
1301 1302 1303 1304 1305
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1306
				0xbaadf00d, GFP_KERNEL);
1307 1308
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1309
				goto bad;
1310
			}
1311 1312
		}
		if (use_alien_caches) {
1313
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1314 1315 1316
			if (!alien) {
				kfree(shared);
				kfree(nc);
1317
				goto bad;
1318
			}
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1333
#ifdef CONFIG_NUMA
1334 1335 1336
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1337
		}
1338 1339 1340 1341 1342 1343 1344
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1345
	cpuup_canceled(cpu);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1358
		mutex_lock(&cache_chain_mutex);
1359
		err = cpuup_prepare(cpu);
1360
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1361 1362
		break;
	case CPU_ONLINE:
1363
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1364 1365 1366
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1367
  	case CPU_DOWN_PREPARE:
1368
  	case CPU_DOWN_PREPARE_FROZEN:
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1380
  	case CPU_DOWN_FAILED_FROZEN:
1381 1382
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1383
	case CPU_DEAD:
1384
	case CPU_DEAD_FROZEN:
1385 1386 1387 1388 1389 1390 1391 1392
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1393
		/* fall through */
1394
#endif
L
Linus Torvalds 已提交
1395
	case CPU_UP_CANCELED:
1396
	case CPU_UP_CANCELED_FROZEN:
1397
		mutex_lock(&cache_chain_mutex);
1398
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1399
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1400 1401
		break;
	}
1402
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1403 1404
}

1405 1406 1407
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1408

1409 1410 1411
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1412 1413
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1414 1415 1416
{
	struct kmem_list3 *ptr;

1417
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1418 1419 1420
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1421 1422 1423 1424 1425
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1426 1427 1428 1429
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1446 1447 1448
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1449 1450 1451 1452 1453 1454
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1455
	int i;
1456
	int order;
P
Pekka Enberg 已提交
1457
	int node;
1458

1459
	if (num_possible_nodes() == 1)
1460 1461
		use_alien_caches = 0;

1462 1463 1464 1465 1466
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1467
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1478 1479 1480
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1481 1482 1483
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1484
	 * 2) Create the first kmalloc cache.
1485
	 *    The struct kmem_cache for the new cache is allocated normally.
1486 1487 1488
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1489 1490
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1491 1492 1493
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1494 1495
	 */

P
Pekka Enberg 已提交
1496 1497
	node = numa_node_id();

L
Linus Torvalds 已提交
1498 1499 1500 1501 1502
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1503
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1504

E
Eric Dumazet 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1514 1515
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1516 1517
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1518

1519 1520 1521 1522 1523 1524
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1525
	BUG_ON(!cache_cache.num);
1526
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1527 1528 1529
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1535 1536 1537 1538
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1539 1540 1541
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1542 1543 1544
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1545
					NULL);
1546

A
Andrew Morton 已提交
1547
	if (INDEX_AC != INDEX_L3) {
1548
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1549 1550 1551 1552
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1553
				NULL);
A
Andrew Morton 已提交
1554
	}
1555

1556 1557
	slab_early_init = 0;

L
Linus Torvalds 已提交
1558
	while (sizes->cs_size != ULONG_MAX) {
1559 1560
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1561 1562 1563
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1564 1565
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1566
		if (!sizes->cs_cachep) {
1567
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1568 1569 1570
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1571
					NULL);
A
Andrew Morton 已提交
1572
		}
1573 1574 1575
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1576 1577 1578 1579
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1580
					NULL);
1581
#endif
L
Linus Torvalds 已提交
1582 1583 1584 1585 1586
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1587
		struct array_cache *ptr;
1588

1589
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1590

1591 1592
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1593
		       sizeof(struct arraycache_init));
1594 1595 1596 1597 1598
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1599
		cache_cache.array[smp_processor_id()] = ptr;
1600

1601
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1602

1603
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1604
		       != &initarray_generic.cache);
1605
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1606
		       sizeof(struct arraycache_init));
1607 1608 1609 1610 1611
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1612
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1613
		    ptr;
L
Linus Torvalds 已提交
1614
	}
1615 1616
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1617 1618
		int nid;

1619
		for_each_online_node(nid) {
1620
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1621

1622
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1623
				  &initkmem_list3[SIZE_AC + nid], nid);
1624 1625 1626

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1627
					  &initkmem_list3[SIZE_L3 + nid], nid);
1628 1629 1630
			}
		}
	}
L
Linus Torvalds 已提交
1631

1632
	g_cpucache_up = EARLY;
L
Linus Torvalds 已提交
1633

1634 1635
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/*
	 * Interrupts are enabled now so all GFP allocations are safe.
	 */
	slab_gfp_mask = __GFP_BITS_MASK;
1646

1647 1648 1649 1650 1651 1652
	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1653

L
Linus Torvalds 已提交
1654 1655 1656
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1657 1658 1659
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1660 1661 1662
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1663 1664 1665
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1673 1674
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1675
	 */
1676
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1677
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1689
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1690 1691
{
	struct page *page;
1692
	int nr_pages;
L
Linus Torvalds 已提交
1693 1694
	int i;

1695
#ifndef CONFIG_MMU
1696 1697 1698
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1699
	 */
1700
	flags |= __GFP_COMP;
1701
#endif
1702

1703
	flags |= cachep->gfpflags;
1704 1705
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1706

1707
	page = alloc_pages_exact_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1708 1709 1710
	if (!page)
		return NULL;

1711
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1712
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1713 1714 1715 1716 1717
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1718 1719 1720
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725
}

/*
 * Interface to system's page release.
 */
1726
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1727
{
P
Pekka Enberg 已提交
1728
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1729 1730 1731
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1732 1733 1734 1735 1736 1737
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1738
	while (i--) {
N
Nick Piggin 已提交
1739 1740
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1750
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1751
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1761
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1762
			    unsigned long caller)
L
Linus Torvalds 已提交
1763
{
1764
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1765

1766
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1767

P
Pekka Enberg 已提交
1768
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1769 1770
		return;

P
Pekka Enberg 已提交
1771 1772 1773 1774
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779 1780 1781
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1782
				*addr++ = svalue;
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787 1788 1789
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1790
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1791 1792 1793
}
#endif

1794
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1795
{
1796 1797
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1798 1799

	memset(addr, val, size);
P
Pekka Enberg 已提交
1800
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1806 1807 1808
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1809
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1810 1811 1812 1813 1814
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1815
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1816
	}
L
Linus Torvalds 已提交
1817
	printk("\n");
D
Dave Jones 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836
}
#endif

#if DEBUG

1837
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1843
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1844 1845
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1846 1847 1848 1849
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1850
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1851
		print_symbol("(%s)",
A
Andrew Morton 已提交
1852
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1853 1854
		printk("\n");
	}
1855 1856
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1857
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1858 1859
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1860 1861
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1862 1863 1864 1865
		dump_line(realobj, i, limit);
	}
}

1866
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871
{
	char *realobj;
	int size, i;
	int lines = 0;

1872 1873
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1874

P
Pekka Enberg 已提交
1875
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1876
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1877
		if (i == size - 1)
L
Linus Torvalds 已提交
1878 1879 1880 1881 1882 1883
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1884
				printk(KERN_ERR
1885 1886
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1887 1888 1889
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1890
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1891
			limit = 16;
P
Pekka Enberg 已提交
1892 1893
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1906
		struct slab *slabp = virt_to_slab(objp);
1907
		unsigned int objnr;
L
Linus Torvalds 已提交
1908

1909
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1910
		if (objnr) {
1911
			objp = index_to_obj(cachep, slabp, objnr - 1);
1912
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1913
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1914
			       realobj, size);
L
Linus Torvalds 已提交
1915 1916
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1917
		if (objnr + 1 < cachep->num) {
1918
			objp = index_to_obj(cachep, slabp, objnr + 1);
1919
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1920
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1921
			       realobj, size);
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1928
#if DEBUG
R
Rabin Vincent 已提交
1929
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1930 1931 1932
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1933
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1934 1935 1936

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1937 1938
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1939
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1940
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1950
					   "was overwritten");
L
Linus Torvalds 已提交
1951 1952
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1953
					   "was overwritten");
L
Linus Torvalds 已提交
1954 1955
		}
	}
1956
}
L
Linus Torvalds 已提交
1957
#else
R
Rabin Vincent 已提交
1958
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1959 1960
{
}
L
Linus Torvalds 已提交
1961 1962
#endif

1963 1964 1965 1966 1967
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1968
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1969 1970
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1971
 */
1972
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1973 1974 1975
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1976
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1977 1978 1979
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1980
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1986 1987
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1988 1989 1990
	}
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2012
/**
2013 2014 2015 2016 2017 2018 2019
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2020 2021 2022 2023 2024
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2025
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2026
			size_t size, size_t align, unsigned long flags)
2027
{
2028
	unsigned long offslab_limit;
2029
	size_t left_over = 0;
2030
	int gfporder;
2031

2032
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2033 2034 2035
		unsigned int num;
		size_t remainder;

2036
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2037 2038
		if (!num)
			continue;
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2052

2053
		/* Found something acceptable - save it away */
2054
		cachep->num = num;
2055
		cachep->gfporder = gfporder;
2056 2057
		left_over = remainder;

2058 2059 2060 2061 2062 2063 2064 2065
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2066 2067 2068 2069
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2070
		if (gfporder >= slab_break_gfp_order)
2071 2072
			break;

2073 2074 2075
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2076
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2077 2078 2079 2080 2081
			break;
	}
	return left_over;
}

2082
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2083
{
2084
	if (g_cpucache_up == FULL)
2085
		return enable_cpucache(cachep, gfp);
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2107
			kmalloc(sizeof(struct arraycache_init), gfp);
2108 2109 2110 2111 2112 2113

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2114
			for_each_online_node(node) {
2115 2116
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2117
						gfp, node);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2133
	return 0;
2134 2135
}

L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2146
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2147 2148
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2149
 * the module calling this has to destroy the cache before getting unloaded.
2150 2151
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2152
 *
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2165
struct kmem_cache *
L
Linus Torvalds 已提交
2166
kmem_cache_create (const char *name, size_t size, size_t align,
2167
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2168 2169
{
	size_t left_over, slab_size, ralign;
2170
	struct kmem_cache *cachep = NULL, *pc;
2171
	gfp_t gfp;
L
Linus Torvalds 已提交
2172 2173 2174 2175

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2176
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2177
	    size > KMALLOC_MAX_SIZE) {
2178
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2179
				name);
P
Pekka Enberg 已提交
2180 2181
		BUG();
	}
L
Linus Torvalds 已提交
2182

2183
	/*
2184
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2185
	 * cpu_online_mask as well.  Please see cpuup_callback
2186
	 */
2187 2188 2189 2190
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2191

2192
	list_for_each_entry(pc, &cache_chain, next) {
2193 2194 2195 2196 2197 2198 2199 2200
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2201
		res = probe_kernel_address(pc->name, tmp);
2202
		if (res) {
2203 2204
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2205
			       pc->buffer_size);
2206 2207 2208
			continue;
		}

P
Pekka Enberg 已提交
2209
		if (!strcmp(pc->name, name)) {
2210 2211
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2212 2213 2214 2215 2216
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2226 2227
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2228
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234 2235
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2236 2237
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2238
	 */
2239
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2240

A
Andrew Morton 已提交
2241 2242
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2243 2244 2245
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2246 2247 2248
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2249 2250
	}

A
Andrew Morton 已提交
2251 2252
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2253 2254
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2255 2256 2257 2258
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2259 2260
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2261
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2262 2263 2264 2265
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2266 2267

	/*
D
David Woodhouse 已提交
2268 2269 2270
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2271
	 */
D
David Woodhouse 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2282

2283
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2284 2285 2286
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2287
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2288 2289 2290
	if (ralign < align) {
		ralign = align;
	}
2291
	/* disable debug if necessary */
2292
	if (ralign > __alignof__(unsigned long long))
2293
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2294
	/*
2295
	 * 4) Store it.
L
Linus Torvalds 已提交
2296 2297 2298
	 */
	align = ralign;

2299 2300 2301 2302 2303
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2304
	/* Get cache's description obj. */
2305
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2306
	if (!cachep)
2307
		goto oops;
L
Linus Torvalds 已提交
2308 2309

#if DEBUG
2310
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2311

2312 2313 2314 2315
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2316 2317
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2318 2319
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2320 2321
	}
	if (flags & SLAB_STORE_USER) {
2322
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2323 2324
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2325
		 */
D
David Woodhouse 已提交
2326 2327 2328 2329
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2330 2331
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2332
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2333 2334
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339
		size = PAGE_SIZE;
	}
#endif
#endif

2340 2341 2342 2343 2344 2345
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2354
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2355 2356

	if (!cachep->num) {
2357 2358
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2359 2360
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2361
		goto oops;
L
Linus Torvalds 已提交
2362
	}
P
Pekka Enberg 已提交
2363 2364
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2377 2378
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2379 2380 2381 2382 2383 2384
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2385
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2386 2387 2388
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2389
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2390
		cachep->gfpflags |= GFP_DMA;
2391
	cachep->buffer_size = size;
2392
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2393

2394
	if (flags & CFLGS_OFF_SLAB) {
2395
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2396 2397 2398 2399 2400 2401 2402
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2403
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2404
	}
L
Linus Torvalds 已提交
2405 2406 2407
	cachep->ctor = ctor;
	cachep->name = name;

2408
	if (setup_cpu_cache(cachep, gfp)) {
2409 2410 2411 2412
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2413 2414 2415

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2416
oops:
L
Linus Torvalds 已提交
2417 2418
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2419
		      name);
2420 2421 2422 2423
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2439
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2440 2441 2442
{
#ifdef CONFIG_SMP
	check_irq_off();
2443
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2444 2445
#endif
}
2446

2447
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2448 2449 2450 2451 2452 2453 2454
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2455 2456 2457 2458
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2459
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2460 2461
#endif

2462 2463 2464 2465
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2466 2467
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2468
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2469
	struct array_cache *ac;
2470
	int node = numa_node_id();
L
Linus Torvalds 已提交
2471 2472

	check_irq_off();
2473
	ac = cpu_cache_get(cachep);
2474 2475 2476
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2477 2478 2479
	ac->avail = 0;
}

2480
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2481
{
2482 2483 2484
	struct kmem_list3 *l3;
	int node;

2485
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2486
	check_irq_on();
P
Pekka Enberg 已提交
2487
	for_each_online_node(node) {
2488
		l3 = cachep->nodelists[node];
2489 2490 2491 2492 2493 2494 2495
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2496
			drain_array(cachep, l3, l3->shared, 1, node);
2497
	}
L
Linus Torvalds 已提交
2498 2499
}

2500 2501 2502 2503 2504 2505 2506 2507
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2508
{
2509 2510
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2511 2512
	struct slab *slabp;

2513 2514
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2515

2516
		spin_lock_irq(&l3->list_lock);
2517
		p = l3->slabs_free.prev;
2518 2519 2520 2521
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2522

2523
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2524
#if DEBUG
2525
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2526 2527
#endif
		list_del(&slabp->list);
2528 2529 2530 2531 2532
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2533
		spin_unlock_irq(&l3->list_lock);
2534 2535
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2536
	}
2537 2538
out:
	return nr_freed;
L
Linus Torvalds 已提交
2539 2540
}

2541
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2542
static int __cache_shrink(struct kmem_cache *cachep)
2543 2544 2545 2546 2547 2548 2549 2550 2551
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2552 2553 2554 2555 2556 2557 2558
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2559 2560 2561 2562
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568 2569
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2570
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2571
{
2572
	int ret;
2573
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2574

2575
	get_online_cpus();
2576 2577 2578
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2579
	put_online_cpus();
2580
	return ret;
L
Linus Torvalds 已提交
2581 2582 2583 2584 2585 2586 2587
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2588
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2600
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2601
{
2602
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2603 2604

	/* Find the cache in the chain of caches. */
2605
	get_online_cpus();
I
Ingo Molnar 已提交
2606
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2613
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2614
		mutex_unlock(&cache_chain_mutex);
2615
		put_online_cpus();
2616
		return;
L
Linus Torvalds 已提交
2617 2618 2619
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2620
		synchronize_rcu();
L
Linus Torvalds 已提交
2621

2622
	__kmem_cache_destroy(cachep);
2623
	mutex_unlock(&cache_chain_mutex);
2624
	put_online_cpus();
L
Linus Torvalds 已提交
2625 2626 2627
}
EXPORT_SYMBOL(kmem_cache_destroy);

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2639
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2640 2641
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2642 2643
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2644

L
Linus Torvalds 已提交
2645 2646
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2647
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2648
					      local_flags, nodeid);
2649 2650 2651 2652 2653 2654 2655 2656
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
		kmemleak_scan_area(slabp, offsetof(struct slab, list),
				   sizeof(struct list_head), local_flags);
L
Linus Torvalds 已提交
2657 2658 2659
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2660
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2661 2662 2663 2664
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2665
	slabp->s_mem = objp + colour_off;
2666
	slabp->nodeid = nodeid;
2667
	slabp->free = 0;
L
Linus Torvalds 已提交
2668 2669 2670 2671 2672
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2673
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2674 2675
}

2676
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2677
			    struct slab *slabp)
L
Linus Torvalds 已提交
2678 2679 2680 2681
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2682
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2695 2696 2697
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2698 2699
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2700
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2701 2702 2703 2704

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2705
					   " end of an object");
L
Linus Torvalds 已提交
2706 2707
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2708
					   " start of an object");
L
Linus Torvalds 已提交
2709
		}
A
Andrew Morton 已提交
2710 2711
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2712
			kernel_map_pages(virt_to_page(objp),
2713
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2714 2715
#else
		if (cachep->ctor)
2716
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2717
#endif
P
Pekka Enberg 已提交
2718
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2719
	}
P
Pekka Enberg 已提交
2720
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2721 2722
}

2723
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2724
{
2725 2726 2727 2728 2729 2730
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2731 2732
}

A
Andrew Morton 已提交
2733 2734
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2735
{
2736
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2750 2751
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2752
{
2753
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2754 2755 2756 2757 2758

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2759
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2760
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2761
				"'%s', objp %p\n", cachep->name, objp);
2762 2763 2764 2765 2766 2767 2768 2769
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2770 2771 2772 2773 2774 2775 2776
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2777
{
2778
	int nr_pages;
L
Linus Torvalds 已提交
2779 2780
	struct page *page;

2781
	page = virt_to_page(addr);
2782

2783
	nr_pages = 1;
2784
	if (likely(!PageCompound(page)))
2785 2786
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2787
	do {
2788 2789
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2790
		page++;
2791
	} while (--nr_pages);
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2798 2799
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2800
{
P
Pekka Enberg 已提交
2801 2802 2803
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2804
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2805

A
Andrew Morton 已提交
2806 2807 2808
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2809
	 */
C
Christoph Lameter 已提交
2810 2811
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2812

2813
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2814
	check_irq_off();
2815 2816
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2817 2818

	/* Get colour for the slab, and cal the next value. */
2819 2820 2821 2822 2823
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2824

2825
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2838 2839 2840
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2841
	 */
2842
	if (!objp)
2843
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2844
	if (!objp)
L
Linus Torvalds 已提交
2845 2846 2847
		goto failed;

	/* Get slab management. */
2848
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2849
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2850
	if (!slabp)
L
Linus Torvalds 已提交
2851 2852
		goto opps1;

2853
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2854

C
Christoph Lameter 已提交
2855
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2856 2857 2858 2859

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2860
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2861 2862

	/* Make slab active. */
2863
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2864
	STATS_INC_GROWN(cachep);
2865 2866
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2867
	return 1;
A
Andrew Morton 已提交
2868
opps1:
L
Linus Torvalds 已提交
2869
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2870
failed:
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2887 2888
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2889 2890 2891
	}
}

2892 2893
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2894
	unsigned long long redzone1, redzone2;
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2910
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2911 2912 2913
			obj, redzone1, redzone2);
}

2914
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2915
				   void *caller)
L
Linus Torvalds 已提交
2916 2917 2918 2919 2920
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2921 2922
	BUG_ON(virt_to_cache(objp) != cachep);

2923
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2924
	kfree_debugcheck(objp);
2925
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2926

2927
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2928 2929

	if (cachep->flags & SLAB_RED_ZONE) {
2930
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2931 2932 2933 2934 2935 2936
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2937
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2938 2939

	BUG_ON(objnr >= cachep->num);
2940
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2941

2942 2943 2944
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2945 2946
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2947
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2948
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2949
			kernel_map_pages(virt_to_page(objp),
2950
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2961
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2962 2963 2964
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2965

L
Linus Torvalds 已提交
2966 2967 2968 2969 2970 2971 2972
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2973 2974 2975 2976
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2977
		for (i = 0;
2978
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2979
		     i++) {
A
Andrew Morton 已提交
2980
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2981
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2982
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2994
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2995 2996 2997 2998
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2999 3000
	int node;

3001
retry:
L
Linus Torvalds 已提交
3002
	check_irq_off();
3003
	node = numa_node_id();
3004
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3005 3006
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3007 3008 3009 3010
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3011 3012 3013
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3014
	l3 = cachep->nodelists[node];
3015 3016 3017

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3018

3019 3020 3021 3022
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3038 3039 3040 3041 3042 3043

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3044
		BUG_ON(slabp->inuse >= cachep->num);
3045

L
Linus Torvalds 已提交
3046 3047 3048 3049 3050
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3051
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3052
							    node);
L
Linus Torvalds 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3064
must_grow:
L
Linus Torvalds 已提交
3065
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3066
alloc_done:
3067
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3068 3069 3070

	if (unlikely(!ac->avail)) {
		int x;
3071
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3072

A
Andrew Morton 已提交
3073
		/* cache_grow can reenable interrupts, then ac could change. */
3074
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3075
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3076 3077
			return NULL;

A
Andrew Morton 已提交
3078
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3079 3080 3081
			goto retry;
	}
	ac->touched = 1;
3082
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3083 3084
}

A
Andrew Morton 已提交
3085 3086
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093 3094
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3095 3096
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3097
{
P
Pekka Enberg 已提交
3098
	if (!objp)
L
Linus Torvalds 已提交
3099
		return objp;
P
Pekka Enberg 已提交
3100
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3101
#ifdef CONFIG_DEBUG_PAGEALLOC
3102
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3103
			kernel_map_pages(virt_to_page(objp),
3104
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3116 3117 3118 3119
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3120
			printk(KERN_ERR
3121
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3122 3123
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3124 3125 3126 3127
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3128 3129 3130 3131 3132
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3133
		slabp = page_get_slab(virt_to_head_page(objp));
3134 3135 3136 3137
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3138
	objp += obj_offset(cachep);
3139
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3140
		cachep->ctor(objp);
3141 3142 3143 3144 3145 3146
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3147 3148 3149 3150 3151 3152
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3153
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3154 3155
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3156
		return false;
3157

A
Akinobu Mita 已提交
3158
	return should_failslab(obj_size(cachep), flags);
3159 3160
}

3161
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3162
{
P
Pekka Enberg 已提交
3163
	void *objp;
L
Linus Torvalds 已提交
3164 3165
	struct array_cache *ac;

3166
	check_irq_off();
3167

3168
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3169 3170 3171
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3172
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3173 3174 3175 3176
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3177 3178 3179 3180 3181 3182
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
	kmemleak_erase(&ac->entry[ac->avail]);
3183 3184 3185
	return objp;
}

3186
#ifdef CONFIG_NUMA
3187
/*
3188
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3189 3190 3191 3192 3193 3194 3195 3196
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3197
	if (in_interrupt() || (flags & __GFP_THISNODE))
3198 3199 3200 3201 3202 3203 3204
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3205
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3206 3207 3208
	return NULL;
}

3209 3210
/*
 * Fallback function if there was no memory available and no objects on a
3211 3212 3213 3214 3215
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3216
 */
3217
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3218
{
3219 3220
	struct zonelist *zonelist;
	gfp_t local_flags;
3221
	struct zoneref *z;
3222 3223
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3224
	void *obj = NULL;
3225
	int nid;
3226 3227 3228 3229

	if (flags & __GFP_THISNODE)
		return NULL;

3230
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3231
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3232

3233 3234 3235 3236 3237
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3238 3239
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3240

3241
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3242
			cache->nodelists[nid] &&
3243
			cache->nodelists[nid]->free_objects) {
3244 3245
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3246 3247 3248
				if (obj)
					break;
		}
3249 3250
	}

3251
	if (!obj) {
3252 3253 3254 3255 3256 3257
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3258 3259 3260
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3261
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3262 3263
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3280
				/* cache_grow already freed obj */
3281 3282 3283
				obj = NULL;
			}
		}
3284
	}
3285 3286 3287
	return obj;
}

3288 3289
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3290
 */
3291
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3292
				int nodeid)
3293 3294
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3295 3296 3297 3298 3299 3300 3301 3302
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3303
retry:
3304
	check_irq_off();
P
Pekka Enberg 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3324
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3325 3326 3327 3328 3329
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3330
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3331
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3332
	else
P
Pekka Enberg 已提交
3333
		list_add(&slabp->list, &l3->slabs_partial);
3334

P
Pekka Enberg 已提交
3335 3336
	spin_unlock(&l3->list_lock);
	goto done;
3337

A
Andrew Morton 已提交
3338
must_grow:
P
Pekka Enberg 已提交
3339
	spin_unlock(&l3->list_lock);
3340
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3341 3342
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3343

3344
	return fallback_alloc(cachep, flags);
3345

A
Andrew Morton 已提交
3346
done:
P
Pekka Enberg 已提交
3347
	return obj;
3348
}
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3369 3370
	flags &= slab_gfp_mask;

3371 3372
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3373
	if (slab_should_failslab(cachep, flags))
3374 3375
		return NULL;

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3404 3405
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3406

3407 3408 3409
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3451 3452
	flags &= slab_gfp_mask;

3453 3454
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3455
	if (slab_should_failslab(cachep, flags))
3456 3457
		return NULL;

3458 3459 3460 3461 3462
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3463 3464
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3465 3466
	prefetchw(objp);

3467 3468 3469
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3470 3471
	return objp;
}
3472 3473 3474 3475

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3476
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3477
		       int node)
L
Linus Torvalds 已提交
3478 3479
{
	int i;
3480
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3486
		slabp = virt_to_slab(objp);
3487
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3488
		list_del(&slabp->list);
3489
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3490
		check_slabp(cachep, slabp);
3491
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3492
		STATS_DEC_ACTIVE(cachep);
3493
		l3->free_objects++;
L
Linus Torvalds 已提交
3494 3495 3496 3497
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3498 3499
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3500 3501 3502 3503 3504 3505
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3506 3507
				slab_destroy(cachep, slabp);
			} else {
3508
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3515
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3516 3517 3518 3519
		}
	}
}

3520
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3521 3522
{
	int batchcount;
3523
	struct kmem_list3 *l3;
3524
	int node = numa_node_id();
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3531
	l3 = cachep->nodelists[node];
3532
	spin_lock(&l3->list_lock);
3533 3534
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3535
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3536 3537 3538
		if (max) {
			if (batchcount > max)
				batchcount = max;
3539
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3540
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3541 3542 3543 3544 3545
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3546
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3547
free_done:
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552
#if STATS
	{
		int i = 0;
		struct list_head *p;

3553 3554
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3566
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3567
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3568
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3569 3570 3571
}

/*
A
Andrew Morton 已提交
3572 3573
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3574
 */
3575
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3576
{
3577
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3578 3579

	check_irq_off();
3580
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3581 3582
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3583 3584 3585 3586 3587 3588 3589
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3590
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3591 3592
		return;

L
Linus Torvalds 已提交
3593 3594
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3595
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3596 3597 3598 3599
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3600
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3612
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3613
{
E
Eduard - Gabriel Munteanu 已提交
3614 3615
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3616 3617
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3618 3619

	return ret;
L
Linus Torvalds 已提交
3620 3621 3622
}
EXPORT_SYMBOL(kmem_cache_alloc);

E
Eduard - Gabriel Munteanu 已提交
3623 3624 3625 3626 3627 3628 3629 3630
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3631
/**
3632
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3633 3634 3635
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3636
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3637 3638 3639 3640 3641 3642 3643
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3644
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3645
{
P
Pekka Enberg 已提交
3646
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3647
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3648
	unsigned long align_mask = BYTES_PER_WORD - 1;
3649
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3665
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3666 3667
		goto out;
	return 1;
A
Andrew Morton 已提交
3668
out:
L
Linus Torvalds 已提交
3669 3670 3671 3672
	return 0;
}

#ifdef CONFIG_NUMA
3673 3674
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3675 3676 3677
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3678 3679 3680
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3681 3682

	return ret;
3683
}
L
Linus Torvalds 已提交
3684 3685
EXPORT_SYMBOL(kmem_cache_alloc_node);

E
Eduard - Gabriel Munteanu 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3697 3698
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3699
{
3700
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3701
	void *ret;
3702 3703

	cachep = kmem_find_general_cachep(size, flags);
3704 3705
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3706 3707
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3708 3709
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3710 3711

	return ret;
3712
}
3713

E
Eduard - Gabriel Munteanu 已提交
3714
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3715 3716 3717 3718 3719
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3720
EXPORT_SYMBOL(__kmalloc_node);
3721 3722

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3723
		int node, unsigned long caller)
3724
{
3725
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3736 3737

/**
3738
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3739
 * @size: how many bytes of memory are required.
3740
 * @flags: the type of memory to allocate (see kmalloc).
3741
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3742
 */
3743 3744
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3745
{
3746
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3747
	void *ret;
L
Linus Torvalds 已提交
3748

3749 3750 3751 3752 3753 3754
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3755 3756
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3757 3758
	ret = __cache_alloc(cachep, flags, caller);

3759 3760
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3761 3762

	return ret;
3763 3764 3765
}


E
Eduard - Gabriel Munteanu 已提交
3766
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3767 3768
void *__kmalloc(size_t size, gfp_t flags)
{
3769
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3770 3771 3772
}
EXPORT_SYMBOL(__kmalloc);

3773
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3774
{
3775
	return __do_kmalloc(size, flags, (void *)caller);
3776 3777
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3778 3779 3780 3781 3782 3783 3784

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3785 3786
#endif

L
Linus Torvalds 已提交
3787 3788 3789 3790 3791 3792 3793 3794
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3795
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3796 3797 3798 3799
{
	unsigned long flags;

	local_irq_save(flags);
3800
	debug_check_no_locks_freed(objp, obj_size(cachep));
3801 3802
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3803
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3804
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3805

3806
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3814 3815
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3821
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3822 3823
	unsigned long flags;

3824 3825
	trace_kfree(_RET_IP_, objp);

3826
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3827 3828 3829
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3830
	c = virt_to_cache(objp);
3831
	debug_check_no_locks_freed(objp, obj_size(c));
3832
	debug_check_no_obj_freed(objp, obj_size(c));
3833
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3834 3835 3836 3837
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3838
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3839
{
3840
	return obj_size(cachep);
L
Linus Torvalds 已提交
3841 3842 3843
}
EXPORT_SYMBOL(kmem_cache_size);

3844
const char *kmem_cache_name(struct kmem_cache *cachep)
3845 3846 3847 3848 3849
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3850
/*
S
Simon Arlott 已提交
3851
 * This initializes kmem_list3 or resizes various caches for all nodes.
3852
 */
3853
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3854 3855 3856
{
	int node;
	struct kmem_list3 *l3;
3857
	struct array_cache *new_shared;
3858
	struct array_cache **new_alien = NULL;
3859

3860
	for_each_online_node(node) {
3861

3862
                if (use_alien_caches) {
3863
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3864 3865 3866
                        if (!new_alien)
                                goto fail;
                }
3867

3868 3869 3870
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3871
				cachep->shared*cachep->batchcount,
3872
					0xbaadf00d, gfp);
3873 3874 3875 3876
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3877
		}
3878

A
Andrew Morton 已提交
3879 3880
		l3 = cachep->nodelists[node];
		if (l3) {
3881 3882
			struct array_cache *shared = l3->shared;

3883 3884
			spin_lock_irq(&l3->list_lock);

3885
			if (shared)
3886 3887
				free_block(cachep, shared->entry,
						shared->avail, node);
3888

3889 3890
			l3->shared = new_shared;
			if (!l3->alien) {
3891 3892 3893
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3894
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3895
					cachep->batchcount + cachep->num;
3896
			spin_unlock_irq(&l3->list_lock);
3897
			kfree(shared);
3898 3899 3900
			free_alien_cache(new_alien);
			continue;
		}
3901
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3902 3903 3904
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3905
			goto fail;
3906
		}
3907 3908 3909

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3910
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3911
		l3->shared = new_shared;
3912
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3913
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3914
					cachep->batchcount + cachep->num;
3915 3916
		cachep->nodelists[node] = l3;
	}
3917
	return 0;
3918

A
Andrew Morton 已提交
3919
fail:
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3935
	return -ENOMEM;
3936 3937
}

L
Linus Torvalds 已提交
3938
struct ccupdate_struct {
3939
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3940 3941 3942 3943 3944
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3945
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3946 3947 3948
	struct array_cache *old;

	check_irq_off();
3949
	old = cpu_cache_get(new->cachep);
3950

L
Linus Torvalds 已提交
3951 3952 3953 3954
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3955
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3956
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3957
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3958
{
3959
	struct ccupdate_struct *new;
3960
	int i;
L
Linus Torvalds 已提交
3961

3962
	new = kzalloc(sizeof(*new), gfp);
3963 3964 3965
	if (!new)
		return -ENOMEM;

3966
	for_each_online_cpu(i) {
3967
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3968
						batchcount, gfp);
3969
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3970
			for (i--; i >= 0; i--)
3971 3972
				kfree(new->new[i]);
			kfree(new);
3973
			return -ENOMEM;
L
Linus Torvalds 已提交
3974 3975
		}
	}
3976
	new->cachep = cachep;
L
Linus Torvalds 已提交
3977

3978
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3979

L
Linus Torvalds 已提交
3980 3981 3982
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3983
	cachep->shared = shared;
L
Linus Torvalds 已提交
3984

3985
	for_each_online_cpu(i) {
3986
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3987 3988
		if (!ccold)
			continue;
3989
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3990
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3991
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3992 3993
		kfree(ccold);
	}
3994
	kfree(new);
3995
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3996 3997
}

3998
/* Called with cache_chain_mutex held always */
3999
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4000 4001 4002 4003
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4004 4005
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4006 4007
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4008
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4009 4010 4011 4012
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4013
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4014
		limit = 1;
4015
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4016
		limit = 8;
4017
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4018
		limit = 24;
4019
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4020 4021 4022 4023
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4024 4025
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032 4033
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4034
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4035 4036 4037
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4038 4039 4040
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4041 4042 4043 4044
	 */
	if (limit > 32)
		limit = 32;
#endif
4045
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4046 4047
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4048
		       cachep->name, -err);
4049
	return err;
L
Linus Torvalds 已提交
4050 4051
}

4052 4053
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4054 4055
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4056 4057 4058
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4059 4060 4061
{
	int tofree;

4062 4063
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4064 4065
	if (ac->touched && !force) {
		ac->touched = 0;
4066
	} else {
4067
		spin_lock_irq(&l3->list_lock);
4068 4069 4070 4071 4072 4073 4074 4075 4076
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4077
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4078 4079 4080 4081 4082
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4083
 * @w: work descriptor
L
Linus Torvalds 已提交
4084 4085 4086 4087 4088 4089
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4090 4091
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4092
 */
4093
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4094
{
4095
	struct kmem_cache *searchp;
4096
	struct kmem_list3 *l3;
4097
	int node = numa_node_id();
4098
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4099

4100
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4101
		/* Give up. Setup the next iteration. */
4102
		goto out;
L
Linus Torvalds 已提交
4103

4104
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4105 4106
		check_irq_on();

4107 4108 4109 4110 4111
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4112
		l3 = searchp->nodelists[node];
4113

4114
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4115

4116
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4117

4118 4119 4120 4121
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4122
		if (time_after(l3->next_reap, jiffies))
4123
			goto next;
L
Linus Torvalds 已提交
4124

4125
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4126

4127
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4128

4129
		if (l3->free_touched)
4130
			l3->free_touched = 0;
4131 4132
		else {
			int freed;
L
Linus Torvalds 已提交
4133

4134 4135 4136 4137
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4138
next:
L
Linus Torvalds 已提交
4139 4140 4141
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4142
	mutex_unlock(&cache_chain_mutex);
4143
	next_reap_node();
4144
out:
A
Andrew Morton 已提交
4145
	/* Set up the next iteration */
4146
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4147 4148
}

4149
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4150

4151
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4152
{
4153 4154 4155 4156
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4157
#if STATS
4158
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4159
#else
4160
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4161
#endif
4162 4163 4164 4165
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4166
#if STATS
4167
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4168
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4169
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4170
#endif
4171 4172 4173 4174 4175 4176 4177
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4178
	mutex_lock(&cache_chain_mutex);
4179 4180
	if (!n)
		print_slabinfo_header(m);
4181 4182

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4183 4184 4185 4186
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4187
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4188 4189 4190 4191
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4192
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4193 4194 4195 4196
}

static int s_show(struct seq_file *m, void *p)
{
4197
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4198 4199 4200 4201 4202
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4203
	const char *name;
L
Linus Torvalds 已提交
4204
	char *error = NULL;
4205 4206
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4207 4208 4209

	active_objs = 0;
	num_slabs = 0;
4210 4211 4212 4213 4214
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4215 4216
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4217

4218
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4219 4220 4221 4222 4223
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4224
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4225 4226 4227 4228 4229 4230 4231
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4232
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4233 4234 4235 4236 4237
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4238 4239
		if (l3->shared)
			shared_avail += l3->shared->avail;
4240

4241
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4242
	}
P
Pekka Enberg 已提交
4243 4244
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4245
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4246 4247
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4248
	name = cachep->name;
L
Linus Torvalds 已提交
4249 4250 4251 4252
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4253
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4254
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4255
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4256
		   cachep->limit, cachep->batchcount, cachep->shared);
4257
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4258
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4259
#if STATS
P
Pekka Enberg 已提交
4260
	{			/* list3 stats */
L
Linus Torvalds 已提交
4261 4262 4263 4264 4265 4266 4267
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4268
		unsigned long node_frees = cachep->node_frees;
4269
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4270

4271
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4272
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4273
				reaped, errors, max_freeable, node_allocs,
4274
				node_frees, overflows);
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4284
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4305
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4306 4307 4308 4309
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4320 4321
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4322
{
P
Pekka Enberg 已提交
4323
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4324
	int limit, batchcount, shared, res;
4325
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4326

L
Linus Torvalds 已提交
4327 4328 4329 4330
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4331
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4342
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4343
	res = -EINVAL;
4344
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4345
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4346 4347
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4348
				res = 0;
L
Linus Torvalds 已提交
4349
			} else {
4350
				res = do_tune_cpucache(cachep, limit,
4351 4352
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4353 4354 4355 4356
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4357
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4358 4359 4360 4361
	if (res >= 0)
		res = count;
	return res;
}
4362

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4376 4377 4378 4379 4380
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4381
	return seq_list_start(&cache_chain, *pos);
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4432
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4433

4434
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4435
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4436
		if (modname[0])
4437 4438 4439 4440 4441 4442 4443 4444 4445
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4446
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4471
		list_for_each_entry(slabp, &l3->slabs_full, list)
4472
			handle_slab(n, cachep, slabp);
4473
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4500

4501 4502 4503
	return 0;
}

4504
static const struct seq_operations slabstats_op = {
4505 4506 4507 4508 4509
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4538
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4539 4540
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4541
#endif
4542 4543 4544
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4545 4546
#endif

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4559
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4560
{
4561 4562
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4563
		return 0;
L
Linus Torvalds 已提交
4564

4565
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4566
}
K
Kirill A. Shutemov 已提交
4567
EXPORT_SYMBOL(ksize);