blk-mq-sched.c 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

34
void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
35
{
36 37
	struct request_queue *q = rq->q;
	struct io_context *ioc = rq_ioc(bio);
38 39 40 41 42 43 44 45 46 47 48
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}
49
	get_io_context(icq->ioc);
50
	rq->elv.icq = icq;
51 52
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Mark a hardware queue as needing a restart. For shared queues, maintain
 * a count of how many hardware queues are marked for restart.
 */
static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return;

	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
		struct request_queue *q = hctx->queue;

		if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			atomic_inc(&q->shared_hctx_restart);
	} else
		set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}

static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
		return false;

	if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
		struct request_queue *q = hctx->queue;

		if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
			atomic_dec(&q->shared_hctx_restart);
	} else
		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);

	if (blk_mq_hctx_has_pending(hctx)) {
		blk_mq_run_hw_queue(hctx, true);
		return true;
	}

	return false;
}

92 93
/* return true if hctx need to run again */
static bool blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
94 95 96 97 98 99
{
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
	LIST_HEAD(rq_list);

	do {
100 101
		struct request *rq;
		blk_status_t ret;
102

103 104
		if (e->type->ops.mq.has_work &&
				!e->type->ops.mq.has_work(hctx))
105
			break;
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

		ret = blk_mq_get_dispatch_budget(hctx);
		if (ret == BLK_STS_RESOURCE)
			return true;

		rq = e->type->ops.mq.dispatch_request(hctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		} else if (ret != BLK_STS_OK) {
			blk_mq_end_request(rq, ret);
			continue;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
125
		list_add(&rq->queuelist, &rq_list);
126 127 128
	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	return false;
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
					  struct blk_mq_ctx *ctx)
{
	unsigned idx = ctx->index_hw;

	if (++idx == hctx->nr_ctx)
		idx = 0;

	return hctx->ctxs[idx];
}

/* return true if hctx need to run again */
static bool blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	LIST_HEAD(rq_list);
	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);

	do {
		struct request *rq;
		blk_status_t ret;

		if (!sbitmap_any_bit_set(&hctx->ctx_map))
			break;

		ret = blk_mq_get_dispatch_budget(hctx);
		if (ret == BLK_STS_RESOURCE)
			return true;

		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
		if (!rq) {
			blk_mq_put_dispatch_budget(hctx);
			break;
		} else if (ret != BLK_STS_OK) {
			blk_mq_end_request(rq, ret);
			continue;
		}

		/*
		 * Now this rq owns the budget which has to be released
		 * if this rq won't be queued to driver via .queue_rq()
		 * in blk_mq_dispatch_rq_list().
		 */
		list_add(&rq->queuelist, &rq_list);

		/* round robin for fair dispatch */
		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);

	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));

	WRITE_ONCE(hctx->dispatch_from, ctx);

	return false;
}

186 187
/* return true if hw queue need to be run again */
bool blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
188
{
189 190
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
191
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
192
	LIST_HEAD(rq_list);
193
	bool run_queue = false;
194

195 196
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
197
		return false;
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
220 221 222 223
	 *
	 * We want to dispatch from the scheduler if there was nothing
	 * on the dispatch list or we were able to dispatch from the
	 * dispatch list.
224
	 */
225
	if (!list_empty(&rq_list)) {
226
		blk_mq_sched_mark_restart_hctx(hctx);
227 228 229 230 231 232
		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
			if (has_sched_dispatch)
				run_queue = blk_mq_do_dispatch_sched(hctx);
			else
				run_queue = blk_mq_do_dispatch_ctx(hctx);
		}
233
	} else if (has_sched_dispatch) {
234
		run_queue = blk_mq_do_dispatch_sched(hctx);
235 236 237 238 239 240 241 242 243 244
	} else if (q->mq_ops->get_budget) {
		/*
		 * If we need to get budget before queuing request, we
		 * dequeue request one by one from sw queue for avoiding
		 * to mess up I/O merge when dispatch runs out of resource.
		 *
		 * TODO: get more budgets, and dequeue more requests in
		 * one time.
		 */
		run_queue = blk_mq_do_dispatch_ctx(hctx);
245
	} else {
246
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
247
		blk_mq_dispatch_rq_list(q, &rq_list, false);
248
	}
249 250 251 252 253 254 255 256

	if (run_queue && !blk_mq_sched_needs_restart(hctx) &&
			!test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) {
		blk_mq_sched_mark_restart_hctx(hctx);
		return true;
	}

	return false;
257 258
}

259 260
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
261 262 263
{
	struct request *rq;

264 265
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
266 267
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
268 269 270 271 272 273 274
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
275 276
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
277 278 279 280 281 282 283 284
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
285 286 287 288
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

289 290 291 292 293 294 295 296 297 298 299
/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

300 301
	lockdep_assert_held(&ctx->lock);

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

335 336 337
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
338 339 340
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
341

342
	if (e && e->type->ops.mq.bio_merge) {
343 344 345 346
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

347 348 349 350 351 352 353 354 355
	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

370 371
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
/**
 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
 * @pos:    loop cursor.
 * @skip:   the list element that will not be examined. Iteration starts at
 *          @skip->next.
 * @head:   head of the list to examine. This list must have at least one
 *          element, namely @skip.
 * @member: name of the list_head structure within typeof(*pos).
 */
#define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
	for ((pos) = (skip);						\
	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
			(pos)->member.next, typeof(*pos), member) :	\
	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
	     (pos) != (skip); )
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
 * Called after a driver tag has been freed to check whether a hctx needs to
 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
 * queues in a round-robin fashion if the tag set of @hctx is shared with other
 * hardware queues.
 */
void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
{
	struct blk_mq_tags *const tags = hctx->tags;
	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
	struct request_queue *const queue = hctx->queue, *q;
	struct blk_mq_hw_ctx *hctx2;
	unsigned int i, j;

	if (set->flags & BLK_MQ_F_TAG_SHARED) {
419 420 421 422 423 424 425
		/*
		 * If this is 0, then we know that no hardware queues
		 * have RESTART marked. We're done.
		 */
		if (!atomic_read(&queue->shared_hctx_restart))
			return;

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
		rcu_read_lock();
		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
					   tag_set_list) {
			queue_for_each_hw_ctx(q, hctx2, i)
				if (hctx2->tags == tags &&
				    blk_mq_sched_restart_hctx(hctx2))
					goto done;
		}
		j = hctx->queue_num + 1;
		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
			if (j == queue->nr_hw_queues)
				j = 0;
			hctx2 = queue->queue_hw_ctx[j];
			if (hctx2->tags == tags &&
			    blk_mq_sched_restart_hctx(hctx2))
				break;
442
		}
443 444
done:
		rcu_read_unlock();
445
	} else {
446 447 448 449
		blk_mq_sched_restart_hctx(hctx);
	}
}

450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
462
		blk_mq_add_to_requeue_list(rq, false, true);
463 464 465 466 467 468 469 470 471 472
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

473
	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
474 475 476 477
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

478 479 480
	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

481 482 483 484 485 486 487 488 489 490 491
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

492
run:
493 494 495 496 497 498 499 500 501 502 503
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

521 522 523 524 525 526 527 528
	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

529 530 531 532 533 534 535 536 537 538 539
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

559
static void blk_mq_sched_tags_teardown(struct request_queue *q)
560 561 562
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
563 564 565 566 567 568
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

569 570 571 572
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
573
	int ret;
574 575 576 577

	if (!e)
		return 0;

578 579 580 581 582 583 584 585 586 587 588 589
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

590 591
	blk_mq_debugfs_register_sched_hctx(q, hctx);

592
	return 0;
593 594 595 596 597 598 599 600 601 602
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

603 604
	blk_mq_debugfs_unregister_sched_hctx(hctx);

605 606 607 608 609
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

610 611 612
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

613 614 615
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
616
	struct elevator_queue *eq;
617 618 619 620 621 622 623
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
		return 0;
	}
624 625

	/*
626 627 628
	 * Default to double of smaller one between hw queue_depth and 128,
	 * since we don't split into sync/async like the old code did.
	 * Additionally, this is a per-hw queue depth.
629
	 */
630 631
	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
				   BLKDEV_MAX_RQ);
632 633

	queue_for_each_hw_ctx(q, hctx, i) {
634
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
635
		if (ret)
636
			goto err;
637 638
	}

639 640 641
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
642

643 644 645 646
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
647 648 649 650 651 652 653 654
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
655
		blk_mq_debugfs_register_sched_hctx(q, hctx);
656 657
	}

658 659
	return 0;

660
err:
661 662
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
663
	return ret;
664
}
665

666 667
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
668 669 670
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

671 672 673 674 675
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
676 677
		}
	}
678
	blk_mq_debugfs_unregister_sched(q);
679 680 681 682 683 684
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}

685 686 687 688 689 690 691 692 693 694
int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}