/* * blk-mq scheduling framework * * Copyright (C) 2016 Jens Axboe */ #include #include #include #include #include "blk.h" #include "blk-mq.h" #include "blk-mq-debugfs.h" #include "blk-mq-sched.h" #include "blk-mq-tag.h" #include "blk-wbt.h" void blk_mq_sched_free_hctx_data(struct request_queue *q, void (*exit)(struct blk_mq_hw_ctx *)) { struct blk_mq_hw_ctx *hctx; int i; queue_for_each_hw_ctx(q, hctx, i) { if (exit && hctx->sched_data) exit(hctx); kfree(hctx->sched_data); hctx->sched_data = NULL; } } EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio) { struct request_queue *q = rq->q; struct io_context *ioc = rq_ioc(bio); struct io_cq *icq; spin_lock_irq(q->queue_lock); icq = ioc_lookup_icq(ioc, q); spin_unlock_irq(q->queue_lock); if (!icq) { icq = ioc_create_icq(ioc, q, GFP_ATOMIC); if (!icq) return; } get_io_context(icq->ioc); rq->elv.icq = icq; } /* * Mark a hardware queue as needing a restart. For shared queues, maintain * a count of how many hardware queues are marked for restart. */ static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx) { if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) return; if (hctx->flags & BLK_MQ_F_TAG_SHARED) { struct request_queue *q = hctx->queue; if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) atomic_inc(&q->shared_hctx_restart); } else set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); } static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) { if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) return false; if (hctx->flags & BLK_MQ_F_TAG_SHARED) { struct request_queue *q = hctx->queue; if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) atomic_dec(&q->shared_hctx_restart); } else clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); if (blk_mq_hctx_has_pending(hctx)) { blk_mq_run_hw_queue(hctx, true); return true; } return false; } /* return true if hctx need to run again */ static bool blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx) { struct request_queue *q = hctx->queue; struct elevator_queue *e = q->elevator; LIST_HEAD(rq_list); do { struct request *rq; blk_status_t ret; if (e->type->ops.mq.has_work && !e->type->ops.mq.has_work(hctx)) break; ret = blk_mq_get_dispatch_budget(hctx); if (ret == BLK_STS_RESOURCE) return true; rq = e->type->ops.mq.dispatch_request(hctx); if (!rq) { blk_mq_put_dispatch_budget(hctx); break; } else if (ret != BLK_STS_OK) { blk_mq_end_request(rq, ret); continue; } /* * Now this rq owns the budget which has to be released * if this rq won't be queued to driver via .queue_rq() * in blk_mq_dispatch_rq_list(). */ list_add(&rq->queuelist, &rq_list); } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); return false; } static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx) { unsigned idx = ctx->index_hw; if (++idx == hctx->nr_ctx) idx = 0; return hctx->ctxs[idx]; } /* return true if hctx need to run again */ static bool blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx) { struct request_queue *q = hctx->queue; LIST_HEAD(rq_list); struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from); do { struct request *rq; blk_status_t ret; if (!sbitmap_any_bit_set(&hctx->ctx_map)) break; ret = blk_mq_get_dispatch_budget(hctx); if (ret == BLK_STS_RESOURCE) return true; rq = blk_mq_dequeue_from_ctx(hctx, ctx); if (!rq) { blk_mq_put_dispatch_budget(hctx); break; } else if (ret != BLK_STS_OK) { blk_mq_end_request(rq, ret); continue; } /* * Now this rq owns the budget which has to be released * if this rq won't be queued to driver via .queue_rq() * in blk_mq_dispatch_rq_list(). */ list_add(&rq->queuelist, &rq_list); /* round robin for fair dispatch */ ctx = blk_mq_next_ctx(hctx, rq->mq_ctx); } while (blk_mq_dispatch_rq_list(q, &rq_list, true)); WRITE_ONCE(hctx->dispatch_from, ctx); return false; } /* return true if hw queue need to be run again */ bool blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) { struct request_queue *q = hctx->queue; struct elevator_queue *e = q->elevator; const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; LIST_HEAD(rq_list); bool run_queue = false; /* RCU or SRCU read lock is needed before checking quiesced flag */ if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) return false; hctx->run++; /* * If we have previous entries on our dispatch list, grab them first for * more fair dispatch. */ if (!list_empty_careful(&hctx->dispatch)) { spin_lock(&hctx->lock); if (!list_empty(&hctx->dispatch)) list_splice_init(&hctx->dispatch, &rq_list); spin_unlock(&hctx->lock); } /* * Only ask the scheduler for requests, if we didn't have residual * requests from the dispatch list. This is to avoid the case where * we only ever dispatch a fraction of the requests available because * of low device queue depth. Once we pull requests out of the IO * scheduler, we can no longer merge or sort them. So it's best to * leave them there for as long as we can. Mark the hw queue as * needing a restart in that case. * * We want to dispatch from the scheduler if there was nothing * on the dispatch list or we were able to dispatch from the * dispatch list. */ if (!list_empty(&rq_list)) { blk_mq_sched_mark_restart_hctx(hctx); if (blk_mq_dispatch_rq_list(q, &rq_list, false)) { if (has_sched_dispatch) run_queue = blk_mq_do_dispatch_sched(hctx); else run_queue = blk_mq_do_dispatch_ctx(hctx); } } else if (has_sched_dispatch) { run_queue = blk_mq_do_dispatch_sched(hctx); } else if (q->mq_ops->get_budget) { /* * If we need to get budget before queuing request, we * dequeue request one by one from sw queue for avoiding * to mess up I/O merge when dispatch runs out of resource. * * TODO: get more budgets, and dequeue more requests in * one time. */ run_queue = blk_mq_do_dispatch_ctx(hctx); } else { blk_mq_flush_busy_ctxs(hctx, &rq_list); blk_mq_dispatch_rq_list(q, &rq_list, false); } if (run_queue && !blk_mq_sched_needs_restart(hctx) && !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state)) { blk_mq_sched_mark_restart_hctx(hctx); return true; } return false; } bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, struct request **merged_request) { struct request *rq; switch (elv_merge(q, &rq, bio)) { case ELEVATOR_BACK_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (!bio_attempt_back_merge(q, rq, bio)) return false; *merged_request = attempt_back_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); return true; case ELEVATOR_FRONT_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (!bio_attempt_front_merge(q, rq, bio)) return false; *merged_request = attempt_front_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); return true; default: return false; } } EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); /* * Reverse check our software queue for entries that we could potentially * merge with. Currently includes a hand-wavy stop count of 8, to not spend * too much time checking for merges. */ static bool blk_mq_attempt_merge(struct request_queue *q, struct blk_mq_ctx *ctx, struct bio *bio) { struct request *rq; int checked = 8; lockdep_assert_held(&ctx->lock); list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) { bool merged = false; if (!checked--) break; if (!blk_rq_merge_ok(rq, bio)) continue; switch (blk_try_merge(rq, bio)) { case ELEVATOR_BACK_MERGE: if (blk_mq_sched_allow_merge(q, rq, bio)) merged = bio_attempt_back_merge(q, rq, bio); break; case ELEVATOR_FRONT_MERGE: if (blk_mq_sched_allow_merge(q, rq, bio)) merged = bio_attempt_front_merge(q, rq, bio); break; case ELEVATOR_DISCARD_MERGE: merged = bio_attempt_discard_merge(q, rq, bio); break; default: continue; } if (merged) ctx->rq_merged++; return merged; } return false; } bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) { struct elevator_queue *e = q->elevator; struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); bool ret = false; if (e && e->type->ops.mq.bio_merge) { blk_mq_put_ctx(ctx); return e->type->ops.mq.bio_merge(hctx, bio); } if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) { /* default per sw-queue merge */ spin_lock(&ctx->lock); ret = blk_mq_attempt_merge(q, ctx, bio); spin_unlock(&ctx->lock); } blk_mq_put_ctx(ctx); return ret; } bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) { return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); } EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); void blk_mq_sched_request_inserted(struct request *rq) { trace_block_rq_insert(rq->q, rq); } EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, struct request *rq) { if (rq->tag == -1) { rq->rq_flags |= RQF_SORTED; return false; } /* * If we already have a real request tag, send directly to * the dispatch list. */ spin_lock(&hctx->lock); list_add(&rq->queuelist, &hctx->dispatch); spin_unlock(&hctx->lock); return true; } /** * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list * @pos: loop cursor. * @skip: the list element that will not be examined. Iteration starts at * @skip->next. * @head: head of the list to examine. This list must have at least one * element, namely @skip. * @member: name of the list_head structure within typeof(*pos). */ #define list_for_each_entry_rcu_rr(pos, skip, head, member) \ for ((pos) = (skip); \ (pos = (pos)->member.next != (head) ? list_entry_rcu( \ (pos)->member.next, typeof(*pos), member) : \ list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ (pos) != (skip); ) /* * Called after a driver tag has been freed to check whether a hctx needs to * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware * queues in a round-robin fashion if the tag set of @hctx is shared with other * hardware queues. */ void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) { struct blk_mq_tags *const tags = hctx->tags; struct blk_mq_tag_set *const set = hctx->queue->tag_set; struct request_queue *const queue = hctx->queue, *q; struct blk_mq_hw_ctx *hctx2; unsigned int i, j; if (set->flags & BLK_MQ_F_TAG_SHARED) { /* * If this is 0, then we know that no hardware queues * have RESTART marked. We're done. */ if (!atomic_read(&queue->shared_hctx_restart)) return; rcu_read_lock(); list_for_each_entry_rcu_rr(q, queue, &set->tag_list, tag_set_list) { queue_for_each_hw_ctx(q, hctx2, i) if (hctx2->tags == tags && blk_mq_sched_restart_hctx(hctx2)) goto done; } j = hctx->queue_num + 1; for (i = 0; i < queue->nr_hw_queues; i++, j++) { if (j == queue->nr_hw_queues) j = 0; hctx2 = queue->queue_hw_ctx[j]; if (hctx2->tags == tags && blk_mq_sched_restart_hctx(hctx2)) break; } done: rcu_read_unlock(); } else { blk_mq_sched_restart_hctx(hctx); } } /* * Add flush/fua to the queue. If we fail getting a driver tag, then * punt to the requeue list. Requeue will re-invoke us from a context * that's safe to block from. */ static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, struct request *rq, bool can_block) { if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { blk_insert_flush(rq); blk_mq_run_hw_queue(hctx, true); } else blk_mq_add_to_requeue_list(rq, false, true); } void blk_mq_sched_insert_request(struct request *rq, bool at_head, bool run_queue, bool async, bool can_block) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; struct blk_mq_ctx *ctx = rq->mq_ctx; struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { blk_mq_sched_insert_flush(hctx, rq, can_block); return; } if (e && blk_mq_sched_bypass_insert(hctx, rq)) goto run; if (e && e->type->ops.mq.insert_requests) { LIST_HEAD(list); list_add(&rq->queuelist, &list); e->type->ops.mq.insert_requests(hctx, &list, at_head); } else { spin_lock(&ctx->lock); __blk_mq_insert_request(hctx, rq, at_head); spin_unlock(&ctx->lock); } run: if (run_queue) blk_mq_run_hw_queue(hctx, async); } void blk_mq_sched_insert_requests(struct request_queue *q, struct blk_mq_ctx *ctx, struct list_head *list, bool run_queue_async) { struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); struct elevator_queue *e = hctx->queue->elevator; if (e) { struct request *rq, *next; /* * We bypass requests that already have a driver tag assigned, * which should only be flushes. Flushes are only ever inserted * as single requests, so we shouldn't ever hit the * WARN_ON_ONCE() below (but let's handle it just in case). */ list_for_each_entry_safe(rq, next, list, queuelist) { if (WARN_ON_ONCE(rq->tag != -1)) { list_del_init(&rq->queuelist); blk_mq_sched_bypass_insert(hctx, rq); } } } if (e && e->type->ops.mq.insert_requests) e->type->ops.mq.insert_requests(hctx, list, false); else blk_mq_insert_requests(hctx, ctx, list); blk_mq_run_hw_queue(hctx, run_queue_async); } static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { if (hctx->sched_tags) { blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); blk_mq_free_rq_map(hctx->sched_tags); hctx->sched_tags = NULL; } } static int blk_mq_sched_alloc_tags(struct request_queue *q, struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct blk_mq_tag_set *set = q->tag_set; int ret; hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, set->reserved_tags); if (!hctx->sched_tags) return -ENOMEM; ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); if (ret) blk_mq_sched_free_tags(set, hctx, hctx_idx); return ret; } static void blk_mq_sched_tags_teardown(struct request_queue *q) { struct blk_mq_tag_set *set = q->tag_set; struct blk_mq_hw_ctx *hctx; int i; queue_for_each_hw_ctx(q, hctx, i) blk_mq_sched_free_tags(set, hctx, i); } int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct elevator_queue *e = q->elevator; int ret; if (!e) return 0; ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx); if (ret) return ret; if (e->type->ops.mq.init_hctx) { ret = e->type->ops.mq.init_hctx(hctx, hctx_idx); if (ret) { blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); return ret; } } blk_mq_debugfs_register_sched_hctx(q, hctx); return 0; } void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { struct elevator_queue *e = q->elevator; if (!e) return; blk_mq_debugfs_unregister_sched_hctx(hctx); if (e->type->ops.mq.exit_hctx && hctx->sched_data) { e->type->ops.mq.exit_hctx(hctx, hctx_idx); hctx->sched_data = NULL; } blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); } int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) { struct blk_mq_hw_ctx *hctx; struct elevator_queue *eq; unsigned int i; int ret; if (!e) { q->elevator = NULL; return 0; } /* * Default to double of smaller one between hw queue_depth and 128, * since we don't split into sync/async like the old code did. * Additionally, this is a per-hw queue depth. */ q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth, BLKDEV_MAX_RQ); queue_for_each_hw_ctx(q, hctx, i) { ret = blk_mq_sched_alloc_tags(q, hctx, i); if (ret) goto err; } ret = e->ops.mq.init_sched(q, e); if (ret) goto err; blk_mq_debugfs_register_sched(q); queue_for_each_hw_ctx(q, hctx, i) { if (e->ops.mq.init_hctx) { ret = e->ops.mq.init_hctx(hctx, i); if (ret) { eq = q->elevator; blk_mq_exit_sched(q, eq); kobject_put(&eq->kobj); return ret; } } blk_mq_debugfs_register_sched_hctx(q, hctx); } return 0; err: blk_mq_sched_tags_teardown(q); q->elevator = NULL; return ret; } void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) { struct blk_mq_hw_ctx *hctx; unsigned int i; queue_for_each_hw_ctx(q, hctx, i) { blk_mq_debugfs_unregister_sched_hctx(hctx); if (e->type->ops.mq.exit_hctx && hctx->sched_data) { e->type->ops.mq.exit_hctx(hctx, i); hctx->sched_data = NULL; } } blk_mq_debugfs_unregister_sched(q); if (e->type->ops.mq.exit_sched) e->type->ops.mq.exit_sched(e); blk_mq_sched_tags_teardown(q); q->elevator = NULL; } int blk_mq_sched_init(struct request_queue *q) { int ret; mutex_lock(&q->sysfs_lock); ret = elevator_init(q, NULL); mutex_unlock(&q->sysfs_lock); return ret; }