arch_timer.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40
static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);

41 42 43 44 45 46 47 48 49 50
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

51 52 53
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
54
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
55

56
u64 kvm_phys_timer_read(void)
57 58 59 60
{
	return timecounter->cc->read(timecounter->cc);
}

61 62 63 64 65 66
static inline bool userspace_irqchip(struct kvm *kvm)
{
	return static_branch_unlikely(&userspace_irqchip_in_use) &&
		unlikely(!irqchip_in_kernel(kvm));
}

67
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
68
{
69
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
70 71 72
		      HRTIMER_MODE_ABS);
}

73
static void soft_timer_cancel(struct hrtimer *hrt)
74
{
75
	hrtimer_cancel(hrt);
76 77
}

78 79 80 81 82
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;

83 84 85 86 87 88 89 90
	/*
	 * We may see a timer interrupt after vcpu_put() has been called which
	 * sets the CPU's vcpu pointer to NULL, because even though the timer
	 * has been disabled in vtimer_save_state(), the hardware interrupt
	 * signal may not have been retired from the interrupt controller yet.
	 */
	if (!vcpu)
		return IRQ_HANDLED;
91

92 93
	vtimer = vcpu_vtimer(vcpu);
	if (kvm_timer_should_fire(vtimer))
94
		kvm_timer_update_irq(vcpu, true, vtimer);
95

96 97 98
	if (userspace_irqchip(vcpu->kvm) &&
	    !static_branch_unlikely(&has_gic_active_state))
		disable_percpu_irq(host_vtimer_irq);
99

100 101 102
	return IRQ_HANDLED;
}

103
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
104
{
105
	u64 cval, now;
106

107 108
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
109 110 111 112 113 114 115 116 117 118 119 120 121 122

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

152
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
153 154
{
	struct arch_timer_cpu *timer;
155 156 157
	struct kvm_vcpu *vcpu;
	u64 ns;

158
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
159 160 161 162 163 164 165
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
166
	ns = kvm_timer_earliest_exp(vcpu);
167 168 169 170 171
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

172
	kvm_vcpu_wake_up(vcpu);
173 174 175
	return HRTIMER_NORESTART;
}

176 177
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	struct arch_timer_context *ptimer;
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
	ptimer = vcpu_ptimer(vcpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ptimer);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ptimer);
199 200 201
	return HRTIMER_NORESTART;
}

202
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
203
{
204
	u64 cval, now;
205

206 207 208 209 210 211 212 213 214 215
	if (timer_ctx->loaded) {
		u32 cnt_ctl;

		/* Only the virtual timer can be loaded so far */
		cnt_ctl = read_sysreg_el0(cntv_ctl);
		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
	}

216
	if (!kvm_timer_irq_can_fire(timer_ctx))
217 218
		return false;

219 220
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
221 222 223 224

	return cval <= now;
}

225 226 227 228 229
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

230
	if (kvm_timer_should_fire(vtimer))
231 232 233 234 235
		return true;

	return kvm_timer_should_fire(ptimer);
}

236 237 238 239 240 241 242 243 244 245 246 247
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
248
	if (kvm_timer_should_fire(vtimer))
249
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
250
	if (kvm_timer_should_fire(ptimer))
251 252 253
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

254 255
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
256 257 258
{
	int ret;

259 260 261
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
262

263
	if (!userspace_irqchip(vcpu->kvm)) {
264 265
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
266 267
					  timer_ctx->irq.level,
					  timer_ctx);
268 269
		WARN_ON(ret);
	}
270 271
}

272
/* Schedule the background timer for the emulated timer. */
273
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
274 275
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
276
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
277

278
	/*
279 280 281
	 * If the timer can fire now, we don't need to have a soft timer
	 * scheduled for the future.  If the timer cannot fire at all,
	 * then we also don't need a soft timer.
282 283
	 */
	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
284
		soft_timer_cancel(&timer->phys_timer);
285
		return;
286
	}
287

288
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
289 290
}

291
/*
292 293 294
 * Check if there was a change in the timer state, so that we should either
 * raise or lower the line level to the GIC or schedule a background timer to
 * emulate the physical timer.
295
 */
296
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
297 298
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
299
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
300
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
301
	bool level;
302

303
	if (unlikely(!timer->enabled))
304
		return;
305

306 307 308 309 310 311 312 313 314
	/*
	 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
	 * of its lifecycle is offloaded to the hardware, and we therefore may
	 * not have lowered the irq.level value before having to signal a new
	 * interrupt, but have to signal an interrupt every time the level is
	 * asserted.
	 */
	level = kvm_timer_should_fire(vtimer);
	kvm_timer_update_irq(vcpu, level, vtimer);
315

316 317
	phys_timer_emulate(vcpu);

318 319
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
320 321
}

322
static void vtimer_save_state(struct kvm_vcpu *vcpu)
323 324 325
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
326 327 328 329 330 331
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
332

333 334 335 336
	if (timer->enabled) {
		vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
		vtimer->cnt_cval = read_sysreg_el0(cntv_cval);
	}
337 338 339

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
340
	isb();
341 342 343 344

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
345 346
}

347 348 349 350 351
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
352
static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
353 354
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
355
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
356
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
357 358

	/*
359
	 * If both timers are not capable of raising interrupts (disabled or
360 361
	 * masked), then there's no more work for us to do.
	 */
362
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
363 364
		return;

365
	/*
366
	 * At least one guest time will expire. Schedule a background timer.
367 368
	 * Set the earliest expiration time among the guest timers.
	 */
369
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
370 371
}

372 373 374 375 376 377 378
static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	soft_timer_cancel(&timer->bg_timer);
}

379
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
380 381 382
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
383 384 385 386 387 388
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
389 390 391 392 393 394

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
395 396 397 398

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
}

static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

416 417 418 419 420 421 422 423
static inline void set_vtimer_irq_phys_active(struct kvm_vcpu *vcpu, bool active)
{
	int r;
	r = irq_set_irqchip_state(host_vtimer_irq, IRQCHIP_STATE_ACTIVE, active);
	WARN_ON(r);
}

static void kvm_timer_vcpu_load_gic(struct kvm_vcpu *vcpu)
424
{
425
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
426
	bool phys_active;
427

428 429 430 431 432
	if (irqchip_in_kernel(vcpu->kvm))
		phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
	else
		phys_active = vtimer->irq.level;
	set_vtimer_irq_phys_active(vcpu, phys_active);
433
}
434

435
static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
436
{
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	/*
	 * When using a userspace irqchip with the architected timers and a
	 * host interrupt controller that doesn't support an active state, we
	 * must still prevent continuously exiting from the guest, and
	 * therefore mask the physical interrupt by disabling it on the host
	 * interrupt controller when the virtual level is high, such that the
	 * guest can make forward progress.  Once we detect the output level
	 * being de-asserted, we unmask the interrupt again so that we exit
	 * from the guest when the timer fires.
	 */
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
453 454 455 456 457 458
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
459
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
460 461 462 463

	if (unlikely(!timer->enabled))
		return;

464 465
	if (static_branch_likely(&has_gic_active_state))
		kvm_timer_vcpu_load_gic(vcpu);
466
	else
467
		kvm_timer_vcpu_load_nogic(vcpu);
468 469 470 471 472

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

473 474
	/* Set the background timer for the physical timer emulation. */
	phys_timer_emulate(vcpu);
475

476 477
	kvm_timer_unblocking(vcpu);

478 479 480
	/* If the timer fired while we weren't running, inject it now */
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
481 482
}

483 484 485 486 487 488 489 490 491 492 493 494 495
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

496 497
	return kvm_timer_should_fire(vtimer) != vlevel ||
	       kvm_timer_should_fire(ptimer) != plevel;
498 499
}

500 501 502
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
503

504 505 506 507 508
	if (unlikely(!timer->enabled))
		return;

	vtimer_save_state(vcpu);

509 510 511 512 513 514 515 516 517
	/*
	 * Cancel the physical timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
518
	soft_timer_cancel(&timer->phys_timer);
519

520 521 522
	if (swait_active(kvm_arch_vcpu_wq(vcpu)))
		kvm_timer_blocking(vcpu);

523 524 525 526
	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
527 528
	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
529
	 */
530 531
	if (!has_vhe())
		set_cntvoff(0);
532 533
}

534 535 536 537 538 539
/*
 * With a userspace irqchip we have to check if the guest de-asserted the
 * timer and if so, unmask the timer irq signal on the host interrupt
 * controller to ensure that we see future timer signals.
 */
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
540 541 542
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

543 544 545 546 547 548
	if (!kvm_timer_should_fire(vtimer)) {
		kvm_timer_update_irq(vcpu, false, vtimer);
		if (static_branch_likely(&has_gic_active_state))
			set_vtimer_irq_phys_active(vcpu, false);
		else
			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
549
	}
550 551
}

552 553
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
554 555 556 557 558 559 560
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		unmask_vtimer_irq_user(vcpu);
561 562
}

563
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
564
{
565
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
566
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
567
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
568

569 570 571 572 573 574
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
575
	vtimer->cnt_ctl = 0;
576
	ptimer->cnt_ctl = 0;
577
	kvm_timer_update_state(vcpu);
578

579 580 581
	if (timer->enabled && irqchip_in_kernel(vcpu->kvm))
		kvm_vgic_reset_mapped_irq(vcpu, vtimer->irq.irq);

582
	return 0;
583 584
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

604 605 606
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
607 608
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
609

610 611
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
612
	vcpu_ptimer(vcpu)->cntvoff = 0;
613

614 615
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
616

617 618 619
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

620 621
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
622 623 624 625
}

static void kvm_timer_init_interrupt(void *info)
{
626
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
627 628
}

629 630
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
631
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
632
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
633 634 635

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
636
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
637 638
		break;
	case KVM_REG_ARM_TIMER_CNT:
639
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
640 641
		break;
	case KVM_REG_ARM_TIMER_CVAL:
642
		vtimer->cnt_cval = value;
643
		break;
644 645 646 647 648 649 650
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

651 652 653
	default:
		return -1;
	}
654 655

	kvm_timer_update_state(vcpu);
656 657 658
	return 0;
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

673 674
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
675
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
676
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
677 678 679

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
680
		return read_timer_ctl(vtimer);
681
	case KVM_REG_ARM_TIMER_CNT:
682
		return kvm_phys_timer_read() - vtimer->cntvoff;
683
	case KVM_REG_ARM_TIMER_CVAL:
684
		return vtimer->cnt_cval;
685 686 687 688 689 690
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
691 692 693
	}
	return (u64)-1;
}
694

695
static int kvm_timer_starting_cpu(unsigned int cpu)
696
{
697 698
	kvm_timer_init_interrupt(NULL);
	return 0;
699 700
}

701 702 703 704 705
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
706

707
int kvm_timer_hyp_init(bool has_gic)
708
{
709
	struct arch_timer_kvm_info *info;
710 711
	int err;

712 713
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
714

715 716 717 718 719
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

720 721 722
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
723 724
		return -ENODEV;
	}
725
	host_vtimer_irq = info->virtual_irq;
726

727 728 729 730 731 732 733 734
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

735
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
736 737 738
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
739
			host_vtimer_irq, err);
740
		return err;
741 742
	}

743 744 745 746 747 748 749
	if (has_gic) {
		err = irq_set_vcpu_affinity(host_vtimer_irq,
					    kvm_get_running_vcpus());
		if (err) {
			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
			goto out_free_irq;
		}
750 751

		static_branch_enable(&has_gic_active_state);
752 753
	}

754
	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
755

756
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
757
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
758
			  kvm_timer_dying_cpu);
759 760 761
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
762 763 764 765 766 767 768
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

769
	soft_timer_cancel(&timer->bg_timer);
770 771
}

772
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
773 774
{
	int vtimer_irq, ptimer_irq;
775
	int i, ret;
776 777

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
778 779 780
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
781

782 783 784
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
785 786
		return false;

787
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
788 789 790 791 792 793 794 795
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

796 797 798 799 800 801 802 803 804 805 806 807 808
bool kvm_arch_timer_get_input_level(int vintid)
{
	struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
	struct arch_timer_context *timer;

	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
		timer = vcpu_vtimer(vcpu);
	else
		BUG(); /* We only map the vtimer so far */

	return kvm_timer_should_fire(timer);
}

809
int kvm_timer_enable(struct kvm_vcpu *vcpu)
810
{
811
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
812
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
813 814 815 816 817
	int ret;

	if (timer->enabled)
		return 0;

818 819 820 821 822 823 824
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

825
	if (!timer_irqs_are_valid(vcpu)) {
826 827 828 829
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

830
	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
831
				    kvm_arch_timer_get_input_level);
832 833 834
	if (ret)
		return ret;

835
no_vgic:
836
	timer->enabled = 1;
837
	return 0;
838
}
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}