arch_timer.c 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24

25
#include <clocksource/arm_arch_timer.h>
26 27
#include <asm/arch_timer.h>

28 29
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
30

31 32
#include "trace.h"

33
static struct timecounter *timecounter;
34
static unsigned int host_vtimer_irq;
35
static u32 host_vtimer_irq_flags;
36

37 38 39 40 41
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	vcpu->arch.timer_cpu.active_cleared_last = false;
}

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static cycle_t kvm_phys_timer_read(void)
{
	return timecounter->cc->read(timecounter->cc);
}

static bool timer_is_armed(struct arch_timer_cpu *timer)
{
	return timer->armed;
}

/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
	timer->armed = true;
	hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS);
}

static void timer_disarm(struct arch_timer_cpu *timer)
{
	if (timer_is_armed(timer)) {
		hrtimer_cancel(&timer->timer);
		cancel_work_sync(&timer->expired);
		timer->armed = false;
	}
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

83 84 85 86
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
87 88 89 90 91 92
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
	vcpu->arch.timer_cpu.armed = false;
93

94 95
	WARN_ON(!kvm_timer_should_fire(vcpu));

96 97 98 99 100
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
	kvm_vcpu_kick(vcpu);
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
static u64 kvm_timer_compute_delta(struct kvm_vcpu *vcpu)
{
	cycle_t cval, now;

	cval = vcpu->arch.timer_cpu.cntv_cval;
	now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

123 124 125
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
126 127 128
	struct kvm_vcpu *vcpu;
	u64 ns;

129
	timer = container_of(hrt, struct arch_timer_cpu, timer);
130 131 132 133 134 135 136 137 138 139 140 141 142
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
	ns = kvm_timer_compute_delta(vcpu);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

143
	schedule_work(&timer->expired);
144 145 146
	return HRTIMER_NORESTART;
}

147 148 149 150 151
static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
152
		(timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE);
153 154
}

155 156 157 158 159
bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	cycle_t cval, now;

160
	if (!kvm_timer_irq_can_fire(vcpu))
161 162 163 164 165 166 167 168
		return false;

	cval = timer->cntv_cval;
	now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;

	return cval <= now;
}

169 170 171 172 173 174 175
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level)
{
	int ret;
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(!vgic_initialized(vcpu->kvm));

176
	timer->active_cleared_last = false;
177
	timer->irq.level = new_level;
178
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer->irq.irq,
179
				   timer->irq.level);
180
	ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
181
					 timer->irq.irq,
182 183 184 185 186 187 188 189
					 timer->irq.level);
	WARN_ON(ret);
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
190
static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
191 192 193 194 195 196 197 198 199
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
	 * the vgic was initialized, we mustn't set the timer->irq.level value
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
200
	if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
201
		return -ENODEV;
202 203 204

	if (kvm_timer_should_fire(vcpu) != timer->irq.level)
		kvm_timer_update_irq(vcpu, !timer->irq.level);
205 206

	return 0;
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

	/*
	 * No need to schedule a background timer if the guest timer has
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
	if (kvm_timer_should_fire(vcpu))
		return;

	/*
	 * If the timer is not capable of raising interrupts (disabled or
	 * masked), then there's no more work for us to do.
	 */
	if (!kvm_timer_irq_can_fire(vcpu))
		return;

	/*  The timer has not yet expired, schedule a background timer */
236
	timer_arm(timer, kvm_timer_compute_delta(vcpu));
237 238 239 240 241 242 243 244
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	timer_disarm(timer);
}

245 246 247 248
/**
 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
 * @vcpu: The vcpu pointer
 *
249 250
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case.
251 252 253 254
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
255 256
	bool phys_active;
	int ret;
257

258 259
	if (kvm_timer_update_state(vcpu))
		return;
260 261

	/*
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
278
	phys_active = timer->irq.level ||
279
			kvm_vgic_map_is_active(vcpu, timer->irq.irq);
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
	if (timer->active_cleared_last && !phys_active)
		return;

304
	ret = irq_set_irqchip_state(host_vtimer_irq,
305 306 307
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
308 309

	timer->active_cleared_last = !phys_active;
310 311 312 313 314 315
}

/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
316 317
 * Check if the virtual timer has expired while we were running in the guest,
 * and inject an interrupt if that was the case.
318 319 320 321 322 323 324
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	BUG_ON(timer_is_armed(timer));

325 326 327 328 329
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
330 331
}

332 333
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
			 const struct kvm_irq_level *irq)
334 335 336 337 338 339 340 341 342
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	/*
	 * The vcpu timer irq number cannot be determined in
	 * kvm_timer_vcpu_init() because it is called much before
	 * kvm_vcpu_set_target(). To handle this, we determine
	 * vcpu timer irq number when the vcpu is reset.
	 */
343
	timer->irq.irq = irq->irq;
344

345 346 347 348 349 350 351
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
	timer->cntv_ctl = 0;
352
	kvm_timer_update_state(vcpu);
353

354
	return 0;
355 356
}

357 358 359 360 361 362 363 364 365 366 367
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
	hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->timer.function = kvm_timer_expire;
}

static void kvm_timer_init_interrupt(void *info)
{
368
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
369 370
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		timer->cntv_ctl = value;
		break;
	case KVM_REG_ARM_TIMER_CNT:
		vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
		break;
	case KVM_REG_ARM_TIMER_CVAL:
		timer->cntv_cval = value;
		break;
	default:
		return -1;
	}
388 389

	kvm_timer_update_state(vcpu);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
		return timer->cntv_ctl;
	case KVM_REG_ARM_TIMER_CNT:
		return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
	case KVM_REG_ARM_TIMER_CVAL:
		return timer->cntv_cval;
	}
	return (u64)-1;
}
407

408
static int kvm_timer_starting_cpu(unsigned int cpu)
409
{
410 411
	kvm_timer_init_interrupt(NULL);
	return 0;
412 413
}

414 415 416 417 418
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
419 420 421

int kvm_timer_hyp_init(void)
{
422
	struct arch_timer_kvm_info *info;
423 424
	int err;

425 426
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
427

428 429 430 431 432
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

433 434 435
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
436 437
		return -ENODEV;
	}
438
	host_vtimer_irq = info->virtual_irq;
439

440 441 442 443 444 445 446 447
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

448
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
449 450 451
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
452
			host_vtimer_irq, err);
453
		return err;
454 455
	}

456
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
457

458 459 460
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
			  "AP_KVM_ARM_TIMER_STARTING", kvm_timer_starting_cpu,
			  kvm_timer_dying_cpu);
461 462 463 464 465 466 467 468
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	timer_disarm(timer);
469
	kvm_vgic_unmap_phys_irq(vcpu, timer->irq.irq);
470 471
}

472
int kvm_timer_enable(struct kvm_vcpu *vcpu)
473
{
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
	ret = kvm_vgic_map_phys_irq(vcpu, timer->irq.irq, phys_irq);
	if (ret)
		return ret;

506
	timer->enabled = 1;
507 508

	return 0;
509
}
510

511 512 513
void kvm_timer_init(struct kvm *kvm)
{
	kvm->arch.timer.cntvoff = kvm_phys_timer_read();
514
}