arch_timer.c 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24

25
#include <clocksource/arm_arch_timer.h>
26
#include <asm/arch_timer.h>
27
#include <asm/kvm_hyp.h>
28

29 30
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
31

32 33
#include "trace.h"

34
static struct timecounter *timecounter;
35
static unsigned int host_vtimer_irq;
36
static u32 host_vtimer_irq_flags;
37

38 39
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
40
	vcpu_vtimer(vcpu)->active_cleared_last = false;
41 42
}

43
u64 kvm_phys_timer_read(void)
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
{
	return timecounter->cc->read(timecounter->cc);
}

static bool timer_is_armed(struct arch_timer_cpu *timer)
{
	return timer->armed;
}

/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
	timer->armed = true;
	hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
		      HRTIMER_MODE_ABS);
}

static void timer_disarm(struct arch_timer_cpu *timer)
{
	if (timer_is_armed(timer)) {
		hrtimer_cancel(&timer->timer);
		cancel_work_sync(&timer->expired);
		timer->armed = false;
	}
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;

	/*
	 * We disable the timer in the world switch and let it be
	 * handled by kvm_timer_sync_hwstate(). Getting a timer
	 * interrupt at this point is a sure sign of some major
	 * breakage.
	 */
	pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
	return IRQ_HANDLED;
}

84 85 86 87
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
88 89 90 91 92
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
93

94 95 96 97 98
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
	kvm_vcpu_kick(vcpu);
99 100
}

101
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
102
{
103
	u64 cval, now;
104

105 106
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
107 108 109 110 111 112 113 114 115 116 117 118 119 120

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

150 151 152
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
	struct arch_timer_cpu *timer;
153 154 155
	struct kvm_vcpu *vcpu;
	u64 ns;

156
	timer = container_of(hrt, struct arch_timer_cpu, timer);
157 158 159 160 161 162 163
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
164
	ns = kvm_timer_earliest_exp(vcpu);
165 166 167 168 169
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

170
	schedule_work(&timer->expired);
171 172 173
	return HRTIMER_NORESTART;
}

174
bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
175
{
176
	u64 cval, now;
177

178
	if (!kvm_timer_irq_can_fire(timer_ctx))
179 180
		return false;

181 182
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
183 184 185 186

	return cval <= now;
}

187 188
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
189 190 191 192 193
{
	int ret;

	BUG_ON(!vgic_initialized(vcpu->kvm));

194 195 196 197
	timer_ctx->active_cleared_last = false;
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
198

199 200
	ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, timer_ctx->irq.irq,
				  timer_ctx->irq.level);
201 202 203 204 205 206 207
	WARN_ON(ret);
}

/*
 * Check if there was a change in the timer state (should we raise or lower
 * the line level to the GIC).
 */
208
static int kvm_timer_update_state(struct kvm_vcpu *vcpu)
209 210
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
211
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
212
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
213 214 215

	/*
	 * If userspace modified the timer registers via SET_ONE_REG before
216
	 * the vgic was initialized, we mustn't set the vtimer->irq.level value
217 218 219
	 * because the guest would never see the interrupt.  Instead wait
	 * until we call this function from kvm_timer_flush_hwstate.
	 */
220
	if (!vgic_initialized(vcpu->kvm) || !timer->enabled)
221
		return -ENODEV;
222

223 224
	if (kvm_timer_should_fire(vtimer) != vtimer->irq.level)
		kvm_timer_update_irq(vcpu, !vtimer->irq.level, vtimer);
225

226 227 228
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);

229
	return 0;
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* Schedule the background timer for the emulated timer. */
static void kvm_timer_emulate(struct kvm_vcpu *vcpu,
			      struct arch_timer_context *timer_ctx)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

	if (kvm_timer_should_fire(timer_ctx))
		return;

	if (!kvm_timer_irq_can_fire(timer_ctx))
		return;

	/*  The timer has not yet expired, schedule a background timer */
	timer_arm(timer, kvm_timer_compute_delta(timer_ctx));
}

248 249 250 251 252 253 254 255
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
256
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
257
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
258 259 260 261

	BUG_ON(timer_is_armed(timer));

	/*
262
	 * No need to schedule a background timer if any guest timer has
263 264 265
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
266
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
267 268 269
		return;

	/*
270
	 * If both timers are not capable of raising interrupts (disabled or
271 272
	 * masked), then there's no more work for us to do.
	 */
273
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
274 275
		return;

276 277 278 279 280
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
	timer_arm(timer, kvm_timer_earliest_exp(vcpu));
281 282 283 284 285 286 287 288
}

void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	timer_disarm(timer);
}

289 290 291 292
/**
 * kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
 * @vcpu: The vcpu pointer
 *
293 294
 * Check if the virtual timer has expired while we were running in the host,
 * and inject an interrupt if that was the case.
295 296 297
 */
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
298
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
299 300
	bool phys_active;
	int ret;
301

302 303
	if (kvm_timer_update_state(vcpu))
		return;
304

305 306 307
	/* Set the background timer for the physical timer emulation. */
	kvm_timer_emulate(vcpu, vcpu_ptimer(vcpu));

308
	/*
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	* If we enter the guest with the virtual input level to the VGIC
	* asserted, then we have already told the VGIC what we need to, and
	* we don't need to exit from the guest until the guest deactivates
	* the already injected interrupt, so therefore we should set the
	* hardware active state to prevent unnecessary exits from the guest.
	*
	* Also, if we enter the guest with the virtual timer interrupt active,
	* then it must be active on the physical distributor, because we set
	* the HW bit and the guest must be able to deactivate the virtual and
	* physical interrupt at the same time.
	*
	* Conversely, if the virtual input level is deasserted and the virtual
	* interrupt is not active, then always clear the hardware active state
	* to ensure that hardware interrupts from the timer triggers a guest
	* exit.
	*/
325 326
	phys_active = vtimer->irq.level ||
			kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	/*
	 * We want to avoid hitting the (re)distributor as much as
	 * possible, as this is a potentially expensive MMIO access
	 * (not to mention locks in the irq layer), and a solution for
	 * this is to cache the "active" state in memory.
	 *
	 * Things to consider: we cannot cache an "active set" state,
	 * because the HW can change this behind our back (it becomes
	 * "clear" in the HW). We must then restrict the caching to
	 * the "clear" state.
	 *
	 * The cache is invalidated on:
	 * - vcpu put, indicating that the HW cannot be trusted to be
	 *   in a sane state on the next vcpu load,
	 * - any change in the interrupt state
	 *
	 * Usage conditions:
	 * - cached value is "active clear"
	 * - value to be programmed is "active clear"
	 */
348
	if (vtimer->active_cleared_last && !phys_active)
349 350
		return;

351
	ret = irq_set_irqchip_state(host_vtimer_irq,
352 353 354
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
355

356
	vtimer->active_cleared_last = !phys_active;
357 358 359 360 361 362
}

/**
 * kvm_timer_sync_hwstate - sync timer state from cpu
 * @vcpu: The vcpu pointer
 *
363 364
 * Check if the virtual timer has expired while we were running in the guest,
 * and inject an interrupt if that was the case.
365 366 367 368 369
 */
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

370 371 372 373 374
	/*
	 * This is to cancel the background timer for the physical timer
	 * emulation if it is set.
	 */
	timer_disarm(timer);
375

376 377 378 379 380
	/*
	 * The guest could have modified the timer registers or the timer
	 * could have expired, update the timer state.
	 */
	kvm_timer_update_state(vcpu);
381 382
}

383
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
384 385
			 const struct kvm_irq_level *virt_irq,
			 const struct kvm_irq_level *phys_irq)
386
{
387
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
388
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
389 390 391 392 393 394 395

	/*
	 * The vcpu timer irq number cannot be determined in
	 * kvm_timer_vcpu_init() because it is called much before
	 * kvm_vcpu_set_target(). To handle this, we determine
	 * vcpu timer irq number when the vcpu is reset.
	 */
396 397
	vtimer->irq.irq = virt_irq->irq;
	ptimer->irq.irq = phys_irq->irq;
398

399 400 401 402 403 404
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
405
	vtimer->cnt_ctl = 0;
406
	ptimer->cnt_ctl = 0;
407
	kvm_timer_update_state(vcpu);
408

409
	return 0;
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

431 432 433 434
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;

435 436
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
437
	vcpu_ptimer(vcpu)->cntvoff = 0;
438

439 440 441 442 443 444 445
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
	hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->timer.function = kvm_timer_expire;
}

static void kvm_timer_init_interrupt(void *info)
{
446
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
447 448
}

449 450
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
451
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
452 453 454

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
455
		vtimer->cnt_ctl = value;
456 457
		break;
	case KVM_REG_ARM_TIMER_CNT:
458
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
459 460
		break;
	case KVM_REG_ARM_TIMER_CVAL:
461
		vtimer->cnt_cval = value;
462 463 464 465
		break;
	default:
		return -1;
	}
466 467

	kvm_timer_update_state(vcpu);
468 469 470 471 472
	return 0;
}

u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
473
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
474 475 476

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
477
		return vtimer->cnt_ctl;
478
	case KVM_REG_ARM_TIMER_CNT:
479
		return kvm_phys_timer_read() - vtimer->cntvoff;
480
	case KVM_REG_ARM_TIMER_CVAL:
481
		return vtimer->cnt_cval;
482 483 484
	}
	return (u64)-1;
}
485

486
static int kvm_timer_starting_cpu(unsigned int cpu)
487
{
488 489
	kvm_timer_init_interrupt(NULL);
	return 0;
490 491
}

492 493 494 495 496
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
497 498 499

int kvm_timer_hyp_init(void)
{
500
	struct arch_timer_kvm_info *info;
501 502
	int err;

503 504
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
505

506 507 508 509 510
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

511 512 513
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
514 515
		return -ENODEV;
	}
516
	host_vtimer_irq = info->virtual_irq;
517

518 519 520 521 522 523 524 525
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

526
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
527 528 529
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
530
			host_vtimer_irq, err);
531
		return err;
532 533
	}

534
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
535

536
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
537
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
538
			  kvm_timer_dying_cpu);
539 540 541 542 543 544
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
545
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
546 547

	timer_disarm(timer);
548
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
549 550
}

551
int kvm_timer_enable(struct kvm_vcpu *vcpu)
552
{
553
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
554
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
	struct irq_desc *desc;
	struct irq_data *data;
	int phys_irq;
	int ret;

	if (timer->enabled)
		return 0;

	/*
	 * Find the physical IRQ number corresponding to the host_vtimer_irq
	 */
	desc = irq_to_desc(host_vtimer_irq);
	if (!desc) {
		kvm_err("%s: no interrupt descriptor\n", __func__);
		return -EINVAL;
	}

	data = irq_desc_get_irq_data(desc);
	while (data->parent_data)
		data = data->parent_data;

	phys_irq = data->hwirq;

	/*
	 * Tell the VGIC that the virtual interrupt is tied to a
	 * physical interrupt. We do that once per VCPU.
	 */
582
	ret = kvm_vgic_map_phys_irq(vcpu, vtimer->irq.irq, phys_irq);
583 584 585
	if (ret)
		return ret;

586
	timer->enabled = 1;
587 588

	return 0;
589
}
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}