arch_timer.c 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
23
#include <linux/irq.h>
24
#include <linux/uaccess.h>
25

26
#include <clocksource/arm_arch_timer.h>
27
#include <asm/arch_timer.h>
28
#include <asm/kvm_hyp.h>
29

30 31
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
32

33 34
#include "trace.h"

35
static struct timecounter *timecounter;
36
static unsigned int host_vtimer_irq;
37
static u32 host_vtimer_irq_flags;
38

39 40 41 42 43 44 45 46 47 48
static const struct kvm_irq_level default_ptimer_irq = {
	.irq	= 30,
	.level	= 1,
};

static const struct kvm_irq_level default_vtimer_irq = {
	.irq	= 27,
	.level	= 1,
};

49 50 51
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx);
52
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
53

54
u64 kvm_phys_timer_read(void)
55 56 57 58
{
	return timecounter->cc->read(timecounter->cc);
}

59
static void soft_timer_start(struct hrtimer *hrt, u64 ns)
60
{
61
	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
62 63 64
		      HRTIMER_MODE_ABS);
}

65
static void soft_timer_cancel(struct hrtimer *hrt, struct work_struct *work)
66
{
67
	hrtimer_cancel(hrt);
68 69
	if (work)
		cancel_work_sync(work);
70 71
}

72
static void kvm_vtimer_update_mask_user(struct kvm_vcpu *vcpu)
73
{
74
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
75 76

	/*
77 78 79 80 81 82 83
	 * When using a userspace irqchip with the architected timers, we must
	 * prevent continuously exiting from the guest, and therefore mask the
	 * physical interrupt by disabling it on the host interrupt controller
	 * when the virtual level is high, such that the guest can make
	 * forward progress.  Once we detect the output level being
	 * de-asserted, we unmask the interrupt again so that we exit from the
	 * guest when the timer fires.
84
	 */
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	if (vtimer->irq.level)
		disable_percpu_irq(host_vtimer_irq);
	else
		enable_percpu_irq(host_vtimer_irq, 0);
}

static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
	struct arch_timer_context *vtimer;

	if (!vcpu) {
		pr_warn_once("Spurious arch timer IRQ on non-VCPU thread\n");
		return IRQ_NONE;
	}
	vtimer = vcpu_vtimer(vcpu);

102 103 104
	vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl);
	if (kvm_timer_irq_can_fire(vtimer))
		kvm_timer_update_irq(vcpu, true, vtimer);
105

106 107
	if (static_branch_unlikely(&userspace_irqchip_in_use) &&
	    unlikely(!irqchip_in_kernel(vcpu->kvm)))
108 109
		kvm_vtimer_update_mask_user(vcpu);

110 111 112
	return IRQ_HANDLED;
}

113 114 115 116
/*
 * Work function for handling the backup timer that we schedule when a vcpu is
 * no longer running, but had a timer programmed to fire in the future.
 */
117 118 119 120 121
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
122

123 124 125 126
	/*
	 * If the vcpu is blocked we want to wake it up so that it will see
	 * the timer has expired when entering the guest.
	 */
127
	kvm_vcpu_wake_up(vcpu);
128 129
}

130
static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
131
{
132
	u64 cval, now;
133

134 135
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
136 137 138 139 140 141 142 143 144 145 146 147 148 149

	if (now < cval) {
		u64 ns;

		ns = cyclecounter_cyc2ns(timecounter->cc,
					 cval - now,
					 timecounter->mask,
					 &timecounter->frac);
		return ns;
	}

	return 0;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
	return !(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
		(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
}

/*
 * Returns the earliest expiration time in ns among guest timers.
 * Note that it will return 0 if none of timers can fire.
 */
static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
{
	u64 min_virt = ULLONG_MAX, min_phys = ULLONG_MAX;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (kvm_timer_irq_can_fire(vtimer))
		min_virt = kvm_timer_compute_delta(vtimer);

	if (kvm_timer_irq_can_fire(ptimer))
		min_phys = kvm_timer_compute_delta(ptimer);

	/* If none of timers can fire, then return 0 */
	if ((min_virt == ULLONG_MAX) && (min_phys == ULLONG_MAX))
		return 0;

	return min(min_virt, min_phys);
}

179
static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
180 181
{
	struct arch_timer_cpu *timer;
182 183 184
	struct kvm_vcpu *vcpu;
	u64 ns;

185
	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
186 187 188 189 190 191 192
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If we should have slept longer, restart it.
	 */
193
	ns = kvm_timer_earliest_exp(vcpu);
194 195 196 197 198
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

199
	schedule_work(&timer->expired);
200 201 202
	return HRTIMER_NORESTART;
}

203 204
static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
{
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	struct arch_timer_context *ptimer;
	struct arch_timer_cpu *timer;
	struct kvm_vcpu *vcpu;
	u64 ns;

	timer = container_of(hrt, struct arch_timer_cpu, phys_timer);
	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
	ptimer = vcpu_ptimer(vcpu);

	/*
	 * Check that the timer has really expired from the guest's
	 * PoV (NTP on the host may have forced it to expire
	 * early). If not ready, schedule for a later time.
	 */
	ns = kvm_timer_compute_delta(ptimer);
	if (unlikely(ns)) {
		hrtimer_forward_now(hrt, ns_to_ktime(ns));
		return HRTIMER_RESTART;
	}

	kvm_timer_update_irq(vcpu, true, ptimer);
226 227 228
	return HRTIMER_NORESTART;
}

229
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
230
{
231
	u64 cval, now;
232

233
	if (!kvm_timer_irq_can_fire(timer_ctx))
234 235
		return false;

236 237
	cval = timer_ctx->cnt_cval;
	now = kvm_phys_timer_read() - timer_ctx->cntvoff;
238 239 240 241

	return cval <= now;
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
bool kvm_timer_is_pending(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);

	if (vtimer->irq.level || ptimer->irq.level)
		return true;

	/*
	 * When this is called from withing the wait loop of kvm_vcpu_block(),
	 * the software view of the timer state is up to date (timer->loaded
	 * is false), and so we can simply check if the timer should fire now.
	 */
	if (!vtimer->loaded && kvm_timer_should_fire(vtimer))
		return true;

	return kvm_timer_should_fire(ptimer);
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * Reflect the timer output level into the kvm_run structure
 */
void kvm_timer_update_run(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *regs = &vcpu->run->s.regs;

	/* Populate the device bitmap with the timer states */
	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
				    KVM_ARM_DEV_EL1_PTIMER);
	if (vtimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
	if (ptimer->irq.level)
		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
}

279 280
static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
				 struct arch_timer_context *timer_ctx)
281 282 283
{
	int ret;

284 285 286
	timer_ctx->irq.level = new_level;
	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
				   timer_ctx->irq.level);
287

288 289
	if (!static_branch_unlikely(&userspace_irqchip_in_use) &&
	    likely(irqchip_in_kernel(vcpu->kvm))) {
290 291
		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
					  timer_ctx->irq.irq,
292 293
					  timer_ctx->irq.level,
					  timer_ctx);
294 295
		WARN_ON(ret);
	}
296 297
}

298
/* Schedule the background timer for the emulated timer. */
299
static void phys_timer_emulate(struct kvm_vcpu *vcpu)
300 301
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
302
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
303

304 305 306 307 308 309 310
	/*
	 * If the timer can fire now we have just raised the IRQ line and we
	 * don't need to have a soft timer scheduled for the future.  If the
	 * timer cannot fire at all, then we also don't need a soft timer.
	 */
	if (kvm_timer_should_fire(ptimer) || !kvm_timer_irq_can_fire(ptimer)) {
		soft_timer_cancel(&timer->phys_timer, NULL);
311
		return;
312
	}
313

314
	soft_timer_start(&timer->phys_timer, kvm_timer_compute_delta(ptimer));
315 316
}

317
/*
318 319 320
 * Check if there was a change in the timer state, so that we should either
 * raise or lower the line level to the GIC or schedule a background timer to
 * emulate the physical timer.
321
 */
322
static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
323 324
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
325
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
326
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
327
	bool level;
328

329
	if (unlikely(!timer->enabled))
330
		return;
331

332 333 334 335 336 337 338 339 340
	/*
	 * The vtimer virtual interrupt is a 'mapped' interrupt, meaning part
	 * of its lifecycle is offloaded to the hardware, and we therefore may
	 * not have lowered the irq.level value before having to signal a new
	 * interrupt, but have to signal an interrupt every time the level is
	 * asserted.
	 */
	level = kvm_timer_should_fire(vtimer);
	kvm_timer_update_irq(vcpu, level, vtimer);
341

342 343
	if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
		kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
344 345

	phys_timer_emulate(vcpu);
346 347
}

348 349 350 351 352 353
static void __timer_snapshot_state(struct arch_timer_context *timer)
{
	timer->cnt_ctl = read_sysreg_el0(cntv_ctl);
	timer->cnt_cval = read_sysreg_el0(cntv_cval);
}

354
static void vtimer_save_state(struct kvm_vcpu *vcpu)
355 356 357
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
358 359 360 361 362 363
	unsigned long flags;

	local_irq_save(flags);

	if (!vtimer->loaded)
		goto out;
364

365 366
	if (timer->enabled)
		__timer_snapshot_state(vtimer);
367 368 369

	/* Disable the virtual timer */
	write_sysreg_el0(0, cntv_ctl);
370 371 372 373

	vtimer->loaded = false;
out:
	local_irq_restore(flags);
374 375
}

376 377 378 379 380 381 382 383
/*
 * Schedule the background timer before calling kvm_vcpu_block, so that this
 * thread is removed from its waitqueue and made runnable when there's a timer
 * interrupt to handle.
 */
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
384
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
385
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
386

387 388
	vtimer_save_state(vcpu);

389
	/*
390
	 * No need to schedule a background timer if any guest timer has
391 392 393
	 * already expired, because kvm_vcpu_block will return before putting
	 * the thread to sleep.
	 */
394
	if (kvm_timer_should_fire(vtimer) || kvm_timer_should_fire(ptimer))
395 396 397
		return;

	/*
398
	 * If both timers are not capable of raising interrupts (disabled or
399 400
	 * masked), then there's no more work for us to do.
	 */
401
	if (!kvm_timer_irq_can_fire(vtimer) && !kvm_timer_irq_can_fire(ptimer))
402 403
		return;

404 405 406 407
	/*
	 * The guest timers have not yet expired, schedule a background timer.
	 * Set the earliest expiration time among the guest timers.
	 */
408
	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
409 410
}

411
static void vtimer_restore_state(struct kvm_vcpu *vcpu)
412 413 414
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
415 416 417 418 419 420
	unsigned long flags;

	local_irq_save(flags);

	if (vtimer->loaded)
		goto out;
421 422 423 424 425 426

	if (timer->enabled) {
		write_sysreg_el0(vtimer->cnt_cval, cntv_cval);
		isb();
		write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl);
	}
427 428 429 430

	vtimer->loaded = true;
out:
	local_irq_restore(flags);
431 432
}

433 434 435
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
436

437 438
	vtimer_restore_state(vcpu);

439
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
440 441
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
static void set_cntvoff(u64 cntvoff)
{
	u32 low = lower_32_bits(cntvoff);
	u32 high = upper_32_bits(cntvoff);

	/*
	 * Since kvm_call_hyp doesn't fully support the ARM PCS especially on
	 * 32-bit systems, but rather passes register by register shifted one
	 * place (we put the function address in r0/x0), we cannot simply pass
	 * a 64-bit value as an argument, but have to split the value in two
	 * 32-bit halves.
	 */
	kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
}

457
static void kvm_timer_vcpu_load_vgic(struct kvm_vcpu *vcpu)
458
{
459
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
460 461
	bool phys_active;
	int ret;
462

463
	phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq);
464

465
	ret = irq_set_irqchip_state(host_vtimer_irq,
466 467 468
				    IRQCHIP_STATE_ACTIVE,
				    phys_active);
	WARN_ON(ret);
469
}
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
static void kvm_timer_vcpu_load_user(struct kvm_vcpu *vcpu)
{
	kvm_vtimer_update_mask_user(vcpu);
}

void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!timer->enabled))
		return;

	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);

	set_cntvoff(vtimer->cntvoff);

	vtimer_restore_state(vcpu);

493 494
	/* Set the background timer for the physical timer emulation. */
	phys_timer_emulate(vcpu);
495 496
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
	bool vlevel, plevel;

	if (likely(irqchip_in_kernel(vcpu->kvm)))
		return false;

	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;

	return vtimer->irq.level != vlevel ||
	       ptimer->irq.level != plevel;
}

514 515 516
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
517

518 519 520 521 522
	if (unlikely(!timer->enabled))
		return;

	vtimer_save_state(vcpu);

523 524 525 526 527 528 529 530 531 532 533
	/*
	 * Cancel the physical timer emulation, because the only case where we
	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
	 * in that case we already factor in the deadline for the physical
	 * timer when scheduling the bg_timer.
	 *
	 * In any case, we re-schedule the hrtimer for the physical timer when
	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
	 */
	soft_timer_cancel(&timer->phys_timer, NULL);

534 535 536 537 538 539 540 541 542
	/*
	 * The kernel may decide to run userspace after calling vcpu_put, so
	 * we reset cntvoff to 0 to ensure a consistent read between user
	 * accesses to the virtual counter and kernel access to the physical
	 * counter.
	 */
	set_cntvoff(0);
}

543 544 545 546 547 548
/*
 * With a userspace irqchip we have to check if the guest de-asserted the
 * timer and if so, unmask the timer irq signal on the host interrupt
 * controller to ensure that we see future timer signals.
 */
static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
549 550 551 552
{
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);

	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
553 554 555 556 557
		__timer_snapshot_state(vtimer);
		if (!kvm_timer_should_fire(vtimer)) {
			kvm_timer_update_irq(vcpu, false, vtimer);
			kvm_vtimer_update_mask_user(vcpu);
		}
558
	}
559 560
}

561 562
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
563
	unmask_vtimer_irq_user(vcpu);
564 565
}

566
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
567
{
568
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
569
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
570

571 572 573 574 575 576
	/*
	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
	 * and to 0 for ARMv7.  We provide an implementation that always
	 * resets the timer to be disabled and unmasked and is compliant with
	 * the ARMv7 architecture.
	 */
577
	vtimer->cnt_ctl = 0;
578
	ptimer->cnt_ctl = 0;
579
	kvm_timer_update_state(vcpu);
580

581
	return 0;
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/* Make the updates of cntvoff for all vtimer contexts atomic */
static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
{
	int i;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tmp;

	mutex_lock(&kvm->lock);
	kvm_for_each_vcpu(i, tmp, kvm)
		vcpu_vtimer(tmp)->cntvoff = cntvoff;

	/*
	 * When called from the vcpu create path, the CPU being created is not
	 * included in the loop above, so we just set it here as well.
	 */
	vcpu_vtimer(vcpu)->cntvoff = cntvoff;
	mutex_unlock(&kvm->lock);
}

603 604 605
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
606 607
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
608

609 610
	/* Synchronize cntvoff across all vtimers of a VM. */
	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
611
	vcpu_ptimer(vcpu)->cntvoff = 0;
612

613
	INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
614 615
	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->bg_timer.function = kvm_bg_timer_expire;
616

617 618 619
	hrtimer_init(&timer->phys_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	timer->phys_timer.function = kvm_phys_timer_expire;

620 621
	vtimer->irq.irq = default_vtimer_irq.irq;
	ptimer->irq.irq = default_ptimer_irq.irq;
622 623 624 625
}

static void kvm_timer_init_interrupt(void *info)
{
626
	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
627 628
}

629 630
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
631
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
632
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
633 634 635

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
636
		vtimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
637 638
		break;
	case KVM_REG_ARM_TIMER_CNT:
639
		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
640 641
		break;
	case KVM_REG_ARM_TIMER_CVAL:
642
		vtimer->cnt_cval = value;
643
		break;
644 645 646 647 648 649 650
	case KVM_REG_ARM_PTIMER_CTL:
		ptimer->cnt_ctl = value & ~ARCH_TIMER_CTRL_IT_STAT;
		break;
	case KVM_REG_ARM_PTIMER_CVAL:
		ptimer->cnt_cval = value;
		break;

651 652 653
	default:
		return -1;
	}
654 655

	kvm_timer_update_state(vcpu);
656 657 658
	return 0;
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672
static u64 read_timer_ctl(struct arch_timer_context *timer)
{
	/*
	 * Set ISTATUS bit if it's expired.
	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
	 * regardless of ENABLE bit for our implementation convenience.
	 */
	if (!kvm_timer_compute_delta(timer))
		return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
	else
		return timer->cnt_ctl;
}

673 674
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
675
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
676
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
677 678 679

	switch (regid) {
	case KVM_REG_ARM_TIMER_CTL:
680
		return read_timer_ctl(vtimer);
681
	case KVM_REG_ARM_TIMER_CNT:
682
		return kvm_phys_timer_read() - vtimer->cntvoff;
683
	case KVM_REG_ARM_TIMER_CVAL:
684
		return vtimer->cnt_cval;
685 686 687 688 689 690
	case KVM_REG_ARM_PTIMER_CTL:
		return read_timer_ctl(ptimer);
	case KVM_REG_ARM_PTIMER_CVAL:
		return ptimer->cnt_cval;
	case KVM_REG_ARM_PTIMER_CNT:
		return kvm_phys_timer_read();
691 692 693
	}
	return (u64)-1;
}
694

695
static int kvm_timer_starting_cpu(unsigned int cpu)
696
{
697 698
	kvm_timer_init_interrupt(NULL);
	return 0;
699 700
}

701 702 703 704 705
static int kvm_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(host_vtimer_irq);
	return 0;
}
706 707 708

int kvm_timer_hyp_init(void)
{
709
	struct arch_timer_kvm_info *info;
710 711
	int err;

712 713
	info = arch_timer_get_kvm_info();
	timecounter = &info->timecounter;
714

715 716 717 718 719
	if (!timecounter->cc) {
		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
		return -ENODEV;
	}

720 721 722
	if (info->virtual_irq <= 0) {
		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
			info->virtual_irq);
723 724
		return -ENODEV;
	}
725
	host_vtimer_irq = info->virtual_irq;
726

727 728 729 730 731 732 733 734
	host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
	if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
	    host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
		kvm_err("Invalid trigger for IRQ%d, assuming level low\n",
			host_vtimer_irq);
		host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
	}

735
	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
736 737 738
				 "kvm guest timer", kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
739
			host_vtimer_irq, err);
740
		return err;
741 742
	}

743 744 745 746 747 748
	err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus());
	if (err) {
		kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
		goto out_free_irq;
	}

749
	kvm_info("virtual timer IRQ%d\n", host_vtimer_irq);
750

751
	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
T
Thomas Gleixner 已提交
752
			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
753
			  kvm_timer_dying_cpu);
754 755 756
	return 0;
out_free_irq:
	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
757 758 759 760 761 762
	return err;
}

void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
763
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
764

765
	soft_timer_cancel(&timer->bg_timer, &timer->expired);
766
	soft_timer_cancel(&timer->phys_timer, NULL);
767
	kvm_vgic_unmap_phys_irq(vcpu, vtimer->irq.irq);
768 769
}

770
static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
771 772
{
	int vtimer_irq, ptimer_irq;
773
	int i, ret;
774 775

	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
776 777 778
	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
	if (ret)
		return false;
779

780 781 782
	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
	if (ret)
783 784
		return false;

785
	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
786 787 788 789 790 791 792 793
		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
			return false;
	}

	return true;
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
bool kvm_arch_timer_get_input_level(int vintid)
{
	struct kvm_vcpu *vcpu = kvm_arm_get_running_vcpu();
	struct arch_timer_context *timer;

	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
		timer = vcpu_vtimer(vcpu);
	else
		BUG(); /* We only map the vtimer so far */

	if (timer->loaded)
		__timer_snapshot_state(timer);

	return kvm_timer_should_fire(timer);
}

810
int kvm_timer_enable(struct kvm_vcpu *vcpu)
811
{
812
	struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
813
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
814 815 816 817 818
	int ret;

	if (timer->enabled)
		return 0;

819 820 821 822 823 824 825
	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
	if (!irqchip_in_kernel(vcpu->kvm))
		goto no_vgic;

	if (!vgic_initialized(vcpu->kvm))
		return -ENODEV;

826
	if (!timer_irqs_are_valid(vcpu)) {
827 828 829 830
		kvm_debug("incorrectly configured timer irqs\n");
		return -EINVAL;
	}

831
	ret = kvm_vgic_map_phys_irq(vcpu, host_vtimer_irq, vtimer->irq.irq,
832
				    kvm_arch_timer_get_input_level);
833 834 835
	if (ret)
		return ret;

836
no_vgic:
837
	preempt_disable();
838
	timer->enabled = 1;
839 840 841 842
	if (!irqchip_in_kernel(vcpu->kvm))
		kvm_timer_vcpu_load_user(vcpu);
	else
		kvm_timer_vcpu_load_vgic(vcpu);
843 844
	preempt_enable();

845
	return 0;
846
}
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * On VHE system, we only need to configure trap on physical timer and counter
 * accesses in EL0 and EL1 once, not for every world switch.
 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
 * and this makes those bits have no effect for the host kernel execution.
 */
void kvm_timer_init_vhe(void)
{
	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
	u32 cnthctl_shift = 10;
	u64 val;

	/*
	 * Disallow physical timer access for the guest.
	 * Physical counter access is allowed.
	 */
	val = read_sysreg(cnthctl_el2);
	val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift);
	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
	write_sysreg(val, cnthctl_el2);
}
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
{
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
	}
}

int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
	int irq;

	if (!irqchip_in_kernel(vcpu->kvm))
		return -EINVAL;

	if (get_user(irq, uaddr))
		return -EFAULT;

	if (!(irq_is_ppi(irq)))
		return -EINVAL;

	if (vcpu->arch.timer_cpu.enabled)
		return -EBUSY;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
		break;
	default:
		return -ENXIO;
	}

	return 0;
}

int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	int __user *uaddr = (int __user *)(long)attr->addr;
	struct arch_timer_context *timer;
	int irq;

	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
		timer = vcpu_vtimer(vcpu);
		break;
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		timer = vcpu_ptimer(vcpu);
		break;
	default:
		return -ENXIO;
	}

	irq = timer->irq.irq;
	return put_user(irq, uaddr);
}

int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
	switch (attr->attr) {
	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
		return 0;
	}

	return -ENXIO;
}