rt2400pci.c 49.6 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2400pci
	Abstract: rt2400pci device specific routines.
	Supported chipsets: RT2460.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
34
#include <linux/slab.h>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2400pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
53 54 55 56
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57

A
Adam Baker 已提交
58
static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 60 61 62
				const unsigned int word, const u8 value)
{
	u32 reg;

63 64
	mutex_lock(&rt2x00dev->csr_mutex);

65
	/*
66 67
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
68
	 */
69 70 71 72 73 74 75 76 77
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
	}
78 79

	mutex_unlock(&rt2x00dev->csr_mutex);
80 81
}

A
Adam Baker 已提交
82
static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 84 85 86
			       const unsigned int word, u8 *value)
{
	u32 reg;

87 88
	mutex_lock(&rt2x00dev->csr_mutex);

89
	/*
90 91 92 93 94 95
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
96
	 */
97 98 99 100 101
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102

103
		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104

105 106
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
107 108

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 110

	mutex_unlock(&rt2x00dev->csr_mutex);
111 112
}

A
Adam Baker 已提交
113
static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 115 116 117
			       const unsigned int word, const u32 value)
{
	u32 reg;

118 119
	mutex_lock(&rt2x00dev->csr_mutex);

120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
133 134
	}

135
	mutex_unlock(&rt2x00dev->csr_mutex);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2400pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
172 173 174 175
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
176 177 178 179 180 181
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
182
		.word_base	= EEPROM_BASE,
183 184 185 186 187 188
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2400pci_bbp_read,
		.write		= rt2400pci_bbp_write,
189
		.word_base	= BBP_BASE,
190 191 192 193 194 195
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2400pci_rf_write,
196
		.word_base	= RF_BASE,
197 198 199 200 201 202 203 204 205 206 207 208 209 210
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}

211
#ifdef CONFIG_RT2X00_LIB_LEDS
212
static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 214 215 216 217 218 219 220 221
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

222
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 225
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 227 228

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

static int rt2400pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
245 246 247 248 249 250 251 252 253 254 255

static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2400pci_brightness_set;
	led->led_dev.blink_set = rt2400pci_blink_set;
	led->flags = LED_INITIALIZED;
}
256
#endif /* CONFIG_RT2X00_LIB_LEDS */
257

258 259 260
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * since there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 282
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
283 284 285 286
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

287 288 289 290
static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
291
{
292 293
	unsigned int bcn_preload;
	u32 reg;
294

295 296 297 298
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
299
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 301 302
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303

304 305 306 307
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311 312
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}
313

314 315 316
	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));
317

318 319 320
	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
321 322
}

I
Ivo van Doorn 已提交
323
static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324 325
				 struct rt2x00lib_erp *erp,
				 u32 changed)
326
{
327
	int preamble_mask;
328 329
	u32 reg;

330 331 332
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
		preamble_mask = erp->short_preamble << 3;

		rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 10));
		rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 20));
		rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 55));
		rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

		rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
				   GET_DURATION(ACK_SIZE, 110));
		rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
	}

	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	if (changed & BSS_CHANGED_ERP_SLOT) {
		rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
		rt2x00pci_register_write(rt2x00dev, CSR11, reg);

		rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
		rt2x00pci_register_write(rt2x00dev, CSR18, reg);

		rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
		rt2x00pci_register_write(rt2x00dev, CSR19, reg);
	}

	if (changed & BSS_CHANGED_BEACON_INT) {
		rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
				   erp->beacon_int * 16);
		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
				   erp->beacon_int * 16);
		rt2x00pci_register_write(rt2x00dev, CSR12, reg);
	}
399 400
}

401 402
static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
403
{
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	u8 r1;
	u8 r4;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
	rt2400pci_bbp_read(rt2x00dev, 1, &r1);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
		break;
	}

	rt2400pci_bbp_write(rt2x00dev, 4, r4);
	rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 452 453
}

static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454
				     struct rf_channel *rf)
455 456 457 458
{
	/*
	 * Switch on tuning bits.
	 */
459 460
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
461

462 463 464
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465 466 467 468

	/*
	 * RF2420 chipset don't need any additional actions.
	 */
469
	if (rt2x00_rf(rt2x00dev, RF2420))
470 471 472 473 474 475 476
		return;

	/*
	 * For the RT2421 chipsets we need to write an invalid
	 * reference clock rate to activate auto_tune.
	 * After that we set the value back to the correct channel.
	 */
477
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478
	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
480 481 482

	msleep(1);

483 484 485
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486 487 488 489 490 491

	msleep(1);

	/*
	 * Switch off tuning bits.
	 */
492 493
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
494

495 496
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497 498 499 500

	/*
	 * Clear false CRC during channel switch.
	 */
501
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
502 503 504 505 506 507 508
}

static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
{
	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
}

509 510
static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
511
{
512
	u32 reg;
513

514 515 516 517 518 519
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
520 521
}

I
Ivo van Doorn 已提交
522 523 524 525 526 527 528 529 530 531 532
static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533
				   (rt2x00dev->beacon_int - 20) * 16);
I
Ivo van Doorn 已提交
534 535 536 537 538 539 540 541 542
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
543 544 545 546
	} else {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
I
Ivo van Doorn 已提交
547 548 549 550 551
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

552
static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553 554
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
555
{
556
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557
		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558
	if (flags & IEEE80211_CONF_CHANGE_POWER)
559 560
		rt2400pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
561 562
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2400pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
563 564
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2400pci_config_ps(rt2x00dev, libconf);
565 566 567
}

static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
568
				const int cw_min, const int cw_max)
569 570 571 572
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
I
Ivo van Doorn 已提交
573 574
	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575 576 577 578 579 580
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
}

/*
 * Link tuning
 */
581 582
static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
583 584 585 586 587 588 589 590
{
	u32 reg;
	u8 bbp;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
591
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592 593 594 595 596

	/*
	 * Update False CCA count from register.
	 */
	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
597
	qual->false_cca = bbp;
598 599
}

600 601
static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
602
{
603 604 605 606 607
	if (qual->vgc_level_reg != vgc_level) {
		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
608 609
}

610 611
static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
612
{
613
	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 615
}

616 617
static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
618 619 620 621 622
{
	/*
	 * The link tuner should not run longer then 60 seconds,
	 * and should run once every 2 seconds.
	 */
623
	if (count > 60 || !(count & 1))
624 625 626 627 628
		return;

	/*
	 * Base r13 link tuning on the false cca count.
	 */
629 630 631 632
	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
633 634 635 636 637
}

/*
 * Initialization functions.
 */
638
static bool rt2400pci_get_entry_state(struct queue_entry *entry)
639
{
640
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
641 642
	u32 word;

643 644
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
645

646 647 648
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
649

650 651 652
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
653 654
}

655
static void rt2400pci_clear_entry(struct queue_entry *entry)
656
{
657
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
658
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
659 660
	u32 word;

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 2, &word);
		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
		rt2x00_desc_write(entry_priv->desc, 2, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
679 680
}

I
Ivo van Doorn 已提交
681
static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
682
{
683
	struct queue_entry_priv_pci *entry_priv;
684 685 686 687 688 689
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
690 691 692 693
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
694 695
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

696
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
697
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
698
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
699
			   entry_priv->desc_dma);
700 701
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

702
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
703
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
704
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
705
			   entry_priv->desc_dma);
706 707
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

708
	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
709
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
710
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
711
			   entry_priv->desc_dma);
712 713
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

714
	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
715
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
716
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
717
			   entry_priv->desc_dma);
718 719 720 721
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
722
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
723 724
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

725
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
726
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
727 728
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   (rt2x00dev->rx->data_size / 128));
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

754 755 756 757 758 759 760 761 762 763 764
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);

	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

824
static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
825 826 827 828 829 830 831
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2400pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
832
			return 0;
833 834 835 836 837
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
838 839 840 841 842 843 844 845 846 847 848
}

static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
888 889
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
890 891 892 893 894 895
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
896 897
	int mask = (state == STATE_RADIO_IRQ_OFF) ||
		   (state == STATE_RADIO_IRQ_OFF_ISR);
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
927 928 929
	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
		     rt2400pci_init_registers(rt2x00dev) ||
		     rt2400pci_init_bbp(rt2x00dev)))
930 931 932 933 934 935 936 937
		return -EIO;

	return 0;
}

static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
938
	 * Disable power
939
	 */
940
	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
941 942 943 944 945
}

static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
946
	u32 reg, reg2;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
967 968 969
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
970 971
		if (bbp_state == state && rf_state == state)
			return 0;
972
		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
		msleep(10);
	}

	return -EBUSY;
}

static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2400pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2400pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
992
	case STATE_RADIO_RX_ON_LINK:
993
	case STATE_RADIO_RX_OFF:
994
	case STATE_RADIO_RX_OFF_LINK:
995 996 997
		rt2400pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
998
	case STATE_RADIO_IRQ_ON_ISR:
999
	case STATE_RADIO_IRQ_OFF:
1000
	case STATE_RADIO_IRQ_OFF_ISR:
1001
		rt2400pci_toggle_irq(rt2x00dev, state);
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2400pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1014 1015 1016 1017
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1018 1019 1020 1021 1022 1023
	return retval;
}

/*
 * TX descriptor initialization
 */
1024
static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1025
				    struct txentry_desc *txdesc)
1026
{
1027 1028
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1029
	__le32 *txd = entry_priv->desc;
1030 1031 1032 1033 1034
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1035
	rt2x00_desc_read(txd, 1, &word);
1036
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1037
	rt2x00_desc_write(txd, 1, word);
1038

1039
	rt2x00_desc_read(txd, 2, &word);
1040 1041
	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1042 1043 1044
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
I
Ivo van Doorn 已提交
1045
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1046 1047
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
I
Ivo van Doorn 已提交
1048
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1049 1050
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1051 1052 1053
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 4, &word);
I
Ivo van Doorn 已提交
1054
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1055 1056
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
I
Ivo van Doorn 已提交
1057
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1058 1059
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1060 1061
	rt2x00_desc_write(txd, 4, word);

1062 1063 1064 1065 1066
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1067 1068 1069 1070
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1071
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1072
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1073
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1074
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1075
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1076
	rt2x00_set_field32(&word, TXD_W0_RTS,
I
Ivo van Doorn 已提交
1077 1078
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1079
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
I
Ivo van Doorn 已提交
1080
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1081
	rt2x00_desc_write(txd, 0, word);
1082 1083 1084 1085 1086 1087

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
1088 1089 1090 1091 1092
}

/*
 * TX data initialization
 */
1093 1094
static void rt2400pci_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

1107
	rt2x00queue_map_txskb(entry);
1108

1109 1110 1111
	/*
	 * Write the TX descriptor for the beacon.
	 */
1112
	rt2400pci_write_tx_desc(entry, txdesc);
1113 1114 1115 1116 1117

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1118 1119 1120 1121 1122 1123 1124 1125

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
	rt2x00_set_field32(&reg, CSR14_TBCN, 1);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1126 1127
}

1128
static void rt2400pci_kick_tx_queue(struct data_queue *queue)
1129
{
1130
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1131 1132 1133
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1134 1135 1136
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1137 1138 1139
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

1140
static void rt2400pci_kill_tx_queue(struct data_queue *queue)
1141
{
1142
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1143 1144
	u32 reg;

1145
	if (queue->qid == QID_BEACON) {
1146 1147 1148 1149 1150 1151 1152 1153
		rt2x00pci_register_write(rt2x00dev, CSR14, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
	}
}

1154 1155 1156
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1157 1158
static void rt2400pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1159
{
1160
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1161
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1162 1163
	u32 word0;
	u32 word2;
I
Ivo van Doorn 已提交
1164
	u32 word3;
1165 1166 1167 1168
	u32 word4;
	u64 tsf;
	u32 rx_low;
	u32 rx_high;
1169

1170 1171 1172
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1173
	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1174

1175
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1176
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1177
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1178
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * We only get the lower 32bits from the timestamp,
	 * to get the full 64bits we must complement it with
	 * the timestamp from get_tsf().
	 * Note that when a wraparound of the lower 32bits
	 * has occurred between the frame arrival and the get_tsf()
	 * call, we must decrease the higher 32bits with 1 to get
	 * to correct value.
	 */
	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
	rx_high = upper_32_bits(tsf);

	if ((u32)tsf <= rx_low)
		rx_high--;

1196 1197
	/*
	 * Obtain the status about this packet.
1198 1199
	 * The signal is the PLCP value, and needs to be stripped
	 * of the preamble bit (0x08).
1200
	 */
1201
	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1202
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
I
Ivo van Doorn 已提交
1203
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
I
Ivo van Doorn 已提交
1204 1205
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1206

1207
	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1208 1209
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1210 1211 1212 1213 1214
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1215
static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1216
			     const enum data_queue_qid queue_idx)
1217
{
I
Ivo van Doorn 已提交
1218
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1219
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1220 1221
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1222 1223
	u32 word;

I
Ivo van Doorn 已提交
1224 1225
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1226 1227
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1228 1229 1230 1231 1232 1233 1234 1235

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1248
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1249

1250
		rt2x00lib_txdone(entry, &txdesc);
1251 1252 1253
	}
}

1254
static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1255 1256
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
1257
	u32 reg = rt2x00dev->irqvalue[0];
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1281
		rt2400pci_txdone(rt2x00dev, QID_ATIM);
1282 1283 1284 1285 1286

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1287
		rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1288 1289 1290 1291 1292

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1293
		rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1294

1295 1296 1297
	/* Enable interrupts again. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_ON_ISR);
1298 1299 1300
	return IRQ_HANDLED;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/* Store irqvalues for use in the interrupt thread. */
	rt2x00dev->irqvalue[0] = reg;

	/* Disable interrupts, will be enabled again in the interrupt thread. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_OFF_ISR);

	return IRQ_WAKE_THREAD;
}

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
/*
 * Device probe functions.
 */
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1360
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}

static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1388 1389
	rt2x00_set_chip(rt2x00dev, RT2460, value,
			rt2x00_get_field32(reg, CSR0_REVISION));
1390

1391
	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1392 1393 1394 1395 1396 1397 1398
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1399
	rt2x00dev->default_ant.tx =
1400
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1401
	rt2x00dev->default_ant.rx =
1402 1403
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1415 1416 1417
	/*
	 * Store led mode, for correct led behaviour.
	 */
1418
#ifdef CONFIG_RT2X00_LIB_LEDS
1419 1420
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1421
	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1422 1423 1424
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1425 1426
		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1427
#endif /* CONFIG_RT2X00_LIB_LEDS */
1428 1429 1430 1431 1432

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1433
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1434 1435 1436 1437

	/*
	 * Check if the BBP tuning should be enabled.
	 */
1438 1439
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
		__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1440 1441 1442 1443 1444 1445 1446 1447

	return 0;
}

/*
 * RF value list for RF2420 & RF2421
 * Supports: 2.4 GHz
 */
1448
static const struct rf_channel rf_vals_b[] = {
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
};

1465
static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1466 1467
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1468 1469
	struct channel_info *info;
	char *tx_power;
1470 1471 1472 1473 1474
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1475
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1476 1477 1478
			       IEEE80211_HW_SIGNAL_DBM |
			       IEEE80211_HW_SUPPORTS_PS |
			       IEEE80211_HW_PS_NULLFUNC_STACK;
1479

1480
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1481 1482 1483 1484 1485 1486 1487
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1488 1489
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK;
1490

1491 1492 1493 1494 1495 1496
	spec->num_channels = ARRAY_SIZE(rf_vals_b);
	spec->channels = rf_vals_b;

	/*
	 * Create channel information array
	 */
1497
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1498 1499 1500 1501 1502 1503
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1504 1505 1506 1507
	for (i = 0; i < 14; i++) {
		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}
1508 1509

	return 0;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2400pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2400pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1530 1531 1532
	retval = rt2400pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1533 1534

	/*
1535
	 * This device requires the atim queue and DMA-mapped skbs.
1536
	 */
I
Ivo van Doorn 已提交
1537
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1538
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
J
Johannes Berg 已提交
1551
static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1552 1553 1554 1555 1556 1557 1558 1559 1560
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	/*
	 * We don't support variating cw_min and cw_max variables
	 * per queue. So by default we only configure the TX queue,
	 * and ignore all other configurations.
	 */
J
Johannes Berg 已提交
1561
	if (queue != 0)
1562 1563 1564 1565 1566 1567 1568 1569
		return -EINVAL;

	if (rt2x00mac_conf_tx(hw, queue, params))
		return -EINVAL;

	/*
	 * Write configuration to register.
	 */
I
Ivo van Doorn 已提交
1570 1571
	rt2400pci_config_cw(rt2x00dev,
			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	return 0;
}

static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2400pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1601 1602
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1603 1604 1605
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1606
	.configure_filter	= rt2x00mac_configure_filter,
1607 1608
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1609
	.get_stats		= rt2x00mac_get_stats,
1610
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1611 1612 1613
	.conf_tx		= rt2400pci_conf_tx,
	.get_tsf		= rt2400pci_get_tsf,
	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1614
	.rfkill_poll		= rt2x00mac_rfkill_poll,
1615 1616 1617 1618
};

static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
	.irq_handler		= rt2400pci_interrupt,
1619
	.irq_handler_thread	= rt2400pci_interrupt_thread,
1620 1621 1622
	.probe_hw		= rt2400pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
1623 1624
	.get_entry_state	= rt2400pci_get_entry_state,
	.clear_entry		= rt2400pci_clear_entry,
1625 1626 1627 1628 1629 1630
	.set_device_state	= rt2400pci_set_device_state,
	.rfkill_poll		= rt2400pci_rfkill_poll,
	.link_stats		= rt2400pci_link_stats,
	.reset_tuner		= rt2400pci_reset_tuner,
	.link_tuner		= rt2400pci_link_tuner,
	.write_tx_desc		= rt2400pci_write_tx_desc,
1631
	.write_beacon		= rt2400pci_write_beacon,
1632
	.kick_tx_queue		= rt2400pci_kick_tx_queue,
1633
	.kill_tx_queue		= rt2400pci_kill_tx_queue,
1634
	.fill_rxdone		= rt2400pci_fill_rxdone,
I
Ivo van Doorn 已提交
1635
	.config_filter		= rt2400pci_config_filter,
1636
	.config_intf		= rt2400pci_config_intf,
1637
	.config_erp		= rt2400pci_config_erp,
1638
	.config_ant		= rt2400pci_config_ant,
1639 1640 1641
	.config			= rt2400pci_config,
};

I
Ivo van Doorn 已提交
1642
static const struct data_queue_desc rt2400pci_queue_rx = {
1643
	.entry_num		= 24,
I
Ivo van Doorn 已提交
1644 1645
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1646
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1647 1648 1649
};

static const struct data_queue_desc rt2400pci_queue_tx = {
1650
	.entry_num		= 24,
I
Ivo van Doorn 已提交
1651 1652
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1653
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1654 1655 1656
};

static const struct data_queue_desc rt2400pci_queue_bcn = {
1657
	.entry_num		= 1,
I
Ivo van Doorn 已提交
1658 1659
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1660
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1661 1662 1663
};

static const struct data_queue_desc rt2400pci_queue_atim = {
1664
	.entry_num		= 8,
I
Ivo van Doorn 已提交
1665 1666
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1667
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1668 1669
};

1670
static const struct rt2x00_ops rt2400pci_ops = {
G
Gertjan van Wingerde 已提交
1671 1672 1673 1674 1675 1676
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1677
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
1678 1679 1680 1681 1682 1683
	.rx			= &rt2400pci_queue_rx,
	.tx			= &rt2400pci_queue_tx,
	.bcn			= &rt2400pci_queue_bcn,
	.atim			= &rt2400pci_queue_atim,
	.lib			= &rt2400pci_rt2x00_ops,
	.hw			= &rt2400pci_mac80211_ops,
1684
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1685
	.debugfs		= &rt2400pci_rt2x00debug,
1686 1687 1688 1689 1690 1691
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2400pci module information.
 */
1692
static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	{ PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2400pci_driver = {
1705
	.name		= KBUILD_MODNAME,
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	.id_table	= rt2400pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2400pci_init(void)
{
	return pci_register_driver(&rt2400pci_driver);
}

static void __exit rt2400pci_exit(void)
{
	pci_unregister_driver(&rt2400pci_driver);
}

module_init(rt2400pci_init);
module_exit(rt2400pci_exit);