rt2400pci.c 49.3 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2400pci
	Abstract: rt2400pci device specific routines.
	Supported chipsets: RT2460.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>
34
#include <linux/slab.h>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2400pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
53 54 55 56
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57

A
Adam Baker 已提交
58
static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59 60 61 62
				const unsigned int word, const u8 value)
{
	u32 reg;

63 64
	mutex_lock(&rt2x00dev->csr_mutex);

65
	/*
66 67
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
68
	 */
69 70 71 72 73 74 75 76 77
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
	}
78 79

	mutex_unlock(&rt2x00dev->csr_mutex);
80 81
}

A
Adam Baker 已提交
82
static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83 84 85 86
			       const unsigned int word, u8 *value)
{
	u32 reg;

87 88
	mutex_lock(&rt2x00dev->csr_mutex);

89
	/*
90 91 92 93 94 95
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
96
	 */
97 98 99 100 101
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102

103
		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104

105 106
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
107 108

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 110

	mutex_unlock(&rt2x00dev->csr_mutex);
111 112
}

A
Adam Baker 已提交
113
static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114 115 116 117
			       const unsigned int word, const u32 value)
{
	u32 reg;

118 119
	mutex_lock(&rt2x00dev->csr_mutex);

120 121 122 123 124 125 126 127 128 129 130 131 132
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
133 134
	}

135
	mutex_unlock(&rt2x00dev->csr_mutex);
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2400pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
172 173 174 175
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
176 177 178 179 180 181
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
182
		.word_base	= EEPROM_BASE,
183 184 185 186 187 188
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2400pci_bbp_read,
		.write		= rt2400pci_bbp_write,
189
		.word_base	= BBP_BASE,
190 191 192 193 194 195
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2400pci_rf_write,
196
		.word_base	= RF_BASE,
197 198 199 200 201 202 203 204 205 206 207 208 209 210
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}

211
#ifdef CONFIG_RT2X00_LIB_LEDS
212
static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213 214 215 216 217 218 219 220 221
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

222
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224 225
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 227 228

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

static int rt2400pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
245 246 247 248 249 250 251 252 253 254 255

static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2400pci_brightness_set;
	led->led_dev.blink_set = rt2400pci_blink_set;
	led->flags = LED_INITIALIZED;
}
256
#endif /* CONFIG_RT2X00_LIB_LEDS */
257

258 259 260
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * since there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281 282
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
283 284 285 286
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

287 288 289 290
static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
291
{
292 293
	unsigned int bcn_preload;
	u32 reg;
294

295 296 297 298
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
299
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300 301 302
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303

304 305 306 307
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311 312
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}
313

314 315 316
	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));
317

318 319 320
	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
321 322
}

I
Ivo van Doorn 已提交
323 324
static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp)
325
{
326
	int preamble_mask;
327 328
	u32 reg;

329 330 331
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
332
	preamble_mask = erp->short_preamble << 3;
333 334

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335 336
	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337 338
	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339 340 341
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342
	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343
	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
345 346 347
	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
348
	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349
	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
351 352 353
	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
354
	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
355
	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
356
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
357 358 359
	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
360
	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361
	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
363
	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364 365 366 367 368 369 370

	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

371 372 373 374 375
	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
	rt2x00pci_register_write(rt2x00dev, CSR12, reg);

376 377 378 379 380 381 382 383 384
	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
	rt2x00pci_register_write(rt2x00dev, CSR18, reg);

	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
385 386
}

387 388
static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
389
{
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
	u8 r1;
	u8 r4;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
	rt2400pci_bbp_read(rt2x00dev, 1, &r1);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
		break;
	}

	rt2400pci_bbp_write(rt2x00dev, 4, r4);
	rt2400pci_bbp_write(rt2x00dev, 1, r1);
437 438 439
}

static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
440
				     struct rf_channel *rf)
441 442 443 444
{
	/*
	 * Switch on tuning bits.
	 */
445 446
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447

448 449 450
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451 452 453 454

	/*
	 * RF2420 chipset don't need any additional actions.
	 */
455
	if (rt2x00_rf(rt2x00dev, RF2420))
456 457 458 459 460 461 462
		return;

	/*
	 * For the RT2421 chipsets we need to write an invalid
	 * reference clock rate to activate auto_tune.
	 * After that we set the value back to the correct channel.
	 */
463
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
464
	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
465
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466 467 468

	msleep(1);

469 470 471
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472 473 474 475 476 477

	msleep(1);

	/*
	 * Switch off tuning bits.
	 */
478 479
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480

481 482
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483 484 485 486

	/*
	 * Clear false CRC during channel switch.
	 */
487
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
488 489 490 491 492 493 494
}

static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
{
	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
}

495 496
static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
497
{
498
	u32 reg;
499

500 501 502 503 504 505
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
506 507
}

I
Ivo van Doorn 已提交
508 509 510 511 512 513 514 515 516 517 518
static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
519
				   (rt2x00dev->beacon_int - 20) * 16);
I
Ivo van Doorn 已提交
520 521 522 523 524 525 526 527 528
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
529 530 531 532
	} else {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
I
Ivo van Doorn 已提交
533 534 535 536 537
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

538
static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
539 540
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
541
{
542
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
543
		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544
	if (flags & IEEE80211_CONF_CHANGE_POWER)
545 546
		rt2400pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
547 548
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2400pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
549 550
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2400pci_config_ps(rt2x00dev, libconf);
551 552 553
}

static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
554
				const int cw_min, const int cw_max)
555 556 557 558
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
I
Ivo van Doorn 已提交
559 560
	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561 562 563 564 565 566
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
}

/*
 * Link tuning
 */
567 568
static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
569 570 571 572 573 574 575 576
{
	u32 reg;
	u8 bbp;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578 579 580 581 582

	/*
	 * Update False CCA count from register.
	 */
	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583
	qual->false_cca = bbp;
584 585
}

586 587
static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				     struct link_qual *qual, u8 vgc_level)
588
{
589 590 591 592 593
	if (qual->vgc_level_reg != vgc_level) {
		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
	}
594 595
}

596 597
static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
598
{
599
	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
600 601
}

602 603
static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual, const u32 count)
604 605 606 607 608
{
	/*
	 * The link tuner should not run longer then 60 seconds,
	 * and should run once every 2 seconds.
	 */
609
	if (count > 60 || !(count & 1))
610 611 612 613 614
		return;

	/*
	 * Base r13 link tuning on the false cca count.
	 */
615 616 617 618
	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
619 620 621 622 623
}

/*
 * Initialization functions.
 */
624
static bool rt2400pci_get_entry_state(struct queue_entry *entry)
625
{
626
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
627 628
	u32 word;

629 630
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
631

632 633 634
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
635

636 637 638
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
639 640
}

641
static void rt2400pci_clear_entry(struct queue_entry *entry)
642
{
643
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
644
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
645 646
	u32 word;

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 2, &word);
		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
		rt2x00_desc_write(entry_priv->desc, 2, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
665 666
}

I
Ivo van Doorn 已提交
667
static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
668
{
669
	struct queue_entry_priv_pci *entry_priv;
670 671 672 673 674 675
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
676 677 678 679
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
680 681
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

682
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
683
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
684
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
685
			   entry_priv->desc_dma);
686 687
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

688
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
689
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
690
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
691
			   entry_priv->desc_dma);
692 693
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

694
	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
695
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
696
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
697
			   entry_priv->desc_dma);
698 699
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

700
	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
701
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
702
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
703
			   entry_priv->desc_dma);
704 705 706 707
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
708
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
709 710
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

711
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
712
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
713 714
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   (rt2x00dev->rx->data_size / 128));
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

740 741 742 743 744 745 746 747 748 749 750
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);

	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

810
static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
811 812 813 814 815 816 817
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2400pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
818
			return 0;
819 820 821 822 823
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
824 825 826 827 828 829 830 831 832 833 834
}

static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
874 875
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
876 877 878 879 880 881
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
882 883
	int mask = (state == STATE_RADIO_IRQ_OFF) ||
		   (state == STATE_RADIO_IRQ_OFF_ISR);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
913 914 915
	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
		     rt2400pci_init_registers(rt2x00dev) ||
		     rt2400pci_init_bbp(rt2x00dev)))
916 917 918 919 920 921 922 923
		return -EIO;

	return 0;
}

static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
924
	 * Disable power
925
	 */
926
	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
927 928 929 930 931
}

static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
932
	u32 reg, reg2;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
953 954 955
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
956 957
		if (bbp_state == state && rf_state == state)
			return 0;
958
		rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		msleep(10);
	}

	return -EBUSY;
}

static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2400pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2400pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
978
	case STATE_RADIO_RX_ON_LINK:
979
	case STATE_RADIO_RX_OFF:
980
	case STATE_RADIO_RX_OFF_LINK:
981 982 983
		rt2400pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
984
	case STATE_RADIO_IRQ_ON_ISR:
985
	case STATE_RADIO_IRQ_OFF:
986
	case STATE_RADIO_IRQ_OFF_ISR:
987
		rt2400pci_toggle_irq(rt2x00dev, state);
988 989 990 991 992 993 994 995 996 997 998 999
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2400pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1000 1001 1002 1003
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1004 1005 1006 1007 1008 1009
	return retval;
}

/*
 * TX descriptor initialization
 */
1010
static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1011
				    struct txentry_desc *txdesc)
1012
{
1013 1014
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1015
	__le32 *txd = entry_priv->desc;
1016 1017 1018 1019 1020
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1021
	rt2x00_desc_read(txd, 1, &word);
1022
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1023
	rt2x00_desc_write(txd, 1, word);
1024

1025
	rt2x00_desc_read(txd, 2, &word);
1026 1027
	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1028 1029 1030
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
I
Ivo van Doorn 已提交
1031
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1032 1033
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
I
Ivo van Doorn 已提交
1034
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1035 1036
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1037 1038 1039
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 4, &word);
I
Ivo van Doorn 已提交
1040
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1041 1042
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
I
Ivo van Doorn 已提交
1043
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1044 1045
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1046 1047
	rt2x00_desc_write(txd, 4, word);

1048 1049 1050 1051 1052
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1053 1054 1055 1056
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1057
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1058
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1059
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1060
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1061
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1062
	rt2x00_set_field32(&word, TXD_W0_RTS,
I
Ivo van Doorn 已提交
1063 1064
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1065
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
I
Ivo van Doorn 已提交
1066
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1067
	rt2x00_desc_write(txd, 0, word);
1068 1069 1070 1071 1072 1073

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
1074 1075 1076 1077 1078
}

/*
 * TX data initialization
 */
1079 1080
static void rt2400pci_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

	rt2x00queue_map_txskb(rt2x00dev, entry->skb);

1095 1096 1097
	/*
	 * Write the TX descriptor for the beacon.
	 */
1098
	rt2400pci_write_tx_desc(entry, txdesc);
1099 1100 1101 1102 1103

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1104 1105 1106 1107 1108 1109 1110 1111

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
	rt2x00_set_field32(&reg, CSR14_TBCN, 1);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1112 1113
}

1114
static void rt2400pci_kick_tx_queue(struct data_queue *queue)
1115
{
1116
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1117 1118 1119
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1120 1121 1122
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1123 1124 1125
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

1126
static void rt2400pci_kill_tx_queue(struct data_queue *queue)
1127
{
1128
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1129 1130
	u32 reg;

1131
	if (queue->qid == QID_BEACON) {
1132 1133 1134 1135 1136 1137 1138 1139
		rt2x00pci_register_write(rt2x00dev, CSR14, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
		rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
	}
}

1140 1141 1142
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1143 1144
static void rt2400pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1145
{
1146
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1147
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1148 1149
	u32 word0;
	u32 word2;
I
Ivo van Doorn 已提交
1150
	u32 word3;
1151 1152 1153 1154
	u32 word4;
	u64 tsf;
	u32 rx_low;
	u32 rx_high;
1155

1156 1157 1158
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1159
	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1160

1161
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1162
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1163
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1164
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	/*
	 * We only get the lower 32bits from the timestamp,
	 * to get the full 64bits we must complement it with
	 * the timestamp from get_tsf().
	 * Note that when a wraparound of the lower 32bits
	 * has occurred between the frame arrival and the get_tsf()
	 * call, we must decrease the higher 32bits with 1 to get
	 * to correct value.
	 */
	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
	rx_high = upper_32_bits(tsf);

	if ((u32)tsf <= rx_low)
		rx_high--;

1182 1183
	/*
	 * Obtain the status about this packet.
1184 1185
	 * The signal is the PLCP value, and needs to be stripped
	 * of the preamble bit (0x08).
1186
	 */
1187
	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1188
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
I
Ivo van Doorn 已提交
1189
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
I
Ivo van Doorn 已提交
1190 1191
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1192

1193
	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1194 1195
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1196 1197 1198 1199 1200
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1201
static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1202
			     const enum data_queue_qid queue_idx)
1203
{
I
Ivo van Doorn 已提交
1204
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1205
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1206 1207
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1208 1209
	u32 word;

I
Ivo van Doorn 已提交
1210 1211
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1212 1213
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1214 1215 1216 1217 1218 1219 1220 1221

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1234
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1235

1236
		rt2x00lib_txdone(entry, &txdesc);
1237 1238 1239
	}
}

1240
static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1241 1242
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
1243
	u32 reg = rt2x00dev->irqvalue[0];
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1267
		rt2400pci_txdone(rt2x00dev, QID_ATIM);
1268 1269 1270 1271 1272

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1273
		rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1274 1275 1276 1277 1278

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1279
		rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1280

1281 1282 1283
	/* Enable interrupts again. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_ON_ISR);
1284 1285 1286
	return IRQ_HANDLED;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/* Store irqvalues for use in the interrupt thread. */
	rt2x00dev->irqvalue[0] = reg;

	/* Disable interrupts, will be enabled again in the interrupt thread. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_OFF_ISR);

	return IRQ_WAKE_THREAD;
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/*
 * Device probe functions.
 */
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1346
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}

static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1374 1375
	rt2x00_set_chip(rt2x00dev, RT2460, value,
			rt2x00_get_field32(reg, CSR0_REVISION));
1376

1377
	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1378 1379 1380 1381 1382 1383 1384
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1385
	rt2x00dev->default_ant.tx =
1386
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1387
	rt2x00dev->default_ant.rx =
1388 1389
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1401 1402 1403
	/*
	 * Store led mode, for correct led behaviour.
	 */
1404
#ifdef CONFIG_RT2X00_LIB_LEDS
1405 1406
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1407
	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1408 1409 1410
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1411 1412
		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1413
#endif /* CONFIG_RT2X00_LIB_LEDS */
1414 1415 1416 1417 1418

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1419
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1420 1421 1422 1423

	/*
	 * Check if the BBP tuning should be enabled.
	 */
1424 1425
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
		__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1426 1427 1428 1429 1430 1431 1432 1433

	return 0;
}

/*
 * RF value list for RF2420 & RF2421
 * Supports: 2.4 GHz
 */
1434
static const struct rf_channel rf_vals_b[] = {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
};

1451
static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1452 1453
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1454 1455
	struct channel_info *info;
	char *tx_power;
1456 1457 1458 1459 1460
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1461
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1462 1463 1464
			       IEEE80211_HW_SIGNAL_DBM |
			       IEEE80211_HW_SUPPORTS_PS |
			       IEEE80211_HW_PS_NULLFUNC_STACK;
1465

1466
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1467 1468 1469 1470 1471 1472 1473
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1474 1475
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK;
1476

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	spec->num_channels = ARRAY_SIZE(rf_vals_b);
	spec->channels = rf_vals_b;

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);

	return 0;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
}

static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2400pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2400pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1514 1515 1516
	retval = rt2400pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1517 1518

	/*
1519
	 * This device requires the atim queue and DMA-mapped skbs.
1520
	 */
I
Ivo van Doorn 已提交
1521
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1522
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
J
Johannes Berg 已提交
1535
static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1536 1537 1538 1539 1540 1541 1542 1543 1544
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	/*
	 * We don't support variating cw_min and cw_max variables
	 * per queue. So by default we only configure the TX queue,
	 * and ignore all other configurations.
	 */
J
Johannes Berg 已提交
1545
	if (queue != 0)
1546 1547 1548 1549 1550 1551 1552 1553
		return -EINVAL;

	if (rt2x00mac_conf_tx(hw, queue, params))
		return -EINVAL;

	/*
	 * Write configuration to register.
	 */
I
Ivo van Doorn 已提交
1554 1555
	rt2400pci_config_cw(rt2x00dev,
			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

	return 0;
}

static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2400pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1585 1586
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1587 1588 1589
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1590
	.configure_filter	= rt2x00mac_configure_filter,
1591 1592
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1593
	.get_stats		= rt2x00mac_get_stats,
1594
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1595 1596 1597
	.conf_tx		= rt2400pci_conf_tx,
	.get_tsf		= rt2400pci_get_tsf,
	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1598
	.rfkill_poll		= rt2x00mac_rfkill_poll,
1599 1600 1601 1602
};

static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
	.irq_handler		= rt2400pci_interrupt,
1603
	.irq_handler_thread	= rt2400pci_interrupt_thread,
1604 1605 1606
	.probe_hw		= rt2400pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
1607 1608
	.get_entry_state	= rt2400pci_get_entry_state,
	.clear_entry		= rt2400pci_clear_entry,
1609 1610 1611 1612 1613 1614
	.set_device_state	= rt2400pci_set_device_state,
	.rfkill_poll		= rt2400pci_rfkill_poll,
	.link_stats		= rt2400pci_link_stats,
	.reset_tuner		= rt2400pci_reset_tuner,
	.link_tuner		= rt2400pci_link_tuner,
	.write_tx_desc		= rt2400pci_write_tx_desc,
1615
	.write_beacon		= rt2400pci_write_beacon,
1616
	.kick_tx_queue		= rt2400pci_kick_tx_queue,
1617
	.kill_tx_queue		= rt2400pci_kill_tx_queue,
1618
	.fill_rxdone		= rt2400pci_fill_rxdone,
I
Ivo van Doorn 已提交
1619
	.config_filter		= rt2400pci_config_filter,
1620
	.config_intf		= rt2400pci_config_intf,
1621
	.config_erp		= rt2400pci_config_erp,
1622
	.config_ant		= rt2400pci_config_ant,
1623 1624 1625
	.config			= rt2400pci_config,
};

I
Ivo van Doorn 已提交
1626 1627 1628 1629
static const struct data_queue_desc rt2400pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1630
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1631 1632 1633 1634 1635 1636
};

static const struct data_queue_desc rt2400pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1637
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1638 1639 1640 1641 1642 1643
};

static const struct data_queue_desc rt2400pci_queue_bcn = {
	.entry_num		= BEACON_ENTRIES,
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1644
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1645 1646 1647 1648 1649 1650
};

static const struct data_queue_desc rt2400pci_queue_atim = {
	.entry_num		= ATIM_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1651
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1652 1653
};

1654
static const struct rt2x00_ops rt2400pci_ops = {
G
Gertjan van Wingerde 已提交
1655 1656 1657 1658 1659 1660
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1661
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
1662 1663 1664 1665 1666 1667
	.rx			= &rt2400pci_queue_rx,
	.tx			= &rt2400pci_queue_tx,
	.bcn			= &rt2400pci_queue_bcn,
	.atim			= &rt2400pci_queue_atim,
	.lib			= &rt2400pci_rt2x00_ops,
	.hw			= &rt2400pci_mac80211_ops,
1668
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1669
	.debugfs		= &rt2400pci_rt2x00debug,
1670 1671 1672 1673 1674 1675
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2400pci module information.
 */
1676
static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	{ PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2400pci_driver = {
1689
	.name		= KBUILD_MODNAME,
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	.id_table	= rt2400pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2400pci_init(void)
{
	return pci_register_driver(&rt2400pci_driver);
}

static void __exit rt2400pci_exit(void)
{
	pci_unregister_driver(&rt2400pci_driver);
}

module_init(rt2400pci_init);
module_exit(rt2400pci_exit);