rt2400pci.c 48.8 KB
Newer Older
1
/*
I
Ivo van Doorn 已提交
2
	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2400pci
	Abstract: rt2400pci device specific routines.
	Supported chipsets: RT2460.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2400pci.h"

/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2x00pci_register_read and rt2x00pci_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
52 53 54 55
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56

A
Adam Baker 已提交
57
static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 59 60 61
				const unsigned int word, const u8 value)
{
	u32 reg;

62 63
	mutex_lock(&rt2x00dev->csr_mutex);

64
	/*
65 66
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
67
	 */
68 69 70 71 72 73 74 75 76
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);

		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
	}
77 78

	mutex_unlock(&rt2x00dev->csr_mutex);
79 80
}

A
Adam Baker 已提交
81
static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 83 84 85
			       const unsigned int word, u8 *value)
{
	u32 reg;

86 87
	mutex_lock(&rt2x00dev->csr_mutex);

88
	/*
89 90 91 92 93 94
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
95
	 */
96 97 98 99 100
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101

102
		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103

104 105
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
106 107

	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108 109

	mutex_unlock(&rt2x00dev->csr_mutex);
110 111
}

A
Adam Baker 已提交
112
static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 114 115 116 117 118 119
			       const unsigned int word, const u32 value)
{
	u32 reg;

	if (!word)
		return;

120 121
	mutex_lock(&rt2x00dev->csr_mutex);

122 123 124 125 126 127 128 129 130 131 132 133 134
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
135 136
	}

137
	mutex_unlock(&rt2x00dev->csr_mutex);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
}

static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt2400pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
174 175 176 177
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
178 179 180 181 182 183
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
184
		.word_base	= EEPROM_BASE,
185 186 187 188 189 190
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt2400pci_bbp_read,
		.write		= rt2400pci_bbp_write,
191
		.word_base	= BBP_BASE,
192 193 194 195 196 197
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt2400pci_rf_write,
198
		.word_base	= RF_BASE,
199 200 201 202 203 204
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

205
#ifdef CONFIG_RT2X00_LIB_RFKILL
206 207 208 209 210 211 212
static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
}
213 214
#else
#define rt2400pci_rfkill_poll	NULL
215
#endif /* CONFIG_RT2X00_LIB_RFKILL */
216

217
#ifdef CONFIG_RT2X00_LIB_LEDS
218
static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
219 220 221 222 223 224 225 226 227
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);

228
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
229
		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
230 231
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
232 233 234

	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
}
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

static int rt2400pci_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);

	return 0;
}
251 252 253 254 255 256 257 258 259 260 261

static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2400pci_brightness_set;
	led->led_dev.blink_set = rt2400pci_blink_set;
	led->flags = LED_INITIALIZED;
}
262
#endif /* CONFIG_RT2X00_LIB_LEDS */
263

264 265 266
/*
 * Configuration handlers.
 */
I
Ivo van Doorn 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * since there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
287 288
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
289 290 291 292
	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

293 294 295 296
static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
297
{
298 299
	unsigned int bcn_preload;
	u32 reg;
300

301 302 303 304
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
305
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
306 307 308
		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309

310 311 312 313
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314
		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315
		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316
		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317 318
		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
	}
319

320 321 322
	if (flags & CONFIG_UPDATE_MAC)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
					      conf->mac, sizeof(conf->mac));
323

324 325 326
	if (flags & CONFIG_UPDATE_BSSID)
		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
					      conf->bssid, sizeof(conf->bssid));
327 328
}

I
Ivo van Doorn 已提交
329 330
static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
				 struct rt2x00lib_erp *erp)
331
{
332
	int preamble_mask;
333 334
	u32 reg;

335 336 337
	/*
	 * When short preamble is enabled, we should set bit 0x08
	 */
338
	preamble_mask = erp->short_preamble << 3;
339 340

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341 342 343 344
	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
			   erp->ack_timeout);
	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
			   erp->ack_consume_time);
345 346 347
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348
	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349
	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351 352 353
	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
354
	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355
	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
356
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357 358 359
	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
360
	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361
	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363 364 365
	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);

	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
366
	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367
	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
368
	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369
	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);

	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
	rt2x00pci_register_write(rt2x00dev, CSR18, reg);

	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
386 387
}

388 389
static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
390
{
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	u8 r1;
	u8 r4;

	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

	rt2400pci_bbp_read(rt2x00dev, 4, &r4);
	rt2400pci_bbp_read(rt2x00dev, 1, &r1);

	/*
	 * Configure the TX antenna.
	 */
	switch (ant->tx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
	default:
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
		break;
	}

	rt2400pci_bbp_write(rt2x00dev, 4, r4);
	rt2400pci_bbp_write(rt2x00dev, 1, r1);
438 439 440
}

static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
441
				     struct rf_channel *rf)
442 443 444 445
{
	/*
	 * Switch on tuning bits.
	 */
446 447
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
448

449 450 451
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
452 453 454 455 456 457 458 459 460 461 462 463

	/*
	 * RF2420 chipset don't need any additional actions.
	 */
	if (rt2x00_rf(&rt2x00dev->chip, RF2420))
		return;

	/*
	 * For the RT2421 chipsets we need to write an invalid
	 * reference clock rate to activate auto_tune.
	 * After that we set the value back to the correct channel.
	 */
464
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
465
	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
466
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
467 468 469

	msleep(1);

470 471 472
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
473 474 475 476 477 478

	msleep(1);

	/*
	 * Switch off tuning bits.
	 */
479 480
	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
481

482 483
	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484 485 486 487

	/*
	 * Clear false CRC during channel switch.
	 */
488
	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
489 490 491 492 493 494 495
}

static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
{
	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
}

496 497
static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
					 struct rt2x00lib_conf *libconf)
498
{
499
	u32 reg;
500

501 502 503 504 505 506
	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
507 508 509
}

static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
510
				      struct rt2x00lib_conf *libconf)
511 512 513 514 515 516 517 518 519
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
520 521 522 523
	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
			   libconf->conf->beacon_int * 16);
	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
			   libconf->conf->beacon_int * 16);
524 525 526
	rt2x00pci_register_write(rt2x00dev, CSR12, reg);
}

I
Ivo van Doorn 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
				   (libconf->conf->beacon_int - 20) * 16);
		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);

		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, CSR20, reg);
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

553
static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
554 555
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
556
{
557
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
558
		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
559
	if (flags & IEEE80211_CONF_CHANGE_POWER)
560 561
		rt2400pci_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
562 563 564
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt2400pci_config_retry_limit(rt2x00dev, libconf);
	if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
565
		rt2400pci_config_duration(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
566 567
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2400pci_config_ps(rt2x00dev, libconf);
568 569 570
}

static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
I
Ivo van Doorn 已提交
571
				const int cw_min, const int cw_max)
572 573 574 575
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
I
Ivo van Doorn 已提交
576 577
	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
578 579 580 581 582 583
	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
}

/*
 * Link tuning
 */
584 585
static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
586 587 588 589 590 591 592 593
{
	u32 reg;
	u8 bbp;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
594
	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
595 596 597 598 599

	/*
	 * Update False CCA count from register.
	 */
	rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
600
	qual->false_cca = bbp;
601 602
}

603 604 605 606 607 608 609
static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev, u8 vgc_level)
{
	rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
	rt2x00dev->link.vgc_level = vgc_level;
	rt2x00dev->link.vgc_level_reg = vgc_level;
}

610 611
static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
612
	rt2400pci_set_vgc(rt2x00dev, 0x08);
613 614 615 616
}

static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
{
617
	struct link *link = &rt2x00dev->link;
618 619 620 621 622

	/*
	 * The link tuner should not run longer then 60 seconds,
	 * and should run once every 2 seconds.
	 */
623
	if (link->count > 60 || !(link->count & 1))
624 625 626 627 628
		return;

	/*
	 * Base r13 link tuning on the false cca count.
	 */
629 630 631 632
	if ((link->qual.false_cca > 512) && (link->vgc_level < 0x20))
		rt2400pci_set_vgc(rt2x00dev, ++link->vgc_level);
	else if ((link->qual.false_cca < 100) && (link->vgc_level > 0x08))
		rt2400pci_set_vgc(rt2x00dev, --link->vgc_level);
633 634 635 636 637
}

/*
 * Initialization functions.
 */
638
static bool rt2400pci_get_entry_state(struct queue_entry *entry)
639
{
640
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
641 642
	u32 word;

643 644
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
645

646 647 648
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
649

650 651 652
		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
653 654
}

655
static void rt2400pci_clear_entry(struct queue_entry *entry)
656
{
657
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
658
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
659 660
	u32 word;

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 2, &word);
		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
		rt2x00_desc_write(entry_priv->desc, 2, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 1, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
679 680
}

I
Ivo van Doorn 已提交
681
static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
682
{
683
	struct queue_entry_priv_pci *entry_priv;
684 685 686 687 688 689
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
I
Ivo van Doorn 已提交
690 691 692 693
	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
694 695
	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);

696
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
697
	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
698
	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
699
			   entry_priv->desc_dma);
700 701
	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);

702
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
703
	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
704
	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
705
			   entry_priv->desc_dma);
706 707
	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);

708
	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
709
	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
710
	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
711
			   entry_priv->desc_dma);
712 713
	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);

714
	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
715
	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
716
	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
717
			   entry_priv->desc_dma);
718 719 720 721
	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
I
Ivo van Doorn 已提交
722
	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
723 724
	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);

725
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
726
	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
727 728
	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
			   entry_priv->desc_dma);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);

	return 0;
}

static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);

	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
			   (rt2x00dev->rx->data_size / 128));
	rt2x00pci_register_write(rt2x00dev, CSR9, reg);

754 755 756 757 758 759 760 761 762 763 764
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);

	rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
	rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);

	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);

	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);

	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, CSR1, reg);

	/*
	 * We must clear the FCS and FIFO error count.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);

	return 0;
}

824
static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
825 826 827 828 829 830 831
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2400pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
832
			return 0;
833 834 835 836 837
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
838 839 840 841 842 843 844 845 846 847 848
}

static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
888 889
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
}

static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
}

static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
926 927 928
	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
		     rt2400pci_init_registers(rt2x00dev) ||
		     rt2400pci_init_bbp(rt2x00dev)))
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
		return -EIO;

	return 0;
}

static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);

	/*
	 * Disable synchronisation.
	 */
	rt2x00pci_register_write(rt2x00dev, CSR14, 0);

	/*
	 * Cancel RX and TX.
	 */
	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
	rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
		bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
		rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		msleep(10);
	}

	return -EBUSY;
}

static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2400pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2400pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
1001
	case STATE_RADIO_RX_ON_LINK:
1002
	case STATE_RADIO_RX_OFF:
1003
	case STATE_RADIO_RX_OFF_LINK:
1004 1005 1006 1007 1008
		rt2400pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2400pci_toggle_irq(rt2x00dev, state);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2400pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1021 1022 1023 1024
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1025 1026 1027 1028 1029 1030 1031
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1032
				    struct sk_buff *skb,
1033
				    struct txentry_desc *txdesc)
1034
{
I
Ivo van Doorn 已提交
1035
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1036
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1037
	__le32 *txd = skbdesc->desc;
1038 1039 1040 1041 1042
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1043
	rt2x00_desc_read(entry_priv->desc, 1, &word);
1044
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1045 1046
	rt2x00_desc_write(entry_priv->desc, 1, word);

1047
	rt2x00_desc_read(txd, 2, &word);
1048 1049
	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
1050 1051 1052
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
I
Ivo van Doorn 已提交
1053
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1054 1055
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
I
Ivo van Doorn 已提交
1056
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1057 1058
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1059 1060 1061
	rt2x00_desc_write(txd, 3, word);

	rt2x00_desc_read(txd, 4, &word);
I
Ivo van Doorn 已提交
1062
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1063 1064
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
I
Ivo van Doorn 已提交
1065
	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1066 1067
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1068 1069 1070 1071 1072 1073
	rt2x00_desc_write(txd, 4, word);

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1074
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1075
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1076
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1077
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1078
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1079
	rt2x00_set_field32(&word, TXD_W0_RTS,
I
Ivo van Doorn 已提交
1080 1081
			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1082
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
I
Ivo van Doorn 已提交
1083
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1084 1085 1086 1087 1088 1089
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void rt2400pci_write_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, CSR14, reg);

	/*
	 * Replace rt2x00lib allocated descriptor with the
	 * pointer to the _real_ hardware descriptor.
	 * After that, map the beacon to DMA and update the
	 * descriptor.
	 */
	memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
	skbdesc->desc = entry_priv->desc;

	rt2x00queue_map_txskb(rt2x00dev, entry->skb);

	rt2x00_desc_read(entry_priv->desc, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
	rt2x00_desc_write(entry_priv->desc, 1, word);
}

1124
static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1125
				    const enum data_queue_qid queue)
1126 1127 1128
{
	u32 reg;

1129
	if (queue == QID_BEACON) {
1130 1131
		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
		if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1132 1133
			rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
			rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1134 1135 1136 1137 1138 1139 1140
			rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, CSR14, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1141 1142 1143
	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1144 1145 1146 1147 1148 1149
	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
}

/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1150 1151
static void rt2400pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1152
{
1153
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1154
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1155 1156
	u32 word0;
	u32 word2;
I
Ivo van Doorn 已提交
1157
	u32 word3;
1158 1159 1160 1161
	u32 word4;
	u64 tsf;
	u32 rx_low;
	u32 rx_high;
1162

1163 1164 1165
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 2, &word2);
	rt2x00_desc_read(entry_priv->desc, 3, &word3);
1166
	rt2x00_desc_read(entry_priv->desc, 4, &word4);
1167

1168
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1169
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1170
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1171
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	/*
	 * We only get the lower 32bits from the timestamp,
	 * to get the full 64bits we must complement it with
	 * the timestamp from get_tsf().
	 * Note that when a wraparound of the lower 32bits
	 * has occurred between the frame arrival and the get_tsf()
	 * call, we must decrease the higher 32bits with 1 to get
	 * to correct value.
	 */
	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
	rx_high = upper_32_bits(tsf);

	if ((u32)tsf <= rx_low)
		rx_high--;

1189 1190
	/*
	 * Obtain the status about this packet.
1191 1192
	 * The signal is the PLCP value, and needs to be stripped
	 * of the preamble bit (0x08).
1193
	 */
1194
	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1195
	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
I
Ivo van Doorn 已提交
1196
	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
I
Ivo van Doorn 已提交
1197 1198
	    entry->queue->rt2x00dev->rssi_offset;
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1199

1200
	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1201 1202
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1203 1204 1205 1206 1207
}

/*
 * Interrupt functions.
 */
I
Ivo van Doorn 已提交
1208
static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1209
			     const enum data_queue_qid queue_idx)
1210
{
I
Ivo van Doorn 已提交
1211
	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1212
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
1213 1214
	struct queue_entry *entry;
	struct txdone_entry_desc txdesc;
1215 1216
	u32 word;

I
Ivo van Doorn 已提交
1217 1218
	while (!rt2x00queue_empty(queue)) {
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1219 1220
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1221 1222 1223 1224 1225 1226 1227 1228

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			break;

		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		txdesc.flags = 0;
		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
		case 0: /* Success */
		case 1: /* Success with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 2: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
1241
		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1242

I
Ivo van Doorn 已提交
1243
		rt2x00lib_txdone(entry, &txdesc);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	}
}

static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
	rt2x00pci_register_write(rt2x00dev, CSR7, reg);

	if (!reg)
		return IRQ_NONE;

1262
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Beacon timer expired interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 2 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 3 - Atim ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1287
		rt2400pci_txdone(rt2x00dev, QID_ATIM);
1288 1289 1290 1291 1292

	/*
	 * 4 - Priority ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1293
		rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1294 1295 1296 1297 1298

	/*
	 * 5 - Tx ring transmit done interrupt.
	 */
	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1299
		rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;

	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2400pci_eepromregister_read;
	eeprom.register_write = rt2400pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
1335
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
		return -EINVAL;
	}

	return 0;
}

static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
	rt2x00_set_chip(rt2x00dev, RT2460, value, reg);

	if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1374
	rt2x00dev->default_ant.tx =
1375
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1376
	rt2x00dev->default_ant.rx =
1377 1378
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1390 1391 1392
	/*
	 * Store led mode, for correct led behaviour.
	 */
1393
#ifdef CONFIG_RT2X00_LIB_LEDS
1394 1395
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1396 1397 1398 1399
	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	if (value == LED_MODE_TXRX_ACTIVITY)
		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1400
#endif /* CONFIG_RT2X00_LIB_LEDS */
1401 1402 1403 1404

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
1405
#ifdef CONFIG_RT2X00_LIB_RFKILL
1406
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1407
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1408
#endif /* CONFIG_RT2X00_LIB_RFKILL */
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	/*
	 * Check if the BBP tuning should be enabled.
	 */
	if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
		__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);

	return 0;
}

/*
 * RF value list for RF2420 & RF2421
 * Supports: 2.4 GHz
 */
1423
static const struct rf_channel rf_vals_b[] = {
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
};

1440
static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1441 1442
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1443 1444
	struct channel_info *info;
	char *tx_power;
1445 1446 1447 1448 1449
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
1450 1451
	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
			       IEEE80211_HW_SIGNAL_DBM;
1452 1453
	rt2x00dev->hw->extra_tx_headroom = 0;

1454
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1455 1456 1457 1458 1459 1460 1461
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1462 1463
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK;
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	spec->num_channels = ARRAY_SIZE(rf_vals_b);
	spec->channels = rf_vals_b;

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);

	return 0;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
}

static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2400pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2400pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1502 1503 1504
	retval = rt2400pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1505 1506

	/*
1507
	 * This device requires the atim queue and DMA-mapped skbs.
1508
	 */
I
Ivo van Doorn 已提交
1509
	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1510
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
J
Johannes Berg 已提交
1523
static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1524 1525 1526 1527 1528 1529 1530 1531 1532
			     const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;

	/*
	 * We don't support variating cw_min and cw_max variables
	 * per queue. So by default we only configure the TX queue,
	 * and ignore all other configurations.
	 */
J
Johannes Berg 已提交
1533
	if (queue != 0)
1534 1535 1536 1537 1538 1539 1540 1541
		return -EINVAL;

	if (rt2x00mac_conf_tx(hw, queue, params))
		return -EINVAL;

	/*
	 * Write configuration to register.
	 */
I
Ivo van Doorn 已提交
1542 1543
	rt2400pci_config_cw(rt2x00dev,
			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	return 0;
}

static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);

	return tsf;
}

static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
}

static const struct ieee80211_ops rt2400pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1573 1574
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1575 1576 1577 1578
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.config_interface	= rt2x00mac_config_interface,
I
Ivo van Doorn 已提交
1579
	.configure_filter	= rt2x00mac_configure_filter,
1580
	.get_stats		= rt2x00mac_get_stats,
1581
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	.conf_tx		= rt2400pci_conf_tx,
	.get_tx_stats		= rt2x00mac_get_tx_stats,
	.get_tsf		= rt2400pci_get_tsf,
	.tx_last_beacon		= rt2400pci_tx_last_beacon,
};

static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
	.irq_handler		= rt2400pci_interrupt,
	.probe_hw		= rt2400pci_probe_hw,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
1593 1594
	.get_entry_state	= rt2400pci_get_entry_state,
	.clear_entry		= rt2400pci_clear_entry,
1595 1596 1597 1598 1599 1600 1601
	.set_device_state	= rt2400pci_set_device_state,
	.rfkill_poll		= rt2400pci_rfkill_poll,
	.link_stats		= rt2400pci_link_stats,
	.reset_tuner		= rt2400pci_reset_tuner,
	.link_tuner		= rt2400pci_link_tuner,
	.write_tx_desc		= rt2400pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
1602
	.write_beacon		= rt2400pci_write_beacon,
1603 1604
	.kick_tx_queue		= rt2400pci_kick_tx_queue,
	.fill_rxdone		= rt2400pci_fill_rxdone,
I
Ivo van Doorn 已提交
1605
	.config_filter		= rt2400pci_config_filter,
1606
	.config_intf		= rt2400pci_config_intf,
1607
	.config_erp		= rt2400pci_config_erp,
1608
	.config_ant		= rt2400pci_config_ant,
1609 1610 1611
	.config			= rt2400pci_config,
};

I
Ivo van Doorn 已提交
1612 1613 1614 1615
static const struct data_queue_desc rt2400pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1616
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1617 1618 1619 1620 1621 1622
};

static const struct data_queue_desc rt2400pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1623
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1624 1625 1626 1627 1628 1629
};

static const struct data_queue_desc rt2400pci_queue_bcn = {
	.entry_num		= BEACON_ENTRIES,
	.data_size		= MGMT_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1630
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1631 1632 1633 1634 1635 1636
};

static const struct data_queue_desc rt2400pci_queue_atim = {
	.entry_num		= ATIM_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1637
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
1638 1639
};

1640
static const struct rt2x00_ops rt2400pci_ops = {
1641
	.name		= KBUILD_MODNAME,
1642 1643
	.max_sta_intf	= 1,
	.max_ap_intf	= 1,
1644 1645
	.eeprom_size	= EEPROM_SIZE,
	.rf_size	= RF_SIZE,
1646
	.tx_queues	= NUM_TX_QUEUES,
I
Ivo van Doorn 已提交
1647 1648 1649 1650
	.rx		= &rt2400pci_queue_rx,
	.tx		= &rt2400pci_queue_tx,
	.bcn		= &rt2400pci_queue_bcn,
	.atim		= &rt2400pci_queue_atim,
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	.lib		= &rt2400pci_rt2x00_ops,
	.hw		= &rt2400pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs	= &rt2400pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2400pci module information.
 */
static struct pci_device_id rt2400pci_device_table[] = {
	{ PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
MODULE_LICENSE("GPL");

static struct pci_driver rt2400pci_driver = {
1674
	.name		= KBUILD_MODNAME,
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	.id_table	= rt2400pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt2400pci_init(void)
{
	return pci_register_driver(&rt2400pci_driver);
}

static void __exit rt2400pci_exit(void)
{
	pci_unregister_driver(&rt2400pci_driver);
}

module_init(rt2400pci_init);
module_exit(rt2400pci_exit);