nested.c 209.8 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include <linux/objtool.h>
4 5 6 7 8 9
#include <linux/percpu.h>

#include <asm/debugreg.h>
#include <asm/mmu_context.h>

#include "cpuid.h"
10
#include "evmcs.h"
11 12 13
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
14
#include "pmu.h"
15
#include "sgx.h"
16
#include "trace.h"
17
#include "vmx.h"
18 19 20 21 22 23 24 25
#include "x86.h"

static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);

static bool __read_mostly nested_early_check = 0;
module_param(nested_early_check, bool, S_IRUGO);

26
#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Hyper-V requires all of these, so mark them as supported even though
 * they are just treated the same as all-context.
 */
#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)

#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5

enum {
	VMX_VMREAD_BITMAP,
	VMX_VMWRITE_BITMAP,
	VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];

#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])

50 51 52 53 54 55
struct shadow_vmcs_field {
	u16	encoding;
	u16	offset;
};
static struct shadow_vmcs_field shadow_read_only_fields[] = {
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 57 58 59 60
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_only_fields =
	ARRAY_SIZE(shadow_read_only_fields);

61 62
static struct shadow_vmcs_field shadow_read_write_fields[] = {
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 64 65 66 67
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_write_fields =
	ARRAY_SIZE(shadow_read_write_fields);

68
static void init_vmcs_shadow_fields(void)
69 70 71 72 73 74 75
{
	int i, j;

	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);

	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76 77
		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
		u16 field = entry.encoding;
78 79 80

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_only_fields ||
81
		     shadow_read_only_fields[i + 1].encoding != field + 1))
82 83 84 85 86
			pr_err("Missing field from shadow_read_only_field %x\n",
			       field + 1);

		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
87
#ifdef CONFIG_X86_64
88
			continue;
89 90
#else
			entry.offset += sizeof(u32);
91
#endif
92
		shadow_read_only_fields[j++] = entry;
93 94 95 96
	}
	max_shadow_read_only_fields = j;

	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97 98
		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
		u16 field = entry.encoding;
99 100 101

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_write_fields ||
102
		     shadow_read_write_fields[i + 1].encoding != field + 1))
103 104 105
			pr_err("Missing field from shadow_read_write_field %x\n",
			       field + 1);

106 107
		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
			  field <= GUEST_TR_AR_BYTES,
108
			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		/*
		 * PML and the preemption timer can be emulated, but the
		 * processor cannot vmwrite to fields that don't exist
		 * on bare metal.
		 */
		switch (field) {
		case GUEST_PML_INDEX:
			if (!cpu_has_vmx_pml())
				continue;
			break;
		case VMX_PREEMPTION_TIMER_VALUE:
			if (!cpu_has_vmx_preemption_timer())
				continue;
			break;
		case GUEST_INTR_STATUS:
			if (!cpu_has_vmx_apicv())
				continue;
			break;
		default:
			break;
		}

		clear_bit(field, vmx_vmwrite_bitmap);
		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
135
#ifdef CONFIG_X86_64
136
			continue;
137 138
#else
			entry.offset += sizeof(u32);
139
#endif
140
		shadow_read_write_fields[j++] = entry;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	}
	max_shadow_read_write_fields = j;
}

/*
 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 * set the success or error code of an emulated VMX instruction (as specified
 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 * instruction.
 */
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_CF);
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
				u32 vm_instruction_error)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_ZF);
	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
	/*
177 178 179
	 * We don't need to force sync to shadow VMCS because
	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
	 * fields and thus must be synced.
180
	 */
181 182 183
	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;

184 185 186
	return kvm_skip_emulated_instruction(vcpu);
}

187 188 189 190 191 192 193 194
static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * failValid writes the error number to the current VMCS, which
	 * can't be done if there isn't a current VMCS.
	 */
195
	if (vmx->nested.current_vmptr == INVALID_GPA &&
196
	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197 198 199 200 201
		return nested_vmx_failInvalid(vcpu);

	return nested_vmx_failValid(vcpu, vm_instruction_error);
}

202 203 204 205 206 207 208
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
	/* TODO: not to reset guest simply here. */
	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}

M
Marc Orr 已提交
209 210 211 212 213 214 215 216 217 218
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
	return fixed_bits_valid(control, low, high);
}

static inline u64 vmx_control_msr(u32 low, u32 high)
{
	return low | ((u64)high << 32);
}

219 220
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
221
	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222
	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223
	vmx->nested.need_vmcs12_to_shadow_sync = false;
224 225 226 227 228 229
}

static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

230 231 232 233
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
		vmx->nested.hv_evmcs = NULL;
	}
234

235
	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 237
}

238 239 240 241 242 243 244 245 246 247 248
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
				     struct loaded_vmcs *prev)
{
	struct vmcs_host_state *dest, *src;

	if (unlikely(!vmx->guest_state_loaded))
		return;

	src = &prev->host_state;
	dest = &vmx->loaded_vmcs->host_state;

249
	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
250 251 252 253 254 255 256 257 258 259 260 261 262
	dest->ldt_sel = src->ldt_sel;
#ifdef CONFIG_X86_64
	dest->ds_sel = src->ds_sel;
	dest->es_sel = src->es_sel;
#endif
}

static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *prev;
	int cpu;

263
	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
264 265 266 267 268 269 270 271 272
		return;

	cpu = get_cpu();
	prev = vmx->loaded_vmcs;
	vmx->loaded_vmcs = vmcs;
	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
	vmx_sync_vmcs_host_state(vmx, prev);
	put_cpu();

273 274 275 276 277 278 279
	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;

	/*
	 * All lazily updated registers will be reloaded from VMCS12 on both
	 * vmentry and vmexit.
	 */
	vcpu->arch.regs_dirty = 0;
280 281
}

282 283 284 285 286 287 288 289
/*
 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 * just stops using VMX.
 */
static void free_nested(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

290 291 292
	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
		vmx_switch_vmcs(vcpu, &vmx->vmcs01);

293 294 295
	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
		return;

296
	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
297

298 299
	vmx->nested.vmxon = false;
	vmx->nested.smm.vmxon = false;
300
	vmx->nested.vmxon_ptr = INVALID_GPA;
301 302
	free_vpid(vmx->nested.vpid02);
	vmx->nested.posted_intr_nv = -1;
303
	vmx->nested.current_vmptr = INVALID_GPA;
304 305 306 307 308 309 310
	if (enable_shadow_vmcs) {
		vmx_disable_shadow_vmcs(vmx);
		vmcs_clear(vmx->vmcs01.shadow_vmcs);
		free_vmcs(vmx->vmcs01.shadow_vmcs);
		vmx->vmcs01.shadow_vmcs = NULL;
	}
	kfree(vmx->nested.cached_vmcs12);
311
	vmx->nested.cached_vmcs12 = NULL;
312
	kfree(vmx->nested.cached_shadow_vmcs12);
313
	vmx->nested.cached_shadow_vmcs12 = NULL;
314 315
	/* Unpin physical memory we referred to in the vmcs02 */
	if (vmx->nested.apic_access_page) {
316
		kvm_release_page_clean(vmx->nested.apic_access_page);
317 318
		vmx->nested.apic_access_page = NULL;
	}
319
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
320 321
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
322

323
	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
324 325 326 327 328 329 330 331 332 333 334 335 336

	nested_release_evmcs(vcpu);

	free_loaded_vmcs(&vmx->nested.vmcs02);
}

/*
 * Ensure that the current vmcs of the logical processor is the
 * vmcs01 of the vcpu before calling free_nested().
 */
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
337
	vmx_leave_nested(vcpu);
338 339 340
	vcpu_put(vcpu);
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
#define EPTP_PA_MASK   GENMASK_ULL(51, 12)

static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
{
	return VALID_PAGE(root_hpa) &&
	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
}

static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
				       gpa_t addr)
{
	uint i;
	struct kvm_mmu_root_info *cached_root;

	WARN_ON_ONCE(!mmu_is_nested(vcpu));

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		cached_root = &vcpu->arch.mmu->prev_roots[i];

		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
					    eptp))
			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
	}
}

366 367 368 369 370
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
371
	u32 vm_exit_reason;
372 373 374
	unsigned long exit_qualification = vcpu->arch.exit_qualification;

	if (vmx->nested.pml_full) {
375
		vm_exit_reason = EXIT_REASON_PML_FULL;
376 377
		vmx->nested.pml_full = false;
		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	} else {
		if (fault->error_code & PFERR_RSVD_MASK)
			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
		else
			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;

		/*
		 * Although the caller (kvm_inject_emulated_page_fault) would
		 * have already synced the faulting address in the shadow EPT
		 * tables for the current EPTP12, we also need to sync it for
		 * any other cached EPTP02s based on the same EP4TA, since the
		 * TLB associates mappings to the EP4TA rather than the full EPTP.
		 */
		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
					   fault->address);
	}
394

395
	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
396 397 398
	vmcs12->guest_physical_address = fault->address;
}

399 400
static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
{
401 402 403 404 405
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);

	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
406 407 408 409
				nested_ept_ad_enabled(vcpu),
				nested_ept_get_eptp(vcpu));
}

410 411 412 413 414
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
	WARN_ON(mmu_is_nested(vcpu));

	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
415
	nested_ept_new_eptp(vcpu);
416
	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;

	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}

static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
					    u16 error_code)
{
	bool inequality, bit;

	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
	inequality =
		(error_code & vmcs12->page_fault_error_code_mask) !=
		 vmcs12->page_fault_error_code_match;
	return inequality ^ bit;
}


/*
 * KVM wants to inject page-faults which it got to the guest. This function
 * checks whether in a nested guest, we need to inject them to L1 or L2.
 */
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	bool has_payload = vcpu->arch.exception.has_payload;
	unsigned long payload = vcpu->arch.exception.payload;

	if (nr == PF_VECTOR) {
		if (vcpu->arch.exception.nested_apf) {
			*exit_qual = vcpu->arch.apf.nested_apf_token;
			return 1;
		}
		if (nested_vmx_is_page_fault_vmexit(vmcs12,
						    vcpu->arch.exception.error_code)) {
			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
			return 1;
		}
	} else if (vmcs12->exception_bitmap & (1u << nr)) {
		if (nr == DB_VECTOR) {
			if (!has_payload) {
				payload = vcpu->arch.dr6;
467 468
				payload &= ~DR6_BT;
				payload ^= DR6_ACTIVE_LOW;
469 470 471 472 473 474 475 476 477 478
			}
			*exit_qual = payload;
		} else
			*exit_qual = 0;
		return 1;
	}

	return 0;
}

479 480
static bool nested_vmx_handle_page_fault_workaround(struct kvm_vcpu *vcpu,
						    struct x86_exception *fault)
481 482 483 484 485 486
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	WARN_ON(!is_guest_mode(vcpu));

	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
487
	    !WARN_ON_ONCE(to_vmx(vcpu)->nested.nested_run_pending)) {
488 489 490 491 492
		vmcs12->vm_exit_intr_error_code = fault->error_code;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
				  fault->address);
493
		return true;
494
	}
495
	return false;
496 497 498 499 500 501 502 503
}

static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
					       struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return 0;

504 505
	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
506 507 508 509 510 511 512 513 514 515 516
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return 0;

517
	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
518 519 520 521 522 523 524 525 526 527 528
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return 0;

529
	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
530 531 532 533 534 535
		return -EINVAL;

	return 0;
}

/*
536 537 538
 * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
 * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
 * only the "disable intercept" case needs to be handled.
539
 */
540 541 542
static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
							unsigned long *msr_bitmap_l0,
							u32 msr, int type)
543
{
544 545
	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
546

547 548
	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
549 550
}

551 552
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
{
553 554 555 556 557 558 559 560 561 562
	int msr;

	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
		unsigned word = msr / BITS_PER_LONG;

		msr_bitmap[word] = ~0;
		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
	}
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
static inline									\
void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
					 unsigned long *msr_bitmap_l1,		\
					 unsigned long *msr_bitmap_l0, u32 msr)	\
{										\
	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
	else									\
		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
}
BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)

static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
						    unsigned long *msr_bitmap_l1,
						    unsigned long *msr_bitmap_l0,
						    u32 msr, int types)
{
	if (types & MSR_TYPE_R)
		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
						  msr_bitmap_l0, msr);
	if (types & MSR_TYPE_W)
		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
						   msr_bitmap_l0, msr);
}

591 592 593 594 595 596 597
/*
 * Merge L0's and L1's MSR bitmap, return false to indicate that
 * we do not use the hardware.
 */
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
598
	struct vcpu_vmx *vmx = to_vmx(vcpu);
599 600
	int msr;
	unsigned long *msr_bitmap_l1;
601
	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
602
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
603
	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
604 605 606 607 608 609

	/* Nothing to do if the MSR bitmap is not in use.  */
	if (!cpu_has_vmx_msr_bitmap() ||
	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return false;

610 611 612 613 614 615 616 617 618 619 620 621 622
	/*
	 * MSR bitmap update can be skipped when:
	 * - MSR bitmap for L1 hasn't changed.
	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
	 *   before.
	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
	 */
	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
	    evmcs->hv_enlightenments_control.msr_bitmap &&
	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
		return true;

623
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
624 625
		return false;

626
	msr_bitmap_l1 = (unsigned long *)map->hva;
627

628 629 630
	/*
	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
631
	 * the x2APIC MSR range and selectively toggle those relevant to L2.
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	 */
	enable_x2apic_msr_intercepts(msr_bitmap_l0);

	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
			/*
			 * L0 need not intercept reads for MSRs between 0x800
			 * and 0x8ff, it just lets the processor take the value
			 * from the virtual-APIC page; take those 256 bits
			 * directly from the L1 bitmap.
			 */
			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
				unsigned word = msr / BITS_PER_LONG;

				msr_bitmap_l0[word] = msr_bitmap_l1[word];
			}
		}
649

650
		nested_vmx_disable_intercept_for_x2apic_msr(
651
			msr_bitmap_l1, msr_bitmap_l0,
652
			X2APIC_MSR(APIC_TASKPRI),
653
			MSR_TYPE_R | MSR_TYPE_W);
654 655

		if (nested_cpu_has_vid(vmcs12)) {
656
			nested_vmx_disable_intercept_for_x2apic_msr(
657 658 659
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_EOI),
				MSR_TYPE_W);
660
			nested_vmx_disable_intercept_for_x2apic_msr(
661 662 663 664
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_SELF_IPI),
				MSR_TYPE_W);
		}
665 666
	}

667 668 669 670
	/*
	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
	 */
671
#ifdef CONFIG_X86_64
672 673
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_FS_BASE, MSR_TYPE_RW);
674

675 676
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_GS_BASE, MSR_TYPE_RW);
677

678 679
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
680
#endif
681 682
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
683

684 685
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
686

687
	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
688

689 690
	vmx->nested.force_msr_bitmap_recalc = false;

691 692 693 694 695 696
	return true;
}

static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
697 698
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
699 700

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
701
	    vmcs12->vmcs_link_pointer == INVALID_GPA)
702 703
		return;

704 705 706
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
707
		return;
708

709 710
	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
			      VMCS12_SIZE);
711 712 713 714 715 716
}

static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
					      struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
717
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
718 719

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
720
	    vmcs12->vmcs_link_pointer == INVALID_GPA)
721 722
		return;

723 724 725 726 727 728 729
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
		return;

	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
			       VMCS12_SIZE);
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
}

/*
 * In nested virtualization, check if L1 has set
 * VM_EXIT_ACK_INTR_ON_EXIT
 */
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->vm_exit_controls &
		VM_EXIT_ACK_INTR_ON_EXIT;
}

static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
746
	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
		return -EINVAL;
	else
		return 0;
}

static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
					   struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
	    !nested_cpu_has_vid(vmcs12) &&
	    !nested_cpu_has_posted_intr(vmcs12))
		return 0;

	/*
	 * If virtualize x2apic mode is enabled,
	 * virtualize apic access must be disabled.
	 */
765 766
	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
767 768 769 770 771 772
		return -EINVAL;

	/*
	 * If virtual interrupt delivery is enabled,
	 * we must exit on external interrupts.
	 */
773
	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
774 775 776 777 778 779 780 781 782 783
		return -EINVAL;

	/*
	 * bits 15:8 should be zero in posted_intr_nv,
	 * the descriptor address has been already checked
	 * in nested_get_vmcs12_pages.
	 *
	 * bits 5:0 of posted_intr_desc_addr should be zero.
	 */
	if (nested_cpu_has_posted_intr(vmcs12) &&
784 785 786
	   (CC(!nested_cpu_has_vid(vmcs12)) ||
	    CC(!nested_exit_intr_ack_set(vcpu)) ||
	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
787
	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
788 789 790
		return -EINVAL;

	/* tpr shadow is needed by all apicv features. */
791
	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
792 793 794 795 796 797
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
798
				       u32 count, u64 addr)
799 800 801
{
	if (count == 0)
		return 0;
802 803 804

	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
805
		return -EINVAL;
806

807 808 809
	return 0;
}

810 811
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
						     struct vmcs12 *vmcs12)
812
{
813 814 815 816 817 818
	if (CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_exit_msr_load_count,
					   vmcs12->vm_exit_msr_load_addr)) ||
	    CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_exit_msr_store_count,
					   vmcs12->vm_exit_msr_store_addr)))
819
		return -EINVAL;
820

821 822 823
	return 0;
}

824 825
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
                                                      struct vmcs12 *vmcs12)
826
{
827 828 829
	if (CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_entry_msr_load_count,
					   vmcs12->vm_entry_msr_load_addr)))
830 831 832 833 834
                return -EINVAL;

	return 0;
}

835 836 837 838 839 840
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
					 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

841 842
	if (CC(!nested_cpu_has_ept(vmcs12)) ||
	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
843 844 845 846 847 848 849 850
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
							struct vmcs12 *vmcs12)
{
851 852
	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
	       !nested_cpu_has_ept(vmcs12)))
853 854 855 856 857 858 859
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
							 struct vmcs12 *vmcs12)
{
860 861
	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
	       !nested_cpu_has_ept(vmcs12)))
862 863 864 865 866 867 868 869 870 871
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return 0;

872 873
	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
874 875 876 877 878 879 880 881 882
		return -EINVAL;

	return 0;
}

static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
				       struct vmx_msr_entry *e)
{
	/* x2APIC MSR accesses are not allowed */
883
	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
884
		return -EINVAL;
885 886
	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
	    CC(e->index == MSR_IA32_UCODE_REV))
887
		return -EINVAL;
888
	if (CC(e->reserved != 0))
889 890 891 892 893 894 895
		return -EINVAL;
	return 0;
}

static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
				     struct vmx_msr_entry *e)
{
896 897 898
	if (CC(e->index == MSR_FS_BASE) ||
	    CC(e->index == MSR_GS_BASE) ||
	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
899 900 901 902 903 904 905 906
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
				      struct vmx_msr_entry *e)
{
907
	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
908 909 910 911 912
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

M
Marc Orr 已提交
913 914 915 916 917 918 919 920 921
static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				       vmx->nested.msrs.misc_high);

	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
}

922 923 924
/*
 * Load guest's/host's msr at nested entry/exit.
 * return 0 for success, entry index for failure.
M
Marc Orr 已提交
925 926 927 928 929
 *
 * One of the failure modes for MSR load/store is when a list exceeds the
 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 * as possible, process all valid entries before failing rather than precheck
 * for a capacity violation.
930 931 932 933 934
 */
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;
M
Marc Orr 已提交
935
	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
936 937

	for (i = 0; i < count; i++) {
M
Marc Orr 已提交
938 939 940
		if (unlikely(i >= max_msr_list_size))
			goto fail;

941 942 943 944 945 946 947 948 949 950 951 952 953
		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
					&e, sizeof(e))) {
			pr_debug_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
			goto fail;
		}
		if (nested_vmx_load_msr_check(vcpu, &e)) {
			pr_debug_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
			goto fail;
		}
954
		if (kvm_set_msr(vcpu, e.index, e.value)) {
955 956 957 958 959 960 961 962
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
				__func__, i, e.index, e.value);
			goto fail;
		}
	}
	return 0;
fail:
963
	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
964 965 966
	return i + 1;
}

967 968 969 970 971 972 973 974 975 976 977 978
static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
					    u32 msr_index,
					    u64 *data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * If the L0 hypervisor stored a more accurate value for the TSC that
	 * does not include the time taken for emulation of the L2->L1
	 * VM-exit in L0, use the more accurate value.
	 */
	if (msr_index == MSR_IA32_TSC) {
979 980
		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
						    MSR_IA32_TSC);
981

982 983
		if (i >= 0) {
			u64 val = vmx->msr_autostore.guest.val[i].value;
984 985 986 987 988 989 990 991 992 993 994 995 996 997

			*data = kvm_read_l1_tsc(vcpu, val);
			return true;
		}
	}

	if (kvm_get_msr(vcpu, msr_index, data)) {
		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
			msr_index);
		return false;
	}
	return true;
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
				     struct vmx_msr_entry *e)
{
	if (kvm_vcpu_read_guest(vcpu,
				gpa + i * sizeof(*e),
				e, 2 * sizeof(u32))) {
		pr_debug_ratelimited(
			"%s cannot read MSR entry (%u, 0x%08llx)\n",
			__func__, i, gpa + i * sizeof(*e));
		return false;
	}
	if (nested_vmx_store_msr_check(vcpu, e)) {
		pr_debug_ratelimited(
			"%s check failed (%u, 0x%x, 0x%x)\n",
			__func__, i, e->index, e->reserved);
		return false;
	}
	return true;
}

1018 1019
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
1020
	u64 data;
1021 1022
	u32 i;
	struct vmx_msr_entry e;
M
Marc Orr 已提交
1023
	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1024 1025

	for (i = 0; i < count; i++) {
M
Marc Orr 已提交
1026 1027 1028
		if (unlikely(i >= max_msr_list_size))
			return -EINVAL;

1029
		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1030
			return -EINVAL;
1031

1032
		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1033
			return -EINVAL;
1034

1035 1036 1037
		if (kvm_vcpu_write_guest(vcpu,
					 gpa + i * sizeof(e) +
					     offsetof(struct vmx_msr_entry, value),
1038
					 &data, sizeof(data))) {
1039 1040
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1041
				__func__, i, e.index, data);
1042 1043 1044 1045 1046 1047
			return -EINVAL;
		}
	}
	return 0;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	u32 count = vmcs12->vm_exit_msr_store_count;
	u64 gpa = vmcs12->vm_exit_msr_store_addr;
	struct vmx_msr_entry e;
	u32 i;

	for (i = 0; i < count; i++) {
		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
			return false;

		if (e.index == msr_index)
			return true;
	}
	return false;
}

static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
					   u32 msr_index)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
	bool in_vmcs12_store_list;
1072
	int msr_autostore_slot;
1073 1074 1075
	bool in_autostore_list;
	int last;

1076 1077
	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
	in_autostore_list = msr_autostore_slot >= 0;
1078 1079 1080
	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);

	if (in_vmcs12_store_list && !in_autostore_list) {
1081
		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			/*
			 * Emulated VMEntry does not fail here.  Instead a less
			 * accurate value will be returned by
			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
			 * instead of reading the value from the vmcs02 VMExit
			 * MSR-store area.
			 */
			pr_warn_ratelimited(
				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
				msr_index);
			return;
		}
		last = autostore->nr++;
		autostore->val[last].index = msr_index;
	} else if (!in_vmcs12_store_list && in_autostore_list) {
		last = --autostore->nr;
1098
		autostore->val[msr_autostore_slot] = autostore->val[last];
1099 1100 1101
	}
}

1102
/*
1103 1104 1105 1106
 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
 * @entry_failure_code.
1107
 */
1108 1109
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
			       bool nested_ept, bool reload_pdptrs,
1110
			       enum vm_entry_failure_code *entry_failure_code)
1111
{
1112
	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1113 1114 1115
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
		return -EINVAL;
	}
1116

1117 1118 1119 1120
	/*
	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
	 * must not be dereferenced.
	 */
1121
	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1122
	    CC(!load_pdptrs(vcpu, cr3))) {
1123 1124
		*entry_failure_code = ENTRY_FAIL_PDPTE;
		return -EINVAL;
1125 1126 1127
	}

	vcpu->arch.cr3 = cr3;
1128
	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1129

1130
	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1131
	kvm_init_mmu(vcpu);
1132

1133 1134 1135
	if (!nested_ept)
		kvm_mmu_new_pgd(vcpu, cr3);

1136 1137 1138 1139 1140 1141 1142 1143
	return 0;
}

/*
 * Returns if KVM is able to config CPU to tag TLB entries
 * populated by L2 differently than TLB entries populated
 * by L1.
 *
1144 1145 1146
 * If L0 uses EPT, L1 and L2 run with different EPTP because
 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
 * are tagged with different EPTP.
1147 1148 1149 1150 1151 1152 1153 1154 1155
 *
 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
 * with different VPID (L1 entries are tagged with vmx->vpid
 * while L2 entries are tagged with vmx->nested.vpid02).
 */
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

1156
	return enable_ept ||
1157 1158 1159
	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
}

1160 1161 1162 1163 1164 1165 1166
static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
					    struct vmcs12 *vmcs12,
					    bool is_vmenter)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
	 * full TLB flush from the guest's perspective.  This is required even
	 * if VPID is disabled in the host as KVM may need to synchronize the
	 * MMU in response to the guest TLB flush.
	 *
	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
	 * EPT is a special snowflake, as guest-physical mappings aren't
	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
	 * those mappings.
1179
	 */
1180 1181
	if (!nested_cpu_has_vpid(vmcs12)) {
		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1182
		return;
1183 1184 1185 1186
	}

	/* L2 should never have a VPID if VPID is disabled. */
	WARN_ON(!enable_vpid);
1187 1188

	/*
1189 1190 1191 1192 1193
	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
	 * that the new vpid12 has never been used and thus represents a new
	 * guest ASID that cannot have entries in the TLB.
1194
	 */
1195
	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1196
		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1197 1198
		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
		return;
1199
	}
1200 1201 1202 1203 1204 1205 1206 1207 1208

	/*
	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
	 * KVM was unable to allocate a VPID for L2, flush the current context
	 * as the effective ASID is common to both L1 and L2.
	 */
	if (!nested_has_guest_tlb_tag(vcpu))
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1209 1210
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
	superset &= mask;
	subset &= mask;

	return (superset | subset) == superset;
}

static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved =
		/* feature (except bit 48; see below) */
		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
		/* reserved */
		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
	u64 vmx_basic = vmx->nested.msrs.basic;

	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
		return -EINVAL;

	/*
	 * KVM does not emulate a version of VMX that constrains physical
	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
	 */
	if (data & BIT_ULL(48))
		return -EINVAL;

	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
	    vmx_basic_vmcs_revision_id(data))
		return -EINVAL;

	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
		return -EINVAL;

	vmx->nested.msrs.basic = data;
	return 0;
}

static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 supported;
	u32 *lowp, *highp;

	switch (msr_index) {
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
		lowp = &vmx->nested.msrs.pinbased_ctls_low;
		highp = &vmx->nested.msrs.pinbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
		lowp = &vmx->nested.msrs.procbased_ctls_low;
		highp = &vmx->nested.msrs.procbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
		lowp = &vmx->nested.msrs.exit_ctls_low;
		highp = &vmx->nested.msrs.exit_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
		lowp = &vmx->nested.msrs.entry_ctls_low;
		highp = &vmx->nested.msrs.entry_ctls_high;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		lowp = &vmx->nested.msrs.secondary_ctls_low;
		highp = &vmx->nested.msrs.secondary_ctls_high;
		break;
	default:
		BUG();
	}

	supported = vmx_control_msr(*lowp, *highp);

	/* Check must-be-1 bits are still 1. */
	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
		return -EINVAL;

	/* Check must-be-0 bits are still 0. */
	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
		return -EINVAL;

	*lowp = data;
	*highp = data >> 32;
	return 0;
}

static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved_bits =
		/* feature */
		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
		/* reserved */
		GENMASK_ULL(13, 9) | BIT_ULL(31);
	u64 vmx_misc;

	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				   vmx->nested.msrs.misc_high);

	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
		return -EINVAL;

	if ((vmx->nested.msrs.pinbased_ctls_high &
	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
	    vmx_misc_preemption_timer_rate(data) !=
	    vmx_misc_preemption_timer_rate(vmx_misc))
		return -EINVAL;

	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
		return -EINVAL;

	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
		return -EINVAL;

	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
		return -EINVAL;

	vmx->nested.msrs.misc_low = data;
	vmx->nested.msrs.misc_high = data >> 32;

	return 0;
}

static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
	u64 vmx_ept_vpid_cap;

	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
					   vmx->nested.msrs.vpid_caps);

	/* Every bit is either reserved or a feature bit. */
	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
		return -EINVAL;

	vmx->nested.msrs.ept_caps = data;
	vmx->nested.msrs.vpid_caps = data >> 32;
	return 0;
}

static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 *msr;

	switch (msr_index) {
	case MSR_IA32_VMX_CR0_FIXED0:
		msr = &vmx->nested.msrs.cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		msr = &vmx->nested.msrs.cr4_fixed0;
		break;
	default:
		BUG();
	}

	/*
	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
	 * must be 1 in the restored value.
	 */
	if (!is_bitwise_subset(data, *msr, -1ULL))
		return -EINVAL;

	*msr = data;
	return 0;
}

/*
 * Called when userspace is restoring VMX MSRs.
 *
 * Returns 0 on success, non-0 otherwise.
 */
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * Don't allow changes to the VMX capability MSRs while the vCPU
	 * is in VMX operation.
	 */
	if (vmx->nested.vmxon)
		return -EBUSY;

	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		return vmx_restore_vmx_basic(vmx, data);
	case MSR_IA32_VMX_PINBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		/*
		 * The "non-true" VMX capability MSRs are generated from the
		 * "true" MSRs, so we do not support restoring them directly.
		 *
		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
		 * should restore the "true" MSRs with the must-be-1 bits
		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
		 * DEFAULT SETTINGS".
		 */
		return -EINVAL;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		return vmx_restore_control_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_MISC:
		return vmx_restore_vmx_misc(vmx, data);
	case MSR_IA32_VMX_CR0_FIXED0:
	case MSR_IA32_VMX_CR4_FIXED0:
		return vmx_restore_fixed0_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_CR0_FIXED1:
	case MSR_IA32_VMX_CR4_FIXED1:
		/*
		 * These MSRs are generated based on the vCPU's CPUID, so we
		 * do not support restoring them directly.
		 */
		return -EINVAL;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
	case MSR_IA32_VMX_VMCS_ENUM:
		vmx->nested.msrs.vmcs_enum = data;
		return 0;
1430 1431 1432 1433 1434
	case MSR_IA32_VMX_VMFUNC:
		if (data & ~vmx->nested.msrs.vmfunc_controls)
			return -EINVAL;
		vmx->nested.msrs.vmfunc_controls = data;
		return 0;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	default:
		/*
		 * The rest of the VMX capability MSRs do not support restore.
		 */
		return -EINVAL;
	}
}

/* Returns 0 on success, non-0 otherwise. */
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
{
	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		*pdata = msrs->basic;
		break;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_PINBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->pinbased_ctls_low,
			msrs->pinbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->procbased_ctls_low,
			msrs->procbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
		*pdata = vmx_control_msr(
			msrs->exit_ctls_low,
			msrs->exit_ctls_high);
		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		*pdata = vmx_control_msr(
			msrs->entry_ctls_low,
			msrs->entry_ctls_high);
		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_MISC:
		*pdata = vmx_control_msr(
			msrs->misc_low,
			msrs->misc_high);
		break;
	case MSR_IA32_VMX_CR0_FIXED0:
		*pdata = msrs->cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR0_FIXED1:
		*pdata = msrs->cr0_fixed1;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		*pdata = msrs->cr4_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED1:
		*pdata = msrs->cr4_fixed1;
		break;
	case MSR_IA32_VMX_VMCS_ENUM:
		*pdata = msrs->vmcs_enum;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		*pdata = vmx_control_msr(
			msrs->secondary_ctls_low,
			msrs->secondary_ctls_high);
		break;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		*pdata = msrs->ept_caps |
			((u64)msrs->vpid_caps << 32);
		break;
	case MSR_IA32_VMX_VMFUNC:
		*pdata = msrs->vmfunc_controls;
		break;
	default:
		return 1;
	}

	return 0;
}

/*
1522 1523 1524 1525 1526 1527
 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
 * been modified by the L1 guest.  Note, "writable" in this context means
 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
 * VM-exit information fields (which are actually writable if the vCPU is
 * configured to support "VMWRITE to any supported field in the VMCS").
1528 1529 1530 1531
 */
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1532
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1533 1534
	struct shadow_vmcs_field field;
	unsigned long val;
1535
	int i;
1536

1537 1538 1539
	if (WARN_ON(!shadow_vmcs))
		return;

1540 1541 1542 1543
	preempt_disable();

	vmcs_load(shadow_vmcs);

1544 1545
	for (i = 0; i < max_shadow_read_write_fields; i++) {
		field = shadow_read_write_fields[i];
1546 1547
		val = __vmcs_readl(field.encoding);
		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);

	preempt_enable();
}

static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
1558
	const struct shadow_vmcs_field *fields[] = {
1559 1560 1561 1562 1563 1564 1565 1566
		shadow_read_write_fields,
		shadow_read_only_fields
	};
	const int max_fields[] = {
		max_shadow_read_write_fields,
		max_shadow_read_only_fields
	};
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1567 1568 1569 1570
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
	struct shadow_vmcs_field field;
	unsigned long val;
	int i, q;
1571

1572 1573 1574
	if (WARN_ON(!shadow_vmcs))
		return;

1575 1576 1577 1578 1579
	vmcs_load(shadow_vmcs);

	for (q = 0; q < ARRAY_SIZE(fields); q++) {
		for (i = 0; i < max_fields[q]; i++) {
			field = fields[q][i];
1580 1581 1582
			val = vmcs12_read_any(vmcs12, field.encoding,
					      field.offset);
			__vmcs_writel(field.encoding, val);
1583 1584 1585 1586 1587 1588 1589
		}
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);
}

1590
static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1591 1592 1593 1594 1595 1596 1597 1598
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
	vmcs12->tpr_threshold = evmcs->tpr_threshold;
	vmcs12->guest_rip = evmcs->guest_rip;

1599
	if (unlikely(!(hv_clean_fields &
1600 1601 1602 1603 1604 1605 1606
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
		vmcs12->guest_rsp = evmcs->guest_rsp;
		vmcs12->guest_rflags = evmcs->guest_rflags;
		vmcs12->guest_interruptibility_info =
			evmcs->guest_interruptibility_info;
	}

1607
	if (unlikely(!(hv_clean_fields &
1608 1609 1610 1611 1612
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
		vmcs12->cpu_based_vm_exec_control =
			evmcs->cpu_based_vm_exec_control;
	}

1613
	if (unlikely(!(hv_clean_fields &
1614
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1615 1616 1617
		vmcs12->exception_bitmap = evmcs->exception_bitmap;
	}

1618
	if (unlikely(!(hv_clean_fields &
1619 1620 1621 1622
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
	}

1623
	if (unlikely(!(hv_clean_fields &
1624 1625 1626 1627 1628 1629 1630 1631 1632
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
		vmcs12->vm_entry_intr_info_field =
			evmcs->vm_entry_intr_info_field;
		vmcs12->vm_entry_exception_error_code =
			evmcs->vm_entry_exception_error_code;
		vmcs12->vm_entry_instruction_len =
			evmcs->vm_entry_instruction_len;
	}

1633
	if (unlikely(!(hv_clean_fields &
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
		vmcs12->host_cr0 = evmcs->host_cr0;
		vmcs12->host_cr3 = evmcs->host_cr3;
		vmcs12->host_cr4 = evmcs->host_cr4;
		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
		vmcs12->host_rip = evmcs->host_rip;
		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
		vmcs12->host_es_selector = evmcs->host_es_selector;
		vmcs12->host_cs_selector = evmcs->host_cs_selector;
		vmcs12->host_ss_selector = evmcs->host_ss_selector;
		vmcs12->host_ds_selector = evmcs->host_ds_selector;
		vmcs12->host_fs_selector = evmcs->host_fs_selector;
		vmcs12->host_gs_selector = evmcs->host_gs_selector;
		vmcs12->host_tr_selector = evmcs->host_tr_selector;
	}

1653
	if (unlikely(!(hv_clean_fields &
1654
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1655 1656 1657 1658 1659 1660 1661
		vmcs12->pin_based_vm_exec_control =
			evmcs->pin_based_vm_exec_control;
		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
		vmcs12->secondary_vm_exec_control =
			evmcs->secondary_vm_exec_control;
	}

1662
	if (unlikely(!(hv_clean_fields &
1663 1664 1665 1666 1667
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
	}

1668
	if (unlikely(!(hv_clean_fields &
1669 1670 1671 1672
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
		vmcs12->msr_bitmap = evmcs->msr_bitmap;
	}

1673
	if (unlikely(!(hv_clean_fields &
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
		vmcs12->guest_es_base = evmcs->guest_es_base;
		vmcs12->guest_cs_base = evmcs->guest_cs_base;
		vmcs12->guest_ss_base = evmcs->guest_ss_base;
		vmcs12->guest_ds_base = evmcs->guest_ds_base;
		vmcs12->guest_fs_base = evmcs->guest_fs_base;
		vmcs12->guest_gs_base = evmcs->guest_gs_base;
		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
		vmcs12->guest_tr_base = evmcs->guest_tr_base;
		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
		vmcs12->guest_es_limit = evmcs->guest_es_limit;
		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
		vmcs12->guest_es_selector = evmcs->guest_es_selector;
		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
	}

1713
	if (unlikely(!(hv_clean_fields &
1714 1715 1716 1717 1718 1719
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
		vmcs12->tsc_offset = evmcs->tsc_offset;
		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
	}

1720
	if (unlikely(!(hv_clean_fields &
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
		vmcs12->guest_cr0 = evmcs->guest_cr0;
		vmcs12->guest_cr3 = evmcs->guest_cr3;
		vmcs12->guest_cr4 = evmcs->guest_cr4;
		vmcs12->guest_dr7 = evmcs->guest_dr7;
	}

1732
	if (unlikely(!(hv_clean_fields &
1733 1734 1735 1736 1737 1738 1739 1740 1741
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
		vmcs12->host_fs_base = evmcs->host_fs_base;
		vmcs12->host_gs_base = evmcs->host_gs_base;
		vmcs12->host_tr_base = evmcs->host_tr_base;
		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
		vmcs12->host_idtr_base = evmcs->host_idtr_base;
		vmcs12->host_rsp = evmcs->host_rsp;
	}

1742
	if (unlikely(!(hv_clean_fields &
1743 1744 1745 1746 1747
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
		vmcs12->ept_pointer = evmcs->ept_pointer;
		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
	}

1748
	if (unlikely(!(hv_clean_fields &
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
		vmcs12->guest_pending_dbg_exceptions =
			evmcs->guest_pending_dbg_exceptions;
		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
		vmcs12->guest_activity_state = evmcs->guest_activity_state;
		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
	}

	/*
	 * Not used?
	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
	 * vmcs12->page_fault_error_code_mask =
	 *		evmcs->page_fault_error_code_mask;
	 * vmcs12->page_fault_error_code_match =
	 *		evmcs->page_fault_error_code_match;
	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
	 */

	/*
	 * Read only fields:
	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
	 * vmcs12->exit_qualification = evmcs->exit_qualification;
	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
	 *
	 * Not present in struct vmcs12:
	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
	 */

1803
	return;
1804 1805
}

1806
static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/*
	 * Should not be changed by KVM:
	 *
	 * evmcs->host_es_selector = vmcs12->host_es_selector;
	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
	 * evmcs->host_cr0 = vmcs12->host_cr0;
	 * evmcs->host_cr3 = vmcs12->host_cr3;
	 * evmcs->host_cr4 = vmcs12->host_cr4;
	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
	 * evmcs->host_rip = vmcs12->host_rip;
	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
	 * evmcs->host_fs_base = vmcs12->host_fs_base;
	 * evmcs->host_gs_base = vmcs12->host_gs_base;
	 * evmcs->host_tr_base = vmcs12->host_tr_base;
	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
	 * evmcs->host_rsp = vmcs12->host_rsp;
1836
	 * sync_vmcs02_to_vmcs12() doesn't read these:
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
	 * evmcs->ept_pointer = vmcs12->ept_pointer;
	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
	 * evmcs->page_fault_error_code_mask =
	 *		vmcs12->page_fault_error_code_mask;
	 * evmcs->page_fault_error_code_match =
	 *		vmcs12->page_fault_error_code_match;
	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
	 * evmcs->tsc_offset = vmcs12->tsc_offset;
	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
	 *
	 * Not present in struct vmcs12:
	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
	 */

	evmcs->guest_es_selector = vmcs12->guest_es_selector;
	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;

	evmcs->guest_es_limit = vmcs12->guest_es_limit;
	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;

	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;

	evmcs->guest_es_base = vmcs12->guest_es_base;
	evmcs->guest_cs_base = vmcs12->guest_cs_base;
	evmcs->guest_ss_base = vmcs12->guest_ss_base;
	evmcs->guest_ds_base = vmcs12->guest_ds_base;
	evmcs->guest_fs_base = vmcs12->guest_fs_base;
	evmcs->guest_gs_base = vmcs12->guest_gs_base;
	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
	evmcs->guest_tr_base = vmcs12->guest_tr_base;
	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;

	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;

	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;

	evmcs->guest_pending_dbg_exceptions =
		vmcs12->guest_pending_dbg_exceptions;
	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;

	evmcs->guest_activity_state = vmcs12->guest_activity_state;
	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;

	evmcs->guest_cr0 = vmcs12->guest_cr0;
	evmcs->guest_cr3 = vmcs12->guest_cr3;
	evmcs->guest_cr4 = vmcs12->guest_cr4;
	evmcs->guest_dr7 = vmcs12->guest_dr7;

	evmcs->guest_physical_address = vmcs12->guest_physical_address;

	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;

	evmcs->exit_qualification = vmcs12->exit_qualification;

	evmcs->guest_linear_address = vmcs12->guest_linear_address;
	evmcs->guest_rsp = vmcs12->guest_rsp;
	evmcs->guest_rflags = vmcs12->guest_rflags;

	evmcs->guest_interruptibility_info =
		vmcs12->guest_interruptibility_info;
	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
	evmcs->vm_entry_exception_error_code =
		vmcs12->vm_entry_exception_error_code;
	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;

	evmcs->guest_rip = vmcs12->guest_rip;

	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;

1966
	return;
1967 1968 1969 1970 1971 1972
}

/*
 * This is an equivalent of the nested hypervisor executing the vmptrld
 * instruction.
 */
1973 1974
static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
	struct kvm_vcpu *vcpu, bool from_launch)
1975 1976
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1977
	bool evmcs_gpa_changed = false;
1978
	u64 evmcs_gpa;
1979 1980

	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1981
		return EVMPTRLD_DISABLED;
1982

1983 1984
	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
		nested_release_evmcs(vcpu);
1985
		return EVMPTRLD_DISABLED;
1986
	}
1987

1988
	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1989
		vmx->nested.current_vmptr = INVALID_GPA;
1990 1991 1992

		nested_release_evmcs(vcpu);

1993
		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1994
				 &vmx->nested.hv_evmcs_map))
1995
			return EVMPTRLD_ERROR;
1996

1997
		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

		/*
		 * Currently, KVM only supports eVMCS version 1
		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
		 * value to first u32 field of eVMCS which should specify eVMCS
		 * VersionNumber.
		 *
		 * Guest should be aware of supported eVMCS versions by host by
		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
		 * expected to set this CPUID leaf according to the value
		 * returned in vmcs_version from nested_enable_evmcs().
		 *
		 * However, it turns out that Microsoft Hyper-V fails to comply
		 * to their own invented interface: When Hyper-V use eVMCS, it
		 * just sets first u32 field of eVMCS to revision_id specified
		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
		 * which is one of the supported versions specified in
		 * CPUID.0x4000000A.EAX[0:15].
		 *
		 * To overcome Hyper-V bug, we accept here either a supported
		 * eVMCS version or VMCS12 revision_id as valid values for first
		 * u32 field of eVMCS.
		 */
		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
			nested_release_evmcs(vcpu);
2024
			return EVMPTRLD_VMFAIL;
2025 2026
		}

2027
		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2028

2029
		evmcs_gpa_changed = true;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
		/*
		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
		 * reloaded from guest's memory (read only fields, fields not
		 * present in struct hv_enlightened_vmcs, ...). Make sure there
		 * are no leftovers.
		 */
		if (from_launch) {
			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
			memset(vmcs12, 0, sizeof(*vmcs12));
			vmcs12->hdr.revision_id = VMCS12_REVISION;
		}

	}
2043 2044

	/*
2045
	 * Clean fields data can't be used on VMLAUNCH and when we switch
2046 2047
	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
	 */
2048
	if (from_launch || evmcs_gpa_changed) {
2049 2050 2051
		vmx->nested.hv_evmcs->hv_clean_fields &=
			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

2052 2053 2054
		vmx->nested.force_msr_bitmap_recalc = true;
	}

2055
	return EVMPTRLD_SUCCEEDED;
2056 2057
}

2058
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2059 2060 2061
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2062
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2063
		copy_vmcs12_to_enlightened(vmx);
2064
	else
2065 2066
		copy_vmcs12_to_shadow(vmx);

2067
	vmx->nested.need_vmcs12_to_shadow_sync = false;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
}

static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
	struct vcpu_vmx *vmx =
		container_of(timer, struct vcpu_vmx, nested.preemption_timer);

	vmx->nested.preemption_timer_expired = true;
	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
	kvm_vcpu_kick(&vmx->vcpu);

	return HRTIMER_NORESTART;
}

2082 2083 2084 2085 2086 2087 2088 2089 2090
static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;

	if (!vmx->nested.has_preemption_timer_deadline) {
2091 2092
		vmx->nested.preemption_timer_deadline =
			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2093
		vmx->nested.has_preemption_timer_deadline = true;
2094 2095
	}
	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2096 2097 2098 2099
}

static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
					u64 preemption_timeout)
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * A timer value of zero is architecturally guaranteed to cause
	 * a VMExit prior to executing any instructions in the guest.
	 */
	if (preemption_timeout == 0) {
		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
		return;
	}

	if (vcpu->arch.virtual_tsc_khz == 0)
		return;

	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
	preemption_timeout *= 1000000;
	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
	hrtimer_start(&vmx->nested.preemption_timer,
2119 2120
		      ktime_add_ns(ktime_get(), preemption_timeout),
		      HRTIMER_MODE_ABS_PINNED);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
}

static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
		return vmcs12->guest_ia32_efer;
	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
	else
		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
}

static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
	/*
	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
	 * according to L0's settings (vmcs12 is irrelevant here).  Host
	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
	 * will be set as needed prior to VMLAUNCH/VMRESUME.
	 */
	if (vmx->nested.vmcs02_initialized)
		return;
	vmx->nested.vmcs02_initialized = true;

	/*
	 * We don't care what the EPTP value is we just need to guarantee
	 * it's valid so we don't get a false positive when doing early
	 * consistency checks.
	 */
	if (enable_ept && nested_early_check)
2152 2153
		vmcs_write64(EPT_POINTER,
			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

	/* All VMFUNCs are currently emulated through L0 vmexits.  */
	if (cpu_has_vmx_vmfunc())
		vmcs_write64(VM_FUNCTION_CONTROL, 0);

	if (cpu_has_vmx_posted_intr())
		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);

	if (cpu_has_vmx_msr_bitmap())
		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));

2165
	/*
2166 2167 2168
	 * PML is emulated for L2, but never enabled in hardware as the MMU
	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
	 * deal with filtering out L2 GPAs from the buffer.
2169 2170
	 */
	if (enable_pml) {
2171 2172
		vmcs_write64(PML_ADDRESS, 0);
		vmcs_write16(GUEST_PML_INDEX, -1);
2173
	}
2174

2175
	if (cpu_has_vmx_encls_vmexit())
2176
		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2177 2178 2179 2180 2181 2182

	/*
	 * Set the MSR load/store lists to match L0's settings.  Only the
	 * addresses are constant (for vmcs02), the counts can change based
	 * on L2's behavior, e.g. switching to/from long mode.
	 */
2183
	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2184 2185 2186 2187 2188 2189
	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));

	vmx_set_constant_host_state(vmx);
}

2190
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2191 2192 2193 2194
				      struct vmcs12 *vmcs12)
{
	prepare_vmcs02_constant_state(vmx);

2195
	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2196 2197 2198 2199 2200 2201 2202 2203 2204

	if (enable_vpid) {
		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
		else
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
	}
}

2205 2206
static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
				 struct vmcs12 *vmcs12)
2207
{
2208
	u32 exec_control;
2209 2210
	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);

2211
	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2212
		prepare_vmcs02_early_rare(vmx, vmcs12);
2213 2214 2215 2216

	/*
	 * PIN CONTROLS
	 */
2217
	exec_control = __pin_controls_get(vmcs01);
2218 2219
	exec_control |= (vmcs12->pin_based_vm_exec_control &
			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2220 2221

	/* Posted interrupts setting is only taken from vmcs12.  */
2222 2223
	vmx->nested.pi_pending = false;
	if (nested_cpu_has_posted_intr(vmcs12))
2224
		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2225
	else
2226
		exec_control &= ~PIN_BASED_POSTED_INTR;
2227
	pin_controls_set(vmx, exec_control);
2228 2229 2230 2231

	/*
	 * EXEC CONTROLS
	 */
2232
	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2233
	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2234
	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2235 2236 2237
	exec_control &= ~CPU_BASED_TPR_SHADOW;
	exec_control |= vmcs12->cpu_based_vm_exec_control;

2238
	vmx->nested.l1_tpr_threshold = -1;
2239
	if (exec_control & CPU_BASED_TPR_SHADOW)
2240 2241
		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
#ifdef CONFIG_X86_64
2242
	else
2243 2244 2245 2246 2247 2248 2249 2250 2251
		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
				CPU_BASED_CR8_STORE_EXITING;
#endif

	/*
	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
	 * for I/O port accesses.
	 */
	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;

	/*
	 * This bit will be computed in nested_get_vmcs12_pages, because
	 * we do not have access to L1's MSR bitmap yet.  For now, keep
	 * the same bit as before, hoping to avoid multiple VMWRITEs that
	 * only set/clear this bit.
	 */
	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;

2263
	exec_controls_set(vmx, exec_control);
2264 2265 2266 2267 2268

	/*
	 * SECONDARY EXEC CONTROLS
	 */
	if (cpu_has_secondary_exec_ctrls()) {
2269
		exec_control = __secondary_exec_controls_get(vmcs01);
2270 2271 2272

		/* Take the following fields only from vmcs12 */
		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2273
				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2274
				  SECONDARY_EXEC_ENABLE_INVPCID |
2275
				  SECONDARY_EXEC_ENABLE_RDTSCP |
2276
				  SECONDARY_EXEC_XSAVES |
2277
				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2278 2279
				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2280
				  SECONDARY_EXEC_ENABLE_VMFUNC |
2281 2282
				  SECONDARY_EXEC_DESC);

2283
		if (nested_cpu_has(vmcs12,
2284 2285 2286 2287 2288
				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
			exec_control |= vmcs12->secondary_vm_exec_control;

		/* PML is emulated and never enabled in hardware for L2. */
		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2289 2290 2291 2292 2293

		/* VMCS shadowing for L2 is emulated for now */
		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;

		/*
2294 2295
		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
		 * will not have to rewrite the controls just for this bit.
2296
		 */
2297 2298 2299
		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
			exec_control |= SECONDARY_EXEC_DESC;
2300 2301 2302 2303 2304

		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
			vmcs_write16(GUEST_INTR_STATUS,
				vmcs12->guest_intr_status);

2305 2306 2307
		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;

2308 2309 2310
		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);

2311
		secondary_exec_controls_set(vmx, exec_control);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	}

	/*
	 * ENTRY CONTROLS
	 *
	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
	 * on the related bits (if supported by the CPU) in the hope that
	 * we can avoid VMWrites during vmx_set_efer().
	 */
2322 2323 2324
	exec_control = __vm_entry_controls_get(vmcs01);
	exec_control |= vmcs12->vm_entry_controls;
	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2325 2326 2327 2328 2329 2330
	if (cpu_has_load_ia32_efer()) {
		if (guest_efer & EFER_LMA)
			exec_control |= VM_ENTRY_IA32E_MODE;
		if (guest_efer != host_efer)
			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
	}
2331
	vm_entry_controls_set(vmx, exec_control);
2332 2333 2334 2335 2336 2337 2338 2339

	/*
	 * EXIT CONTROLS
	 *
	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
	 */
2340
	exec_control = __vm_exit_controls_get(vmcs01);
2341 2342
	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2343 2344
	else
		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2345
	vm_exit_controls_set(vmx, exec_control);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	/*
	 * Interrupt/Exception Fields
	 */
	if (vmx->nested.nested_run_pending) {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
			     vmcs12->vm_entry_intr_info_field);
		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
			     vmcs12->vm_entry_exception_error_code);
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmcs12->vm_entry_instruction_len);
		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
			     vmcs12->guest_interruptibility_info);
		vmx->loaded_vmcs->nmi_known_unmasked =
			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
	} else {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
	}
}

2366
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
{
	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2390 2391
		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2408 2409

		vmx->segment_cache.bitmask = 0;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	}

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vmcs12->guest_pending_dbg_exceptions);
		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);

		/*
		 * L1 may access the L2's PDPTR, so save them to construct
		 * vmcs12
		 */
		if (enable_ept) {
			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
		}
2430 2431 2432 2433

		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2434 2435 2436 2437 2438 2439 2440
	}

	if (nested_cpu_has_xsaves(vmcs12))
		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);

	/*
	 * Whether page-faults are trapped is determined by a combination of
2441 2442 2443 2444 2445 2446
	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
	 * doesn't care about page faults then we should set all of these to
	 * L1's desires. However, if L0 does care about (some) page faults, it
	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
	 * simply ask to exit on each and every L2 page fault. This is done by
	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2447 2448 2449 2450 2451
	 * Note that below we don't need special code to set EB.PF beyond the
	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
	 */
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	if (vmx_need_pf_intercept(&vmx->vcpu)) {
		/*
		 * TODO: if both L0 and L1 need the same MASK and MATCH,
		 * go ahead and use it?
		 */
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
	} else {
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
	}
2463 2464 2465 2466 2467 2468 2469 2470

	if (cpu_has_vmx_apicv()) {
		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
	}

2471 2472 2473 2474 2475 2476 2477
	/*
	 * Make sure the msr_autostore list is up to date before we set the
	 * count in the vmcs02.
	 */
	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);

	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

	set_cr4_guest_host_mask(vmx);
}

/*
 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
 * guest in a way that will both be appropriate to L1's requests, and our
 * needs. In addition to modifying the active vmcs (which is vmcs02), this
 * function also has additional necessary side-effects, like setting various
 * vcpu->arch fields.
 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 * is assigned to entry_failure_code on failure.
 */
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2496
			  bool from_vmentry,
2497
			  enum vm_entry_failure_code *entry_failure_code)
2498 2499
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2500
	bool load_guest_pdptrs_vmcs12 = false;
2501

2502
	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2503
		prepare_vmcs02_rare(vmx, vmcs12);
2504 2505
		vmx->nested.dirty_vmcs12 = false;

2506 2507
		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
			!(vmx->nested.hv_evmcs->hv_clean_fields &
2508
			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	}

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
	} else {
		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
	}
2519 2520 2521
	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2522 2523 2524 2525 2526 2527
	vmx_set_rflags(vcpu, vmcs12->guest_rflags);

	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
	 * bitwise-or of what L1 wants to trap for L2, and what we want to
	 * trap. Note that CR0.TS also needs updating - we do this later.
	 */
2528
	vmx_update_exception_bitmap(vcpu);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
		vcpu->arch.pat = vmcs12->guest_ia32_pat;
	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
	}

2540 2541 2542 2543 2544 2545 2546 2547 2548
	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
			vcpu->arch.l1_tsc_offset,
			vmx_get_l2_tsc_offset(vcpu),
			vmx_get_l2_tsc_multiplier(vcpu));

	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
			vcpu->arch.l1_tsc_scaling_ratio,
			vmx_get_l2_tsc_multiplier(vcpu));

2549 2550
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
	if (kvm_has_tsc_control)
2551
		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2552

2553
	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

	if (nested_cpu_has_ept(vmcs12))
		nested_ept_init_mmu_context(vcpu);

	/*
	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
	 * bits which we consider mandatory enabled.
	 * The CR0_READ_SHADOW is what L2 should have expected to read given
	 * the specifications by L1; It's not enough to take
	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
	 * have more bits than L1 expected.
	 */
	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));

	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));

	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
	vmx_set_efer(vcpu, vcpu->arch.efer);

	/*
	 * Guest state is invalid and unrestricted guest is disabled,
	 * which means L1 attempted VMEntry to L2 with invalid state.
	 * Fail the VMEntry.
2580 2581 2582 2583 2584
	 *
	 * However when force loading the guest state (SMM exit or
	 * loading nested state after migration, it is possible to
	 * have invalid guest state now, which will be later fixed by
	 * restoring L2 register state
2585
	 */
2586
	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2587
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2588
		return -EINVAL;
2589 2590 2591 2592
	}

	/* Shadow page tables on either EPT or shadow page tables. */
	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2593
				from_vmentry, entry_failure_code))
2594
		return -EINVAL;
2595

2596 2597 2598
	/*
	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
	 * on nested VM-Exit, which can occur without actually running L2 and
2599
	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2600 2601 2602 2603 2604 2605
	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
	 * transition to HLT instead of running L2.
	 */
	if (enable_ept)
		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);

2606 2607 2608 2609 2610 2611 2612 2613 2614
	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
	    is_pae_paging(vcpu)) {
		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
	}

2615
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2616
	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2617 2618
				     vmcs12->guest_ia32_perf_global_ctrl))) {
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2619
		return -EINVAL;
2620
	}
2621

2622 2623
	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
	kvm_rip_write(vcpu, vmcs12->guest_rip);
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

	/*
	 * It was observed that genuine Hyper-V running in L1 doesn't reset
	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
	 * bits when it changes a field in eVMCS. Mark all fields as clean
	 * here.
	 */
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
		vmx->nested.hv_evmcs->hv_clean_fields |=
			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

2635 2636 2637 2638 2639
	return 0;
}

static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
{
2640 2641
	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
	       nested_cpu_has_virtual_nmis(vmcs12)))
2642 2643
		return -EINVAL;

2644
	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2645
	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2646 2647 2648 2649 2650
		return -EINVAL;

	return 0;
}

2651
static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2652 2653 2654 2655
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/* Check for memory type validity */
2656
	switch (new_eptp & VMX_EPTP_MT_MASK) {
2657
	case VMX_EPTP_MT_UC:
2658
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2659 2660 2661
			return false;
		break;
	case VMX_EPTP_MT_WB:
2662
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2663 2664 2665 2666 2667 2668
			return false;
		break;
	default:
		return false;
	}

2669
	/* Page-walk levels validity. */
2670
	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2671 2672 2673 2674 2675 2676 2677 2678 2679
	case VMX_EPTP_PWL_5:
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
			return false;
		break;
	case VMX_EPTP_PWL_4:
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
			return false;
		break;
	default:
2680
		return false;
2681
	}
2682 2683

	/* Reserved bits should not be set */
2684
	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2685 2686 2687
		return false;

	/* AD, if set, should be supported */
2688
	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2689
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2690 2691 2692 2693 2694 2695
			return false;
	}

	return true;
}

2696 2697 2698 2699 2700
/*
 * Checks related to VM-Execution Control Fields
 */
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
                                              struct vmcs12 *vmcs12)
2701 2702 2703
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2704 2705 2706 2707 2708 2709
	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
				   vmx->nested.msrs.pinbased_ctls_low,
				   vmx->nested.msrs.pinbased_ctls_high)) ||
	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
				   vmx->nested.msrs.procbased_ctls_low,
				   vmx->nested.msrs.procbased_ctls_high)))
2710
		return -EINVAL;
2711

2712
	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2713 2714 2715
	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
				   vmx->nested.msrs.secondary_ctls_low,
				   vmx->nested.msrs.secondary_ctls_high)))
2716 2717
		return -EINVAL;

2718
	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
	    nested_vmx_check_nmi_controls(vmcs12) ||
	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2729
	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2730 2731
		return -EINVAL;

2732 2733 2734 2735
	if (!nested_cpu_has_preemption_timer(vmcs12) &&
	    nested_cpu_has_save_preemption_timer(vmcs12))
		return -EINVAL;

2736
	if (nested_cpu_has_ept(vmcs12) &&
2737
	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2738
		return -EINVAL;
2739 2740

	if (nested_cpu_has_vmfunc(vmcs12)) {
2741 2742
		if (CC(vmcs12->vm_function_control &
		       ~vmx->nested.msrs.vmfunc_controls))
2743
			return -EINVAL;
2744 2745

		if (nested_cpu_has_eptp_switching(vmcs12)) {
2746 2747
			if (CC(!nested_cpu_has_ept(vmcs12)) ||
			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2748
				return -EINVAL;
2749 2750 2751
		}
	}

2752 2753 2754
	return 0;
}

2755 2756 2757 2758 2759 2760 2761 2762
/*
 * Checks related to VM-Exit Control Fields
 */
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
                                         struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2763 2764 2765 2766
	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
				    vmx->nested.msrs.exit_ctls_low,
				    vmx->nested.msrs.exit_ctls_high)) ||
	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2767 2768 2769 2770 2771
		return -EINVAL;

	return 0;
}

2772 2773 2774 2775 2776
/*
 * Checks related to VM-Entry Control Fields
 */
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
2777 2778
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2779

2780 2781 2782
	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
				    vmx->nested.msrs.entry_ctls_low,
				    vmx->nested.msrs.entry_ctls_high)))
2783
		return -EINVAL;
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	/*
	 * From the Intel SDM, volume 3:
	 * Fields relevant to VM-entry event injection must be set properly.
	 * These fields are the VM-entry interruption-information field, the
	 * VM-entry exception error code, and the VM-entry instruction length.
	 */
	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
		u32 intr_info = vmcs12->vm_entry_intr_info_field;
		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
		bool should_have_error_code;
		bool urg = nested_cpu_has2(vmcs12,
					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;

		/* VM-entry interruption-info field: interruption type */
2802 2803 2804
		if (CC(intr_type == INTR_TYPE_RESERVED) ||
		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2805
			return -EINVAL;
2806 2807

		/* VM-entry interruption-info field: vector */
2808 2809 2810
		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2811
			return -EINVAL;
2812 2813 2814 2815 2816

		/* VM-entry interruption-info field: deliver error code */
		should_have_error_code =
			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
			x86_exception_has_error_code(vector);
2817
		if (CC(has_error_code != should_have_error_code))
2818
			return -EINVAL;
2819 2820

		/* VM-entry exception error code */
2821
		if (CC(has_error_code &&
2822
		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2823
			return -EINVAL;
2824 2825

		/* VM-entry interruption-info field: reserved bits */
2826
		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2827
			return -EINVAL;
2828 2829 2830 2831 2832 2833

		/* VM-entry instruction length */
		switch (intr_type) {
		case INTR_TYPE_SOFT_EXCEPTION:
		case INTR_TYPE_SOFT_INTR:
		case INTR_TYPE_PRIV_SW_EXCEPTION:
2834 2835 2836
			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
			    CC(vmcs12->vm_entry_instruction_len == 0 &&
			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2837
				return -EINVAL;
2838 2839 2840
		}
	}

2841 2842 2843 2844 2845 2846
	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
		return -EINVAL;

	return 0;
}

2847 2848 2849 2850 2851 2852
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
	    nested_check_vm_entry_controls(vcpu, vmcs12))
2853
		return -EINVAL;
2854

2855 2856 2857
	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
		return nested_evmcs_check_controls(vmcs12);

2858 2859 2860
	return 0;
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
#ifdef CONFIG_X86_64
	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
		!!(vcpu->arch.efer & EFER_LMA)))
		return -EINVAL;
#endif
	return 0;
}

2872 2873
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
2874 2875 2876
{
	bool ia32e;

2877 2878
	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2879
	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2880
		return -EINVAL;
2881

2882 2883
	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2884 2885
		return -EINVAL;

2886
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2887
	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2888 2889
		return -EINVAL;

2890 2891 2892 2893 2894
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
					   vmcs12->host_ia32_perf_global_ctrl)))
		return -EINVAL;

2895
#ifdef CONFIG_X86_64
2896
	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2897 2898 2899 2900 2901
#else
	ia32e = false;
#endif

	if (ia32e) {
2902
		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2903 2904
			return -EINVAL;
	} else {
2905
		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2906 2907 2908 2909
		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
		    CC((vmcs12->host_rip) >> 32))
			return -EINVAL;
	}
2910

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_cs_selector == 0) ||
	    CC(vmcs12->host_tr_selector == 0) ||
	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2921 2922
		return -EINVAL;

2923 2924 2925 2926
	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2927 2928
	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2929
		return -EINVAL;
2930

2931 2932 2933 2934 2935 2936 2937
	/*
	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
	 * the values of the LMA and LME bits in the field must each be that of
	 * the host address-space size VM-exit control.
	 */
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2938 2939 2940
		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2941
			return -EINVAL;
2942 2943
	}

2944 2945 2946 2947 2948 2949
	return 0;
}

static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
2950 2951 2952
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
	struct vmcs_hdr hdr;
2953

2954
	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2955 2956
		return 0;

2957
	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2958 2959
		return -EINVAL;

2960 2961 2962 2963
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
                return -EINVAL;
2964

2965 2966 2967 2968
	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
					    offsetof(struct vmcs12, hdr),
					    sizeof(hdr))))
		return -EINVAL;
2969

2970 2971 2972
	if (CC(hdr.revision_id != VMCS12_REVISION) ||
	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
		return -EINVAL;
2973

2974
	return 0;
2975 2976
}

2977 2978 2979 2980 2981
/*
 * Checks related to Guest Non-register State
 */
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
{
2982
	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2983 2984
	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2985 2986 2987 2988 2989
		return -EINVAL;

	return 0;
}

2990 2991
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
					struct vmcs12 *vmcs12,
2992
					enum vm_entry_failure_code *entry_failure_code)
2993 2994 2995
{
	bool ia32e;

2996
	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2997

2998 2999
	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3000
		return -EINVAL;
3001

3002 3003 3004 3005
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
		return -EINVAL;

3006
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3007
	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3008
		return -EINVAL;
3009 3010

	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3011
		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3012
		return -EINVAL;
3013 3014
	}

3015 3016 3017 3018 3019
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
					   vmcs12->guest_ia32_perf_global_ctrl)))
		return -EINVAL;

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	/*
	 * If the load IA32_EFER VM-entry control is 1, the following checks
	 * are performed on the field for the IA32_EFER MSR:
	 * - Bits reserved in the IA32_EFER MSR must be 0.
	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
	 *   the IA-32e mode guest VM-exit control. It must also be identical
	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
	 *   CR0.PG) is 1.
	 */
	if (to_vmx(vcpu)->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3032 3033 3034 3035
		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3036
			return -EINVAL;
3037 3038 3039
	}

	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3040 3041
	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3042
		return -EINVAL;
3043

3044
	if (nested_check_guest_non_reg_state(vmcs12))
3045
		return -EINVAL;
3046 3047 3048 3049

	return 0;
}

3050
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3051 3052
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3053
	unsigned long cr3, cr4;
3054
	bool vm_fail;
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

	if (!nested_early_check)
		return 0;

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);

	preempt_disable();

	vmx_prepare_switch_to_guest(vcpu);

	/*
	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
M
Miaohe Lin 已提交
3071
	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3072 3073 3074 3075
	 * there is no need to preserve other bits or save/restore the field.
	 */
	vmcs_writel(GUEST_RFLAGS, 0);

3076 3077 3078 3079 3080 3081
	cr3 = __get_current_cr3_fast();
	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
		vmcs_writel(HOST_CR3, cr3);
		vmx->loaded_vmcs->host_state.cr3 = cr3;
	}

3082 3083 3084 3085 3086 3087
	cr4 = cr4_read_shadow();
	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
		vmcs_writel(HOST_CR4, cr4);
		vmx->loaded_vmcs->host_state.cr4 = cr4;
	}

3088
	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3089
				 __vmx_vcpu_run_flags(vmx));
3090 3091 3092 3093 3094 3095

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

3096
	if (vm_fail) {
3097 3098
		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);

3099
		preempt_enable();
3100 3101 3102 3103

		trace_kvm_nested_vmenter_failed(
			"early hardware check VM-instruction error: ", error);
		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3104 3105 3106 3107 3108 3109 3110 3111
		return 1;
	}

	/*
	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
	 */
	if (hw_breakpoint_active())
		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3112
	local_irq_enable();
3113
	preempt_enable();
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

	/*
	 * A non-failing VMEntry means we somehow entered guest mode with
	 * an illegal RIP, and that's just the tip of the iceberg.  There
	 * is no telling what memory has been modified or what state has
	 * been exposed to unknown code.  Hitting this all but guarantees
	 * a (very critical) hardware issue.
	 */
	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
		VMX_EXIT_REASONS_FAILED_VMENTRY));

	return 0;
}

3128
static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3129 3130 3131
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

3132 3133 3134 3135 3136
	/*
	 * hv_evmcs may end up being not mapped after migration (when
	 * L2 was running), map it here to make sure vmcs12 changes are
	 * properly reflected.
	 */
3137
	if (vmx->nested.enlightened_vmcs_enabled &&
3138
	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3139 3140 3141 3142
		enum nested_evmptrld_status evmptrld_status =
			nested_vmx_handle_enlightened_vmptrld(vcpu, false);

		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3143
		    evmptrld_status == EVMPTRLD_ERROR)
3144
			return false;
3145 3146 3147 3148 3149 3150

		/*
		 * Post migration VMCS12 always provides the most actual
		 * information, copy it to eVMCS upon entry.
		 */
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3151
	}
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	return true;
}

static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct kvm_host_map *map;
	struct page *page;
	u64 hpa;

3164 3165
	if (!vcpu->arch.pdptrs_from_userspace &&
	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3166 3167 3168 3169 3170
		/*
		 * Reload the guest's PDPTRs since after a migration
		 * the guest CR3 might be restored prior to setting the nested
		 * state which can lead to a load of wrong PDPTRs.
		 */
3171
		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3172 3173 3174 3175
			return false;
	}


3176 3177 3178 3179 3180 3181 3182 3183
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
		/*
		 * Translate L1 physical address to host physical
		 * address for vmcs02. Keep the page pinned, so this
		 * physical address remains valid. We keep a reference
		 * to it so we can release it later.
		 */
		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3184
			kvm_release_page_clean(vmx->nested.apic_access_page);
3185 3186 3187 3188 3189 3190 3191 3192
			vmx->nested.apic_access_page = NULL;
		}
		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
		if (!is_error_page(page)) {
			vmx->nested.apic_access_page = page;
			hpa = page_to_phys(vmx->nested.apic_access_page);
			vmcs_write64(APIC_ACCESS_ADDR, hpa);
		} else {
3193 3194 3195 3196 3197 3198 3199
			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
					     __func__);
			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			vcpu->run->internal.suberror =
				KVM_INTERNAL_ERROR_EMULATION;
			vcpu->run->internal.ndata = 0;
			return false;
3200 3201 3202 3203
		}
	}

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3204
		map = &vmx->nested.virtual_apic_map;
3205

3206 3207
		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
			/*
			 * The processor will never use the TPR shadow, simply
			 * clear the bit from the execution control.  Such a
			 * configuration is useless, but it happens in tests.
			 * For any other configuration, failing the vm entry is
			 * _not_ what the processor does but it's basically the
			 * only possibility we have.
			 */
3219
			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3220
		} else {
3221 3222 3223 3224
			/*
			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
			 * force VM-Entry to fail.
			 */
3225
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3226 3227 3228 3229
		}
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
3230 3231 3232 3233 3234 3235 3236 3237
		map = &vmx->nested.pi_desc_map;

		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
			vmx->nested.pi_desc =
				(struct pi_desc *)(((void *)map->hva) +
				offset_in_page(vmcs12->posted_intr_desc_addr));
			vmcs_write64(POSTED_INTR_DESC_ADDR,
				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3238 3239 3240 3241 3242 3243 3244 3245 3246
		} else {
			/*
			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
			 * access the contents of the VMCS12 posted interrupt
			 * descriptor. (Note that KVM may do this when it
			 * should not, per the architectural specification.)
			 */
			vmx->nested.pi_desc = NULL;
			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3247 3248 3249
		}
	}
	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3250
		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3251
	else
3252
		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3253 3254 3255 3256 3257 3258

	return true;
}

static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
3259 3260 3261 3262 3263 3264 3265 3266
	if (!nested_get_evmcs_page(vcpu)) {
		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
				     __func__);
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror =
			KVM_INTERNAL_ERROR_EMULATION;
		vcpu->run->internal.ndata = 0;

3267
		return false;
3268
	}
3269 3270 3271 3272

	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
		return false;

3273
	return true;
3274 3275
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
{
	struct vmcs12 *vmcs12;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t dst;

	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
		return 0;

	if (WARN_ON_ONCE(vmx->nested.pml_full))
		return 1;

	/*
	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
	 * set is already checked as part of A/D emulation.
	 */
	vmcs12 = get_vmcs12(vcpu);
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
		vmx->nested.pml_full = true;
		return 1;
	}

	gpa &= ~0xFFFull;
	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;

	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
				 offset_in_page(dst), sizeof(gpa)))
		return 0;

	vmcs12->guest_pml_index--;

	return 0;
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
/*
 * Intel's VMX Instruction Reference specifies a common set of prerequisites
 * for running VMX instructions (except VMXON, whose prerequisites are
 * slightly different). It also specifies what exception to inject otherwise.
 * Note that many of these exceptions have priority over VM exits, so they
 * don't have to be checked again here.
 */
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
	if (!to_vmx(vcpu)->nested.vmxon) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 0;
	}

	return 1;
}

static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
{
	u8 rvi = vmx_get_rvi();
	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);

	return ((rvi & 0xf0) > (vppr & 0xf0));
}

static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12);

/*
 * If from_vmentry is false, this is being called from state restore (either RSM
 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3349 3350
 *
 * Returns:
3351 3352 3353 3354
 *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
 *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
 *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
 *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3355
 */
3356 3357
enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
							bool from_vmentry)
3358 3359 3360
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3361
	enum vm_entry_failure_code entry_failure_code;
3362
	bool evaluate_pending_interrupts;
3363 3364 3365 3366 3367
	union vmx_exit_reason exit_reason = {
		.basic = EXIT_REASON_INVALID_STATE,
		.failed_vmentry = 1,
	};
	u32 failed_index;
3368

3369
	kvm_service_local_tlb_flush_requests(vcpu);
3370

3371
	evaluate_pending_interrupts = exec_controls_get(vmx) &
3372
		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3373 3374 3375 3376 3377 3378 3379 3380 3381
	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);

	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
	if (kvm_mpx_supported() &&
		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	/*
	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
	 * software model to the pre-VMEntry host state.  When EPT is disabled,
	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
	 * path would need to manually save/restore vmcs01.GUEST_CR3.
	 */
	if (!enable_ept && !nested_early_check)
		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);

3401 3402
	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);

3403
	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3404 3405

	if (from_vmentry) {
3406 3407
		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408
			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3409
		}
3410 3411 3412

		if (nested_vmx_check_vmentry_hw(vcpu)) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3413
			return NVMX_VMENTRY_VMFAIL;
3414 3415
		}

3416 3417
		if (nested_vmx_check_guest_state(vcpu, vmcs12,
						 &entry_failure_code)) {
3418
			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3419
			vmcs12->exit_qualification = entry_failure_code;
3420
			goto vmentry_fail_vmexit;
3421
		}
3422 3423 3424 3425
	}

	enter_guest_mode(vcpu);

3426
	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3427
		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3428
		vmcs12->exit_qualification = entry_failure_code;
3429
		goto vmentry_fail_vmexit_guest_mode;
3430
	}
3431 3432

	if (from_vmentry) {
3433 3434 3435 3436
		failed_index = nested_vmx_load_msr(vcpu,
						   vmcs12->vm_entry_msr_load_addr,
						   vmcs12->vm_entry_msr_load_count);
		if (failed_index) {
3437
			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3438
			vmcs12->exit_qualification = failed_index;
3439
			goto vmentry_fail_vmexit_guest_mode;
3440
		}
3441 3442 3443 3444 3445 3446 3447 3448
	} else {
		/*
		 * The MMU is not initialized to point at the right entities yet and
		 * "get pages" would need to read data from the guest (i.e. we will
		 * need to perform gpa to hpa translation). Request a call
		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
		 * have already been set at vmentry time and should not be reset.
		 */
3449
		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	}

	/*
	 * If L1 had a pending IRQ/NMI until it executed
	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
	 * disallowed (e.g. interrupts disabled), L0 needs to
	 * evaluate if this pending event should cause an exit from L2
	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
	 * intercept EXTERNAL_INTERRUPT).
	 *
	 * Usually this would be handled by the processor noticing an
	 * IRQ/NMI window request, or checking RVI during evaluation of
	 * pending virtual interrupts.  However, this setting was done
	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
	 */
	if (unlikely(evaluate_pending_interrupts))
		kvm_make_request(KVM_REQ_EVENT, vcpu);

3469 3470 3471 3472 3473 3474
	/*
	 * Do not start the preemption timer hrtimer until after we know
	 * we are successful, so that only nested_vmx_vmexit needs to cancel
	 * the timer.
	 */
	vmx->nested.preemption_timer_expired = false;
3475 3476 3477 3478
	if (nested_cpu_has_preemption_timer(vmcs12)) {
		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
		vmx_start_preemption_timer(vcpu, timer_value);
	}
3479

3480 3481 3482 3483 3484 3485
	/*
	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
	 * returned as far as L1 is concerned. It will only return (and set
	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
	 */
3486
	return NVMX_VMENTRY_SUCCESS;
3487 3488 3489 3490 3491 3492 3493

	/*
	 * A failed consistency check that leads to a VMExit during L1's
	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
	 * 26.7 "VM-entry failures during or after loading guest state".
	 */
vmentry_fail_vmexit_guest_mode:
3494
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3495 3496 3497 3498 3499 3500 3501
		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
	leave_guest_mode(vcpu);

vmentry_fail_vmexit:
	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	if (!from_vmentry)
3502
		return NVMX_VMENTRY_VMEXIT;
3503 3504

	load_vmcs12_host_state(vcpu, vmcs12);
3505
	vmcs12->vm_exit_reason = exit_reason.full;
3506
	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3507
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3508
	return NVMX_VMENTRY_VMEXIT;
3509 3510 3511 3512 3513 3514 3515 3516 3517
}

/*
 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 * for running an L2 nested guest.
 */
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
	struct vmcs12 *vmcs12;
3518
	enum nvmx_vmentry_status status;
3519 3520
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3521
	enum nested_evmptrld_status evmptrld_status;
3522 3523 3524 3525

	if (!nested_vmx_check_permission(vcpu))
		return 1;

3526 3527 3528
	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
	if (evmptrld_status == EVMPTRLD_ERROR) {
		kvm_queue_exception(vcpu, UD_VECTOR);
3529
		return 1;
3530
	}
3531

3532 3533 3534 3535 3536
	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);

	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
		return nested_vmx_failInvalid(vcpu);

3537
	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3538
	       vmx->nested.current_vmptr == INVALID_GPA))
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
		return nested_vmx_failInvalid(vcpu);

	vmcs12 = get_vmcs12(vcpu);

	/*
	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
	 * rather than RFLAGS.ZF, and no error number is stored to the
	 * VM-instruction error field.
	 */
3549
	if (CC(vmcs12->hdr.shadow_vmcs))
3550 3551
		return nested_vmx_failInvalid(vcpu);

3552
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3553
		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
		/* Enlightened VMCS doesn't have launch state */
		vmcs12->launch_state = !launch;
	} else if (enable_shadow_vmcs) {
		copy_shadow_to_vmcs12(vmx);
	}

	/*
	 * The nested entry process starts with enforcing various prerequisites
	 * on vmcs12 as required by the Intel SDM, and act appropriately when
	 * they fail: As the SDM explains, some conditions should cause the
	 * instruction to fail, while others will cause the instruction to seem
	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
	 * To speed up the normal (success) code path, we should avoid checking
	 * for misconfigurations which will anyway be caught by the processor
	 * when using the merged vmcs02.
	 */
3570
	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3571
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3572

3573
	if (CC(vmcs12->launch_state == launch))
3574
		return nested_vmx_fail(vcpu,
3575 3576 3577
			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);

3578
	if (nested_vmx_check_controls(vcpu, vmcs12))
3579
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3580

3581 3582 3583
	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);

3584
	if (nested_vmx_check_host_state(vcpu, vmcs12))
3585
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3586 3587 3588 3589 3590 3591

	/*
	 * We're finally done with prerequisite checking, and can start with
	 * the nested entry.
	 */
	vmx->nested.nested_run_pending = 1;
3592
	vmx->nested.has_preemption_timer_deadline = false;
3593 3594 3595
	status = nested_vmx_enter_non_root_mode(vcpu, true);
	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
		goto vmentry_failed;
3596

3597 3598 3599 3600 3601 3602 3603 3604
	/* Emulate processing of posted interrupts on VM-Enter. */
	if (nested_cpu_has_posted_intr(vmcs12) &&
	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
		vmx->nested.pi_pending = true;
		kvm_make_request(KVM_REQ_EVENT, vcpu);
		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
	}

3605 3606 3607 3608 3609 3610 3611 3612 3613
	/* Hide L1D cache contents from the nested guest.  */
	vmx->vcpu.arch.l1tf_flush_l1d = true;

	/*
	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
	 * also be used as part of restoring nVMX state for
	 * snapshot restore (migration).
	 *
	 * In this flow, it is assumed that vmcs12 cache was
3614
	 * transferred as part of captured nVMX state and should
3615 3616 3617 3618 3619
	 * therefore not be read from guest memory (which may not
	 * exist on destination host yet).
	 */
	nested_cache_shadow_vmcs12(vcpu, vmcs12);

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	switch (vmcs12->guest_activity_state) {
	case GUEST_ACTIVITY_HLT:
		/*
		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
		 * awakened by event injection or by an NMI-window VM-exit or
		 * by an interrupt-window VM-exit, halt the vcpu.
		 */
		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
			vmx->nested.nested_run_pending = 0;
3632
			return kvm_emulate_halt_noskip(vcpu);
3633 3634 3635
		}
		break;
	case GUEST_ACTIVITY_WAIT_SIPI:
3636
		vmx->nested.nested_run_pending = 0;
3637 3638 3639 3640
		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
		break;
	default:
		break;
3641
	}
3642

3643
	return 1;
3644 3645 3646 3647 3648 3649 3650 3651

vmentry_failed:
	vmx->nested.nested_run_pending = 0;
	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
		return 0;
	if (status == NVMX_VMENTRY_VMEXIT)
		return 1;
	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3652
	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3653 3654 3655 3656
}

/*
 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3657
 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
 * This function returns the new value we should put in vmcs12.guest_cr0.
 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 *     didn't trap the bit, because if L1 did, so would L0).
 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 *     been modified by L2, and L1 knows it. So just leave the old value of
 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 *     isn't relevant, because if L0 traps this bit it can set it to anything.
 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 *     changed these bits, and therefore they need to be updated, but L0
 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 */
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
			vcpu->arch.cr0_guest_owned_bits));
}

static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
			vcpu->arch.cr4_guest_owned_bits));
}

static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3693 3694
				      struct vmcs12 *vmcs12,
				      u32 vm_exit_reason, u32 exit_intr_info)
3695 3696 3697 3698
{
	u32 idt_vectoring;
	unsigned int nr;

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	/*
	 * Per the SDM, VM-Exits due to double and triple faults are never
	 * considered to occur during event delivery, even if the double/triple
	 * fault is the result of an escalating vectoring issue.
	 *
	 * Note, the SDM qualifies the double fault behavior with "The original
	 * event results in a double-fault exception".  It's unclear why the
	 * qualification exists since exits due to double fault can occur only
	 * while vectoring a different exception (injected events are never
	 * subject to interception), i.e. there's _always_ an original event.
	 *
	 * The SDM also uses NMI as a confusing example for the "original event
	 * causes the VM exit directly" clause.  NMI isn't special in any way,
	 * the same rule applies to all events that cause an exit directly.
	 * NMI is an odd choice for the example because NMIs can only occur on
	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
	 */
	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
	     is_double_fault(exit_intr_info))) {
		vmcs12->idt_vectoring_info_field = 0;
	} else if (vcpu->arch.exception.injected) {
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
		nr = vcpu->arch.exception.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (kvm_exception_is_soft(nr)) {
			vmcs12->vm_exit_instruction_len =
				vcpu->arch.event_exit_inst_len;
			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
		} else
			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;

		if (vcpu->arch.exception.has_error_code) {
			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
			vmcs12->idt_vectoring_error_code =
				vcpu->arch.exception.error_code;
		}

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	} else if (vcpu->arch.nmi_injected) {
		vmcs12->idt_vectoring_info_field =
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
	} else if (vcpu->arch.interrupt.injected) {
		nr = vcpu->arch.interrupt.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (vcpu->arch.interrupt.soft) {
			idt_vectoring |= INTR_TYPE_SOFT_INTR;
			vmcs12->vm_entry_instruction_len =
				vcpu->arch.event_exit_inst_len;
		} else
			idt_vectoring |= INTR_TYPE_EXT_INTR;

		vmcs12->idt_vectoring_info_field = idt_vectoring;
3753 3754
	} else {
		vmcs12->idt_vectoring_info_field = 0;
3755 3756 3757 3758
	}
}


3759
void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	gfn_t gfn;

	/*
	 * Don't need to mark the APIC access page dirty; it is never
	 * written to by the CPU during APIC virtualization.
	 */

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
}

3780
static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3781 3782 3783 3784 3785 3786
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int max_irr;
	void *vapic_page;
	u16 status;

3787
	if (!vmx->nested.pi_pending)
3788
		return 0;
3789

3790 3791 3792
	if (!vmx->nested.pi_desc)
		goto mmio_needed;

3793
	vmx->nested.pi_pending = false;
3794

3795
	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3796
		return 0;
3797 3798 3799

	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
	if (max_irr != 256) {
3800 3801
		vapic_page = vmx->nested.virtual_apic_map.hva;
		if (!vapic_page)
3802
			goto mmio_needed;
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
			vapic_page, &max_irr);
		status = vmcs_read16(GUEST_INTR_STATUS);
		if ((u8)max_irr > ((u8)status & 0xff)) {
			status &= ~0xff;
			status |= (u8)max_irr;
			vmcs_write16(GUEST_INTR_STATUS, status);
		}
	}

	nested_mark_vmcs12_pages_dirty(vcpu);
3815
	return 0;
3816 3817 3818 3819

mmio_needed:
	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
	return -ENXIO;
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
}

static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
					       unsigned long exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	u32 intr_info = nr | INTR_INFO_VALID_MASK;

	if (vcpu->arch.exception.has_error_code) {
		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
	}

	if (kvm_exception_is_soft(nr))
		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
	else
		intr_info |= INTR_TYPE_HARD_EXCEPTION;

	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
	    vmx_get_nmi_mask(vcpu))
		intr_info |= INTR_INFO_UNBLOCK_NMI;

	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
}

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
/*
 * Returns true if a debug trap is pending delivery.
 *
 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
 * exception may be inferred from the presence of an exception payload.
 */
static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.exception.pending &&
			vcpu->arch.exception.nr == DB_VECTOR &&
			vcpu->arch.exception.payload;
}

/*
 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
 * represents these debug traps with a payload that is said to be compatible
 * with the 'pending debug exceptions' field, write the payload to the VMCS
 * field if a VM-exit is delivered before the debug trap.
 */
static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
{
	if (vmx_pending_dbg_trap(vcpu))
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vcpu->arch.exception.payload);
}

3873 3874 3875 3876 3877 3878
static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
{
	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
	       to_vmx(vcpu)->nested.preemption_timer_expired;
}

3879
static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3880 3881 3882 3883 3884
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long exit_qual;
	bool block_nested_events =
	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3885
	bool mtf_pending = vmx->nested.mtf_pending;
3886 3887
	struct kvm_lapic *apic = vcpu->arch.apic;

3888 3889 3890 3891
	/*
	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
	 * this state is discarded.
	 */
3892 3893
	if (!block_nested_events)
		vmx->nested.mtf_pending = false;
3894

3895 3896 3897 3898
	if (lapic_in_kernel(vcpu) &&
		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
		if (block_nested_events)
			return -EBUSY;
3899
		nested_vmx_update_pending_dbg(vcpu);
3900
		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
		return 0;
	}

	if (lapic_in_kernel(vcpu) &&
	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
		if (block_nested_events)
			return -EBUSY;

		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
						apic->sipi_vector & 0xFFUL);
3915 3916
		return 0;
	}
3917

3918 3919
	/*
	 * Process any exceptions that are not debug traps before MTF.
3920 3921 3922 3923 3924
	 *
	 * Note that only a pending nested run can block a pending exception.
	 * Otherwise an injected NMI/interrupt should either be
	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
	 * while delivering the pending exception.
3925
	 */
3926

3927
	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3928
		if (vmx->nested.nested_run_pending)
3929
			return -EBUSY;
3930 3931
		if (!nested_vmx_check_exception(vcpu, &exit_qual))
			goto no_vmexit;
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

	if (mtf_pending) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_update_pending_dbg(vcpu);
		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
		return 0;
	}

3944
	if (vcpu->arch.exception.pending) {
3945
		if (vmx->nested.nested_run_pending)
3946
			return -EBUSY;
3947 3948
		if (!nested_vmx_check_exception(vcpu, &exit_qual))
			goto no_vmexit;
3949 3950 3951 3952
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

3953
	if (nested_vmx_preemption_timer_pending(vcpu)) {
3954 3955 3956 3957 3958 3959
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
		return 0;
	}

3960 3961 3962 3963 3964 3965
	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
		if (block_nested_events)
			return -EBUSY;
		goto no_vmexit;
	}

3966
	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3967 3968
		if (block_nested_events)
			return -EBUSY;
3969 3970 3971
		if (!nested_exit_on_nmi(vcpu))
			goto no_vmexit;

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
				  INTR_INFO_VALID_MASK, 0);
		/*
		 * The NMI-triggered VM exit counts as injection:
		 * clear this one and block further NMIs.
		 */
		vcpu->arch.nmi_pending = 0;
		vmx_set_nmi_mask(vcpu, true);
		return 0;
	}

3984
	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3985 3986
		if (block_nested_events)
			return -EBUSY;
3987 3988
		if (!nested_exit_on_intr(vcpu))
			goto no_vmexit;
3989 3990 3991 3992
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
		return 0;
	}

3993
no_vmexit:
3994
	return vmx_complete_nested_posted_interrupt(vcpu);
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
}

static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	ktime_t remaining =
		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
	u64 value;

	if (ktime_to_ns(remaining) <= 0)
		return 0;

	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
	do_div(value, 1000000);
	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}

4011
static bool is_vmcs12_ext_field(unsigned long field)
4012
{
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
	switch (field) {
	case GUEST_ES_SELECTOR:
	case GUEST_CS_SELECTOR:
	case GUEST_SS_SELECTOR:
	case GUEST_DS_SELECTOR:
	case GUEST_FS_SELECTOR:
	case GUEST_GS_SELECTOR:
	case GUEST_LDTR_SELECTOR:
	case GUEST_TR_SELECTOR:
	case GUEST_ES_LIMIT:
	case GUEST_CS_LIMIT:
	case GUEST_SS_LIMIT:
	case GUEST_DS_LIMIT:
	case GUEST_FS_LIMIT:
	case GUEST_GS_LIMIT:
	case GUEST_LDTR_LIMIT:
	case GUEST_TR_LIMIT:
	case GUEST_GDTR_LIMIT:
	case GUEST_IDTR_LIMIT:
	case GUEST_ES_AR_BYTES:
	case GUEST_DS_AR_BYTES:
	case GUEST_FS_AR_BYTES:
	case GUEST_GS_AR_BYTES:
	case GUEST_LDTR_AR_BYTES:
	case GUEST_TR_AR_BYTES:
	case GUEST_ES_BASE:
	case GUEST_CS_BASE:
	case GUEST_SS_BASE:
	case GUEST_DS_BASE:
	case GUEST_FS_BASE:
	case GUEST_GS_BASE:
	case GUEST_LDTR_BASE:
	case GUEST_TR_BASE:
	case GUEST_GDTR_BASE:
	case GUEST_IDTR_BASE:
	case GUEST_PENDING_DBG_EXCEPTIONS:
	case GUEST_BNDCFGS:
		return true;
	default:
		break;
	}
4054

4055 4056 4057 4058 4059 4060 4061
	return false;
}

static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096

	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	vmcs12->guest_pending_dbg_exceptions =
		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
	if (kvm_mpx_supported())
		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}

static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;

	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
		return;


	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);

	cpu = get_cpu();
	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4119
	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4120 4121 4122 4123

	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

	vmx->loaded_vmcs = &vmx->vmcs01;
4124
	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	put_cpu();
}

/*
 * Update the guest state fields of vmcs12 to reflect changes that
 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
 * VM-entry controls is also updated, since this is really a guest
 * state bit.)
 */
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4138
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4139 4140
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

4141 4142
	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152

	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);

	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
	vmcs12->guest_rip = kvm_rip_read(vcpu);
	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);

	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4153 4154 4155

	vmcs12->guest_interruptibility_info =
		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4156

4157 4158
	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4159 4160
	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4161 4162 4163
	else
		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;

4164
	if (nested_cpu_has_preemption_timer(vmcs12) &&
4165 4166 4167 4168
	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
	    !vmx->nested.nested_run_pending)
		vmcs12->vmx_preemption_timer_value =
			vmx_get_preemption_timer_value(vcpu);
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

	/*
	 * In some cases (usually, nested EPT), L2 is allowed to change its
	 * own CR3 without exiting. If it has changed it, we must keep it.
	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
	 *
	 * Additionally, restore L2's PDPTR to vmcs12.
	 */
	if (enable_ept) {
		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4180 4181 4182 4183 4184 4185
		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
		}
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	}

	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);

	if (nested_cpu_has_vid(vmcs12))
		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);

	vmcs12->vm_entry_controls =
		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);

4197
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);

	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
		vmcs12->guest_ia32_efer = vcpu->arch.efer;
}

/*
 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 * and this function updates it to reflect the changes to the guest state while
 * L2 was running (and perhaps made some exits which were handled directly by L0
 * without going back to L1), and to reflect the exit reason.
 * Note that we do not have to copy here all VMCS fields, just those that
 * could have changed by the L2 guest or the exit - i.e., the guest-state and
 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 * which already writes to vmcs12 directly.
 */
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4216
			   u32 vm_exit_reason, u32 exit_intr_info,
4217 4218 4219
			   unsigned long exit_qualification)
{
	/* update exit information fields: */
4220
	vmcs12->vm_exit_reason = vm_exit_reason;
4221 4222
	if (to_vmx(vcpu)->exit_reason.enclave_mode)
		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4223 4224
	vmcs12->exit_qualification = exit_qualification;

4225 4226 4227 4228 4229
	/*
	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
	 * exit info fields are unmodified.
	 */
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
		vmcs12->launch_state = 1;

		/* vm_entry_intr_info_field is cleared on exit. Emulate this
		 * instead of reading the real value. */
		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;

		/*
		 * Transfer the event that L0 or L1 may wanted to inject into
		 * L2 to IDT_VECTORING_INFO_FIELD.
		 */
4241 4242
		vmcs12_save_pending_event(vcpu, vmcs12,
					  vm_exit_reason, exit_intr_info);
4243

4244 4245 4246 4247
		vmcs12->vm_exit_intr_info = exit_intr_info;
		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
		/*
		 * According to spec, there's no need to store the guest's
		 * MSRs if the exit is due to a VM-entry failure that occurs
		 * during or after loading the guest state. Since this exit
		 * does not fall in that category, we need to save the MSRs.
		 */
		if (nested_vmx_store_msr(vcpu,
					 vmcs12->vm_exit_msr_store_addr,
					 vmcs12->vm_exit_msr_store_count))
			nested_vmx_abort(vcpu,
					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	}

	/*
	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
	 * preserved above and would only end up incorrectly in L1.
	 */
	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);
}

/*
 * A part of what we need to when the nested L2 guest exits and we want to
 * run its L1 parent, is to reset L1's guest state to the host state specified
 * in vmcs12.
 * This function is to be called not only on normal nested exit, but also on
 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 * Failures During or After Loading Guest State").
 * This function should be called when the active VMCS is L1's (vmcs01).
 */
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12)
{
4282
	enum vm_entry_failure_code ignored;
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
	struct kvm_segment seg;

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->host_ia32_efer;
	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	vmx_set_efer(vcpu, vcpu->arch.efer);

4293 4294
	kvm_rsp_write(vcpu, vmcs12->host_rsp);
	kvm_rip_write(vcpu, vmcs12->host_rip);
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
	vmx_set_interrupt_shadow(vcpu, 0);

	/*
	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
	 * actually changed, because vmx_set_cr0 refers to efer set above.
	 *
	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
	 * (KVM doesn't change it);
	 */
4305
	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	vmx_set_cr0(vcpu, vmcs12->host_cr0);

	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs12->host_cr4);

	nested_ept_uninit_mmu_context(vcpu);

	/*
	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
	 * couldn't have changed.
	 */
4318
	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4319 4320
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);

4321
	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);

	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
		vmcs_write64(GUEST_BNDCFGS, 0);

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
		vcpu->arch.pat = vmcs12->host_ia32_pat;
	}
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4340 4341
		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
					 vmcs12->host_ia32_perf_global_ctrl));
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357

	/* Set L1 segment info according to Intel SDM
	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.selector = vmcs12->host_cs_selector,
		.type = 11,
		.present = 1,
		.s = 1,
		.g = 1
	};
	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		seg.l = 1;
	else
		seg.db = 1;
4358
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.type = 3,
		.present = 1,
		.s = 1,
		.db = 1,
		.g = 1
	};
	seg.selector = vmcs12->host_ds_selector;
4369
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4370
	seg.selector = vmcs12->host_es_selector;
4371
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4372
	seg.selector = vmcs12->host_ss_selector;
4373
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4374 4375
	seg.selector = vmcs12->host_fs_selector;
	seg.base = vmcs12->host_fs_base;
4376
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4377 4378
	seg.selector = vmcs12->host_gs_selector;
	seg.base = vmcs12->host_gs_base;
4379
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4380 4381 4382 4383 4384 4385 4386
	seg = (struct kvm_segment) {
		.base = vmcs12->host_tr_base,
		.limit = 0x67,
		.selector = vmcs12->host_tr_selector,
		.type = 11,
		.present = 1
	};
4387
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4388

4389 4390
	memset(&seg, 0, sizeof(seg));
	seg.unusable = 1;
4391
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4392 4393 4394 4395 4396 4397 4398

	kvm_set_dr(vcpu, 7, 0x400);
	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);

	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
				vmcs12->vm_exit_msr_load_count))
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4399 4400

	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4401 4402 4403 4404
}

static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
{
4405
	struct vmx_uret_msr *efer_msr;
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	unsigned int i;

	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
		return vmcs_read64(GUEST_IA32_EFER);

	if (cpu_has_load_ia32_efer())
		return host_efer;

	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
			return vmx->msr_autoload.guest.val[i].value;
	}

4419
	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	if (efer_msr)
		return efer_msr->data;

	return host_efer;
}

static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msr_entry g, h;
	gpa_t gpa;
	u32 i, j;

	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);

	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
		/*
		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
		 * as vmcs01.GUEST_DR7 contains a userspace defined value
		 * and vcpu->arch.dr7 is not squirreled away before the
		 * nested VMENTER (not worth adding a variable in nested_vmx).
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
		else
			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
	}

	/*
	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
	 * handle a variety of side effects to KVM's software model.
	 */
	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));

4455
	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4456 4457 4458 4459 4460 4461
	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));

	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));

	nested_ept_uninit_mmu_context(vcpu);
4462
	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4463
	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4464 4465 4466 4467 4468 4469 4470

	/*
	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
	 * VMFail, like everything else we just need to ensure our
	 * software model is up-to-date.
	 */
4471
	if (enable_ept && is_pae_paging(vcpu))
4472
		ept_save_pdptrs(vcpu);
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515

	kvm_mmu_reset_context(vcpu);

	/*
	 * This nasty bit of open coding is a compromise between blindly
	 * loading L1's MSRs using the exit load lists (incorrect emulation
	 * of VMFail), leaving the nested VM's MSRs in the software model
	 * (incorrect behavior) and snapshotting the modified MSRs (too
	 * expensive since the lists are unbound by hardware).  For each
	 * MSR that was (prematurely) loaded from the nested VMEntry load
	 * list, reload it from the exit load list if it exists and differs
	 * from the guest value.  The intent is to stuff host state as
	 * silently as possible, not to fully process the exit load list.
	 */
	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
			pr_debug_ratelimited(
				"%s read MSR index failed (%u, 0x%08llx)\n",
				__func__, i, gpa);
			goto vmabort;
		}

		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
				pr_debug_ratelimited(
					"%s read MSR failed (%u, 0x%08llx)\n",
					__func__, j, gpa);
				goto vmabort;
			}
			if (h.index != g.index)
				continue;
			if (h.value == g.value)
				break;

			if (nested_vmx_load_msr_check(vcpu, &h)) {
				pr_debug_ratelimited(
					"%s check failed (%u, 0x%x, 0x%x)\n",
					__func__, j, h.index, h.reserved);
				goto vmabort;
			}

4516
			if (kvm_set_msr(vcpu, h.index, h.value)) {
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
				pr_debug_ratelimited(
					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
					__func__, j, h.index, h.value);
				goto vmabort;
			}
		}
	}

	return;

vmabort:
	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}

/*
 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 * and modify vmcs12 to make it see what it would expect to see there if
 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 */
4536
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4537 4538 4539 4540 4541 4542 4543 4544
		       u32 exit_intr_info, unsigned long exit_qualification)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	/* trying to cancel vmlaunch/vmresume is a bug */
	WARN_ON_ONCE(vmx->nested.nested_run_pending);

4545 4546 4547 4548 4549 4550 4551 4552 4553
	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
		/*
		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
		 * Enlightened VMCS after migration and we still need to
		 * do that when something is forcing L2->L1 exit prior to
		 * the first L2 run.
		 */
		(void)nested_get_evmcs_page(vcpu);
	}
4554

4555 4556
	/* Service pending TLB flush requests for L2 before switching to L1. */
	kvm_service_local_tlb_flush_requests(vcpu);
4557

4558 4559 4560 4561 4562 4563 4564 4565
	/*
	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
	 * up-to-date before switching to L1.
	 */
	if (enable_ept && is_pae_paging(vcpu))
		vmx_ept_load_pdptrs(vcpu);

4566 4567
	leave_guest_mode(vcpu);

4568 4569 4570
	if (nested_cpu_has_preemption_timer(vmcs12))
		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);

4571 4572 4573 4574 4575
	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
	}
4576 4577

	if (likely(!vmx->fail)) {
4578
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4579

4580 4581 4582
		if (vm_exit_reason != -1)
			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
				       exit_intr_info, exit_qualification);
4583 4584

		/*
4585
		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
		 * also be used to capture vmcs12 cache as part of
		 * capturing nVMX state for snapshot (migration).
		 *
		 * Otherwise, this flush will dirty guest memory at a
		 * point it is already assumed by user-space to be
		 * immutable.
		 */
		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
	} else {
		/*
		 * The only expected VM-instruction error is "VM entry with
		 * invalid control field(s)." Anything else indicates a
		 * problem with L0.  And we should never get here with a
		 * VMFail of any type if early consistency checks are enabled.
		 */
		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		WARN_ON_ONCE(nested_early_check);
	}

	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	/* Update any VMCS fields that might have changed while L2 ran */
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4612 4613 4614
	if (kvm_has_tsc_control)
		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);

4615 4616
	if (vmx->nested.l1_tpr_threshold != -1)
		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4617 4618 4619 4620 4621 4622

	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
		vmx->nested.change_vmcs01_virtual_apic_mode = false;
		vmx_set_virtual_apic_mode(vcpu);
	}

4623 4624 4625 4626 4627
	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
		vmx_update_cpu_dirty_logging(vcpu);
	}

4628 4629
	/* Unpin physical memory we referred to in vmcs02 */
	if (vmx->nested.apic_access_page) {
4630
		kvm_release_page_clean(vmx->nested.apic_access_page);
4631 4632
		vmx->nested.apic_access_page = NULL;
	}
4633
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4634 4635
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
4636

4637 4638 4639 4640
	if (vmx->nested.reload_vmcs01_apic_access_page) {
		vmx->nested.reload_vmcs01_apic_access_page = false;
		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
	}
4641

4642 4643 4644 4645 4646
	if (vmx->nested.update_vmcs01_apicv_status) {
		vmx->nested.update_vmcs01_apicv_status = false;
		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
	}

4647
	if ((vm_exit_reason != -1) &&
4648
	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4649
		vmx->nested.need_vmcs12_to_shadow_sync = true;
4650 4651 4652 4653 4654

	/* in case we halted in L2 */
	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

	if (likely(!vmx->fail)) {
4655
		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4656
		    nested_exit_intr_ack_set(vcpu)) {
4657 4658 4659 4660 4661 4662
			int irq = kvm_cpu_get_interrupt(vcpu);
			WARN_ON(irq < 0);
			vmcs12->vm_exit_intr_info = irq |
				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
		}

4663
		if (vm_exit_reason != -1)
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
						       vmcs12->exit_qualification,
						       vmcs12->idt_vectoring_info_field,
						       vmcs12->vm_exit_intr_info,
						       vmcs12->vm_exit_intr_error_code,
						       KVM_ISA_VMX);

		load_vmcs12_host_state(vcpu, vmcs12);

		return;
	}

	/*
	 * After an early L2 VM-entry failure, we're now back
	 * in L1 which thinks it just finished a VMLAUNCH or
	 * VMRESUME instruction, so we need to set the failure
	 * flag and the VM-instruction error field of the VMCS
	 * accordingly, and skip the emulated instruction.
	 */
4683
	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695

	/*
	 * Restore L1's host state to KVM's software model.  We're here
	 * because a consistency check was caught by hardware, which
	 * means some amount of guest state has been propagated to KVM's
	 * model and needs to be unwound to the host's state.
	 */
	nested_vmx_restore_host_state(vcpu);

	vmx->fail = 0;
}

4696 4697 4698 4699 4700
static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
{
	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
}

4701 4702 4703 4704
/*
 * Decode the memory-address operand of a vmx instruction, as recorded on an
 * exit caused by such an instruction (run by a guest hypervisor).
 * On success, returns 0. When the operand is invalid, returns 1 and throws
M
Miaohe Lin 已提交
4705
 * #UD, #GP, or #SS.
4706 4707
 */
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4708
			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
{
	gva_t off;
	bool exn;
	struct kvm_segment s;

	/*
	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
	 * Execution", on an exit, vmx_instruction_info holds most of the
	 * addressing components of the operand. Only the displacement part
	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
	 * For how an actual address is calculated from all these components,
	 * refer to Vol. 1, "Operand Addressing".
	 */
	int  scaling = vmx_instruction_info & 3;
	int  addr_size = (vmx_instruction_info >> 7) & 7;
	bool is_reg = vmx_instruction_info & (1u << 10);
	int  seg_reg = (vmx_instruction_info >> 15) & 7;
	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));

	if (is_reg) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* Addr = segment_base + offset */
	/* offset = base + [index * scale] + displacement */
	off = exit_qualification; /* holds the displacement */
4739 4740 4741 4742
	if (addr_size == 1)
		off = (gva_t)sign_extend64(off, 31);
	else if (addr_size == 0)
		off = (gva_t)sign_extend64(off, 15);
4743 4744 4745
	if (base_is_valid)
		off += kvm_register_read(vcpu, base_reg);
	if (index_is_valid)
4746
		off += kvm_register_read(vcpu, index_reg) << scaling;
4747 4748
	vmx_get_segment(vcpu, &s, seg_reg);

4749 4750 4751 4752 4753 4754
	/*
	 * The effective address, i.e. @off, of a memory operand is truncated
	 * based on the address size of the instruction.  Note that this is
	 * the *effective address*, i.e. the address prior to accounting for
	 * the segment's base.
	 */
4755
	if (addr_size == 1) /* 32 bit */
4756 4757 4758
		off &= 0xffffffff;
	else if (addr_size == 0) /* 16 bit */
		off &= 0xffff;
4759 4760 4761 4762

	/* Checks for #GP/#SS exceptions. */
	exn = false;
	if (is_long_mode(vcpu)) {
4763 4764 4765 4766 4767
		/*
		 * The virtual/linear address is never truncated in 64-bit
		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
		 * address when using FS/GS with a non-zero base.
		 */
4768 4769 4770 4771
		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
			*ret = s.base + off;
		else
			*ret = off;
4772

4773 4774 4775 4776 4777
		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
		 * non-canonical form. This is the only check on the memory
		 * destination for long mode!
		 */
		exn = is_noncanonical_address(*ret, vcpu);
4778
	} else {
4779 4780 4781 4782 4783 4784 4785
		/*
		 * When not in long mode, the virtual/linear address is
		 * unconditionally truncated to 32 bits regardless of the
		 * address size.
		 */
		*ret = (s.base + off) & 0xffffffff;

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		/* Protected mode: apply checks for segment validity in the
		 * following order:
		 * - segment type check (#GP(0) may be thrown)
		 * - usability check (#GP(0)/#SS(0))
		 * - limit check (#GP(0)/#SS(0))
		 */
		if (wr)
			/* #GP(0) if the destination operand is located in a
			 * read-only data segment or any code segment.
			 */
			exn = ((s.type & 0xa) == 0 || (s.type & 8));
		else
			/* #GP(0) if the source operand is located in an
			 * execute-only code segment
			 */
			exn = ((s.type & 0xa) == 8);
		if (exn) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
		 */
		exn = (s.unusable != 0);
4809 4810 4811 4812 4813 4814

		/*
		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
		 * outside the segment limit.  All CPUs that support VMX ignore
		 * limit checks for flat segments, i.e. segments with base==0,
		 * limit==0xffffffff and of type expand-up data or code.
4815
		 */
4816 4817
		if (!(s.base == 0 && s.limit == 0xffffffff &&
		     ((s.type & 8) || !(s.type & 4))))
4818
			exn = exn || ((u64)off + len - 1 > s.limit);
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	}
	if (exn) {
		kvm_queue_exception_e(vcpu,
				      seg_reg == VCPU_SREG_SS ?
						SS_VECTOR : GP_VECTOR,
				      0);
		return 1;
	}

	return 0;
}

4831 4832
void nested_vmx_pmu_refresh(struct kvm_vcpu *vcpu,
			    bool vcpu_has_perf_global_ctrl)
4833 4834 4835 4836 4837 4838 4839
{
	struct vcpu_vmx *vmx;

	if (!nested_vmx_allowed(vcpu))
		return;

	vmx = to_vmx(vcpu);
4840
	if (vcpu_has_perf_global_ctrl) {
4841 4842 4843 4844 4845 4846 4847 4848
		vmx->nested.msrs.entry_ctls_high |=
				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
		vmx->nested.msrs.exit_ctls_high |=
				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
	} else {
		vmx->nested.msrs.entry_ctls_high &=
				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
		vmx->nested.msrs.exit_ctls_high &=
4849
				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4850 4851 4852
	}
}

4853 4854
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
				int *ret)
4855 4856 4857
{
	gva_t gva;
	struct x86_exception e;
4858
	int r;
4859

4860
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4861
				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4862 4863 4864 4865
				sizeof(*vmpointer), &gva)) {
		*ret = 1;
		return -EINVAL;
	}
4866

4867 4868
	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
	if (r != X86EMUL_CONTINUE) {
4869
		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4870
		return -EINVAL;
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	}

	return 0;
}

/*
 * Allocate a shadow VMCS and associate it with the currently loaded
 * VMCS, unless such a shadow VMCS already exists. The newly allocated
 * VMCS is also VMCLEARed, so that it is ready for use.
 */
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;

	/*
4887 4888 4889 4890 4891 4892
	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
	 * when L1 executes VMXOFF or the vCPU is forced out of nested
	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
	 * should be impossible to already have an allocated shadow VMCS.  KVM
	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
	 * always be the loaded VMCS.
4893
	 */
4894 4895 4896 4897 4898 4899
	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
		return loaded_vmcs->shadow_vmcs;

	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
	if (loaded_vmcs->shadow_vmcs)
		vmcs_clear(loaded_vmcs->shadow_vmcs);
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912

	return loaded_vmcs->shadow_vmcs;
}

static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int r;

	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
	if (r < 0)
		goto out_vmcs02;

4913
	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4914 4915 4916
	if (!vmx->nested.cached_vmcs12)
		goto out_cached_vmcs12;

4917
	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4918
	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4919 4920 4921 4922 4923 4924 4925
	if (!vmx->nested.cached_shadow_vmcs12)
		goto out_cached_shadow_vmcs12;

	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
		goto out_shadow_vmcs;

	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4926
		     HRTIMER_MODE_ABS_PINNED);
4927 4928 4929 4930 4931 4932
	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;

	vmx->nested.vpid02 = allocate_vpid();

	vmx->nested.vmcs02_initialized = false;
	vmx->nested.vmxon = true;
4933

4934
	if (vmx_pt_mode_is_host_guest()) {
4935
		vmx->pt_desc.guest.ctl = 0;
4936
		pt_update_intercept_for_msr(vcpu);
4937 4938
	}

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
	return 0;

out_shadow_vmcs:
	kfree(vmx->nested.cached_shadow_vmcs12);

out_cached_shadow_vmcs12:
	kfree(vmx->nested.cached_vmcs12);

out_cached_vmcs12:
	free_loaded_vmcs(&vmx->nested.vmcs02);

out_vmcs02:
	return -ENOMEM;
}

4954
/* Emulate the VMXON instruction. */
4955 4956 4957 4958
static int handle_vmon(struct kvm_vcpu *vcpu)
{
	int ret;
	gpa_t vmptr;
4959
	uint32_t revision;
4960
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4961 4962
	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4963 4964 4965 4966

	/*
	 * The Intel VMX Instruction Reference lists a bunch of bits that are
	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4967
	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
	 * Otherwise, we should fail with #UD.  But most faulting conditions
	 * have already been checked by hardware, prior to the VM-exit for
	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
	 * that bit set to 1 in non-root mode.
	 */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* CPL=0 must be checked manually. */
	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

	if (vmx->nested.vmxon)
4985
		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4986 4987 4988 4989 4990 4991 4992

	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
			!= VMXON_NEEDED_FEATURES) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

4993 4994
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
		return ret;
4995 4996 4997 4998 4999 5000 5001 5002 5003

	/*
	 * SDM 3: 24.11.5
	 * The first 4 bytes of VMXON region contain the supported
	 * VMCS revision identifier
	 *
	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
	 * which replaces physical address width with 32
	 */
5004
	if (!page_address_valid(vcpu, vmptr))
5005 5006
		return nested_vmx_failInvalid(vcpu);

5007 5008
	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
	    revision != VMCS12_REVISION)
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
		return nested_vmx_failInvalid(vcpu);

	vmx->nested.vmxon_ptr = vmptr;
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

	return nested_vmx_succeed(vcpu);
}

static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

5023
	if (vmx->nested.current_vmptr == INVALID_GPA)
5024 5025
		return;

5026 5027
	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	if (enable_shadow_vmcs) {
		/* copy to memory all shadowed fields in case
		   they were modified */
		copy_shadow_to_vmcs12(vmx);
		vmx_disable_shadow_vmcs(vmx);
	}
	vmx->nested.posted_intr_nv = -1;

	/* Flush VMCS12 to guest memory */
	kvm_vcpu_write_guest_page(vcpu,
				  vmx->nested.current_vmptr >> PAGE_SHIFT,
				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);

5041
	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5042

5043
	vmx->nested.current_vmptr = INVALID_GPA;
5044 5045 5046 5047 5048 5049 5050
}

/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
	if (!nested_vmx_check_permission(vcpu))
		return 1;
5051

5052
	free_nested(vcpu);
5053 5054 5055 5056

	/* Process a latched INIT during time CPU was in VMX operation */
	kvm_make_request(KVM_REQ_EVENT, vcpu);

5057 5058 5059 5060 5061 5062 5063 5064 5065
	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 zero = 0;
	gpa_t vmptr;
5066
	u64 evmcs_gpa;
5067
	int r;
5068 5069 5070 5071

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5072 5073
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
		return r;
5074

5075
	if (!page_address_valid(vcpu, vmptr))
5076
		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5077 5078

	if (vmptr == vmx->nested.vmxon_ptr)
5079
		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5080

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
	/*
	 * When Enlightened VMEntry is enabled on the calling CPU we treat
	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
	 * way to distinguish it from VMCS12) and we must not corrupt it by
	 * writing to the non-existent 'launch_state' field. The area doesn't
	 * have to be the currently active EVMCS on the calling CPU and there's
	 * nothing KVM has to do to transition it from 'active' to 'non-active'
	 * state. It is possible that the area will stay mapped as
	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
	 */
	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5093 5094 5095 5096 5097 5098 5099
		if (vmptr == vmx->nested.current_vmptr)
			nested_release_vmcs12(vcpu);

		kvm_vcpu_write_guest(vcpu,
				     vmptr + offsetof(struct vmcs12,
						      launch_state),
				     &zero, sizeof(zero));
5100 5101
	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
		nested_release_evmcs(vcpu);
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
	return nested_vmx_run(vcpu, true);
}

/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{

	return nested_vmx_run(vcpu, false);
}

static int handle_vmread(struct kvm_vcpu *vcpu)
{
5122 5123
	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
						    : get_vmcs12(vcpu);
5124
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5125 5126
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5127
	struct x86_exception e;
5128 5129 5130
	unsigned long field;
	u64 value;
	gva_t gva = 0;
5131
	short offset;
5132
	int len, r;
5133 5134 5135 5136 5137

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	/* Decode instruction info and find the field to read */
5138
	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5139

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
		/*
		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
		 * any VMREAD sets the ALU flags for VMfailInvalid.
		 */
		if (vmx->nested.current_vmptr == INVALID_GPA ||
		    (is_guest_mode(vcpu) &&
		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
			return nested_vmx_failInvalid(vcpu);

		offset = get_vmcs12_field_offset(field);
		if (offset < 0)
			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5153

5154 5155
		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5156

5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
		/* Read the field, zero-extended to a u64 value */
		value = vmcs12_read_any(vmcs12, field, offset);
	} else {
		/*
		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
		 * unsupported. Unfortunately, certain versions of Windows 11
		 * don't comply with this requirement which is not enforced in
		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
		 * workaround, as misbehaving guests will panic on VM-Fail.
		 * Note, enlightened VMCS is incompatible with shadow VMCS so
		 * all VMREADs from L2 should go to L1.
		 */
		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
			return nested_vmx_failInvalid(vcpu);

		offset = evmcs_field_offset(field, NULL);
		if (offset < 0)
			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);

		/* Read the field, zero-extended to a u64 value */
		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
	}
5180

5181 5182 5183 5184 5185
	/*
	 * Now copy part of this value to register or memory, as requested.
	 * Note that the number of bits actually copied is 32 or 64 depending
	 * on the guest's mode (32 or 64 bit), not on the given field's length.
	 */
5186
	if (instr_info & BIT(10)) {
5187
		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5188
	} else {
5189
		len = is_64_bit_mode(vcpu) ? 8 : 4;
5190
		if (get_vmx_mem_address(vcpu, exit_qualification,
5191
					instr_info, true, len, &gva))
5192 5193
			return 1;
		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5194 5195
		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
		if (r != X86EMUL_CONTINUE)
5196
			return kvm_handle_memory_failure(vcpu, r, &e);
5197 5198 5199 5200 5201
	}

	return nested_vmx_succeed(vcpu);
}

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
static bool is_shadow_field_rw(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RW(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}

static bool is_shadow_field_ro(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RO(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}
5225 5226 5227

static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
5228 5229
	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
						    : get_vmcs12(vcpu);
5230
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5231 5232 5233
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct x86_exception e;
5234
	unsigned long field;
5235
	short offset;
5236
	gva_t gva;
5237
	int len, r;
5238

5239 5240
	/*
	 * The value to write might be 32 or 64 bits, depending on L1's long
5241 5242
	 * mode, and eventually we need to write that into a field of several
	 * possible lengths. The code below first zero-extends the value to 64
5243
	 * bit (value), and then copies only the appropriate number of
5244 5245
	 * bits into the vmcs12 field.
	 */
5246
	u64 value = 0;
5247 5248 5249 5250

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5251
	/*
5252
	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5253 5254
	 * any VMWRITE sets the ALU flags for VMfailInvalid.
	 */
5255
	if (vmx->nested.current_vmptr == INVALID_GPA ||
5256
	    (is_guest_mode(vcpu) &&
5257
	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5258 5259
		return nested_vmx_failInvalid(vcpu);

5260
	if (instr_info & BIT(10))
5261
		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5262
	else {
5263
		len = is_64_bit_mode(vcpu) ? 8 : 4;
5264
		if (get_vmx_mem_address(vcpu, exit_qualification,
5265
					instr_info, false, len, &gva))
5266
			return 1;
5267 5268
		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
		if (r != X86EMUL_CONTINUE)
5269
			return kvm_handle_memory_failure(vcpu, r, &e);
5270 5271
	}

5272
	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5273

5274
	offset = get_vmcs12_field_offset(field);
5275
	if (offset < 0)
5276
		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5277 5278 5279 5280 5281 5282 5283

	/*
	 * If the vCPU supports "VMWRITE to any supported field in the
	 * VMCS," then the "read-only" fields are actually read/write.
	 */
	if (vmcs_field_readonly(field) &&
	    !nested_cpu_has_vmwrite_any_field(vcpu))
5284
		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5285

5286 5287 5288 5289 5290 5291
	/*
	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
	 * vmcs12, else we may crush a field or consume a stale value.
	 */
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5292 5293

	/*
5294 5295 5296 5297 5298 5299
	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
	 * from L1 will return a different value than VMREAD from L2 (L1 sees
	 * the stripped down value, L2 sees the full value as stored by KVM).
5300
	 */
5301
	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5302
		value &= 0x1f0ff;
5303

5304
	vmcs12_write_any(vmcs12, field, offset, value);
5305 5306

	/*
5307 5308 5309 5310
	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5311
	 */
5312 5313 5314 5315 5316 5317 5318 5319
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
		/*
		 * L1 can read these fields without exiting, ensure the
		 * shadow VMCS is up-to-date.
		 */
		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
			preempt_disable();
			vmcs_load(vmx->vmcs01.shadow_vmcs);
5320

5321
			__vmcs_writel(field, value);
5322

5323 5324 5325
			vmcs_clear(vmx->vmcs01.shadow_vmcs);
			vmcs_load(vmx->loaded_vmcs->vmcs);
			preempt_enable();
5326
		}
5327
		vmx->nested.dirty_vmcs12 = true;
5328 5329 5330 5331 5332 5333 5334 5335 5336
	}

	return nested_vmx_succeed(vcpu);
}

static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
	vmx->nested.current_vmptr = vmptr;
	if (enable_shadow_vmcs) {
5337
		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5338 5339
		vmcs_write64(VMCS_LINK_POINTER,
			     __pa(vmx->vmcs01.shadow_vmcs));
5340
		vmx->nested.need_vmcs12_to_shadow_sync = true;
5341 5342
	}
	vmx->nested.dirty_vmcs12 = true;
5343
	vmx->nested.force_msr_bitmap_recalc = true;
5344 5345 5346 5347 5348 5349 5350
}

/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t vmptr;
5351
	int r;
5352 5353 5354 5355

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5356 5357
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
		return r;
5358

5359
	if (!page_address_valid(vcpu, vmptr))
5360
		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5361 5362

	if (vmptr == vmx->nested.vmxon_ptr)
5363
		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5364 5365

	/* Forbid normal VMPTRLD if Enlightened version was used */
5366
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5367 5368 5369
		return 1;

	if (vmx->nested.current_vmptr != vmptr) {
5370 5371
		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
		struct vmcs_hdr hdr;
5372

5373
		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5374 5375 5376 5377 5378 5379
			/*
			 * Reads from an unbacked page return all 1s,
			 * which means that the 32 bits located at the
			 * given physical address won't match the required
			 * VMCS12_REVISION identifier.
			 */
5380
			return nested_vmx_fail(vcpu,
5381 5382
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5383

5384 5385 5386 5387 5388 5389
		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
						 offsetof(struct vmcs12, hdr),
						 sizeof(hdr))) {
			return nested_vmx_fail(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5390

5391 5392
		if (hdr.revision_id != VMCS12_REVISION ||
		    (hdr.shadow_vmcs &&
5393
		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5394
			return nested_vmx_fail(vcpu,
5395 5396 5397 5398 5399 5400 5401 5402 5403
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}

		nested_release_vmcs12(vcpu);

		/*
		 * Load VMCS12 from guest memory since it is not already
		 * cached.
		 */
5404 5405 5406 5407 5408
		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
					  VMCS12_SIZE)) {
			return nested_vmx_fail(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5409 5410 5411 5412 5413 5414 5415 5416 5417 5418

		set_current_vmptr(vmx, vmptr);
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
5419
	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5420 5421 5422 5423
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
	struct x86_exception e;
	gva_t gva;
5424
	int r;
5425 5426 5427 5428

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5429
	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5430 5431
		return 1;

5432 5433
	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
				true, sizeof(gpa_t), &gva))
5434 5435
		return 1;
	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5436 5437 5438
	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
					sizeof(gpa_t), &e);
	if (r != X86EMUL_CONTINUE)
5439
		return kvm_handle_memory_failure(vcpu, r, &e);
5440

5441 5442 5443 5444 5445 5446 5447 5448
	return nested_vmx_succeed(vcpu);
}

/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info, types;
5449 5450
	unsigned long type, roots_to_free;
	struct kvm_mmu *mmu;
5451 5452 5453 5454 5455
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 eptp, gpa;
	} operand;
5456
	int i, r, gpr_index;
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_EPT) ||
	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5469 5470
	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
	type = kvm_register_read(vcpu, gpr_index);
5471 5472 5473 5474

	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;

	if (type >= 32 || !(types & (1 << type)))
5475
		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5476 5477 5478 5479

	/* According to the Intel VMX instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
5480
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5481
			vmx_instruction_info, false, sizeof(operand), &gva))
5482
		return 1;
5483 5484
	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
	if (r != X86EMUL_CONTINUE)
5485
		return kvm_handle_memory_failure(vcpu, r, &e);
5486

5487 5488 5489 5490 5491 5492
	/*
	 * Nested EPT roots are always held through guest_mmu,
	 * not root_mmu.
	 */
	mmu = &vcpu->arch.guest_mmu;

5493
	switch (type) {
5494
	case VMX_EPT_EXTENT_CONTEXT:
5495
		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5496
			return nested_vmx_fail(vcpu,
5497
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5498

5499
		roots_to_free = 0;
5500
		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5501 5502 5503 5504 5505
					    operand.eptp))
			roots_to_free |= KVM_MMU_ROOT_CURRENT;

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5506
						    mmu->prev_roots[i].pgd,
5507 5508 5509 5510
						    operand.eptp))
				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
		}
		break;
5511
	case VMX_EPT_EXTENT_GLOBAL:
5512
		roots_to_free = KVM_MMU_ROOTS_ALL;
5513 5514
		break;
	default:
5515
		BUG();
5516 5517 5518
		break;
	}

5519
	if (roots_to_free)
5520
		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5521

5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
	return nested_vmx_succeed(vcpu);
}

static int handle_invvpid(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info;
	unsigned long type, types;
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 vpid;
		u64 gla;
	} operand;
	u16 vpid02;
5537
	int r, gpr_index;
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_VPID) ||
			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5550 5551
	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
	type = kvm_register_read(vcpu, gpr_index);
5552 5553 5554 5555 5556

	types = (vmx->nested.msrs.vpid_caps &
			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;

	if (type >= 32 || !(types & (1 << type)))
5557
		return nested_vmx_fail(vcpu,
5558 5559 5560 5561 5562
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	/* according to the intel vmx instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
5563
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5564
			vmx_instruction_info, false, sizeof(operand), &gva))
5565
		return 1;
5566 5567
	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
	if (r != X86EMUL_CONTINUE)
5568
		return kvm_handle_memory_failure(vcpu, r, &e);
5569

5570
	if (operand.vpid >> 16)
5571
		return nested_vmx_fail(vcpu,
5572 5573 5574 5575 5576 5577 5578
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	vpid02 = nested_get_vpid02(vcpu);
	switch (type) {
	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
		if (!operand.vpid ||
		    is_noncanonical_address(operand.gla, vcpu))
5579
			return nested_vmx_fail(vcpu,
5580
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5581
		vpid_sync_vcpu_addr(vpid02, operand.gla);
5582 5583 5584 5585
		break;
	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
		if (!operand.vpid)
5586
			return nested_vmx_fail(vcpu,
5587
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5588
		vpid_sync_context(vpid02);
5589 5590
		break;
	case VMX_VPID_EXTENT_ALL_CONTEXT:
5591
		vpid_sync_context(vpid02);
5592 5593 5594 5595 5596 5597
		break;
	default:
		WARN_ON_ONCE(1);
		return kvm_skip_emulated_instruction(vcpu);
	}

5598 5599
	/*
	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5600 5601
	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
	 * roots as VPIDs are not tracked in the MMU role.
5602 5603 5604 5605 5606 5607 5608
	 *
	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
	 * an MMU when EPT is disabled.
	 *
	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
	 */
	if (!enable_ept)
5609
		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5610

5611 5612 5613 5614 5615 5616
	return nested_vmx_succeed(vcpu);
}

static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
5617
	u32 index = kvm_rcx_read(vcpu);
5618
	u64 new_eptp;
5619

5620
	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5621 5622 5623 5624 5625
		return 1;
	if (index >= VMFUNC_EPTP_ENTRIES)
		return 1;

	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5626
				     &new_eptp, index * 8, 8))
5627 5628 5629 5630 5631 5632
		return 1;

	/*
	 * If the (L2) guest does a vmfunc to the currently
	 * active ept pointer, we don't have to do anything else
	 */
5633 5634
	if (vmcs12->ept_pointer != new_eptp) {
		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5635 5636
			return 1;

5637
		vmcs12->ept_pointer = new_eptp;
5638
		nested_ept_new_eptp(vcpu);
5639

5640 5641
		if (!nested_cpu_has_vpid(vmcs12))
			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5642 5643 5644 5645 5646 5647 5648 5649 5650
	}

	return 0;
}

static int handle_vmfunc(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
5651
	u32 function = kvm_rax_read(vcpu);
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663

	/*
	 * VMFUNC is only supported for nested guests, but we always enable the
	 * secondary control for simplicity; for non-nested mode, fake that we
	 * didn't by injecting #UD.
	 */
	if (!is_guest_mode(vcpu)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmcs12 = get_vmcs12(vcpu);
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

	/*
	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
	 */
	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

5674
	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
		goto fail;

	switch (function) {
	case 0:
		if (nested_vmx_eptp_switching(vcpu, vmcs12))
			goto fail;
		break;
	default:
		goto fail;
	}
	return kvm_skip_emulated_instruction(vcpu);

fail:
5688 5689 5690 5691 5692 5693
	/*
	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
	 * EXIT_REASON_VMFUNC as the exit reason.
	 */
	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5694
			  vmx_get_intr_info(vcpu),
5695
			  vmx_get_exit_qual(vcpu));
5696 5697 5698
	return 1;
}

5699 5700 5701 5702 5703 5704
/*
 * Return true if an IO instruction with the specified port and size should cause
 * a VM-exit into L1.
 */
bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
				 int size)
5705
{
5706
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5707 5708 5709
	gpa_t bitmap, last_bitmap;
	u8 b;

5710
	last_bitmap = INVALID_GPA;
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
	b = -1;

	while (size > 0) {
		if (port < 0x8000)
			bitmap = vmcs12->io_bitmap_a;
		else if (port < 0x10000)
			bitmap = vmcs12->io_bitmap_b;
		else
			return true;
		bitmap += (port & 0x7fff) / 8;

		if (last_bitmap != bitmap)
			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
				return true;
		if (b & (1 << (port & 7)))
			return true;

		port++;
		size--;
		last_bitmap = bitmap;
	}

	return false;
}

5736 5737 5738 5739
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification;
5740
	unsigned short port;
5741 5742 5743 5744 5745
	int size;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);

5746
	exit_qualification = vmx_get_exit_qual(vcpu);
5747 5748 5749 5750 5751 5752 5753

	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;

	return nested_vmx_check_io_bitmaps(vcpu, port, size);
}

5754
/*
5755
 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5756 5757 5758 5759 5760
 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 * disinterest in the current event (read or write a specific MSR) by using an
 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 */
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5761 5762
					struct vmcs12 *vmcs12,
					union vmx_exit_reason exit_reason)
5763
{
5764
	u32 msr_index = kvm_rcx_read(vcpu);
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	gpa_t bitmap;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return true;

	/*
	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
	 * for the four combinations of read/write and low/high MSR numbers.
	 * First we need to figure out which of the four to use:
	 */
	bitmap = vmcs12->msr_bitmap;
5776
	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
		bitmap += 2048;
	if (msr_index >= 0xc0000000) {
		msr_index -= 0xc0000000;
		bitmap += 1024;
	}

	/* Then read the msr_index'th bit from this bitmap: */
	if (msr_index < 1024*8) {
		unsigned char b;
		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
			return true;
		return 1 & (b >> (msr_index & 7));
	} else
		return true; /* let L1 handle the wrong parameter */
}

/*
 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 * intercept (via guest_host_mask etc.) the current event.
 */
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12)
{
5801
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5802 5803 5804 5805 5806 5807 5808
	int cr = exit_qualification & 15;
	int reg;
	unsigned long val;

	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
		reg = (exit_qualification >> 8) & 15;
5809
		val = kvm_register_read(vcpu, reg);
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
		switch (cr) {
		case 0:
			if (vmcs12->cr0_guest_host_mask &
			    (val ^ vmcs12->cr0_read_shadow))
				return true;
			break;
		case 3:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
				return true;
			break;
		case 4:
			if (vmcs12->cr4_guest_host_mask &
			    (vmcs12->cr4_read_shadow ^ val))
				return true;
			break;
		case 8:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
				return true;
			break;
		}
		break;
	case 2: /* clts */
		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
			return true;
		break;
	case 1: /* mov from cr */
		switch (cr) {
		case 3:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR3_STORE_EXITING)
				return true;
			break;
		case 8:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR8_STORE_EXITING)
				return true;
			break;
		}
		break;
	case 3: /* lmsw */
		/*
		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
		 * cr0. Other attempted changes are ignored, with no exit.
		 */
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
		if (vmcs12->cr0_guest_host_mask & 0xe &
		    (val ^ vmcs12->cr0_read_shadow))
			return true;
		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
		    !(vmcs12->cr0_read_shadow & 0x1) &&
		    (val & 0x1))
			return true;
		break;
	}
	return false;
}

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	u32 encls_leaf;

	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
		return false;

	encls_leaf = kvm_rax_read(vcpu);
	if (encls_leaf > 62)
		encls_leaf = 63;
	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
}

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, gpa_t bitmap)
{
	u32 vmx_instruction_info;
	unsigned long field;
	u8 b;

	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return true;

	/* Decode instruction info and find the field to access */
	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));

	/* Out-of-range fields always cause a VM exit from L2 to L1 */
	if (field >> 15)
		return true;

	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
		return true;

	return 1 & (b >> (field & 7));
}

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
{
	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;

	if (nested_cpu_has_mtf(vmcs12))
		return true;

	/*
	 * An MTF VM-exit may be injected into the guest by setting the
	 * interruption-type to 7 (other event) and the vector field to 0. Such
	 * is the case regardless of the 'monitor trap flag' VM-execution
	 * control.
	 */
	return entry_intr_info == (INTR_INFO_VALID_MASK
				   | INTR_TYPE_OTHER_EVENT);
}

5924
/*
5925 5926
 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5927
 */
5928 5929
static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
				     union vmx_exit_reason exit_reason)
5930
{
5931
	u32 intr_info;
5932

5933
	switch ((u16)exit_reason.basic) {
5934
	case EXIT_REASON_EXCEPTION_NMI:
5935
		intr_info = vmx_get_intr_info(vcpu);
5936
		if (is_nmi(intr_info))
5937
			return true;
5938
		else if (is_page_fault(intr_info))
5939 5940
			return vcpu->arch.apf.host_apf_flags ||
			       vmx_need_pf_intercept(vcpu);
5941 5942 5943
		else if (is_debug(intr_info) &&
			 vcpu->guest_debug &
			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5944
			return true;
5945 5946
		else if (is_breakpoint(intr_info) &&
			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5947
			return true;
5948 5949 5950
		else if (is_alignment_check(intr_info) &&
			 !vmx_guest_inject_ac(vcpu))
			return true;
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
		return false;
	case EXIT_REASON_EXTERNAL_INTERRUPT:
		return true;
	case EXIT_REASON_MCE_DURING_VMENTRY:
		return true;
	case EXIT_REASON_EPT_VIOLATION:
		/*
		 * L0 always deals with the EPT violation. If nested EPT is
		 * used, and the nested mmu code discovers that the address is
		 * missing in the guest EPT table (EPT12), the EPT violation
		 * will be injected with nested_ept_inject_page_fault()
		 */
		return true;
	case EXIT_REASON_EPT_MISCONFIG:
		/*
		 * L2 never uses directly L1's EPT, but rather L0's own EPT
		 * table (shadow on EPT) or a merged EPT table that L0 built
		 * (EPT on EPT). So any problems with the structure of the
		 * table is L0's fault.
		 */
		return true;
	case EXIT_REASON_PREEMPTION_TIMER:
		return true;
	case EXIT_REASON_PML_FULL:
5975 5976 5977 5978
		/*
		 * PML is emulated for an L1 VMM and should never be enabled in
		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
		 */
5979 5980 5981 5982
		return true;
	case EXIT_REASON_VMFUNC:
		/* VM functions are emulated through L2->L0 vmexits. */
		return true;
5983 5984 5985 5986 5987 5988
	case EXIT_REASON_BUS_LOCK:
		/*
		 * At present, bus lock VM exit is never exposed to L1.
		 * Handle L2's bus locks in L0 directly.
		 */
		return true;
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
	default:
		break;
	}
	return false;
}

/*
 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
 * is_guest_mode (L2).
 */
5999 6000
static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
				     union vmx_exit_reason exit_reason)
6001 6002
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6003
	u32 intr_info;
6004

6005
	switch ((u16)exit_reason.basic) {
6006
	case EXIT_REASON_EXCEPTION_NMI:
6007
		intr_info = vmx_get_intr_info(vcpu);
6008 6009 6010 6011
		if (is_nmi(intr_info))
			return true;
		else if (is_page_fault(intr_info))
			return true;
6012 6013 6014
		return vmcs12->exception_bitmap &
				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
	case EXIT_REASON_EXTERNAL_INTERRUPT:
6015
		return nested_exit_on_intr(vcpu);
6016 6017
	case EXIT_REASON_TRIPLE_FAULT:
		return true;
6018 6019
	case EXIT_REASON_INTERRUPT_WINDOW:
		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6020
	case EXIT_REASON_NMI_WINDOW:
6021
		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
	case EXIT_REASON_TASK_SWITCH:
		return true;
	case EXIT_REASON_CPUID:
		return true;
	case EXIT_REASON_HLT:
		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
	case EXIT_REASON_INVD:
		return true;
	case EXIT_REASON_INVLPG:
		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_RDPMC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
	case EXIT_REASON_RDRAND:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
	case EXIT_REASON_RDSEED:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
	case EXIT_REASON_VMREAD:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmread_bitmap);
	case EXIT_REASON_VMWRITE:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmwrite_bitmap);
	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
		/*
		 * VMX instructions trap unconditionally. This allows L1 to
		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
		 */
		return true;
	case EXIT_REASON_CR_ACCESS:
		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
	case EXIT_REASON_DR_ACCESS:
		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
	case EXIT_REASON_IO_INSTRUCTION:
		return nested_vmx_exit_handled_io(vcpu, vmcs12);
	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
	case EXIT_REASON_INVALID_STATE:
		return true;
	case EXIT_REASON_MWAIT_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
	case EXIT_REASON_MONITOR_TRAP_FLAG:
6072
		return nested_vmx_exit_handled_mtf(vmcs12);
6073 6074 6075 6076 6077 6078 6079
	case EXIT_REASON_MONITOR_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
	case EXIT_REASON_PAUSE_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
			nested_cpu_has2(vmcs12,
				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
	case EXIT_REASON_MCE_DURING_VMENTRY:
6080
		return true;
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	case EXIT_REASON_TPR_BELOW_THRESHOLD:
		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
	case EXIT_REASON_APIC_ACCESS:
	case EXIT_REASON_APIC_WRITE:
	case EXIT_REASON_EOI_INDUCED:
		/*
		 * The controls for "virtualize APIC accesses," "APIC-
		 * register virtualization," and "virtual-interrupt
		 * delivery" only come from vmcs12.
		 */
		return true;
	case EXIT_REASON_INVPCID:
		return
			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_WBINVD:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
	case EXIT_REASON_XSETBV:
		return true;
	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
		/*
		 * This should never happen, since it is not possible to
		 * set XSS to a non-zero value---neither in L1 nor in L2.
		 * If if it were, XSS would have to be checked against
		 * the XSS exit bitmap in vmcs12.
		 */
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6108 6109 6110 6111
	case EXIT_REASON_UMWAIT:
	case EXIT_REASON_TPAUSE:
		return nested_cpu_has2(vmcs12,
			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6112 6113
	case EXIT_REASON_ENCLS:
		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6114 6115 6116 6117 6118
	default:
		return true;
	}
}

6119 6120 6121 6122
/*
 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
 * reflected into L1.
 */
6123
bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6124
{
6125
	struct vcpu_vmx *vmx = to_vmx(vcpu);
6126
	union vmx_exit_reason exit_reason = vmx->exit_reason;
6127 6128
	unsigned long exit_qual;
	u32 exit_intr_info;
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143

	WARN_ON_ONCE(vmx->nested.nested_run_pending);

	/*
	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
	 * has already loaded L2's state.
	 */
	if (unlikely(vmx->fail)) {
		trace_kvm_nested_vmenter_failed(
			"hardware VM-instruction error: ",
			vmcs_read32(VM_INSTRUCTION_ERROR));
		exit_intr_info = 0;
		exit_qual = 0;
		goto reflect_vmexit;
	}
6144

6145
	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6146

6147 6148 6149 6150 6151 6152
	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
		return false;

	/* If L1 doesn't want the exit, handle it in L0. */
	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6153 6154 6155
		return false;

	/*
6156 6157 6158 6159
	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
	 * need to be synthesized by querying the in-kernel LAPIC, but external
	 * interrupts are never reflected to L1 so it's a non-issue.
6160
	 */
6161
	exit_intr_info = vmx_get_intr_info(vcpu);
6162
	if (is_exception_with_error_code(exit_intr_info)) {
6163 6164 6165 6166 6167
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

		vmcs12->vm_exit_intr_error_code =
			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
	}
6168
	exit_qual = vmx_get_exit_qual(vcpu);
6169

6170
reflect_vmexit:
6171
	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6172 6173
	return true;
}
6174 6175 6176 6177 6178 6179 6180 6181 6182

static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				u32 user_data_size)
{
	struct vcpu_vmx *vmx;
	struct vmcs12 *vmcs12;
	struct kvm_nested_state kvm_state = {
		.flags = 0,
6183
		.format = KVM_STATE_NESTED_FORMAT_VMX,
6184
		.size = sizeof(kvm_state),
6185
		.hdr.vmx.flags = 0,
6186 6187
		.hdr.vmx.vmxon_pa = INVALID_GPA,
		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6188
		.hdr.vmx.preemption_timer_deadline = 0,
6189
	};
6190 6191
	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
		&user_kvm_nested_state->data.vmx[0];
6192 6193

	if (!vcpu)
6194
		return kvm_state.size + sizeof(*user_vmx_nested_state);
6195 6196 6197 6198 6199 6200

	vmx = to_vmx(vcpu);
	vmcs12 = get_vmcs12(vcpu);

	if (nested_vmx_allowed(vcpu) &&
	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6201 6202
		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6203 6204

		if (vmx_has_valid_vmcs12(vcpu)) {
6205
			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6206

6207 6208
			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6209 6210
				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;

6211 6212
			if (is_guest_mode(vcpu) &&
			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6213
			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6214
				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6215 6216 6217
		}

		if (vmx->nested.smm.vmxon)
6218
			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6219 6220

		if (vmx->nested.smm.guest_mode)
6221
			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6222 6223 6224 6225 6226 6227

		if (is_guest_mode(vcpu)) {
			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;

			if (vmx->nested.nested_run_pending)
				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6228 6229 6230

			if (vmx->nested.mtf_pending)
				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6231 6232 6233 6234 6235 6236 6237 6238

			if (nested_cpu_has_preemption_timer(vmcs12) &&
			    vmx->nested.has_preemption_timer_deadline) {
				kvm_state.hdr.vmx.flags |=
					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
				kvm_state.hdr.vmx.preemption_timer_deadline =
					vmx->nested.preemption_timer_deadline;
			}
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
		}
	}

	if (user_data_size < kvm_state.size)
		goto out;

	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
		return -EFAULT;

	if (!vmx_has_valid_vmcs12(vcpu))
		goto out;

	/*
	 * When running L2, the authoritative vmcs12 state is in the
	 * vmcs02. When running L1, the authoritative vmcs12 state is
	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6255
	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6256 6257 6258
	 * vmcs12 state is in the vmcs12 already.
	 */
	if (is_guest_mode(vcpu)) {
6259
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6260
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6261 6262 6263
	} else  {
		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6264
			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6265 6266 6267 6268 6269 6270 6271 6272
				/*
				 * L1 hypervisor is not obliged to keep eVMCS
				 * clean fields data always up-to-date while
				 * not in guest mode, 'hv_clean_fields' is only
				 * supposed to be actual upon vmentry so we need
				 * to ignore it here and do full copy.
				 */
				copy_enlightened_to_vmcs12(vmx, 0);
6273 6274 6275
			else if (enable_shadow_vmcs)
				copy_shadow_to_vmcs12(vmx);
		}
6276 6277
	}

6278 6279 6280
	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);

6281 6282 6283 6284
	/*
	 * Copy over the full allocated size of vmcs12 rather than just the size
	 * of the struct.
	 */
6285
	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6286 6287 6288
		return -EFAULT;

	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6289
	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6290
		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6291
				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
			return -EFAULT;
	}
out:
	return kvm_state.size;
}

/*
 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 */
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu)) {
		to_vmx(vcpu)->nested.nested_run_pending = 0;
		nested_vmx_vmexit(vcpu, -1, 0, 0);
	}
	free_nested(vcpu);
}

static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				struct kvm_nested_state *kvm_state)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
6316
	enum vm_entry_failure_code ignored;
6317 6318
	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
		&user_kvm_nested_state->data.vmx[0];
6319 6320
	int ret;

6321
	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6322 6323
		return -EINVAL;

6324
	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6325
		if (kvm_state->hdr.vmx.smm.flags)
6326 6327
			return -EINVAL;

6328
		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6329 6330
			return -EINVAL;

6331 6332 6333 6334 6335 6336 6337 6338 6339
		/*
		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
		 * enable eVMCS capability on vCPU. However, since then
		 * code was changed such that flag signals vmcs12 should
		 * be copied into eVMCS in guest memory.
		 *
		 * To preserve backwards compatability, allow user
		 * to set this flag even when there is no VMXON region.
		 */
6340 6341 6342 6343 6344
		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
			return -EINVAL;
	} else {
		if (!nested_vmx_allowed(vcpu))
			return -EINVAL;
6345

6346 6347
		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
			return -EINVAL;
6348
	}
6349

6350
	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6351 6352 6353
	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return -EINVAL;

6354
	if (kvm_state->hdr.vmx.smm.flags &
6355 6356 6357
	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
		return -EINVAL;

6358 6359 6360
	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
		return -EINVAL;

6361 6362 6363 6364 6365
	/*
	 * SMM temporarily disables VMX, so we cannot be in guest mode,
	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
	 * must be zero.
	 */
6366 6367 6368 6369
	if (is_smm(vcpu) ?
		(kvm_state->flags &
		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
		: kvm_state->hdr.vmx.smm.flags)
6370 6371
		return -EINVAL;

6372 6373
	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6374 6375
		return -EINVAL;

6376 6377
	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6378
			return -EINVAL;
6379

6380
	vmx_leave_nested(vcpu);
6381

6382
	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6383
		return 0;
6384

6385
	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6386 6387 6388 6389
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

6390 6391 6392 6393 6394
	/* Empty 'VMXON' state is permitted if no VMCS loaded */
	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
		/* See vmx_has_valid_vmcs12.  */
		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6395
		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6396 6397 6398 6399
			return -EINVAL;
		else
			return 0;
	}
6400

6401
	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6402 6403
		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6404 6405
			return -EINVAL;

6406
		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6407 6408
	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
		/*
6409 6410 6411 6412
		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
		 * restored yet. EVMCS will be mapped from
		 * nested_get_vmcs12_pages().
6413
		 */
6414
		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6415
		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6416 6417 6418 6419
	} else {
		return -EINVAL;
	}

6420
	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6421 6422 6423
		vmx->nested.smm.vmxon = true;
		vmx->nested.vmxon = false;

6424
		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6425 6426 6427 6428
			vmx->nested.smm.guest_mode = true;
	}

	vmcs12 = get_vmcs12(vcpu);
6429
	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6430 6431 6432 6433 6434 6435 6436 6437
		return -EFAULT;

	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
		return -EINVAL;

	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return 0;

6438 6439 6440
	vmx->nested.nested_run_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);

6441 6442 6443
	vmx->nested.mtf_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);

6444
	ret = -EINVAL;
6445
	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6446
	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6447 6448
		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);

6449 6450 6451
		if (kvm_state->size <
		    sizeof(*kvm_state) +
		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6452
			goto error_guest_mode;
6453 6454

		if (copy_from_user(shadow_vmcs12,
6455 6456
				   user_vmx_nested_state->shadow_vmcs12,
				   sizeof(*shadow_vmcs12))) {
6457 6458 6459
			ret = -EFAULT;
			goto error_guest_mode;
		}
6460 6461 6462

		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
		    !shadow_vmcs12->hdr.shadow_vmcs)
6463
			goto error_guest_mode;
6464 6465
	}

6466
	vmx->nested.has_preemption_timer_deadline = false;
6467 6468 6469 6470 6471 6472
	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
		vmx->nested.has_preemption_timer_deadline = true;
		vmx->nested.preemption_timer_deadline =
			kvm_state->hdr.vmx.preemption_timer_deadline;
	}

6473 6474
	if (nested_vmx_check_controls(vcpu, vmcs12) ||
	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6475
	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6476
		goto error_guest_mode;
6477 6478

	vmx->nested.dirty_vmcs12 = true;
6479
	vmx->nested.force_msr_bitmap_recalc = true;
6480
	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6481 6482
	if (ret)
		goto error_guest_mode;
6483 6484

	return 0;
6485 6486 6487 6488

error_guest_mode:
	vmx->nested.nested_run_pending = 0;
	return ret;
6489 6490
}

6491
void nested_vmx_set_vmcs_shadowing_bitmap(void)
6492 6493 6494
{
	if (enable_shadow_vmcs) {
		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6495
		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6496 6497 6498
	}
}

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
/*
 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
 * that madness to get the encoding for comparison.
 */
#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))

static u64 nested_vmx_calc_vmcs_enum_msr(void)
{
	/*
	 * Note these are the so called "index" of the VMCS field encoding, not
	 * the index into vmcs12.
	 */
	unsigned int max_idx, idx;
	int i;

	/*
	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
	 * vmcs12, regardless of whether or not the associated feature is
	 * exposed to L1.  Simply find the field with the highest index.
	 */
	max_idx = 0;
	for (i = 0; i < nr_vmcs12_fields; i++) {
		/* The vmcs12 table is very, very sparsely populated. */
6522
		if (!vmcs12_field_offsets[i])
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
			continue;

		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
		if (idx > max_idx)
			max_idx = idx;
	}

	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
/*
 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 * returned for the various VMX controls MSRs when nested VMX is enabled.
 * The same values should also be used to verify that vmcs12 control fields are
 * valid during nested entry from L1 to L2.
 * Each of these control msrs has a low and high 32-bit half: A low bit is on
 * if the corresponding bit in the (32-bit) control field *must* be on, and a
 * bit in the high half is on if the corresponding bit in the control field
 * may be on. See also vmx_control_verify().
 */
6543
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
{
	/*
	 * Note that as a general rule, the high half of the MSRs (bits in
	 * the control fields which may be 1) should be initialized by the
	 * intersection of the underlying hardware's MSR (i.e., features which
	 * can be supported) and the list of features we want to expose -
	 * because they are known to be properly supported in our code.
	 * Also, usually, the low half of the MSRs (bits which must be 1) can
	 * be set to 0, meaning that L1 may turn off any of these bits. The
	 * reason is that if one of these bits is necessary, it will appear
	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6556
	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	 * These rules have exceptions below.
	 */

	/* pin-based controls */
	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
		msrs->pinbased_ctls_low,
		msrs->pinbased_ctls_high);
	msrs->pinbased_ctls_low |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->pinbased_ctls_high &=
		PIN_BASED_EXT_INTR_MASK |
		PIN_BASED_NMI_EXITING |
		PIN_BASED_VIRTUAL_NMIS |
6570
		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
	msrs->pinbased_ctls_high |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		PIN_BASED_VMX_PREEMPTION_TIMER;

	/* exit controls */
	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
		msrs->exit_ctls_low,
		msrs->exit_ctls_high);
	msrs->exit_ctls_low =
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;

	msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
		VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
6586 6587
		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
	msrs->exit_ctls_high |=
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;

	/* We support free control of debug control saving. */
	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;

	/* entry controls */
	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
		msrs->entry_ctls_low,
		msrs->entry_ctls_high);
	msrs->entry_ctls_low =
		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
		VM_ENTRY_IA32E_MODE |
#endif
6606 6607
		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
	msrs->entry_ctls_high |=
		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);

	/* We support free control of debug control loading. */
	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;

	/* cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
		msrs->procbased_ctls_low,
		msrs->procbased_ctls_high);
	msrs->procbased_ctls_low =
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->procbased_ctls_high &=
6621
		CPU_BASED_INTR_WINDOW_EXITING |
6622
		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
		CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
	/*
	 * We can allow some features even when not supported by the
	 * hardware. For example, L1 can specify an MSR bitmap - and we
	 * can use it to avoid exits to L1 - even when L0 runs L2
	 * without MSR bitmaps.
	 */
	msrs->procbased_ctls_high |=
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		CPU_BASED_USE_MSR_BITMAPS;

	/* We support free control of CR3 access interception. */
	msrs->procbased_ctls_low &=
		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);

	/*
	 * secondary cpu-based controls.  Do not include those that
6650 6651
	 * depend on CPUID bits, they are added later by
	 * vmx_vcpu_after_set_cpuid.
6652
	 */
6653 6654 6655 6656 6657
	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
		      msrs->secondary_ctls_low,
		      msrs->secondary_ctls_high);

6658 6659 6660
	msrs->secondary_ctls_low = 0;
	msrs->secondary_ctls_high &=
		SECONDARY_EXEC_DESC |
6661
		SECONDARY_EXEC_ENABLE_RDTSCP |
6662
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6663
		SECONDARY_EXEC_WBINVD_EXITING |
6664 6665
		SECONDARY_EXEC_APIC_REGISTER_VIRT |
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6666 6667 6668
		SECONDARY_EXEC_RDRAND_EXITING |
		SECONDARY_EXEC_ENABLE_INVPCID |
		SECONDARY_EXEC_RDSEED_EXITING |
6669 6670
		SECONDARY_EXEC_XSAVES |
		SECONDARY_EXEC_TSC_SCALING;
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682

	/*
	 * We can emulate "VMCS shadowing," even if the hardware
	 * doesn't support it.
	 */
	msrs->secondary_ctls_high |=
		SECONDARY_EXEC_SHADOW_VMCS;

	if (enable_ept) {
		/* nested EPT: emulate EPT also to L1 */
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_EPT;
6683 6684 6685 6686
		msrs->ept_caps =
			VMX_EPT_PAGE_WALK_4_BIT |
			VMX_EPT_PAGE_WALK_5_BIT |
			VMX_EPTP_WB_BIT |
6687 6688 6689
			VMX_EPT_INVEPT_BIT |
			VMX_EPT_EXECUTE_ONLY_BIT;

6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
		msrs->ept_caps &= ept_caps;
		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
			VMX_EPT_1GB_PAGE_BIT;
		if (enable_ept_ad_bits) {
			msrs->secondary_ctls_high |=
				SECONDARY_EXEC_ENABLE_PML;
			msrs->ept_caps |= VMX_EPT_AD_BIT;
		}
	}

	if (cpu_has_vmx_vmfunc()) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VMFUNC;
		/*
		 * Advertise EPTP switching unconditionally
		 * since we emulate it
		 */
		if (enable_ept)
			msrs->vmfunc_controls =
				VMX_VMFUNC_EPTP_SWITCHING;
	}

	/*
	 * Old versions of KVM use the single-context version without
	 * checking for support, so declare that it is supported even
	 * though it is treated as global context.  The alternative is
	 * not failing the single-context invvpid, and it is worse.
	 */
	if (enable_vpid) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VPID;
		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
			VMX_VPID_EXTENT_SUPPORTED_MASK;
	}

	if (enable_unrestricted_guest)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_UNRESTRICTED_GUEST;

	if (flexpriority_enabled)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;

6734 6735 6736
	if (enable_sgx)
		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;

6737 6738 6739 6740 6741 6742 6743 6744
	/* miscellaneous data */
	rdmsr(MSR_IA32_VMX_MISC,
		msrs->misc_low,
		msrs->misc_high);
	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
	msrs->misc_low |=
		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6745 6746
		VMX_MISC_ACTIVITY_HLT |
		VMX_MISC_ACTIVITY_WAIT_SIPI;
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
	msrs->misc_high = 0;

	/*
	 * This MSR reports some information about VMX support. We
	 * should return information about the VMX we emulate for the
	 * guest, and the VMCS structure we give it - not about the
	 * VMX support of the underlying hardware.
	 */
	msrs->basic =
		VMCS12_REVISION |
		VMX_BASIC_TRUE_CTLS |
		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);

	if (cpu_has_vmx_basic_inout())
		msrs->basic |= VMX_BASIC_INOUT;

	/*
	 * These MSRs specify bits which the guest must keep fixed on
	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
	 * We picked the standard core2 setting.
	 */
#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;

	/* These MSRs specify bits which the guest must keep fixed off. */
	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);

6778
	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
}

void nested_vmx_hardware_unsetup(void)
{
	int i;

	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++)
			free_page((unsigned long)vmx_bitmap[i]);
	}
}

6791
__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6792 6793 6794 6795 6796 6797 6798
{
	int i;

	if (!cpu_has_vmx_shadow_vmcs())
		enable_shadow_vmcs = 0;
	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++) {
6799 6800 6801 6802
			/*
			 * The vmx_bitmap is not tied to a VM and so should
			 * not be charged to a memcg.
			 */
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
			vmx_bitmap[i] = (unsigned long *)
				__get_free_page(GFP_KERNEL);
			if (!vmx_bitmap[i]) {
				nested_vmx_hardware_unsetup();
				return -ENOMEM;
			}
		}

		init_vmcs_shadow_fields();
	}

6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6826 6827 6828

	return 0;
}
6829 6830

struct kvm_x86_nested_ops vmx_nested_ops = {
6831
	.leave_nested = vmx_leave_nested,
6832
	.check_events = vmx_check_nested_events,
6833
	.handle_page_fault_workaround = nested_vmx_handle_page_fault_workaround,
6834
	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6835
	.triple_fault = nested_vmx_triple_fault,
6836 6837
	.get_state = vmx_get_nested_state,
	.set_state = vmx_set_nested_state,
6838
	.get_nested_state_pages = vmx_get_nested_state_pages,
6839
	.write_log_dirty = nested_vmx_write_pml_buffer,
6840 6841 6842
	.enable_evmcs = nested_enable_evmcs,
	.get_evmcs_version = nested_get_evmcs_version,
};