nested.c 180.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// SPDX-License-Identifier: GPL-2.0

#include <linux/frame.h>
#include <linux/percpu.h>

#include <asm/debugreg.h>
#include <asm/mmu_context.h>

#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
#include "trace.h"
#include "x86.h"

static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);

static bool __read_mostly nested_early_check = 0;
module_param(nested_early_check, bool, S_IRUGO);

/*
 * Hyper-V requires all of these, so mark them as supported even though
 * they are just treated the same as all-context.
 */
#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)

#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5

enum {
	VMX_VMREAD_BITMAP,
	VMX_VMWRITE_BITMAP,
	VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];

#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])

44 45 46 47 48 49
struct shadow_vmcs_field {
	u16	encoding;
	u16	offset;
};
static struct shadow_vmcs_field shadow_read_only_fields[] = {
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
50 51 52 53 54
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_only_fields =
	ARRAY_SIZE(shadow_read_only_fields);

55 56
static struct shadow_vmcs_field shadow_read_write_fields[] = {
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
57 58 59 60 61
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_write_fields =
	ARRAY_SIZE(shadow_read_write_fields);

62
static void init_vmcs_shadow_fields(void)
63 64 65 66 67 68 69
{
	int i, j;

	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);

	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
70 71
		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
		u16 field = entry.encoding;
72 73 74

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_only_fields ||
75
		     shadow_read_only_fields[i + 1].encoding != field + 1))
76 77 78 79 80
			pr_err("Missing field from shadow_read_only_field %x\n",
			       field + 1);

		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
81
#ifdef CONFIG_X86_64
82
			continue;
83 84
#else
			entry.offset += sizeof(u32);
85
#endif
86
		shadow_read_only_fields[j++] = entry;
87 88 89 90
	}
	max_shadow_read_only_fields = j;

	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
91 92
		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
		u16 field = entry.encoding;
93 94 95

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_write_fields ||
96
		     shadow_read_write_fields[i + 1].encoding != field + 1))
97 98 99
			pr_err("Missing field from shadow_read_write_field %x\n",
			       field + 1);

100 101
		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
			  field <= GUEST_TR_AR_BYTES,
102
			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
		/*
		 * PML and the preemption timer can be emulated, but the
		 * processor cannot vmwrite to fields that don't exist
		 * on bare metal.
		 */
		switch (field) {
		case GUEST_PML_INDEX:
			if (!cpu_has_vmx_pml())
				continue;
			break;
		case VMX_PREEMPTION_TIMER_VALUE:
			if (!cpu_has_vmx_preemption_timer())
				continue;
			break;
		case GUEST_INTR_STATUS:
			if (!cpu_has_vmx_apicv())
				continue;
			break;
		default:
			break;
		}

		clear_bit(field, vmx_vmwrite_bitmap);
		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
129
#ifdef CONFIG_X86_64
130
			continue;
131 132
#else
			entry.offset += sizeof(u32);
133
#endif
134
		shadow_read_write_fields[j++] = entry;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	}
	max_shadow_read_write_fields = j;
}

/*
 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 * set the success or error code of an emulated VMX instruction (as specified
 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 * instruction.
 */
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_CF);
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
				u32 vm_instruction_error)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * failValid writes the error number to the current VMCS, which
	 * can't be done if there isn't a current VMCS.
	 */
	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
		return nested_vmx_failInvalid(vcpu);

	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_ZF);
	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
	/*
	 * We don't need to force a shadow sync because
	 * VM_INSTRUCTION_ERROR is not shadowed
	 */
	return kvm_skip_emulated_instruction(vcpu);
}

static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
	/* TODO: not to reset guest simply here. */
	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}

static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
195
	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
196 197 198 199 200 201 202 203 204 205
	vmcs_write64(VMCS_LINK_POINTER, -1ull);
}

static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!vmx->nested.hv_evmcs)
		return;

206
	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
	vmx->nested.hv_evmcs_vmptr = -1ull;
	vmx->nested.hv_evmcs = NULL;
}

/*
 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 * just stops using VMX.
 */
static void free_nested(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
		return;

	vmx->nested.vmxon = false;
	vmx->nested.smm.vmxon = false;
	free_vpid(vmx->nested.vpid02);
	vmx->nested.posted_intr_nv = -1;
	vmx->nested.current_vmptr = -1ull;
	if (enable_shadow_vmcs) {
		vmx_disable_shadow_vmcs(vmx);
		vmcs_clear(vmx->vmcs01.shadow_vmcs);
		free_vmcs(vmx->vmcs01.shadow_vmcs);
		vmx->vmcs01.shadow_vmcs = NULL;
	}
	kfree(vmx->nested.cached_vmcs12);
	kfree(vmx->nested.cached_shadow_vmcs12);
	/* Unpin physical memory we referred to in the vmcs02 */
	if (vmx->nested.apic_access_page) {
		kvm_release_page_dirty(vmx->nested.apic_access_page);
		vmx->nested.apic_access_page = NULL;
	}
240
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
241 242
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
243 244 245 246 247 248 249 250

	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);

	nested_release_evmcs(vcpu);

	free_loaded_vmcs(&vmx->nested.vmcs02);
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
				     struct loaded_vmcs *prev)
{
	struct vmcs_host_state *dest, *src;

	if (unlikely(!vmx->guest_state_loaded))
		return;

	src = &prev->host_state;
	dest = &vmx->loaded_vmcs->host_state;

	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
	dest->ldt_sel = src->ldt_sel;
#ifdef CONFIG_X86_64
	dest->ds_sel = src->ds_sel;
	dest->es_sel = src->es_sel;
#endif
}

270 271 272
static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
273
	struct loaded_vmcs *prev;
274 275 276 277 278 279
	int cpu;

	if (vmx->loaded_vmcs == vmcs)
		return;

	cpu = get_cpu();
280
	prev = vmx->loaded_vmcs;
281
	vmx->loaded_vmcs = vmcs;
282
	vmx_vcpu_load_vmcs(vcpu, cpu);
283
	vmx_sync_vmcs_host_state(vmx, prev);
284 285 286 287 288 289 290 291 292 293 294 295
	put_cpu();

	vmx_segment_cache_clear(vmx);
}

/*
 * Ensure that the current vmcs of the logical processor is the
 * vmcs01 of the vcpu before calling free_nested().
 */
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
296
	vmx_leave_nested(vcpu);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
	free_nested(vcpu);
	vcpu_put(vcpu);
}

static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 exit_reason;
	unsigned long exit_qualification = vcpu->arch.exit_qualification;

	if (vmx->nested.pml_full) {
		exit_reason = EXIT_REASON_PML_FULL;
		vmx->nested.pml_full = false;
		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
	} else if (fault->error_code & PFERR_RSVD_MASK)
		exit_reason = EXIT_REASON_EPT_MISCONFIG;
	else
		exit_reason = EXIT_REASON_EPT_VIOLATION;

	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
	vmcs12->guest_physical_address = fault->address;
}

static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
	WARN_ON(mmu_is_nested(vcpu));

	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
	kvm_init_shadow_ept_mmu(vcpu,
			to_vmx(vcpu)->nested.msrs.ept_caps &
			VMX_EPT_EXECUTE_ONLY_BIT,
			nested_ept_ad_enabled(vcpu),
			nested_ept_get_cr3(vcpu));
	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;

	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}

static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
					    u16 error_code)
{
	bool inequality, bit;

	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
	inequality =
		(error_code & vmcs12->page_fault_error_code_mask) !=
		 vmcs12->page_fault_error_code_match;
	return inequality ^ bit;
}


/*
 * KVM wants to inject page-faults which it got to the guest. This function
 * checks whether in a nested guest, we need to inject them to L1 or L2.
 */
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	bool has_payload = vcpu->arch.exception.has_payload;
	unsigned long payload = vcpu->arch.exception.payload;

	if (nr == PF_VECTOR) {
		if (vcpu->arch.exception.nested_apf) {
			*exit_qual = vcpu->arch.apf.nested_apf_token;
			return 1;
		}
		if (nested_vmx_is_page_fault_vmexit(vmcs12,
						    vcpu->arch.exception.error_code)) {
			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
			return 1;
		}
	} else if (vmcs12->exception_bitmap & (1u << nr)) {
		if (nr == DB_VECTOR) {
			if (!has_payload) {
				payload = vcpu->arch.dr6;
				payload &= ~(DR6_FIXED_1 | DR6_BT);
				payload ^= DR6_RTM;
			}
			*exit_qual = payload;
		} else
			*exit_qual = 0;
		return 1;
	}

	return 0;
}


static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	WARN_ON(!is_guest_mode(vcpu));

	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
		!to_vmx(vcpu)->nested.nested_run_pending) {
		vmcs12->vm_exit_intr_error_code = fault->error_code;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
				  fault->address);
	} else {
		kvm_inject_page_fault(vcpu, fault);
	}
}

static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
{
	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
}

static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
					       struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return 0;

	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return 0;

	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return 0;

	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
		return -EINVAL;

	return 0;
}

/*
 * Check if MSR is intercepted for L01 MSR bitmap.
 */
static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
{
	unsigned long *msr_bitmap;
	int f = sizeof(unsigned long);

	if (!cpu_has_vmx_msr_bitmap())
		return true;

	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;

	if (msr <= 0x1fff) {
		return !!test_bit(msr, msr_bitmap + 0x800 / f);
	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
	}

	return true;
}

/*
 * If a msr is allowed by L0, we should check whether it is allowed by L1.
 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
 */
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
					       unsigned long *msr_bitmap_nested,
					       u32 msr, int type)
{
	int f = sizeof(unsigned long);

	/*
	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
	 * have the write-low and read-high bitmap offsets the wrong way round.
	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
	 */
	if (msr <= 0x1fff) {
		if (type & MSR_TYPE_R &&
		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
			/* read-low */
			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);

		if (type & MSR_TYPE_W &&
		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
			/* write-low */
			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);

	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
		msr &= 0x1fff;
		if (type & MSR_TYPE_R &&
		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
			/* read-high */
			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);

		if (type & MSR_TYPE_W &&
		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
			/* write-high */
			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);

	}
}

523 524 525 526 527 528 529 530 531 532 533
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
	int msr;

	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
		unsigned word = msr / BITS_PER_LONG;

		msr_bitmap[word] = ~0;
		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
	}
}

534 535 536 537 538 539 540 541 542 543
/*
 * Merge L0's and L1's MSR bitmap, return false to indicate that
 * we do not use the hardware.
 */
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
	int msr;
	unsigned long *msr_bitmap_l1;
	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
544
	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
545 546 547 548 549 550

	/* Nothing to do if the MSR bitmap is not in use.  */
	if (!cpu_has_vmx_msr_bitmap() ||
	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return false;

551
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
552 553
		return false;

554
	msr_bitmap_l1 = (unsigned long *)map->hva;
555

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	/*
	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
	 * the x2APIC MSR range and selectively disable them below.
	 */
	enable_x2apic_msr_intercepts(msr_bitmap_l0);

	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
			/*
			 * L0 need not intercept reads for MSRs between 0x800
			 * and 0x8ff, it just lets the processor take the value
			 * from the virtual-APIC page; take those 256 bits
			 * directly from the L1 bitmap.
			 */
			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
				unsigned word = msr / BITS_PER_LONG;

				msr_bitmap_l0[word] = msr_bitmap_l1[word];
			}
		}
577 578 579

		nested_vmx_disable_intercept_for_msr(
			msr_bitmap_l1, msr_bitmap_l0,
580
			X2APIC_MSR(APIC_TASKPRI),
581
			MSR_TYPE_R | MSR_TYPE_W);
582 583 584 585 586 587 588 589 590 591 592

		if (nested_cpu_has_vid(vmcs12)) {
			nested_vmx_disable_intercept_for_msr(
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_EOI),
				MSR_TYPE_W);
			nested_vmx_disable_intercept_for_msr(
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_SELF_IPI),
				MSR_TYPE_W);
		}
593 594
	}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
					     MSR_FS_BASE, MSR_TYPE_RW);

	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
					     MSR_GS_BASE, MSR_TYPE_RW);

	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);

	/*
	 * Checking the L0->L1 bitmap is trying to verify two things:
	 *
	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
	 *    ensures that we do not accidentally generate an L02 MSR bitmap
	 *    from the L12 MSR bitmap that is too permissive.
	 * 2. That L1 or L2s have actually used the MSR. This avoids
	 *    unnecessarily merging of the bitmap if the MSR is unused. This
	 *    works properly because we only update the L01 MSR bitmap lazily.
	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
	 *    updated to reflect this when L1 (or its L2s) actually write to
	 *    the MSR.
	 */
	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
619 620 621 622 623
		nested_vmx_disable_intercept_for_msr(
					msr_bitmap_l1, msr_bitmap_l0,
					MSR_IA32_SPEC_CTRL,
					MSR_TYPE_R | MSR_TYPE_W);

624
	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
625 626 627 628 629
		nested_vmx_disable_intercept_for_msr(
					msr_bitmap_l1, msr_bitmap_l0,
					MSR_IA32_PRED_CMD,
					MSR_TYPE_W);

630
	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
631 632 633 634 635 636 637

	return true;
}

static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
638
	struct kvm_host_map map;
639 640 641 642 643 644 645 646
	struct vmcs12 *shadow;

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
	    vmcs12->vmcs_link_pointer == -1ull)
		return;

	shadow = get_shadow_vmcs12(vcpu);

647 648
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
		return;
649

650 651
	memcpy(shadow, map.hva, VMCS12_SIZE);
	kvm_vcpu_unmap(vcpu, &map, false);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
}

static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
					      struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
	    vmcs12->vmcs_link_pointer == -1ull)
		return;

	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
}

/*
 * In nested virtualization, check if L1 has set
 * VM_EXIT_ACK_INTR_ON_EXIT
 */
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->vm_exit_controls &
		VM_EXIT_ACK_INTR_ON_EXIT;
}

static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
}

static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
		return -EINVAL;
	else
		return 0;
}

static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
					   struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
	    !nested_cpu_has_vid(vmcs12) &&
	    !nested_cpu_has_posted_intr(vmcs12))
		return 0;

	/*
	 * If virtualize x2apic mode is enabled,
	 * virtualize apic access must be disabled.
	 */
	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
		return -EINVAL;

	/*
	 * If virtual interrupt delivery is enabled,
	 * we must exit on external interrupts.
	 */
	if (nested_cpu_has_vid(vmcs12) &&
	   !nested_exit_on_intr(vcpu))
		return -EINVAL;

	/*
	 * bits 15:8 should be zero in posted_intr_nv,
	 * the descriptor address has been already checked
	 * in nested_get_vmcs12_pages.
	 *
	 * bits 5:0 of posted_intr_desc_addr should be zero.
	 */
	if (nested_cpu_has_posted_intr(vmcs12) &&
	   (!nested_cpu_has_vid(vmcs12) ||
	    !nested_exit_intr_ack_set(vcpu) ||
	    (vmcs12->posted_intr_nv & 0xff00) ||
	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
		return -EINVAL;

	/* tpr shadow is needed by all apicv features. */
	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
740
				       u32 count, u64 addr)
741 742 743 744 745 746 747
{
	int maxphyaddr;

	if (count == 0)
		return 0;
	maxphyaddr = cpuid_maxphyaddr(vcpu);
	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
748
	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
749
		return -EINVAL;
750

751 752 753
	return 0;
}

754 755
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
						     struct vmcs12 *vmcs12)
756
{
757 758 759
	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
					vmcs12->vm_exit_msr_load_addr) ||
	    nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
760
					vmcs12->vm_exit_msr_store_addr))
761
		return -EINVAL;
762

763 764 765
	return 0;
}

766 767
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
                                                      struct vmcs12 *vmcs12)
768 769 770 771 772 773 774 775
{
	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
                                        vmcs12->vm_entry_msr_load_addr))
                return -EINVAL;

	return 0;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
					 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

	if (!nested_cpu_has_ept(vmcs12) ||
	    !page_address_valid(vcpu, vmcs12->pml_address))
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
							struct vmcs12 *vmcs12)
{
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
	    !nested_cpu_has_ept(vmcs12))
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
							 struct vmcs12 *vmcs12)
{
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
	    !nested_cpu_has_ept(vmcs12))
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return 0;

	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
		return -EINVAL;

	return 0;
}

static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
				       struct vmx_msr_entry *e)
{
	/* x2APIC MSR accesses are not allowed */
	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
		return -EINVAL;
	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
	    e->index == MSR_IA32_UCODE_REV)
		return -EINVAL;
	if (e->reserved != 0)
		return -EINVAL;
	return 0;
}

static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
				     struct vmx_msr_entry *e)
{
	if (e->index == MSR_FS_BASE ||
	    e->index == MSR_GS_BASE ||
	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
				      struct vmx_msr_entry *e)
{
	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

/*
 * Load guest's/host's msr at nested entry/exit.
 * return 0 for success, entry index for failure.
 */
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;
	struct msr_data msr;

	msr.host_initiated = false;
	for (i = 0; i < count; i++) {
		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
					&e, sizeof(e))) {
			pr_debug_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
			goto fail;
		}
		if (nested_vmx_load_msr_check(vcpu, &e)) {
			pr_debug_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
			goto fail;
		}
		msr.index = e.index;
		msr.data = e.value;
		if (kvm_set_msr(vcpu, &msr)) {
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
				__func__, i, e.index, e.value);
			goto fail;
		}
	}
	return 0;
fail:
	return i + 1;
}

static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;

	for (i = 0; i < count; i++) {
		struct msr_data msr_info;
		if (kvm_vcpu_read_guest(vcpu,
					gpa + i * sizeof(e),
					&e, 2 * sizeof(u32))) {
			pr_debug_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
			return -EINVAL;
		}
		if (nested_vmx_store_msr_check(vcpu, &e)) {
			pr_debug_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
			return -EINVAL;
		}
		msr_info.host_initiated = false;
		msr_info.index = e.index;
		if (kvm_get_msr(vcpu, &msr_info)) {
			pr_debug_ratelimited(
				"%s cannot read MSR (%u, 0x%x)\n",
				__func__, i, e.index);
			return -EINVAL;
		}
		if (kvm_vcpu_write_guest(vcpu,
					 gpa + i * sizeof(e) +
					     offsetof(struct vmx_msr_entry, value),
					 &msr_info.data, sizeof(msr_info.data))) {
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
				__func__, i, e.index, msr_info.data);
			return -EINVAL;
		}
	}
	return 0;
}

static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
	unsigned long invalid_mask;

	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
	return (val & invalid_mask) == 0;
}

/*
 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
 * emulating VM entry into a guest with EPT enabled.
 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 * is assigned to entry_failure_code on failure.
 */
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
			       u32 *entry_failure_code)
{
	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
		if (!nested_cr3_valid(vcpu, cr3)) {
			*entry_failure_code = ENTRY_FAIL_DEFAULT;
955
			return -EINVAL;
956 957 958 959 960 961
		}

		/*
		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
		 * must not be dereferenced.
		 */
962
		if (is_pae_paging(vcpu) && !nested_ept) {
963 964
			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
				*entry_failure_code = ENTRY_FAIL_PDPTE;
965
				return -EINVAL;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
			}
		}
	}

	if (!nested_ept)
		kvm_mmu_new_cr3(vcpu, cr3, false);

	vcpu->arch.cr3 = cr3;
	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);

	kvm_init_mmu(vcpu, false);

	return 0;
}

/*
 * Returns if KVM is able to config CPU to tag TLB entries
 * populated by L2 differently than TLB entries populated
 * by L1.
 *
 * If L1 uses EPT, then TLB entries are tagged with different EPTP.
 *
 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
 * with different VPID (L1 entries are tagged with vmx->vpid
 * while L2 entries are tagged with vmx->nested.vpid02).
 */
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	return nested_cpu_has_ept(vmcs12) ||
	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
}

static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
}


static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
	return fixed_bits_valid(control, low, high);
}

static inline u64 vmx_control_msr(u32 low, u32 high)
{
	return low | ((u64)high << 32);
}

static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
	superset &= mask;
	subset &= mask;

	return (superset | subset) == superset;
}

static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved =
		/* feature (except bit 48; see below) */
		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
		/* reserved */
		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
	u64 vmx_basic = vmx->nested.msrs.basic;

	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
		return -EINVAL;

	/*
	 * KVM does not emulate a version of VMX that constrains physical
	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
	 */
	if (data & BIT_ULL(48))
		return -EINVAL;

	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
	    vmx_basic_vmcs_revision_id(data))
		return -EINVAL;

	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
		return -EINVAL;

	vmx->nested.msrs.basic = data;
	return 0;
}

static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 supported;
	u32 *lowp, *highp;

	switch (msr_index) {
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
		lowp = &vmx->nested.msrs.pinbased_ctls_low;
		highp = &vmx->nested.msrs.pinbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
		lowp = &vmx->nested.msrs.procbased_ctls_low;
		highp = &vmx->nested.msrs.procbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
		lowp = &vmx->nested.msrs.exit_ctls_low;
		highp = &vmx->nested.msrs.exit_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
		lowp = &vmx->nested.msrs.entry_ctls_low;
		highp = &vmx->nested.msrs.entry_ctls_high;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		lowp = &vmx->nested.msrs.secondary_ctls_low;
		highp = &vmx->nested.msrs.secondary_ctls_high;
		break;
	default:
		BUG();
	}

	supported = vmx_control_msr(*lowp, *highp);

	/* Check must-be-1 bits are still 1. */
	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
		return -EINVAL;

	/* Check must-be-0 bits are still 0. */
	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
		return -EINVAL;

	*lowp = data;
	*highp = data >> 32;
	return 0;
}

static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved_bits =
		/* feature */
		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
		/* reserved */
		GENMASK_ULL(13, 9) | BIT_ULL(31);
	u64 vmx_misc;

	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				   vmx->nested.msrs.misc_high);

	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
		return -EINVAL;

	if ((vmx->nested.msrs.pinbased_ctls_high &
	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
	    vmx_misc_preemption_timer_rate(data) !=
	    vmx_misc_preemption_timer_rate(vmx_misc))
		return -EINVAL;

	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
		return -EINVAL;

	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
		return -EINVAL;

	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
		return -EINVAL;

	vmx->nested.msrs.misc_low = data;
	vmx->nested.msrs.misc_high = data >> 32;

	return 0;
}

static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
	u64 vmx_ept_vpid_cap;

	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
					   vmx->nested.msrs.vpid_caps);

	/* Every bit is either reserved or a feature bit. */
	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
		return -EINVAL;

	vmx->nested.msrs.ept_caps = data;
	vmx->nested.msrs.vpid_caps = data >> 32;
	return 0;
}

static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 *msr;

	switch (msr_index) {
	case MSR_IA32_VMX_CR0_FIXED0:
		msr = &vmx->nested.msrs.cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		msr = &vmx->nested.msrs.cr4_fixed0;
		break;
	default:
		BUG();
	}

	/*
	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
	 * must be 1 in the restored value.
	 */
	if (!is_bitwise_subset(data, *msr, -1ULL))
		return -EINVAL;

	*msr = data;
	return 0;
}

/*
 * Called when userspace is restoring VMX MSRs.
 *
 * Returns 0 on success, non-0 otherwise.
 */
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * Don't allow changes to the VMX capability MSRs while the vCPU
	 * is in VMX operation.
	 */
	if (vmx->nested.vmxon)
		return -EBUSY;

	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		return vmx_restore_vmx_basic(vmx, data);
	case MSR_IA32_VMX_PINBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		/*
		 * The "non-true" VMX capability MSRs are generated from the
		 * "true" MSRs, so we do not support restoring them directly.
		 *
		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
		 * should restore the "true" MSRs with the must-be-1 bits
		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
		 * DEFAULT SETTINGS".
		 */
		return -EINVAL;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		return vmx_restore_control_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_MISC:
		return vmx_restore_vmx_misc(vmx, data);
	case MSR_IA32_VMX_CR0_FIXED0:
	case MSR_IA32_VMX_CR4_FIXED0:
		return vmx_restore_fixed0_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_CR0_FIXED1:
	case MSR_IA32_VMX_CR4_FIXED1:
		/*
		 * These MSRs are generated based on the vCPU's CPUID, so we
		 * do not support restoring them directly.
		 */
		return -EINVAL;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
	case MSR_IA32_VMX_VMCS_ENUM:
		vmx->nested.msrs.vmcs_enum = data;
		return 0;
1237 1238 1239 1240 1241
	case MSR_IA32_VMX_VMFUNC:
		if (data & ~vmx->nested.msrs.vmfunc_controls)
			return -EINVAL;
		vmx->nested.msrs.vmfunc_controls = data;
		return 0;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	default:
		/*
		 * The rest of the VMX capability MSRs do not support restore.
		 */
		return -EINVAL;
	}
}

/* Returns 0 on success, non-0 otherwise. */
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
{
	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		*pdata = msrs->basic;
		break;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_PINBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->pinbased_ctls_low,
			msrs->pinbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->procbased_ctls_low,
			msrs->procbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
		*pdata = vmx_control_msr(
			msrs->exit_ctls_low,
			msrs->exit_ctls_high);
		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		*pdata = vmx_control_msr(
			msrs->entry_ctls_low,
			msrs->entry_ctls_high);
		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_MISC:
		*pdata = vmx_control_msr(
			msrs->misc_low,
			msrs->misc_high);
		break;
	case MSR_IA32_VMX_CR0_FIXED0:
		*pdata = msrs->cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR0_FIXED1:
		*pdata = msrs->cr0_fixed1;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		*pdata = msrs->cr4_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED1:
		*pdata = msrs->cr4_fixed1;
		break;
	case MSR_IA32_VMX_VMCS_ENUM:
		*pdata = msrs->vmcs_enum;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		*pdata = vmx_control_msr(
			msrs->secondary_ctls_low,
			msrs->secondary_ctls_high);
		break;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		*pdata = msrs->ept_caps |
			((u64)msrs->vpid_caps << 32);
		break;
	case MSR_IA32_VMX_VMFUNC:
		*pdata = msrs->vmfunc_controls;
		break;
	default:
		return 1;
	}

	return 0;
}

/*
1329 1330 1331 1332 1333 1334
 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
 * been modified by the L1 guest.  Note, "writable" in this context means
 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
 * VM-exit information fields (which are actually writable if the vCPU is
 * configured to support "VMWRITE to any supported field in the VMCS").
1335 1336 1337 1338
 */
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1339
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1340 1341
	struct shadow_vmcs_field field;
	unsigned long val;
1342
	int i;
1343 1344 1345 1346 1347

	preempt_disable();

	vmcs_load(shadow_vmcs);

1348 1349
	for (i = 0; i < max_shadow_read_write_fields; i++) {
		field = shadow_read_write_fields[i];
1350 1351
		val = __vmcs_readl(field.encoding);
		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);

	preempt_enable();
}

static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
1362
	const struct shadow_vmcs_field *fields[] = {
1363 1364 1365 1366 1367 1368 1369 1370
		shadow_read_write_fields,
		shadow_read_only_fields
	};
	const int max_fields[] = {
		max_shadow_read_write_fields,
		max_shadow_read_only_fields
	};
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1371 1372 1373 1374
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
	struct shadow_vmcs_field field;
	unsigned long val;
	int i, q;
1375 1376 1377 1378 1379 1380

	vmcs_load(shadow_vmcs);

	for (q = 0; q < ARRAY_SIZE(fields); q++) {
		for (i = 0; i < max_fields[q]; i++) {
			field = fields[q][i];
1381 1382 1383
			val = vmcs12_read_any(vmcs12, field.encoding,
					      field.offset);
			__vmcs_writel(field.encoding, val);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		}
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);
}

static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
	vmcs12->tpr_threshold = evmcs->tpr_threshold;
	vmcs12->guest_rip = evmcs->guest_rip;

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
		vmcs12->guest_rsp = evmcs->guest_rsp;
		vmcs12->guest_rflags = evmcs->guest_rflags;
		vmcs12->guest_interruptibility_info =
			evmcs->guest_interruptibility_info;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
		vmcs12->cpu_based_vm_exec_control =
			evmcs->cpu_based_vm_exec_control;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
		vmcs12->exception_bitmap = evmcs->exception_bitmap;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
		vmcs12->vm_entry_intr_info_field =
			evmcs->vm_entry_intr_info_field;
		vmcs12->vm_entry_exception_error_code =
			evmcs->vm_entry_exception_error_code;
		vmcs12->vm_entry_instruction_len =
			evmcs->vm_entry_instruction_len;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
		vmcs12->host_cr0 = evmcs->host_cr0;
		vmcs12->host_cr3 = evmcs->host_cr3;
		vmcs12->host_cr4 = evmcs->host_cr4;
		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
		vmcs12->host_rip = evmcs->host_rip;
		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
		vmcs12->host_es_selector = evmcs->host_es_selector;
		vmcs12->host_cs_selector = evmcs->host_cs_selector;
		vmcs12->host_ss_selector = evmcs->host_ss_selector;
		vmcs12->host_ds_selector = evmcs->host_ds_selector;
		vmcs12->host_fs_selector = evmcs->host_fs_selector;
		vmcs12->host_gs_selector = evmcs->host_gs_selector;
		vmcs12->host_tr_selector = evmcs->host_tr_selector;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
		vmcs12->pin_based_vm_exec_control =
			evmcs->pin_based_vm_exec_control;
		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
		vmcs12->secondary_vm_exec_control =
			evmcs->secondary_vm_exec_control;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
		vmcs12->msr_bitmap = evmcs->msr_bitmap;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
		vmcs12->guest_es_base = evmcs->guest_es_base;
		vmcs12->guest_cs_base = evmcs->guest_cs_base;
		vmcs12->guest_ss_base = evmcs->guest_ss_base;
		vmcs12->guest_ds_base = evmcs->guest_ds_base;
		vmcs12->guest_fs_base = evmcs->guest_fs_base;
		vmcs12->guest_gs_base = evmcs->guest_gs_base;
		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
		vmcs12->guest_tr_base = evmcs->guest_tr_base;
		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
		vmcs12->guest_es_limit = evmcs->guest_es_limit;
		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
		vmcs12->guest_es_selector = evmcs->guest_es_selector;
		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
		vmcs12->tsc_offset = evmcs->tsc_offset;
		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
		vmcs12->guest_cr0 = evmcs->guest_cr0;
		vmcs12->guest_cr3 = evmcs->guest_cr3;
		vmcs12->guest_cr4 = evmcs->guest_cr4;
		vmcs12->guest_dr7 = evmcs->guest_dr7;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
		vmcs12->host_fs_base = evmcs->host_fs_base;
		vmcs12->host_gs_base = evmcs->host_gs_base;
		vmcs12->host_tr_base = evmcs->host_tr_base;
		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
		vmcs12->host_idtr_base = evmcs->host_idtr_base;
		vmcs12->host_rsp = evmcs->host_rsp;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
		vmcs12->ept_pointer = evmcs->ept_pointer;
		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
	}

	if (unlikely(!(evmcs->hv_clean_fields &
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
		vmcs12->guest_pending_dbg_exceptions =
			evmcs->guest_pending_dbg_exceptions;
		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
		vmcs12->guest_activity_state = evmcs->guest_activity_state;
		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
	}

	/*
	 * Not used?
	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
	 * vmcs12->page_fault_error_code_mask =
	 *		evmcs->page_fault_error_code_mask;
	 * vmcs12->page_fault_error_code_match =
	 *		evmcs->page_fault_error_code_match;
	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
	 */

	/*
	 * Read only fields:
	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
	 * vmcs12->exit_qualification = evmcs->exit_qualification;
	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
	 *
	 * Not present in struct vmcs12:
	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
	 */

	return 0;
}

static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/*
	 * Should not be changed by KVM:
	 *
	 * evmcs->host_es_selector = vmcs12->host_es_selector;
	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
	 * evmcs->host_cr0 = vmcs12->host_cr0;
	 * evmcs->host_cr3 = vmcs12->host_cr3;
	 * evmcs->host_cr4 = vmcs12->host_cr4;
	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
	 * evmcs->host_rip = vmcs12->host_rip;
	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
	 * evmcs->host_fs_base = vmcs12->host_fs_base;
	 * evmcs->host_gs_base = vmcs12->host_gs_base;
	 * evmcs->host_tr_base = vmcs12->host_tr_base;
	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
	 * evmcs->host_rsp = vmcs12->host_rsp;
1641
	 * sync_vmcs02_to_vmcs12() doesn't read these:
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
	 * evmcs->ept_pointer = vmcs12->ept_pointer;
	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
	 * evmcs->page_fault_error_code_mask =
	 *		vmcs12->page_fault_error_code_mask;
	 * evmcs->page_fault_error_code_match =
	 *		vmcs12->page_fault_error_code_match;
	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
	 * evmcs->tsc_offset = vmcs12->tsc_offset;
	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
	 *
	 * Not present in struct vmcs12:
	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
	 */

	evmcs->guest_es_selector = vmcs12->guest_es_selector;
	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;

	evmcs->guest_es_limit = vmcs12->guest_es_limit;
	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;

	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;

	evmcs->guest_es_base = vmcs12->guest_es_base;
	evmcs->guest_cs_base = vmcs12->guest_cs_base;
	evmcs->guest_ss_base = vmcs12->guest_ss_base;
	evmcs->guest_ds_base = vmcs12->guest_ds_base;
	evmcs->guest_fs_base = vmcs12->guest_fs_base;
	evmcs->guest_gs_base = vmcs12->guest_gs_base;
	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
	evmcs->guest_tr_base = vmcs12->guest_tr_base;
	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;

	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;

	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;

	evmcs->guest_pending_dbg_exceptions =
		vmcs12->guest_pending_dbg_exceptions;
	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;

	evmcs->guest_activity_state = vmcs12->guest_activity_state;
	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;

	evmcs->guest_cr0 = vmcs12->guest_cr0;
	evmcs->guest_cr3 = vmcs12->guest_cr3;
	evmcs->guest_cr4 = vmcs12->guest_cr4;
	evmcs->guest_dr7 = vmcs12->guest_dr7;

	evmcs->guest_physical_address = vmcs12->guest_physical_address;

	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;

	evmcs->exit_qualification = vmcs12->exit_qualification;

	evmcs->guest_linear_address = vmcs12->guest_linear_address;
	evmcs->guest_rsp = vmcs12->guest_rsp;
	evmcs->guest_rflags = vmcs12->guest_rflags;

	evmcs->guest_interruptibility_info =
		vmcs12->guest_interruptibility_info;
	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
	evmcs->vm_entry_exception_error_code =
		vmcs12->vm_entry_exception_error_code;
	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;

	evmcs->guest_rip = vmcs12->guest_rip;

	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;

	return 0;
}

/*
 * This is an equivalent of the nested hypervisor executing the vmptrld
 * instruction.
 */
static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
						 bool from_launch)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1786
	bool evmcs_gpa_changed = false;
1787
	u64 evmcs_gpa;
1788 1789 1790 1791

	if (likely(!vmx->nested.enlightened_vmcs_enabled))
		return 1;

1792
	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1793 1794
		return 1;

1795
	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1796 1797 1798 1799 1800
		if (!vmx->nested.hv_evmcs)
			vmx->nested.current_vmptr = -1ull;

		nested_release_evmcs(vcpu);

1801
		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1802
				 &vmx->nested.hv_evmcs_map))
1803 1804
			return 0;

1805
		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

		/*
		 * Currently, KVM only supports eVMCS version 1
		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
		 * value to first u32 field of eVMCS which should specify eVMCS
		 * VersionNumber.
		 *
		 * Guest should be aware of supported eVMCS versions by host by
		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
		 * expected to set this CPUID leaf according to the value
		 * returned in vmcs_version from nested_enable_evmcs().
		 *
		 * However, it turns out that Microsoft Hyper-V fails to comply
		 * to their own invented interface: When Hyper-V use eVMCS, it
		 * just sets first u32 field of eVMCS to revision_id specified
		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
		 * which is one of the supported versions specified in
		 * CPUID.0x4000000A.EAX[0:15].
		 *
		 * To overcome Hyper-V bug, we accept here either a supported
		 * eVMCS version or VMCS12 revision_id as valid values for first
		 * u32 field of eVMCS.
		 */
		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
			nested_release_evmcs(vcpu);
			return 0;
		}

		vmx->nested.dirty_vmcs12 = true;
1836
		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1837

1838
		evmcs_gpa_changed = true;
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
		/*
		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
		 * reloaded from guest's memory (read only fields, fields not
		 * present in struct hv_enlightened_vmcs, ...). Make sure there
		 * are no leftovers.
		 */
		if (from_launch) {
			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
			memset(vmcs12, 0, sizeof(*vmcs12));
			vmcs12->hdr.revision_id = VMCS12_REVISION;
		}

	}
1852 1853 1854 1855 1856 1857 1858 1859 1860

	/*
	 * Clean fields data can't de used on VMLAUNCH and when we switch
	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
	 */
	if (from_launch || evmcs_gpa_changed)
		vmx->nested.hv_evmcs->hv_clean_fields &=
			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

1861 1862 1863
	return 1;
}

1864
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * hv_evmcs may end up being not mapped after migration (when
	 * L2 was running), map it here to make sure vmcs12 changes are
	 * properly reflected.
	 */
	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
		nested_vmx_handle_enlightened_vmptrld(vcpu, false);

	if (vmx->nested.hv_evmcs) {
		copy_vmcs12_to_enlightened(vmx);
		/* All fields are clean */
		vmx->nested.hv_evmcs->hv_clean_fields |=
			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
	} else {
		copy_vmcs12_to_shadow(vmx);
	}

1885
	vmx->nested.need_vmcs12_to_shadow_sync = false;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
}

static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
	struct vcpu_vmx *vmx =
		container_of(timer, struct vcpu_vmx, nested.preemption_timer);

	vmx->nested.preemption_timer_expired = true;
	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
	kvm_vcpu_kick(&vmx->vcpu);

	return HRTIMER_NORESTART;
}

static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
{
	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * A timer value of zero is architecturally guaranteed to cause
	 * a VMExit prior to executing any instructions in the guest.
	 */
	if (preemption_timeout == 0) {
		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
		return;
	}

	if (vcpu->arch.virtual_tsc_khz == 0)
		return;

	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
	preemption_timeout *= 1000000;
	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
	hrtimer_start(&vmx->nested.preemption_timer,
		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
}

static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
		return vmcs12->guest_ia32_efer;
	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
	else
		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
}

static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
	/*
	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
	 * according to L0's settings (vmcs12 is irrelevant here).  Host
	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
	 * will be set as needed prior to VMLAUNCH/VMRESUME.
	 */
	if (vmx->nested.vmcs02_initialized)
		return;
	vmx->nested.vmcs02_initialized = true;

	/*
	 * We don't care what the EPTP value is we just need to guarantee
	 * it's valid so we don't get a false positive when doing early
	 * consistency checks.
	 */
	if (enable_ept && nested_early_check)
		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));

	/* All VMFUNCs are currently emulated through L0 vmexits.  */
	if (cpu_has_vmx_vmfunc())
		vmcs_write64(VM_FUNCTION_CONTROL, 0);

	if (cpu_has_vmx_posted_intr())
		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);

	if (cpu_has_vmx_msr_bitmap())
		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));

1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * The PML address never changes, so it is constant in vmcs02.
	 * Conceptually we want to copy the PML index from vmcs01 here,
	 * and then back to vmcs01 on nested vmexit.  But since we flush
	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
	 * index is also effectively constant in vmcs02.
	 */
	if (enable_pml) {
1973
		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1974 1975
		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
	}
1976

1977 1978 1979
	if (cpu_has_vmx_encls_vmexit())
		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	/*
	 * Set the MSR load/store lists to match L0's settings.  Only the
	 * addresses are constant (for vmcs02), the counts can change based
	 * on L2's behavior, e.g. switching to/from long mode.
	 */
	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));

	vmx_set_constant_host_state(vmx);
}

1992
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
				      struct vmcs12 *vmcs12)
{
	prepare_vmcs02_constant_state(vmx);

	vmcs_write64(VMCS_LINK_POINTER, -1ull);

	if (enable_vpid) {
		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
		else
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
	}
}

static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
	u32 exec_control, vmcs12_exec_ctrl;
	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);

	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2013
		prepare_vmcs02_early_rare(vmx, vmcs12);
2014 2015 2016 2017

	/*
	 * PIN CONTROLS
	 */
2018
	exec_control = vmx_pin_based_exec_ctrl(vmx);
2019 2020
	exec_control |= (vmcs12->pin_based_vm_exec_control &
			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2021 2022 2023 2024 2025 2026 2027 2028

	/* Posted interrupts setting is only taken from vmcs12.  */
	if (nested_cpu_has_posted_intr(vmcs12)) {
		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
		vmx->nested.pi_pending = false;
	} else {
		exec_control &= ~PIN_BASED_POSTED_INTR;
	}
2029
	pin_controls_set(vmx, exec_control);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039

	/*
	 * EXEC CONTROLS
	 */
	exec_control = vmx_exec_control(vmx); /* L0's desires */
	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
	exec_control &= ~CPU_BASED_TPR_SHADOW;
	exec_control |= vmcs12->cpu_based_vm_exec_control;

2040
	if (exec_control & CPU_BASED_TPR_SHADOW)
2041 2042
		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
#ifdef CONFIG_X86_64
2043
	else
2044 2045 2046 2047 2048 2049 2050 2051 2052
		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
				CPU_BASED_CR8_STORE_EXITING;
#endif

	/*
	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
	 * for I/O port accesses.
	 */
	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;

	/*
	 * This bit will be computed in nested_get_vmcs12_pages, because
	 * we do not have access to L1's MSR bitmap yet.  For now, keep
	 * the same bit as before, hoping to avoid multiple VMWRITEs that
	 * only set/clear this bit.
	 */
	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;

2064
	exec_controls_set(vmx, exec_control);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	/*
	 * SECONDARY EXEC CONTROLS
	 */
	if (cpu_has_secondary_exec_ctrls()) {
		exec_control = vmx->secondary_exec_control;

		/* Take the following fields only from vmcs12 */
		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
				  SECONDARY_EXEC_ENABLE_INVPCID |
				  SECONDARY_EXEC_RDTSCP |
				  SECONDARY_EXEC_XSAVES |
				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
				  SECONDARY_EXEC_ENABLE_VMFUNC);
		if (nested_cpu_has(vmcs12,
				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
				~SECONDARY_EXEC_ENABLE_PML;
			exec_control |= vmcs12_exec_ctrl;
		}

		/* VMCS shadowing for L2 is emulated for now */
		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;

2090 2091 2092 2093 2094 2095 2096 2097
		/*
		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
		 * will not have to rewrite the controls just for this bit.
		 */
		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
			exec_control |= SECONDARY_EXEC_DESC;

2098 2099 2100 2101
		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
			vmcs_write16(GUEST_INTR_STATUS,
				vmcs12->guest_intr_status);

2102
		secondary_exec_controls_set(vmx, exec_control);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	}

	/*
	 * ENTRY CONTROLS
	 *
	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
	 * on the related bits (if supported by the CPU) in the hope that
	 * we can avoid VMWrites during vmx_set_efer().
	 */
	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
	if (cpu_has_load_ia32_efer()) {
		if (guest_efer & EFER_LMA)
			exec_control |= VM_ENTRY_IA32E_MODE;
		if (guest_efer != host_efer)
			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
	}
2121
	vm_entry_controls_set(vmx, exec_control);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

	/*
	 * EXIT CONTROLS
	 *
	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
	 */
	exec_control = vmx_vmexit_ctrl();
	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2133
	vm_exit_controls_set(vmx, exec_control);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

	/*
	 * Interrupt/Exception Fields
	 */
	if (vmx->nested.nested_run_pending) {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
			     vmcs12->vm_entry_intr_info_field);
		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
			     vmcs12->vm_entry_exception_error_code);
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmcs12->vm_entry_instruction_len);
		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
			     vmcs12->guest_interruptibility_info);
		vmx->loaded_vmcs->nmi_known_unmasked =
			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
	} else {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
	}
}

2154
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
{
	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2178 2179
		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
	}

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vmcs12->guest_pending_dbg_exceptions);
		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);

		/*
		 * L1 may access the L2's PDPTR, so save them to construct
		 * vmcs12
		 */
		if (enable_ept) {
			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
		}
2216 2217 2218 2219

		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
	}

	if (nested_cpu_has_xsaves(vmcs12))
		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);

	/*
	 * Whether page-faults are trapped is determined by a combination of
	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
	 * If enable_ept, L0 doesn't care about page faults and we should
	 * set all of these to L1's desires. However, if !enable_ept, L0 does
	 * care about (at least some) page faults, and because it is not easy
	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
	 * to exit on each and every L2 page fault. This is done by setting
	 * MASK=MATCH=0 and (see below) EB.PF=1.
	 * Note that below we don't need special code to set EB.PF beyond the
	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
	 */
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
		enable_ept ? vmcs12->page_fault_error_code_match : 0);

	if (cpu_has_vmx_apicv()) {
		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
	}

	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

	set_cr4_guest_host_mask(vmx);
}

/*
 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
 * guest in a way that will both be appropriate to L1's requests, and our
 * needs. In addition to modifying the active vmcs (which is vmcs02), this
 * function also has additional necessary side-effects, like setting various
 * vcpu->arch fields.
 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 * is assigned to entry_failure_code on failure.
 */
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
			  u32 *entry_failure_code)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2272 2273
	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
	bool load_guest_pdptrs_vmcs12 = false;
2274

2275
	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2276
		prepare_vmcs02_rare(vmx, vmcs12);
2277
		vmx->nested.dirty_vmcs12 = false;
2278 2279 2280 2281

		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
			!(hv_evmcs->hv_clean_fields &
			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	}

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
	} else {
		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
	}
2292 2293 2294
	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	vmx_set_rflags(vcpu, vmcs12->guest_rflags);

	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
	 * bitwise-or of what L1 wants to trap for L2, and what we want to
	 * trap. Note that CR0.TS also needs updating - we do this later.
	 */
	update_exception_bitmap(vcpu);
	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
		vcpu->arch.pat = vmcs12->guest_ia32_pat;
	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
	}

	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);

	if (kvm_has_tsc_control)
		decache_tsc_multiplier(vmx);

	if (enable_vpid) {
		/*
		 * There is no direct mapping between vpid02 and vpid12, the
		 * vpid02 is per-vCPU for L0 and reused while the value of
		 * vpid12 is changed w/ one invvpid during nested vmentry.
		 * The vpid12 is allocated by L1 for L2, so it will not
		 * influence global bitmap(for vpid01 and vpid02 allocation)
		 * even if spawn a lot of nested vCPUs.
		 */
		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
			}
		} else {
			/*
			 * If L1 use EPT, then L0 needs to execute INVEPT on
			 * EPTP02 instead of EPTP01. Therefore, delay TLB
			 * flush until vmcs02->eptp is fully updated by
			 * KVM_REQ_LOAD_CR3. Note that this assumes
			 * KVM_REQ_TLB_FLUSH is evaluated after
			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
			 */
			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
		}
	}

	if (nested_cpu_has_ept(vmcs12))
		nested_ept_init_mmu_context(vcpu);
	else if (nested_cpu_has2(vmcs12,
				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
		vmx_flush_tlb(vcpu, true);

	/*
	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
	 * bits which we consider mandatory enabled.
	 * The CR0_READ_SHADOW is what L2 should have expected to read given
	 * the specifications by L1; It's not enough to take
	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
	 * have more bits than L1 expected.
	 */
	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));

	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));

	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
	vmx_set_efer(vcpu, vcpu->arch.efer);

	/*
	 * Guest state is invalid and unrestricted guest is disabled,
	 * which means L1 attempted VMEntry to L2 with invalid state.
	 * Fail the VMEntry.
	 */
	if (vmx->emulation_required) {
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2376
		return -EINVAL;
2377 2378 2379 2380 2381
	}

	/* Shadow page tables on either EPT or shadow page tables. */
	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
				entry_failure_code))
2382
		return -EINVAL;
2383

2384 2385 2386 2387 2388 2389 2390 2391 2392
	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
	    is_pae_paging(vcpu)) {
		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
	}

2393 2394 2395
	if (!enable_ept)
		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;

2396 2397
	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
	kvm_rip_write(vcpu, vmcs12->guest_rip);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	return 0;
}

static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
	    nested_cpu_has_virtual_nmis(vmcs12))
		return -EINVAL;

	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
		return -EINVAL;

	return 0;
}

static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int maxphyaddr = cpuid_maxphyaddr(vcpu);

	/* Check for memory type validity */
	switch (address & VMX_EPTP_MT_MASK) {
	case VMX_EPTP_MT_UC:
		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
			return false;
		break;
	case VMX_EPTP_MT_WB:
		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
			return false;
		break;
	default:
		return false;
	}

	/* only 4 levels page-walk length are valid */
	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
		return false;

	/* Reserved bits should not be set */
	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
		return false;

	/* AD, if set, should be supported */
	if (address & VMX_EPTP_AD_ENABLE_BIT) {
		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
			return false;
	}

	return true;
}

2450 2451 2452 2453 2454
/*
 * Checks related to VM-Execution Control Fields
 */
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
                                              struct vmcs12 *vmcs12)
2455 2456 2457
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2458
	if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2459 2460
				vmx->nested.msrs.pinbased_ctls_low,
				vmx->nested.msrs.pinbased_ctls_high) ||
2461 2462 2463 2464
	    !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
				vmx->nested.msrs.procbased_ctls_low,
				vmx->nested.msrs.procbased_ctls_high))
		return -EINVAL;
2465

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
				 vmx->nested.msrs.secondary_ctls_low,
				 vmx->nested.msrs.secondary_ctls_high))
		return -EINVAL;

	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
	    nested_vmx_check_nmi_controls(vmcs12) ||
	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
	    (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
		return -EINVAL;

2486 2487 2488 2489
	if (!nested_cpu_has_preemption_timer(vmcs12) &&
	    nested_cpu_has_save_preemption_timer(vmcs12))
		return -EINVAL;

2490 2491 2492
	if (nested_cpu_has_ept(vmcs12) &&
	    !valid_ept_address(vcpu, vmcs12->ept_pointer))
		return -EINVAL;
2493 2494 2495 2496

	if (nested_cpu_has_vmfunc(vmcs12)) {
		if (vmcs12->vm_function_control &
		    ~vmx->nested.msrs.vmfunc_controls)
2497
			return -EINVAL;
2498 2499 2500 2501

		if (nested_cpu_has_eptp_switching(vmcs12)) {
			if (!nested_cpu_has_ept(vmcs12) ||
			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
2502
				return -EINVAL;
2503 2504 2505
		}
	}

2506 2507 2508
	return 0;
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
/*
 * Checks related to VM-Exit Control Fields
 */
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
                                         struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (!vmx_control_verify(vmcs12->vm_exit_controls,
				vmx->nested.msrs.exit_ctls_low,
				vmx->nested.msrs.exit_ctls_high) ||
	    nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
		return -EINVAL;

	return 0;
}

2526 2527 2528 2529 2530
/*
 * Checks related to VM-Entry Control Fields
 */
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
2531 2532
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2533

2534
	if (!vmx_control_verify(vmcs12->vm_entry_controls,
2535 2536
				vmx->nested.msrs.entry_ctls_low,
				vmx->nested.msrs.entry_ctls_high))
2537
		return -EINVAL;
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

	/*
	 * From the Intel SDM, volume 3:
	 * Fields relevant to VM-entry event injection must be set properly.
	 * These fields are the VM-entry interruption-information field, the
	 * VM-entry exception error code, and the VM-entry instruction length.
	 */
	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
		u32 intr_info = vmcs12->vm_entry_intr_info_field;
		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
		bool should_have_error_code;
		bool urg = nested_cpu_has2(vmcs12,
					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;

		/* VM-entry interruption-info field: interruption type */
		if (intr_type == INTR_TYPE_RESERVED ||
		    (intr_type == INTR_TYPE_OTHER_EVENT &&
		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
2559
			return -EINVAL;
2560 2561 2562 2563 2564

		/* VM-entry interruption-info field: vector */
		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2565
			return -EINVAL;
2566 2567 2568 2569 2570 2571

		/* VM-entry interruption-info field: deliver error code */
		should_have_error_code =
			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
			x86_exception_has_error_code(vector);
		if (has_error_code != should_have_error_code)
2572
			return -EINVAL;
2573 2574 2575 2576

		/* VM-entry exception error code */
		if (has_error_code &&
		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2577
			return -EINVAL;
2578 2579 2580

		/* VM-entry interruption-info field: reserved bits */
		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2581
			return -EINVAL;
2582 2583 2584 2585 2586 2587 2588 2589 2590

		/* VM-entry instruction length */
		switch (intr_type) {
		case INTR_TYPE_SOFT_EXCEPTION:
		case INTR_TYPE_SOFT_INTR:
		case INTR_TYPE_PRIV_SW_EXCEPTION:
			if ((vmcs12->vm_entry_instruction_len > 15) ||
			    (vmcs12->vm_entry_instruction_len == 0 &&
			     !nested_cpu_has_zero_length_injection(vcpu)))
2591
				return -EINVAL;
2592 2593 2594
		}
	}

2595 2596 2597 2598 2599 2600
	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
		return -EINVAL;

	return 0;
}

2601 2602 2603 2604 2605 2606
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
	    nested_check_vm_entry_controls(vcpu, vmcs12))
2607
		return -EINVAL;
2608 2609 2610 2611

	return 0;
}

2612 2613
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
2614 2615 2616 2617 2618 2619
{
	bool ia32e;

	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2620
		return -EINVAL;
2621 2622 2623 2624 2625

	if (is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu) ||
	    is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))
		return -EINVAL;

2626 2627 2628 2629
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
	    !kvm_pat_valid(vmcs12->host_ia32_pat))
		return -EINVAL;

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
	 * the values of the LMA and LME bits in the field must each be that of
	 * the host address-space size VM-exit control.
	 */
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
		ia32e = (vmcs12->vm_exit_controls &
			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2642
			return -EINVAL;
2643 2644
	}

2645 2646 2647 2648 2649 2650
	return 0;
}

static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
2651
	int r = 0;
2652
	struct vmcs12 *shadow;
2653
	struct kvm_host_map map;
2654 2655 2656 2657 2658 2659 2660

	if (vmcs12->vmcs_link_pointer == -1ull)
		return 0;

	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
		return -EINVAL;

2661
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
2662 2663
		return -EINVAL;

2664 2665
	shadow = map.hva;

2666 2667 2668
	if (shadow->hdr.revision_id != VMCS12_REVISION ||
	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
		r = -EINVAL;
2669 2670

	kvm_vcpu_unmap(vcpu, &map, false);
2671 2672 2673
	return r;
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/*
 * Checks related to Guest Non-register State
 */
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
{
	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
		return -EINVAL;

	return 0;
}

2686 2687 2688
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
					struct vmcs12 *vmcs12,
					u32 *exit_qual)
2689 2690 2691 2692 2693 2694 2695
{
	bool ia32e;

	*exit_qual = ENTRY_FAIL_DEFAULT;

	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2696
		return -EINVAL;
2697

2698 2699
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
	    !kvm_pat_valid(vmcs12->guest_ia32_pat))
2700
		return -EINVAL;
2701 2702 2703

	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2704
		return -EINVAL;
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	}

	/*
	 * If the load IA32_EFER VM-entry control is 1, the following checks
	 * are performed on the field for the IA32_EFER MSR:
	 * - Bits reserved in the IA32_EFER MSR must be 0.
	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
	 *   the IA-32e mode guest VM-exit control. It must also be identical
	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
	 *   CR0.PG) is 1.
	 */
	if (to_vmx(vcpu)->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2723
			return -EINVAL;
2724 2725 2726
	}

	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2727 2728 2729
	    (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
	     (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
		return -EINVAL;
2730

2731
	if (nested_check_guest_non_reg_state(vmcs12))
2732
		return -EINVAL;
2733 2734 2735 2736

	return 0;
}

2737
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2738 2739 2740
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long cr3, cr4;
2741
	bool vm_fail;
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

	if (!nested_early_check)
		return 0;

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);

	preempt_disable();

	vmx_prepare_switch_to_guest(vcpu);

	/*
	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
	 * there is no need to preserve other bits or save/restore the field.
	 */
	vmcs_writel(GUEST_RFLAGS, 0);

	cr3 = __get_current_cr3_fast();
	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
		vmcs_writel(HOST_CR3, cr3);
		vmx->loaded_vmcs->host_state.cr3 = cr3;
	}

	cr4 = cr4_read_shadow();
	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
		vmcs_writel(HOST_CR4, cr4);
		vmx->loaded_vmcs->host_state.cr4 = cr4;
	}

	asm(
2776
		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2777 2778
		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
		"je 1f \n\t"
2779
		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2780 2781
		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
		"1: \n\t"
2782
		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2783 2784

		/* Check if vmlaunch or vmresume is needed */
2785
		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2786

2787 2788 2789 2790
		/*
		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2791
		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2792
		 */
2793 2794
		"call vmx_vmenter\n\t"

2795 2796
		CC_SET(be)
	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2797
	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
2798 2799
		[loaded_vmcs]"r"(vmx->loaded_vmcs),
		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
2800
		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2801
		[wordsize]"i"(sizeof(ulong))
2802
	      : "memory"
2803 2804 2805 2806 2807 2808 2809
	);

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

2810
	if (vm_fail) {
2811
		preempt_enable();
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		return 1;
	}

	/*
	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
	 */
	local_irq_enable();
	if (hw_breakpoint_active())
		set_debugreg(__this_cpu_read(cpu_dr7), 7);
2823
	preempt_enable();
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	/*
	 * A non-failing VMEntry means we somehow entered guest mode with
	 * an illegal RIP, and that's just the tip of the iceberg.  There
	 * is no telling what memory has been modified or what state has
	 * been exposed to unknown code.  Hitting this all but guarantees
	 * a (very critical) hardware issue.
	 */
	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
		VMX_EXIT_REASONS_FAILED_VMENTRY));

	return 0;
}

static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12);

static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2845
	struct kvm_host_map *map;
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	struct page *page;
	u64 hpa;

	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
		/*
		 * Translate L1 physical address to host physical
		 * address for vmcs02. Keep the page pinned, so this
		 * physical address remains valid. We keep a reference
		 * to it so we can release it later.
		 */
		if (vmx->nested.apic_access_page) { /* shouldn't happen */
			kvm_release_page_dirty(vmx->nested.apic_access_page);
			vmx->nested.apic_access_page = NULL;
		}
		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
		/*
		 * If translation failed, no matter: This feature asks
		 * to exit when accessing the given address, and if it
		 * can never be accessed, this feature won't do
		 * anything anyway.
		 */
		if (!is_error_page(page)) {
			vmx->nested.apic_access_page = page;
			hpa = page_to_phys(vmx->nested.apic_access_page);
			vmcs_write64(APIC_ACCESS_ADDR, hpa);
		} else {
2872 2873
			secondary_exec_controls_clearbit(vmx,
				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2874 2875 2876 2877
		}
	}

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2878
		map = &vmx->nested.virtual_apic_map;
2879

2880 2881
		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
			/*
			 * The processor will never use the TPR shadow, simply
			 * clear the bit from the execution control.  Such a
			 * configuration is useless, but it happens in tests.
			 * For any other configuration, failing the vm entry is
			 * _not_ what the processor does but it's basically the
			 * only possibility we have.
			 */
2893
			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2894 2895 2896 2897 2898 2899
		} else {
			/*
			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
			 * force VM-Entry to fail.
			 */
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2900 2901 2902 2903
		}
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
2904 2905 2906 2907 2908 2909 2910 2911
		map = &vmx->nested.pi_desc_map;

		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
			vmx->nested.pi_desc =
				(struct pi_desc *)(((void *)map->hva) +
				offset_in_page(vmcs12->posted_intr_desc_addr));
			vmcs_write64(POSTED_INTR_DESC_ADDR,
				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2912 2913 2914
		}
	}
	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2915
		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2916
	else
2917
		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
}

/*
 * Intel's VMX Instruction Reference specifies a common set of prerequisites
 * for running VMX instructions (except VMXON, whose prerequisites are
 * slightly different). It also specifies what exception to inject otherwise.
 * Note that many of these exceptions have priority over VM exits, so they
 * don't have to be checked again here.
 */
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
	if (!to_vmx(vcpu)->nested.vmxon) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 0;
	}

	return 1;
}

static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
{
	u8 rvi = vmx_get_rvi();
	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);

	return ((rvi & 0xf0) > (vppr & 0xf0));
}

static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12);

/*
 * If from_vmentry is false, this is being called from state restore (either RSM
 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
+ *
+ * Returns:
+ *   0 - success, i.e. proceed with actual VMEnter
+ *   1 - consistency check VMExit
+ *  -1 - consistency check VMFail
 */
int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	bool evaluate_pending_interrupts;
	u32 exit_reason = EXIT_REASON_INVALID_STATE;
	u32 exit_qual;

2970
	evaluate_pending_interrupts = exec_controls_get(vmx) &
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);

	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
	if (kvm_mpx_supported() &&
		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	/*
	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
	 * software model to the pre-VMEntry host state.  When EPT is disabled,
	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
	 * path would need to manually save/restore vmcs01.GUEST_CR3.
	 */
	if (!enable_ept && !nested_early_check)
		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);

	prepare_vmcs02_early(vmx, vmcs12);

	if (from_vmentry) {
		nested_get_vmcs12_pages(vcpu);

		if (nested_vmx_check_vmentry_hw(vcpu)) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
			return -1;
		}

3012
		if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
			goto vmentry_fail_vmexit;
	}

	enter_guest_mode(vcpu);
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
		vcpu->arch.tsc_offset += vmcs12->tsc_offset;

	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
		goto vmentry_fail_vmexit_guest_mode;

	if (from_vmentry) {
		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
		exit_qual = nested_vmx_load_msr(vcpu,
						vmcs12->vm_entry_msr_load_addr,
						vmcs12->vm_entry_msr_load_count);
		if (exit_qual)
			goto vmentry_fail_vmexit_guest_mode;
	} else {
		/*
		 * The MMU is not initialized to point at the right entities yet and
		 * "get pages" would need to read data from the guest (i.e. we will
		 * need to perform gpa to hpa translation). Request a call
		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
		 * have already been set at vmentry time and should not be reset.
		 */
		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
	}

	/*
	 * If L1 had a pending IRQ/NMI until it executed
	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
	 * disallowed (e.g. interrupts disabled), L0 needs to
	 * evaluate if this pending event should cause an exit from L2
	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
	 * intercept EXTERNAL_INTERRUPT).
	 *
	 * Usually this would be handled by the processor noticing an
	 * IRQ/NMI window request, or checking RVI during evaluation of
	 * pending virtual interrupts.  However, this setting was done
	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
	 */
	if (unlikely(evaluate_pending_interrupts))
		kvm_make_request(KVM_REQ_EVENT, vcpu);

3058 3059 3060 3061 3062 3063 3064 3065 3066
	/*
	 * Do not start the preemption timer hrtimer until after we know
	 * we are successful, so that only nested_vmx_vmexit needs to cancel
	 * the timer.
	 */
	vmx->nested.preemption_timer_expired = false;
	if (nested_cpu_has_preemption_timer(vmcs12))
		vmx_start_preemption_timer(vcpu);

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	/*
	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
	 * returned as far as L1 is concerned. It will only return (and set
	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
	 */
	return 0;

	/*
	 * A failed consistency check that leads to a VMExit during L1's
	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
	 * 26.7 "VM-entry failures during or after loading guest state".
	 */
vmentry_fail_vmexit_guest_mode:
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
	leave_guest_mode(vcpu);

vmentry_fail_vmexit:
	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	if (!from_vmentry)
		return 1;

	load_vmcs12_host_state(vcpu, vmcs12);
	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
	vmcs12->exit_qualification = exit_qual;
	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3095
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	return 1;
}

/*
 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 * for running an L2 nested guest.
 */
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
	struct vmcs12 *vmcs12;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
	int ret;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

3113
	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
		return 1;

	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
		return nested_vmx_failInvalid(vcpu);

	vmcs12 = get_vmcs12(vcpu);

	/*
	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
	 * rather than RFLAGS.ZF, and no error number is stored to the
	 * VM-instruction error field.
	 */
	if (vmcs12->hdr.shadow_vmcs)
		return nested_vmx_failInvalid(vcpu);

	if (vmx->nested.hv_evmcs) {
		copy_enlightened_to_vmcs12(vmx);
		/* Enlightened VMCS doesn't have launch state */
		vmcs12->launch_state = !launch;
	} else if (enable_shadow_vmcs) {
		copy_shadow_to_vmcs12(vmx);
	}

	/*
	 * The nested entry process starts with enforcing various prerequisites
	 * on vmcs12 as required by the Intel SDM, and act appropriately when
	 * they fail: As the SDM explains, some conditions should cause the
	 * instruction to fail, while others will cause the instruction to seem
	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
	 * To speed up the normal (success) code path, we should avoid checking
	 * for misconfigurations which will anyway be caught by the processor
	 * when using the merged vmcs02.
	 */
	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
		return nested_vmx_failValid(vcpu,
			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);

	if (vmcs12->launch_state == launch)
		return nested_vmx_failValid(vcpu,
			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);

3157 3158
	if (nested_vmx_check_controls(vcpu, vmcs12))
		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3159

3160 3161
	if (nested_vmx_check_host_state(vcpu, vmcs12))
		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191

	/*
	 * We're finally done with prerequisite checking, and can start with
	 * the nested entry.
	 */
	vmx->nested.nested_run_pending = 1;
	ret = nested_vmx_enter_non_root_mode(vcpu, true);
	vmx->nested.nested_run_pending = !ret;
	if (ret > 0)
		return 1;
	else if (ret)
		return nested_vmx_failValid(vcpu,
			VMXERR_ENTRY_INVALID_CONTROL_FIELD);

	/* Hide L1D cache contents from the nested guest.  */
	vmx->vcpu.arch.l1tf_flush_l1d = true;

	/*
	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
	 * also be used as part of restoring nVMX state for
	 * snapshot restore (migration).
	 *
	 * In this flow, it is assumed that vmcs12 cache was
	 * trasferred as part of captured nVMX state and should
	 * therefore not be read from guest memory (which may not
	 * exist on destination host yet).
	 */
	nested_cache_shadow_vmcs12(vcpu, vmcs12);

	/*
3192 3193 3194
	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
	 * awakened by event injection or by an NMI-window VM-exit or
	 * by an interrupt-window VM-exit, halt the vcpu.
3195 3196
	 */
	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3197 3198 3199 3200
	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		vmx->nested.nested_run_pending = 0;
		return kvm_vcpu_halt(vcpu);
	}
	return 1;
}

/*
 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
 * This function returns the new value we should put in vmcs12.guest_cr0.
 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 *     didn't trap the bit, because if L1 did, so would L0).
 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 *     been modified by L2, and L1 knows it. So just leave the old value of
 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 *     isn't relevant, because if L0 traps this bit it can set it to anything.
 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 *     changed these bits, and therefore they need to be updated, but L0
 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 */
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
			vcpu->arch.cr0_guest_owned_bits));
}

static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
			vcpu->arch.cr4_guest_owned_bits));
}

static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
				      struct vmcs12 *vmcs12)
{
	u32 idt_vectoring;
	unsigned int nr;

	if (vcpu->arch.exception.injected) {
		nr = vcpu->arch.exception.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (kvm_exception_is_soft(nr)) {
			vmcs12->vm_exit_instruction_len =
				vcpu->arch.event_exit_inst_len;
			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
		} else
			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;

		if (vcpu->arch.exception.has_error_code) {
			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
			vmcs12->idt_vectoring_error_code =
				vcpu->arch.exception.error_code;
		}

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	} else if (vcpu->arch.nmi_injected) {
		vmcs12->idt_vectoring_info_field =
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
	} else if (vcpu->arch.interrupt.injected) {
		nr = vcpu->arch.interrupt.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (vcpu->arch.interrupt.soft) {
			idt_vectoring |= INTR_TYPE_SOFT_INTR;
			vmcs12->vm_entry_instruction_len =
				vcpu->arch.event_exit_inst_len;
		} else
			idt_vectoring |= INTR_TYPE_EXT_INTR;

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	}
}


static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	gfn_t gfn;

	/*
	 * Don't need to mark the APIC access page dirty; it is never
	 * written to by the CPU during APIC virtualization.
	 */

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
}

static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int max_irr;
	void *vapic_page;
	u16 status;

	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
		return;

	vmx->nested.pi_pending = false;
	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
		return;

	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
	if (max_irr != 256) {
3324 3325 3326 3327
		vapic_page = vmx->nested.virtual_apic_map.hva;
		if (!vapic_page)
			return;

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
			vapic_page, &max_irr);
		status = vmcs_read16(GUEST_INTR_STATUS);
		if ((u8)max_irr > ((u8)status & 0xff)) {
			status &= ~0xff;
			status |= (u8)max_irr;
			vmcs_write16(GUEST_INTR_STATUS, status);
		}
	}

	nested_mark_vmcs12_pages_dirty(vcpu);
}

static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
					       unsigned long exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	u32 intr_info = nr | INTR_INFO_VALID_MASK;

	if (vcpu->arch.exception.has_error_code) {
		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
	}

	if (kvm_exception_is_soft(nr))
		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
	else
		intr_info |= INTR_TYPE_HARD_EXCEPTION;

	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
	    vmx_get_nmi_mask(vcpu))
		intr_info |= INTR_INFO_UNBLOCK_NMI;

	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
}

static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long exit_qual;
	bool block_nested_events =
	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);

	if (vcpu->arch.exception.pending &&
		nested_vmx_check_exception(vcpu, &exit_qual)) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
	    vmx->nested.preemption_timer_expired) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
		return 0;
	}

	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
				  INTR_INFO_VALID_MASK, 0);
		/*
		 * The NMI-triggered VM exit counts as injection:
		 * clear this one and block further NMIs.
		 */
		vcpu->arch.nmi_pending = 0;
		vmx_set_nmi_mask(vcpu, true);
		return 0;
	}

	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
	    nested_exit_on_intr(vcpu)) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
		return 0;
	}

	vmx_complete_nested_posted_interrupt(vcpu);
	return 0;
}

static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	ktime_t remaining =
		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
	u64 value;

	if (ktime_to_ns(remaining) <= 0)
		return 0;

	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
	do_div(value, 1000000);
	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}

3429
static bool is_vmcs12_ext_field(unsigned long field)
3430
{
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	switch (field) {
	case GUEST_ES_SELECTOR:
	case GUEST_CS_SELECTOR:
	case GUEST_SS_SELECTOR:
	case GUEST_DS_SELECTOR:
	case GUEST_FS_SELECTOR:
	case GUEST_GS_SELECTOR:
	case GUEST_LDTR_SELECTOR:
	case GUEST_TR_SELECTOR:
	case GUEST_ES_LIMIT:
	case GUEST_CS_LIMIT:
	case GUEST_SS_LIMIT:
	case GUEST_DS_LIMIT:
	case GUEST_FS_LIMIT:
	case GUEST_GS_LIMIT:
	case GUEST_LDTR_LIMIT:
	case GUEST_TR_LIMIT:
	case GUEST_GDTR_LIMIT:
	case GUEST_IDTR_LIMIT:
	case GUEST_ES_AR_BYTES:
	case GUEST_DS_AR_BYTES:
	case GUEST_FS_AR_BYTES:
	case GUEST_GS_AR_BYTES:
	case GUEST_LDTR_AR_BYTES:
	case GUEST_TR_AR_BYTES:
	case GUEST_ES_BASE:
	case GUEST_CS_BASE:
	case GUEST_SS_BASE:
	case GUEST_DS_BASE:
	case GUEST_FS_BASE:
	case GUEST_GS_BASE:
	case GUEST_LDTR_BASE:
	case GUEST_TR_BASE:
	case GUEST_GDTR_BASE:
	case GUEST_IDTR_BASE:
	case GUEST_PENDING_DBG_EXCEPTIONS:
	case GUEST_BNDCFGS:
		return true;
	default:
		break;
	}
3472

3473 3474 3475 3476 3477 3478 3479
	return false;
}

static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	vmcs12->guest_pending_dbg_exceptions =
		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
	if (kvm_mpx_supported())
		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}

static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;

	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
		return;


	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);

	cpu = get_cpu();
	vmx->loaded_vmcs = &vmx->nested.vmcs02;
	vmx_vcpu_load(&vmx->vcpu, cpu);

	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

	vmx->loaded_vmcs = &vmx->vmcs01;
	vmx_vcpu_load(&vmx->vcpu, cpu);
	put_cpu();
}

/*
 * Update the guest state fields of vmcs12 to reflect changes that
 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
 * VM-entry controls is also updated, since this is really a guest
 * state bit.)
 */
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (vmx->nested.hv_evmcs)
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;

	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);

	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
	vmcs12->guest_rip = kvm_rip_read(vcpu);
	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);

	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3570

3571 3572 3573 3574
	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);

3575 3576
	vmcs12->guest_interruptibility_info =
		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3577

3578 3579 3580 3581 3582
	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
	else
		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;

3583 3584
	if (nested_cpu_has_preemption_timer(vmcs12) &&
	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
			vmcs12->vmx_preemption_timer_value =
				vmx_get_preemption_timer_value(vcpu);

	/*
	 * In some cases (usually, nested EPT), L2 is allowed to change its
	 * own CR3 without exiting. If it has changed it, we must keep it.
	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
	 *
	 * Additionally, restore L2's PDPTR to vmcs12.
	 */
	if (enable_ept) {
		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3598 3599 3600 3601 3602 3603
		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
		}
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	}

	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);

	if (nested_cpu_has_vid(vmcs12))
		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);

	vmcs12->vm_entry_controls =
		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);

3615
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);

	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
		vmcs12->guest_ia32_efer = vcpu->arch.efer;
}

/*
 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 * and this function updates it to reflect the changes to the guest state while
 * L2 was running (and perhaps made some exits which were handled directly by L0
 * without going back to L1), and to reflect the exit reason.
 * Note that we do not have to copy here all VMCS fields, just those that
 * could have changed by the L2 guest or the exit - i.e., the guest-state and
 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 * which already writes to vmcs12 directly.
 */
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
			   u32 exit_reason, u32 exit_intr_info,
			   unsigned long exit_qualification)
{
	/* update exit information fields: */
	vmcs12->vm_exit_reason = exit_reason;
	vmcs12->exit_qualification = exit_qualification;
	vmcs12->vm_exit_intr_info = exit_intr_info;

	vmcs12->idt_vectoring_info_field = 0;
	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
		vmcs12->launch_state = 1;

		/* vm_entry_intr_info_field is cleared on exit. Emulate this
		 * instead of reading the real value. */
		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;

		/*
		 * Transfer the event that L0 or L1 may wanted to inject into
		 * L2 to IDT_VECTORING_INFO_FIELD.
		 */
		vmcs12_save_pending_event(vcpu, vmcs12);
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

		/*
		 * According to spec, there's no need to store the guest's
		 * MSRs if the exit is due to a VM-entry failure that occurs
		 * during or after loading the guest state. Since this exit
		 * does not fall in that category, we need to save the MSRs.
		 */
		if (nested_vmx_store_msr(vcpu,
					 vmcs12->vm_exit_msr_store_addr,
					 vmcs12->vm_exit_msr_store_count))
			nested_vmx_abort(vcpu,
					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	}

	/*
	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
	 * preserved above and would only end up incorrectly in L1.
	 */
	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);
}

/*
 * A part of what we need to when the nested L2 guest exits and we want to
 * run its L1 parent, is to reset L1's guest state to the host state specified
 * in vmcs12.
 * This function is to be called not only on normal nested exit, but also on
 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 * Failures During or After Loading Guest State").
 * This function should be called when the active VMCS is L1's (vmcs01).
 */
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12)
{
	struct kvm_segment seg;
	u32 entry_failure_code;

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->host_ia32_efer;
	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	vmx_set_efer(vcpu, vcpu->arch.efer);

3704 3705
	kvm_rsp_write(vcpu, vmcs12->host_rsp);
	kvm_rip_write(vcpu, vmcs12->host_rip);
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
	vmx_set_interrupt_shadow(vcpu, 0);

	/*
	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
	 * actually changed, because vmx_set_cr0 refers to efer set above.
	 *
	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
	 * (KVM doesn't change it);
	 */
	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
	vmx_set_cr0(vcpu, vmcs12->host_cr0);

	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs12->host_cr4);

	nested_ept_uninit_mmu_context(vcpu);

	/*
	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
	 * couldn't have changed.
	 */
	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);

	if (!enable_ept)
		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;

	/*
	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
	 * VMEntry/VMExit. Thus, no need to flush TLB.
	 *
	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
	 * flushed on every VMEntry/VMExit.
	 *
	 * Otherwise, we can preserve TLB entries as long as we are
	 * able to tag L1 TLB entries differently than L2 TLB entries.
	 *
	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
	 * and therefore we request the TLB flush to happen only after VMCS EPTP
	 * has been set by KVM_REQ_LOAD_CR3.
	 */
	if (enable_vpid &&
	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
	}

	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);

	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
		vmcs_write64(GUEST_BNDCFGS, 0);

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
		vcpu->arch.pat = vmcs12->host_ia32_pat;
	}
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
			vmcs12->host_ia32_perf_global_ctrl);

	/* Set L1 segment info according to Intel SDM
	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.selector = vmcs12->host_cs_selector,
		.type = 11,
		.present = 1,
		.s = 1,
		.g = 1
	};
	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		seg.l = 1;
	else
		seg.db = 1;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.type = 3,
		.present = 1,
		.s = 1,
		.db = 1,
		.g = 1
	};
	seg.selector = vmcs12->host_ds_selector;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
	seg.selector = vmcs12->host_es_selector;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
	seg.selector = vmcs12->host_ss_selector;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
	seg.selector = vmcs12->host_fs_selector;
	seg.base = vmcs12->host_fs_base;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
	seg.selector = vmcs12->host_gs_selector;
	seg.base = vmcs12->host_gs_base;
	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
	seg = (struct kvm_segment) {
		.base = vmcs12->host_tr_base,
		.limit = 0x67,
		.selector = vmcs12->host_tr_selector,
		.type = 11,
		.present = 1
	};
	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);

	kvm_set_dr(vcpu, 7, 0x400);
	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);

	if (cpu_has_vmx_msr_bitmap())
		vmx_update_msr_bitmap(vcpu);

	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
				vmcs12->vm_exit_msr_load_count))
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}

static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
{
	struct shared_msr_entry *efer_msr;
	unsigned int i;

	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
		return vmcs_read64(GUEST_IA32_EFER);

	if (cpu_has_load_ia32_efer())
		return host_efer;

	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
			return vmx->msr_autoload.guest.val[i].value;
	}

	efer_msr = find_msr_entry(vmx, MSR_EFER);
	if (efer_msr)
		return efer_msr->data;

	return host_efer;
}

static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msr_entry g, h;
	struct msr_data msr;
	gpa_t gpa;
	u32 i, j;

	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);

	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
		/*
		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
		 * as vmcs01.GUEST_DR7 contains a userspace defined value
		 * and vcpu->arch.dr7 is not squirreled away before the
		 * nested VMENTER (not worth adding a variable in nested_vmx).
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
		else
			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
	}

	/*
	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
	 * handle a variety of side effects to KVM's software model.
	 */
	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));

	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));

	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));

	nested_ept_uninit_mmu_context(vcpu);
3891 3892
	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3893 3894 3895 3896 3897 3898 3899

	/*
	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
	 * VMFail, like everything else we just need to ensure our
	 * software model is up-to-date.
	 */
3900 3901
	if (enable_ept)
		ept_save_pdptrs(vcpu);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

	kvm_mmu_reset_context(vcpu);

	if (cpu_has_vmx_msr_bitmap())
		vmx_update_msr_bitmap(vcpu);

	/*
	 * This nasty bit of open coding is a compromise between blindly
	 * loading L1's MSRs using the exit load lists (incorrect emulation
	 * of VMFail), leaving the nested VM's MSRs in the software model
	 * (incorrect behavior) and snapshotting the modified MSRs (too
	 * expensive since the lists are unbound by hardware).  For each
	 * MSR that was (prematurely) loaded from the nested VMEntry load
	 * list, reload it from the exit load list if it exists and differs
	 * from the guest value.  The intent is to stuff host state as
	 * silently as possible, not to fully process the exit load list.
	 */
	msr.host_initiated = false;
	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
			pr_debug_ratelimited(
				"%s read MSR index failed (%u, 0x%08llx)\n",
				__func__, i, gpa);
			goto vmabort;
		}

		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
				pr_debug_ratelimited(
					"%s read MSR failed (%u, 0x%08llx)\n",
					__func__, j, gpa);
				goto vmabort;
			}
			if (h.index != g.index)
				continue;
			if (h.value == g.value)
				break;

			if (nested_vmx_load_msr_check(vcpu, &h)) {
				pr_debug_ratelimited(
					"%s check failed (%u, 0x%x, 0x%x)\n",
					__func__, j, h.index, h.reserved);
				goto vmabort;
			}

			msr.index = h.index;
			msr.data = h.value;
			if (kvm_set_msr(vcpu, &msr)) {
				pr_debug_ratelimited(
					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
					__func__, j, h.index, h.value);
				goto vmabort;
			}
		}
	}

	return;

vmabort:
	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}

/*
 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 * and modify vmcs12 to make it see what it would expect to see there if
 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 */
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
		       u32 exit_intr_info, unsigned long exit_qualification)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	/* trying to cancel vmlaunch/vmresume is a bug */
	WARN_ON_ONCE(vmx->nested.nested_run_pending);

	leave_guest_mode(vcpu);

3982 3983 3984
	if (nested_cpu_has_preemption_timer(vmcs12))
		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);

3985 3986 3987 3988
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;

	if (likely(!vmx->fail)) {
3989
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
3990 3991

		if (exit_reason != -1)
3992 3993 3994 3995
			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
				       exit_qualification);

		/*
3996
		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
		 * also be used to capture vmcs12 cache as part of
		 * capturing nVMX state for snapshot (migration).
		 *
		 * Otherwise, this flush will dirty guest memory at a
		 * point it is already assumed by user-space to be
		 * immutable.
		 */
		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
	} else {
		/*
		 * The only expected VM-instruction error is "VM entry with
		 * invalid control field(s)." Anything else indicates a
		 * problem with L0.  And we should never get here with a
		 * VMFail of any type if early consistency checks are enabled.
		 */
		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		WARN_ON_ONCE(nested_early_check);
	}

	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	/* Update any VMCS fields that might have changed while L2 ran */
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);

	if (kvm_has_tsc_control)
		decache_tsc_multiplier(vmx);

	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
		vmx->nested.change_vmcs01_virtual_apic_mode = false;
		vmx_set_virtual_apic_mode(vcpu);
	} else if (!nested_cpu_has_ept(vmcs12) &&
		   nested_cpu_has2(vmcs12,
				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
		vmx_flush_tlb(vcpu, true);
	}

	/* Unpin physical memory we referred to in vmcs02 */
	if (vmx->nested.apic_access_page) {
		kvm_release_page_dirty(vmx->nested.apic_access_page);
		vmx->nested.apic_access_page = NULL;
	}
4041
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4042 4043
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
4044 4045 4046 4047 4048 4049 4050 4051

	/*
	 * We are now running in L2, mmu_notifier will force to reload the
	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
	 */
	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);

	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4052
		vmx->nested.need_vmcs12_to_shadow_sync = true;
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	/* in case we halted in L2 */
	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

	if (likely(!vmx->fail)) {
		/*
		 * TODO: SDM says that with acknowledge interrupt on
		 * exit, bit 31 of the VM-exit interrupt information
		 * (valid interrupt) is always set to 1 on
		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
		 * need kvm_cpu_has_interrupt().  See the commit
		 * message for details.
		 */
		if (nested_exit_intr_ack_set(vcpu) &&
		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
		    kvm_cpu_has_interrupt(vcpu)) {
			int irq = kvm_cpu_get_interrupt(vcpu);
			WARN_ON(irq < 0);
			vmcs12->vm_exit_intr_info = irq |
				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
		}

		if (exit_reason != -1)
			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
						       vmcs12->exit_qualification,
						       vmcs12->idt_vectoring_info_field,
						       vmcs12->vm_exit_intr_info,
						       vmcs12->vm_exit_intr_error_code,
						       KVM_ISA_VMX);

		load_vmcs12_host_state(vcpu, vmcs12);

		return;
	}

	/*
	 * After an early L2 VM-entry failure, we're now back
	 * in L1 which thinks it just finished a VMLAUNCH or
	 * VMRESUME instruction, so we need to set the failure
	 * flag and the VM-instruction error field of the VMCS
	 * accordingly, and skip the emulated instruction.
	 */
	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);

	/*
	 * Restore L1's host state to KVM's software model.  We're here
	 * because a consistency check was caught by hardware, which
	 * means some amount of guest state has been propagated to KVM's
	 * model and needs to be unwound to the host's state.
	 */
	nested_vmx_restore_host_state(vcpu);

	vmx->fail = 0;
}

/*
 * Decode the memory-address operand of a vmx instruction, as recorded on an
 * exit caused by such an instruction (run by a guest hypervisor).
 * On success, returns 0. When the operand is invalid, returns 1 and throws
 * #UD or #GP.
 */
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4115
			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
{
	gva_t off;
	bool exn;
	struct kvm_segment s;

	/*
	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
	 * Execution", on an exit, vmx_instruction_info holds most of the
	 * addressing components of the operand. Only the displacement part
	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
	 * For how an actual address is calculated from all these components,
	 * refer to Vol. 1, "Operand Addressing".
	 */
	int  scaling = vmx_instruction_info & 3;
	int  addr_size = (vmx_instruction_info >> 7) & 7;
	bool is_reg = vmx_instruction_info & (1u << 10);
	int  seg_reg = (vmx_instruction_info >> 15) & 7;
	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));

	if (is_reg) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* Addr = segment_base + offset */
	/* offset = base + [index * scale] + displacement */
	off = exit_qualification; /* holds the displacement */
4146 4147 4148 4149
	if (addr_size == 1)
		off = (gva_t)sign_extend64(off, 31);
	else if (addr_size == 0)
		off = (gva_t)sign_extend64(off, 15);
4150 4151 4152 4153 4154 4155
	if (base_is_valid)
		off += kvm_register_read(vcpu, base_reg);
	if (index_is_valid)
		off += kvm_register_read(vcpu, index_reg)<<scaling;
	vmx_get_segment(vcpu, &s, seg_reg);

4156 4157 4158 4159 4160 4161
	/*
	 * The effective address, i.e. @off, of a memory operand is truncated
	 * based on the address size of the instruction.  Note that this is
	 * the *effective address*, i.e. the address prior to accounting for
	 * the segment's base.
	 */
4162
	if (addr_size == 1) /* 32 bit */
4163 4164 4165
		off &= 0xffffffff;
	else if (addr_size == 0) /* 16 bit */
		off &= 0xffff;
4166 4167 4168 4169

	/* Checks for #GP/#SS exceptions. */
	exn = false;
	if (is_long_mode(vcpu)) {
4170 4171 4172 4173 4174 4175 4176
		/*
		 * The virtual/linear address is never truncated in 64-bit
		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
		 * address when using FS/GS with a non-zero base.
		 */
		*ret = s.base + off;

4177 4178 4179 4180 4181
		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
		 * non-canonical form. This is the only check on the memory
		 * destination for long mode!
		 */
		exn = is_noncanonical_address(*ret, vcpu);
4182
	} else {
4183 4184 4185 4186 4187 4188 4189
		/*
		 * When not in long mode, the virtual/linear address is
		 * unconditionally truncated to 32 bits regardless of the
		 * address size.
		 */
		*ret = (s.base + off) & 0xffffffff;

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
		/* Protected mode: apply checks for segment validity in the
		 * following order:
		 * - segment type check (#GP(0) may be thrown)
		 * - usability check (#GP(0)/#SS(0))
		 * - limit check (#GP(0)/#SS(0))
		 */
		if (wr)
			/* #GP(0) if the destination operand is located in a
			 * read-only data segment or any code segment.
			 */
			exn = ((s.type & 0xa) == 0 || (s.type & 8));
		else
			/* #GP(0) if the source operand is located in an
			 * execute-only code segment
			 */
			exn = ((s.type & 0xa) == 8);
		if (exn) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
		 */
		exn = (s.unusable != 0);
4213 4214 4215 4216 4217 4218

		/*
		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
		 * outside the segment limit.  All CPUs that support VMX ignore
		 * limit checks for flat segments, i.e. segments with base==0,
		 * limit==0xffffffff and of type expand-up data or code.
4219
		 */
4220 4221
		if (!(s.base == 0 && s.limit == 0xffffffff &&
		     ((s.type & 8) || !(s.type & 4))))
4222
			exn = exn || ((u64)off + len - 1 > s.limit);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	}
	if (exn) {
		kvm_queue_exception_e(vcpu,
				      seg_reg == VCPU_SREG_SS ?
						SS_VECTOR : GP_VECTOR,
				      0);
		return 1;
	}

	return 0;
}

static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
{
	gva_t gva;
	struct x86_exception e;

	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4241 4242
				vmcs_read32(VMX_INSTRUCTION_INFO), false,
				sizeof(*vmpointer), &gva))
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
		return 1;

	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	return 0;
}

/*
 * Allocate a shadow VMCS and associate it with the currently loaded
 * VMCS, unless such a shadow VMCS already exists. The newly allocated
 * VMCS is also VMCLEARed, so that it is ready for use.
 */
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;

	/*
	 * We should allocate a shadow vmcs for vmcs01 only when L1
	 * executes VMXON and free it when L1 executes VMXOFF.
	 * As it is invalid to execute VMXON twice, we shouldn't reach
	 * here when vmcs01 already have an allocated shadow vmcs.
	 */
	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);

	if (!loaded_vmcs->shadow_vmcs) {
		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
		if (loaded_vmcs->shadow_vmcs)
			vmcs_clear(loaded_vmcs->shadow_vmcs);
	}
	return loaded_vmcs->shadow_vmcs;
}

static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int r;

	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
	if (r < 0)
		goto out_vmcs02;

4288
	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4289 4290 4291
	if (!vmx->nested.cached_vmcs12)
		goto out_cached_vmcs12;

4292
	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	if (!vmx->nested.cached_shadow_vmcs12)
		goto out_cached_shadow_vmcs12;

	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
		goto out_shadow_vmcs;

	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL_PINNED);
	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;

	vmx->nested.vpid02 = allocate_vpid();

	vmx->nested.vmcs02_initialized = false;
	vmx->nested.vmxon = true;
4307 4308 4309 4310 4311 4312

	if (pt_mode == PT_MODE_HOST_GUEST) {
		vmx->pt_desc.guest.ctl = 0;
		pt_update_intercept_for_msr(vmx);
	}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	return 0;

out_shadow_vmcs:
	kfree(vmx->nested.cached_shadow_vmcs12);

out_cached_shadow_vmcs12:
	kfree(vmx->nested.cached_vmcs12);

out_cached_vmcs12:
	free_loaded_vmcs(&vmx->nested.vmcs02);

out_vmcs02:
	return -ENOMEM;
}

/*
 * Emulate the VMXON instruction.
 * Currently, we just remember that VMX is active, and do not save or even
 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
 * do not currently need to store anything in that guest-allocated memory
 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
 * argument is different from the VMXON pointer (which the spec says they do).
 */
static int handle_vmon(struct kvm_vcpu *vcpu)
{
	int ret;
	gpa_t vmptr;
4340
	uint32_t revision;
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;

	/*
	 * The Intel VMX Instruction Reference lists a bunch of bits that are
	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
	 * Otherwise, we should fail with #UD.  But most faulting conditions
	 * have already been checked by hardware, prior to the VM-exit for
	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
	 * that bit set to 1 in non-root mode.
	 */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* CPL=0 must be checked manually. */
	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

	if (vmx->nested.vmxon)
		return nested_vmx_failValid(vcpu,
			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);

	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
			!= VMXON_NEEDED_FEATURES) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

	if (nested_vmx_get_vmptr(vcpu, &vmptr))
		return 1;

	/*
	 * SDM 3: 24.11.5
	 * The first 4 bytes of VMXON region contain the supported
	 * VMCS revision identifier
	 *
	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
	 * which replaces physical address width with 32
	 */
4386
	if (!page_address_valid(vcpu, vmptr))
4387 4388
		return nested_vmx_failInvalid(vcpu);

4389 4390
	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
	    revision != VMCS12_REVISION)
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
		return nested_vmx_failInvalid(vcpu);

	vmx->nested.vmxon_ptr = vmptr;
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

	return nested_vmx_succeed(vcpu);
}

static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	if (vmx->nested.current_vmptr == -1ull)
		return;

4408 4409
	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));

4410 4411 4412 4413
	if (enable_shadow_vmcs) {
		/* copy to memory all shadowed fields in case
		   they were modified */
		copy_shadow_to_vmcs12(vmx);
4414
		vmx->nested.need_vmcs12_to_shadow_sync = false;
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
		vmx_disable_shadow_vmcs(vmx);
	}
	vmx->nested.posted_intr_nv = -1;

	/* Flush VMCS12 to guest memory */
	kvm_vcpu_write_guest_page(vcpu,
				  vmx->nested.current_vmptr >> PAGE_SHIFT,
				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);

	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);

	vmx->nested.current_vmptr = -1ull;
}

/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
	if (!nested_vmx_check_permission(vcpu))
		return 1;
	free_nested(vcpu);
	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 zero = 0;
	gpa_t vmptr;
4444
	u64 evmcs_gpa;
4445 4446 4447 4448 4449 4450 4451

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (nested_vmx_get_vmptr(vcpu, &vmptr))
		return 1;

4452
	if (!page_address_valid(vcpu, vmptr))
4453 4454 4455 4456 4457 4458 4459
		return nested_vmx_failValid(vcpu,
			VMXERR_VMCLEAR_INVALID_ADDRESS);

	if (vmptr == vmx->nested.vmxon_ptr)
		return nested_vmx_failValid(vcpu,
			VMXERR_VMCLEAR_VMXON_POINTER);

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	/*
	 * When Enlightened VMEntry is enabled on the calling CPU we treat
	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
	 * way to distinguish it from VMCS12) and we must not corrupt it by
	 * writing to the non-existent 'launch_state' field. The area doesn't
	 * have to be the currently active EVMCS on the calling CPU and there's
	 * nothing KVM has to do to transition it from 'active' to 'non-active'
	 * state. It is possible that the area will stay mapped as
	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
	 */
	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
		if (vmptr == vmx->nested.current_vmptr)
			nested_release_vmcs12(vcpu);

		kvm_vcpu_write_guest(vcpu,
				     vmptr + offsetof(struct vmcs12,
						      launch_state),
				     &zero, sizeof(zero));
	}

	return nested_vmx_succeed(vcpu);
}

static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);

/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
	return nested_vmx_run(vcpu, true);
}

/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{

	return nested_vmx_run(vcpu, false);
}

static int handle_vmread(struct kvm_vcpu *vcpu)
{
	unsigned long field;
	u64 field_value;
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4505
	int len;
4506 4507
	gva_t gva = 0;
	struct vmcs12 *vmcs12;
4508
	short offset;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
		return nested_vmx_failInvalid(vcpu);

	if (!is_guest_mode(vcpu))
		vmcs12 = get_vmcs12(vcpu);
	else {
		/*
		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
		 * to shadowed-field sets the ALU flags for VMfailInvalid.
		 */
		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
			return nested_vmx_failInvalid(vcpu);
		vmcs12 = get_shadow_vmcs12(vcpu);
	}

	/* Decode instruction info and find the field to read */
	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4530 4531 4532

	offset = vmcs_field_to_offset(field);
	if (offset < 0)
4533 4534 4535
		return nested_vmx_failValid(vcpu,
			VMXERR_UNSUPPORTED_VMCS_COMPONENT);

4536 4537 4538
	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

4539 4540 4541
	/* Read the field, zero-extended to a u64 field_value */
	field_value = vmcs12_read_any(vmcs12, field, offset);

4542 4543 4544 4545 4546 4547 4548 4549 4550
	/*
	 * Now copy part of this value to register or memory, as requested.
	 * Note that the number of bits actually copied is 32 or 64 depending
	 * on the guest's mode (32 or 64 bit), not on the given field's length.
	 */
	if (vmx_instruction_info & (1u << 10)) {
		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
			field_value);
	} else {
4551
		len = is_64_bit_mode(vcpu) ? 8 : 4;
4552
		if (get_vmx_mem_address(vcpu, exit_qualification,
4553
				vmx_instruction_info, true, len, &gva))
4554 4555
			return 1;
		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
4556
		kvm_write_guest_virt_system(vcpu, gva, &field_value, len, NULL);
4557 4558 4559 4560 4561
	}

	return nested_vmx_succeed(vcpu);
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
static bool is_shadow_field_rw(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RW(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}

static bool is_shadow_field_ro(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RO(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}
4585 4586 4587 4588

static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
	unsigned long field;
4589
	int len;
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	gva_t gva;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

	/* The value to write might be 32 or 64 bits, depending on L1's long
	 * mode, and eventually we need to write that into a field of several
	 * possible lengths. The code below first zero-extends the value to 64
	 * bit (field_value), and then copies only the appropriate number of
	 * bits into the vmcs12 field.
	 */
	u64 field_value = 0;
	struct x86_exception e;
	struct vmcs12 *vmcs12;
4604
	short offset;
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (vmx->nested.current_vmptr == -1ull)
		return nested_vmx_failInvalid(vcpu);

	if (vmx_instruction_info & (1u << 10))
		field_value = kvm_register_readl(vcpu,
			(((vmx_instruction_info) >> 3) & 0xf));
	else {
4616
		len = is_64_bit_mode(vcpu) ? 8 : 4;
4617
		if (get_vmx_mem_address(vcpu, exit_qualification,
4618
				vmx_instruction_info, false, len, &gva))
4619
			return 1;
4620
		if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
			kvm_inject_page_fault(vcpu, &e);
			return 1;
		}
	}


	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
	/*
	 * If the vCPU supports "VMWRITE to any supported field in the
	 * VMCS," then the "read-only" fields are actually read/write.
	 */
	if (vmcs_field_readonly(field) &&
	    !nested_cpu_has_vmwrite_any_field(vcpu))
		return nested_vmx_failValid(vcpu,
			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);

4637
	if (!is_guest_mode(vcpu)) {
4638
		vmcs12 = get_vmcs12(vcpu);
4639 4640 4641 4642 4643 4644 4645 4646

		/*
		 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
		 * vmcs12, else we may crush a field or consume a stale value.
		 */
		if (!is_shadow_field_rw(field))
			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
	} else {
4647 4648 4649 4650 4651 4652 4653 4654 4655
		/*
		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
		 * to shadowed-field sets the ALU flags for VMfailInvalid.
		 */
		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
			return nested_vmx_failInvalid(vcpu);
		vmcs12 = get_shadow_vmcs12(vcpu);
	}

4656 4657 4658 4659 4660
	offset = vmcs_field_to_offset(field);
	if (offset < 0)
		return nested_vmx_failValid(vcpu,
			VMXERR_UNSUPPORTED_VMCS_COMPONENT);

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
	/*
	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
	 * from L1 will return a different value than VMREAD from L2 (L1 sees
	 * the stripped down value, L2 sees the full value as stored by KVM).
	 */
	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
		field_value &= 0x1f0ff;

4672
	vmcs12_write_any(vmcs12, field, offset, field_value);
4673 4674

	/*
4675 4676 4677 4678
	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4679
	 */
4680 4681 4682 4683 4684 4685 4686 4687
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
		/*
		 * L1 can read these fields without exiting, ensure the
		 * shadow VMCS is up-to-date.
		 */
		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
			preempt_disable();
			vmcs_load(vmx->vmcs01.shadow_vmcs);
4688

4689
			__vmcs_writel(field, field_value);
4690

4691 4692 4693
			vmcs_clear(vmx->vmcs01.shadow_vmcs);
			vmcs_load(vmx->loaded_vmcs->vmcs);
			preempt_enable();
4694
		}
4695
		vmx->nested.dirty_vmcs12 = true;
4696 4697 4698 4699 4700 4701 4702 4703 4704
	}

	return nested_vmx_succeed(vcpu);
}

static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
	vmx->nested.current_vmptr = vmptr;
	if (enable_shadow_vmcs) {
4705
		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4706 4707
		vmcs_write64(VMCS_LINK_POINTER,
			     __pa(vmx->vmcs01.shadow_vmcs));
4708
		vmx->nested.need_vmcs12_to_shadow_sync = true;
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
	}
	vmx->nested.dirty_vmcs12 = true;
}

/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t vmptr;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (nested_vmx_get_vmptr(vcpu, &vmptr))
		return 1;

4725
	if (!page_address_valid(vcpu, vmptr))
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
		return nested_vmx_failValid(vcpu,
			VMXERR_VMPTRLD_INVALID_ADDRESS);

	if (vmptr == vmx->nested.vmxon_ptr)
		return nested_vmx_failValid(vcpu,
			VMXERR_VMPTRLD_VMXON_POINTER);

	/* Forbid normal VMPTRLD if Enlightened version was used */
	if (vmx->nested.hv_evmcs)
		return 1;

	if (vmx->nested.current_vmptr != vmptr) {
4738
		struct kvm_host_map map;
4739 4740
		struct vmcs12 *new_vmcs12;

4741
		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4742 4743 4744 4745 4746 4747
			/*
			 * Reads from an unbacked page return all 1s,
			 * which means that the 32 bits located at the
			 * given physical address won't match the required
			 * VMCS12_REVISION identifier.
			 */
4748
			return nested_vmx_failValid(vcpu,
4749 4750
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
4751 4752 4753

		new_vmcs12 = map.hva;

4754 4755 4756
		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
		    (new_vmcs12->hdr.shadow_vmcs &&
		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4757
			kvm_vcpu_unmap(vcpu, &map, false);
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
			return nested_vmx_failValid(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}

		nested_release_vmcs12(vcpu);

		/*
		 * Load VMCS12 from guest memory since it is not already
		 * cached.
		 */
		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4769
		kvm_vcpu_unmap(vcpu, &map, false);
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

		set_current_vmptr(vmx, vmptr);
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
	struct x86_exception e;
	gva_t gva;

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
		return 1;

4792 4793
	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
				true, sizeof(gpa_t), &gva))
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
		return 1;
	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
					sizeof(gpa_t), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}
	return nested_vmx_succeed(vcpu);
}

/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info, types;
	unsigned long type;
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 eptp, gpa;
	} operand;

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_EPT) ||
	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);

	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;

	if (type >= 32 || !(types & (1 << type)))
		return nested_vmx_failValid(vcpu,
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	/* According to the Intel VMX instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4839
			vmx_instruction_info, false, sizeof(operand), &gva))
4840 4841 4842 4843 4844 4845 4846 4847
		return 1;
	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}

	switch (type) {
	case VMX_EPT_EXTENT_GLOBAL:
4848
	case VMX_EPT_EXTENT_CONTEXT:
4849
	/*
4850 4851
	 * TODO: Sync the necessary shadow EPT roots here, rather than
	 * at the next emulated VM-entry.
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	 */
		break;
	default:
		BUG_ON(1);
		break;
	}

	return nested_vmx_succeed(vcpu);
}

static int handle_invvpid(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info;
	unsigned long type, types;
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 vpid;
		u64 gla;
	} operand;
	u16 vpid02;

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_VPID) ||
			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);

	types = (vmx->nested.msrs.vpid_caps &
			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;

	if (type >= 32 || !(types & (1 << type)))
		return nested_vmx_failValid(vcpu,
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	/* according to the intel vmx instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4899
			vmx_instruction_info, false, sizeof(operand), &gva))
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
		return 1;
	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
		kvm_inject_page_fault(vcpu, &e);
		return 1;
	}
	if (operand.vpid >> 16)
		return nested_vmx_failValid(vcpu,
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	vpid02 = nested_get_vpid02(vcpu);
	switch (type) {
	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
		if (!operand.vpid ||
		    is_noncanonical_address(operand.gla, vcpu))
			return nested_vmx_failValid(vcpu,
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
		if (cpu_has_vmx_invvpid_individual_addr()) {
			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
				vpid02, operand.gla);
		} else
			__vmx_flush_tlb(vcpu, vpid02, false);
		break;
	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
		if (!operand.vpid)
			return nested_vmx_failValid(vcpu,
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
		__vmx_flush_tlb(vcpu, vpid02, false);
		break;
	case VMX_VPID_EXTENT_ALL_CONTEXT:
		__vmx_flush_tlb(vcpu, vpid02, false);
		break;
	default:
		WARN_ON_ONCE(1);
		return kvm_skip_emulated_instruction(vcpu);
	}

	return nested_vmx_succeed(vcpu);
}

static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
4943
	u32 index = kvm_rcx_read(vcpu);
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	u64 address;
	bool accessed_dirty;
	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;

	if (!nested_cpu_has_eptp_switching(vmcs12) ||
	    !nested_cpu_has_ept(vmcs12))
		return 1;

	if (index >= VMFUNC_EPTP_ENTRIES)
		return 1;


	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
				     &address, index * 8, 8))
		return 1;

	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);

	/*
	 * If the (L2) guest does a vmfunc to the currently
	 * active ept pointer, we don't have to do anything else
	 */
	if (vmcs12->ept_pointer != address) {
		if (!valid_ept_address(vcpu, address))
			return 1;

		kvm_mmu_unload(vcpu);
		mmu->ept_ad = accessed_dirty;
		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
		vmcs12->ept_pointer = address;
		/*
		 * TODO: Check what's the correct approach in case
		 * mmu reload fails. Currently, we just let the next
		 * reload potentially fail
		 */
		kvm_mmu_reload(vcpu);
	}

	return 0;
}

static int handle_vmfunc(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
4989
	u32 function = kvm_rax_read(vcpu);
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

	/*
	 * VMFUNC is only supported for nested guests, but we always enable the
	 * secondary control for simplicity; for non-nested mode, fake that we
	 * didn't by injecting #UD.
	 */
	if (!is_guest_mode(vcpu)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmcs12 = get_vmcs12(vcpu);
	if ((vmcs12->vm_function_control & (1 << function)) == 0)
		goto fail;

	switch (function) {
	case 0:
		if (nested_vmx_eptp_switching(vcpu, vmcs12))
			goto fail;
		break;
	default:
		goto fail;
	}
	return kvm_skip_emulated_instruction(vcpu);

fail:
	nested_vmx_vmexit(vcpu, vmx->exit_reason,
			  vmcs_read32(VM_EXIT_INTR_INFO),
			  vmcs_readl(EXIT_QUALIFICATION));
	return 1;
}


static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification;
	gpa_t bitmap, last_bitmap;
	unsigned int port;
	int size;
	u8 b;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);

	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);

	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;

	last_bitmap = (gpa_t)-1;
	b = -1;

	while (size > 0) {
		if (port < 0x8000)
			bitmap = vmcs12->io_bitmap_a;
		else if (port < 0x10000)
			bitmap = vmcs12->io_bitmap_b;
		else
			return true;
		bitmap += (port & 0x7fff) / 8;

		if (last_bitmap != bitmap)
			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
				return true;
		if (b & (1 << (port & 7)))
			return true;

		port++;
		size--;
		last_bitmap = bitmap;
	}

	return false;
}

/*
 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 * disinterest in the current event (read or write a specific MSR) by using an
 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 */
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, u32 exit_reason)
{
5075
	u32 msr_index = kvm_rcx_read(vcpu);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
	gpa_t bitmap;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return true;

	/*
	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
	 * for the four combinations of read/write and low/high MSR numbers.
	 * First we need to figure out which of the four to use:
	 */
	bitmap = vmcs12->msr_bitmap;
	if (exit_reason == EXIT_REASON_MSR_WRITE)
		bitmap += 2048;
	if (msr_index >= 0xc0000000) {
		msr_index -= 0xc0000000;
		bitmap += 1024;
	}

	/* Then read the msr_index'th bit from this bitmap: */
	if (msr_index < 1024*8) {
		unsigned char b;
		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
			return true;
		return 1 & (b >> (msr_index & 7));
	} else
		return true; /* let L1 handle the wrong parameter */
}

/*
 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 * intercept (via guest_host_mask etc.) the current event.
 */
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
	int cr = exit_qualification & 15;
	int reg;
	unsigned long val;

	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
		reg = (exit_qualification >> 8) & 15;
		val = kvm_register_readl(vcpu, reg);
		switch (cr) {
		case 0:
			if (vmcs12->cr0_guest_host_mask &
			    (val ^ vmcs12->cr0_read_shadow))
				return true;
			break;
		case 3:
			if ((vmcs12->cr3_target_count >= 1 &&
					vmcs12->cr3_target_value0 == val) ||
				(vmcs12->cr3_target_count >= 2 &&
					vmcs12->cr3_target_value1 == val) ||
				(vmcs12->cr3_target_count >= 3 &&
					vmcs12->cr3_target_value2 == val) ||
				(vmcs12->cr3_target_count >= 4 &&
					vmcs12->cr3_target_value3 == val))
				return false;
			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
				return true;
			break;
		case 4:
			if (vmcs12->cr4_guest_host_mask &
			    (vmcs12->cr4_read_shadow ^ val))
				return true;
			break;
		case 8:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
				return true;
			break;
		}
		break;
	case 2: /* clts */
		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
			return true;
		break;
	case 1: /* mov from cr */
		switch (cr) {
		case 3:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR3_STORE_EXITING)
				return true;
			break;
		case 8:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR8_STORE_EXITING)
				return true;
			break;
		}
		break;
	case 3: /* lmsw */
		/*
		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
		 * cr0. Other attempted changes are ignored, with no exit.
		 */
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
		if (vmcs12->cr0_guest_host_mask & 0xe &
		    (val ^ vmcs12->cr0_read_shadow))
			return true;
		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
		    !(vmcs12->cr0_read_shadow & 0x1) &&
		    (val & 0x1))
			return true;
		break;
	}
	return false;
}

static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, gpa_t bitmap)
{
	u32 vmx_instruction_info;
	unsigned long field;
	u8 b;

	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return true;

	/* Decode instruction info and find the field to access */
	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));

	/* Out-of-range fields always cause a VM exit from L2 to L1 */
	if (field >> 15)
		return true;

	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
		return true;

	return 1 & (b >> (field & 7));
}

/*
 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
 * should handle it ourselves in L0 (and then continue L2). Only call this
 * when in is_guest_mode (L2).
 */
bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
{
	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	if (vmx->nested.nested_run_pending)
		return false;

	if (unlikely(vmx->fail)) {
		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
				    vmcs_read32(VM_INSTRUCTION_ERROR));
		return true;
	}

	/*
	 * The host physical addresses of some pages of guest memory
	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
	 * Page). The CPU may write to these pages via their host
	 * physical address while L2 is running, bypassing any
	 * address-translation-based dirty tracking (e.g. EPT write
	 * protection).
	 *
	 * Mark them dirty on every exit from L2 to prevent them from
	 * getting out of sync with dirty tracking.
	 */
	nested_mark_vmcs12_pages_dirty(vcpu);

	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
				vmcs_readl(EXIT_QUALIFICATION),
				vmx->idt_vectoring_info,
				intr_info,
				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
				KVM_ISA_VMX);

	switch (exit_reason) {
	case EXIT_REASON_EXCEPTION_NMI:
		if (is_nmi(intr_info))
			return false;
		else if (is_page_fault(intr_info))
			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
		else if (is_debug(intr_info) &&
			 vcpu->guest_debug &
			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
			return false;
		else if (is_breakpoint(intr_info) &&
			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
			return false;
		return vmcs12->exception_bitmap &
				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
	case EXIT_REASON_EXTERNAL_INTERRUPT:
		return false;
	case EXIT_REASON_TRIPLE_FAULT:
		return true;
	case EXIT_REASON_PENDING_INTERRUPT:
		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
	case EXIT_REASON_NMI_WINDOW:
		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
	case EXIT_REASON_TASK_SWITCH:
		return true;
	case EXIT_REASON_CPUID:
		return true;
	case EXIT_REASON_HLT:
		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
	case EXIT_REASON_INVD:
		return true;
	case EXIT_REASON_INVLPG:
		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_RDPMC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
	case EXIT_REASON_RDRAND:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
	case EXIT_REASON_RDSEED:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
	case EXIT_REASON_VMREAD:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmread_bitmap);
	case EXIT_REASON_VMWRITE:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmwrite_bitmap);
	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
		/*
		 * VMX instructions trap unconditionally. This allows L1 to
		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
		 */
		return true;
	case EXIT_REASON_CR_ACCESS:
		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
	case EXIT_REASON_DR_ACCESS:
		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
	case EXIT_REASON_IO_INSTRUCTION:
		return nested_vmx_exit_handled_io(vcpu, vmcs12);
	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
	case EXIT_REASON_INVALID_STATE:
		return true;
	case EXIT_REASON_MWAIT_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
	case EXIT_REASON_MONITOR_TRAP_FLAG:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
	case EXIT_REASON_MONITOR_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
	case EXIT_REASON_PAUSE_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
			nested_cpu_has2(vmcs12,
				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
	case EXIT_REASON_MCE_DURING_VMENTRY:
		return false;
	case EXIT_REASON_TPR_BELOW_THRESHOLD:
		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
	case EXIT_REASON_APIC_ACCESS:
	case EXIT_REASON_APIC_WRITE:
	case EXIT_REASON_EOI_INDUCED:
		/*
		 * The controls for "virtualize APIC accesses," "APIC-
		 * register virtualization," and "virtual-interrupt
		 * delivery" only come from vmcs12.
		 */
		return true;
	case EXIT_REASON_EPT_VIOLATION:
		/*
		 * L0 always deals with the EPT violation. If nested EPT is
		 * used, and the nested mmu code discovers that the address is
		 * missing in the guest EPT table (EPT12), the EPT violation
		 * will be injected with nested_ept_inject_page_fault()
		 */
		return false;
	case EXIT_REASON_EPT_MISCONFIG:
		/*
		 * L2 never uses directly L1's EPT, but rather L0's own EPT
		 * table (shadow on EPT) or a merged EPT table that L0 built
		 * (EPT on EPT). So any problems with the structure of the
		 * table is L0's fault.
		 */
		return false;
	case EXIT_REASON_INVPCID:
		return
			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_WBINVD:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
	case EXIT_REASON_XSETBV:
		return true;
	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
		/*
		 * This should never happen, since it is not possible to
		 * set XSS to a non-zero value---neither in L1 nor in L2.
		 * If if it were, XSS would have to be checked against
		 * the XSS exit bitmap in vmcs12.
		 */
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
	case EXIT_REASON_PREEMPTION_TIMER:
		return false;
	case EXIT_REASON_PML_FULL:
		/* We emulate PML support to L1. */
		return false;
	case EXIT_REASON_VMFUNC:
		/* VM functions are emulated through L2->L0 vmexits. */
		return false;
	case EXIT_REASON_ENCLS:
		/* SGX is never exposed to L1 */
		return false;
	default:
		return true;
	}
}


static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				u32 user_data_size)
{
	struct vcpu_vmx *vmx;
	struct vmcs12 *vmcs12;
	struct kvm_nested_state kvm_state = {
		.flags = 0,
		.format = 0,
		.size = sizeof(kvm_state),
		.vmx.vmxon_pa = -1ull,
		.vmx.vmcs_pa = -1ull,
	};

	if (!vcpu)
		return kvm_state.size + 2 * VMCS12_SIZE;

	vmx = to_vmx(vcpu);
	vmcs12 = get_vmcs12(vcpu);

	if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
		kvm_state.flags |= KVM_STATE_NESTED_EVMCS;

	if (nested_vmx_allowed(vcpu) &&
	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
		kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
		kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;

		if (vmx_has_valid_vmcs12(vcpu)) {
			kvm_state.size += VMCS12_SIZE;

			if (is_guest_mode(vcpu) &&
			    nested_cpu_has_shadow_vmcs(vmcs12) &&
			    vmcs12->vmcs_link_pointer != -1ull)
				kvm_state.size += VMCS12_SIZE;
		}

		if (vmx->nested.smm.vmxon)
			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;

		if (vmx->nested.smm.guest_mode)
			kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;

		if (is_guest_mode(vcpu)) {
			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;

			if (vmx->nested.nested_run_pending)
				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
		}
	}

	if (user_data_size < kvm_state.size)
		goto out;

	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
		return -EFAULT;

	if (!vmx_has_valid_vmcs12(vcpu))
		goto out;

	/*
	 * When running L2, the authoritative vmcs12 state is in the
	 * vmcs02. When running L1, the authoritative vmcs12 state is
	 * in the shadow or enlightened vmcs linked to vmcs01, unless
5458
	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5459 5460 5461
	 * vmcs12 state is in the vmcs12 already.
	 */
	if (is_guest_mode(vcpu)) {
5462
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5463
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5464
	} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5465 5466 5467 5468 5469 5470
		if (vmx->nested.hv_evmcs)
			copy_enlightened_to_vmcs12(vmx);
		else if (enable_shadow_vmcs)
			copy_shadow_to_vmcs12(vmx);
	}

5471 5472 5473 5474 5475
	/*
	 * Copy over the full allocated size of vmcs12 rather than just the size
	 * of the struct.
	 */
	if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
5476 5477 5478 5479 5480
		return -EFAULT;

	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
	    vmcs12->vmcs_link_pointer != -1ull) {
		if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
5481
				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
			return -EFAULT;
	}

out:
	return kvm_state.size;
}

/*
 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 */
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu)) {
		to_vmx(vcpu)->nested.nested_run_pending = 0;
		nested_vmx_vmexit(vcpu, -1, 0, 0);
	}
	free_nested(vcpu);
}

static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				struct kvm_nested_state *kvm_state)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
	u32 exit_qual;
	int ret;

	if (kvm_state->format != 0)
		return -EINVAL;

	if (!nested_vmx_allowed(vcpu))
		return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;

	if (kvm_state->vmx.vmxon_pa == -1ull) {
		if (kvm_state->vmx.smm.flags)
			return -EINVAL;

		if (kvm_state->vmx.vmcs_pa != -1ull)
			return -EINVAL;

		vmx_leave_nested(vcpu);
		return 0;
	}

	if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
		return -EINVAL;

	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return -EINVAL;

	if (kvm_state->vmx.smm.flags &
	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
		return -EINVAL;

	/*
	 * SMM temporarily disables VMX, so we cannot be in guest mode,
	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
	 * must be zero.
	 */
	if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
		return -EINVAL;

	if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
	    !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
		return -EINVAL;

	vmx_leave_nested(vcpu);
	if (kvm_state->vmx.vmxon_pa == -1ull)
		return 0;

5554 5555 5556
	if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
		nested_enable_evmcs(vcpu, NULL);

5557 5558 5559 5560 5561 5562
	vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

	/* Empty 'VMXON' state is permitted */
5563
	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
		return 0;

	if (kvm_state->vmx.vmcs_pa != -1ull) {
		if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
		    !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
			return -EINVAL;

		set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
		/*
		 * Sync eVMCS upon entry as we may not have
		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
		 */
5577
		vmx->nested.need_vmcs12_to_shadow_sync = true;
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	} else {
		return -EINVAL;
	}

	if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
		vmx->nested.smm.vmxon = true;
		vmx->nested.vmxon = false;

		if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
			vmx->nested.smm.guest_mode = true;
	}

	vmcs12 = get_vmcs12(vcpu);
	if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
		return -EFAULT;

	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
		return -EINVAL;

	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return 0;

5600 5601 5602 5603
	vmx->nested.nested_run_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);

	ret = -EINVAL;
5604 5605 5606 5607
	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
	    vmcs12->vmcs_link_pointer != -1ull) {
		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);

5608
		if (kvm_state->size < sizeof(*kvm_state) + VMCS12_SIZE + sizeof(*vmcs12))
5609
			goto error_guest_mode;
5610 5611 5612

		if (copy_from_user(shadow_vmcs12,
				   user_kvm_nested_state->data + VMCS12_SIZE,
5613 5614 5615 5616
				   sizeof(*vmcs12))) {
			ret = -EFAULT;
			goto error_guest_mode;
		}
5617 5618 5619

		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
		    !shadow_vmcs12->hdr.shadow_vmcs)
5620
			goto error_guest_mode;
5621 5622
	}

5623 5624 5625
	if (nested_vmx_check_controls(vcpu, vmcs12) ||
	    nested_vmx_check_host_state(vcpu, vmcs12) ||
	    nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5626
		goto error_guest_mode;
5627 5628 5629

	vmx->nested.dirty_vmcs12 = true;
	ret = nested_vmx_enter_non_root_mode(vcpu, false);
5630 5631
	if (ret)
		goto error_guest_mode;
5632 5633

	return 0;
5634 5635 5636 5637

error_guest_mode:
	vmx->nested.nested_run_pending = 0;
	return ret;
5638 5639 5640 5641 5642 5643
}

void nested_vmx_vcpu_setup(void)
{
	if (enable_shadow_vmcs) {
		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5644
		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
	}
}

/*
 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 * returned for the various VMX controls MSRs when nested VMX is enabled.
 * The same values should also be used to verify that vmcs12 control fields are
 * valid during nested entry from L1 to L2.
 * Each of these control msrs has a low and high 32-bit half: A low bit is on
 * if the corresponding bit in the (32-bit) control field *must* be on, and a
 * bit in the high half is on if the corresponding bit in the control field
 * may be on. See also vmx_control_verify().
 */
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
				bool apicv)
{
	/*
	 * Note that as a general rule, the high half of the MSRs (bits in
	 * the control fields which may be 1) should be initialized by the
	 * intersection of the underlying hardware's MSR (i.e., features which
	 * can be supported) and the list of features we want to expose -
	 * because they are known to be properly supported in our code.
	 * Also, usually, the low half of the MSRs (bits which must be 1) can
	 * be set to 0, meaning that L1 may turn off any of these bits. The
	 * reason is that if one of these bits is necessary, it will appear
	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
	 * fields of vmcs01 and vmcs02, will turn these bits off - and
	 * nested_vmx_exit_reflected() will not pass related exits to L1.
	 * These rules have exceptions below.
	 */

	/* pin-based controls */
	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
		msrs->pinbased_ctls_low,
		msrs->pinbased_ctls_high);
	msrs->pinbased_ctls_low |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->pinbased_ctls_high &=
		PIN_BASED_EXT_INTR_MASK |
		PIN_BASED_NMI_EXITING |
		PIN_BASED_VIRTUAL_NMIS |
		(apicv ? PIN_BASED_POSTED_INTR : 0);
	msrs->pinbased_ctls_high |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		PIN_BASED_VMX_PREEMPTION_TIMER;

	/* exit controls */
	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
		msrs->exit_ctls_low,
		msrs->exit_ctls_high);
	msrs->exit_ctls_low =
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;

	msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
		VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
	msrs->exit_ctls_high |=
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;

	/* We support free control of debug control saving. */
	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;

	/* entry controls */
	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
		msrs->entry_ctls_low,
		msrs->entry_ctls_high);
	msrs->entry_ctls_low =
		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
		VM_ENTRY_IA32E_MODE |
#endif
		VM_ENTRY_LOAD_IA32_PAT;
	msrs->entry_ctls_high |=
		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);

	/* We support free control of debug control loading. */
	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;

	/* cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
		msrs->procbased_ctls_low,
		msrs->procbased_ctls_high);
	msrs->procbased_ctls_low =
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->procbased_ctls_high &=
		CPU_BASED_VIRTUAL_INTR_PENDING |
		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
		CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
	/*
	 * We can allow some features even when not supported by the
	 * hardware. For example, L1 can specify an MSR bitmap - and we
	 * can use it to avoid exits to L1 - even when L0 runs L2
	 * without MSR bitmaps.
	 */
	msrs->procbased_ctls_high |=
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		CPU_BASED_USE_MSR_BITMAPS;

	/* We support free control of CR3 access interception. */
	msrs->procbased_ctls_low &=
		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);

	/*
	 * secondary cpu-based controls.  Do not include those that
	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
	 */
5766 5767 5768 5769 5770
	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
		      msrs->secondary_ctls_low,
		      msrs->secondary_ctls_high);

5771 5772 5773
	msrs->secondary_ctls_low = 0;
	msrs->secondary_ctls_high &=
		SECONDARY_EXEC_DESC |
5774
		SECONDARY_EXEC_RDTSCP |
5775
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5776
		SECONDARY_EXEC_WBINVD_EXITING |
5777 5778
		SECONDARY_EXEC_APIC_REGISTER_VIRT |
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5779 5780 5781 5782
		SECONDARY_EXEC_RDRAND_EXITING |
		SECONDARY_EXEC_ENABLE_INVPCID |
		SECONDARY_EXEC_RDSEED_EXITING |
		SECONDARY_EXEC_XSAVES;
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905

	/*
	 * We can emulate "VMCS shadowing," even if the hardware
	 * doesn't support it.
	 */
	msrs->secondary_ctls_high |=
		SECONDARY_EXEC_SHADOW_VMCS;

	if (enable_ept) {
		/* nested EPT: emulate EPT also to L1 */
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_EPT;
		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
		if (cpu_has_vmx_ept_execute_only())
			msrs->ept_caps |=
				VMX_EPT_EXECUTE_ONLY_BIT;
		msrs->ept_caps &= ept_caps;
		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
			VMX_EPT_1GB_PAGE_BIT;
		if (enable_ept_ad_bits) {
			msrs->secondary_ctls_high |=
				SECONDARY_EXEC_ENABLE_PML;
			msrs->ept_caps |= VMX_EPT_AD_BIT;
		}
	}

	if (cpu_has_vmx_vmfunc()) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VMFUNC;
		/*
		 * Advertise EPTP switching unconditionally
		 * since we emulate it
		 */
		if (enable_ept)
			msrs->vmfunc_controls =
				VMX_VMFUNC_EPTP_SWITCHING;
	}

	/*
	 * Old versions of KVM use the single-context version without
	 * checking for support, so declare that it is supported even
	 * though it is treated as global context.  The alternative is
	 * not failing the single-context invvpid, and it is worse.
	 */
	if (enable_vpid) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VPID;
		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
			VMX_VPID_EXTENT_SUPPORTED_MASK;
	}

	if (enable_unrestricted_guest)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_UNRESTRICTED_GUEST;

	if (flexpriority_enabled)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;

	/* miscellaneous data */
	rdmsr(MSR_IA32_VMX_MISC,
		msrs->misc_low,
		msrs->misc_high);
	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
	msrs->misc_low |=
		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
		VMX_MISC_ACTIVITY_HLT;
	msrs->misc_high = 0;

	/*
	 * This MSR reports some information about VMX support. We
	 * should return information about the VMX we emulate for the
	 * guest, and the VMCS structure we give it - not about the
	 * VMX support of the underlying hardware.
	 */
	msrs->basic =
		VMCS12_REVISION |
		VMX_BASIC_TRUE_CTLS |
		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);

	if (cpu_has_vmx_basic_inout())
		msrs->basic |= VMX_BASIC_INOUT;

	/*
	 * These MSRs specify bits which the guest must keep fixed on
	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
	 * We picked the standard core2 setting.
	 */
#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;

	/* These MSRs specify bits which the guest must keep fixed off. */
	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);

	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
}

void nested_vmx_hardware_unsetup(void)
{
	int i;

	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++)
			free_page((unsigned long)vmx_bitmap[i]);
	}
}

__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
{
	int i;

	if (!cpu_has_vmx_shadow_vmcs())
		enable_shadow_vmcs = 0;
	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++) {
5906 5907 5908 5909
			/*
			 * The vmx_bitmap is not tied to a VM and so should
			 * not be charged to a memcg.
			 */
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
			vmx_bitmap[i] = (unsigned long *)
				__get_free_page(GFP_KERNEL);
			if (!vmx_bitmap[i]) {
				nested_vmx_hardware_unsetup();
				return -ENOMEM;
			}
		}

		init_vmcs_shadow_fields();
	}

	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear,
	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch,
	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld,
	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst,
	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread,
	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume,
	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite,
	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff,
	exit_handlers[EXIT_REASON_VMON]		= handle_vmon,
	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept,
	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid,
	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc,

	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5939
	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5940 5941 5942

	return 0;
}