nested.c 206.3 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include <linux/objtool.h>
4 5 6 7 8 9 10 11 12
#include <linux/percpu.h>

#include <asm/debugreg.h>
#include <asm/mmu_context.h>

#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
13
#include "pmu.h"
14
#include "sgx.h"
15
#include "trace.h"
16
#include "vmx.h"
17 18 19 20 21 22 23 24
#include "x86.h"

static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);

static bool __read_mostly nested_early_check = 0;
module_param(nested_early_check, bool, S_IRUGO);

25
#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*
 * Hyper-V requires all of these, so mark them as supported even though
 * they are just treated the same as all-context.
 */
#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)

#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5

enum {
	VMX_VMREAD_BITMAP,
	VMX_VMWRITE_BITMAP,
	VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];

#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])

49 50 51 52 53 54
struct shadow_vmcs_field {
	u16	encoding;
	u16	offset;
};
static struct shadow_vmcs_field shadow_read_only_fields[] = {
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 56 57 58 59
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_only_fields =
	ARRAY_SIZE(shadow_read_only_fields);

60 61
static struct shadow_vmcs_field shadow_read_write_fields[] = {
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 63 64 65 66
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_write_fields =
	ARRAY_SIZE(shadow_read_write_fields);

67
static void init_vmcs_shadow_fields(void)
68 69 70 71 72 73 74
{
	int i, j;

	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);

	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 76
		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
		u16 field = entry.encoding;
77 78 79

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_only_fields ||
80
		     shadow_read_only_fields[i + 1].encoding != field + 1))
81 82 83 84 85
			pr_err("Missing field from shadow_read_only_field %x\n",
			       field + 1);

		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
86
#ifdef CONFIG_X86_64
87
			continue;
88 89
#else
			entry.offset += sizeof(u32);
90
#endif
91
		shadow_read_only_fields[j++] = entry;
92 93 94 95
	}
	max_shadow_read_only_fields = j;

	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 97
		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
		u16 field = entry.encoding;
98 99 100

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_write_fields ||
101
		     shadow_read_write_fields[i + 1].encoding != field + 1))
102 103 104
			pr_err("Missing field from shadow_read_write_field %x\n",
			       field + 1);

105 106
		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
			  field <= GUEST_TR_AR_BYTES,
107
			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
		/*
		 * PML and the preemption timer can be emulated, but the
		 * processor cannot vmwrite to fields that don't exist
		 * on bare metal.
		 */
		switch (field) {
		case GUEST_PML_INDEX:
			if (!cpu_has_vmx_pml())
				continue;
			break;
		case VMX_PREEMPTION_TIMER_VALUE:
			if (!cpu_has_vmx_preemption_timer())
				continue;
			break;
		case GUEST_INTR_STATUS:
			if (!cpu_has_vmx_apicv())
				continue;
			break;
		default:
			break;
		}

		clear_bit(field, vmx_vmwrite_bitmap);
		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
134
#ifdef CONFIG_X86_64
135
			continue;
136 137
#else
			entry.offset += sizeof(u32);
138
#endif
139
		shadow_read_write_fields[j++] = entry;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	}
	max_shadow_read_write_fields = j;
}

/*
 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 * set the success or error code of an emulated VMX instruction (as specified
 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 * instruction.
 */
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_CF);
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
				u32 vm_instruction_error)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_ZF);
	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
	/*
176 177 178
	 * We don't need to force sync to shadow VMCS because
	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
	 * fields and thus must be synced.
179
	 */
180 181 182
	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;

183 184 185
	return kvm_skip_emulated_instruction(vcpu);
}

186 187 188 189 190 191 192 193
static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * failValid writes the error number to the current VMCS, which
	 * can't be done if there isn't a current VMCS.
	 */
194
	if (vmx->nested.current_vmptr == INVALID_GPA &&
195
	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196 197 198 199 200
		return nested_vmx_failInvalid(vcpu);

	return nested_vmx_failValid(vcpu, vm_instruction_error);
}

201 202 203 204 205 206 207
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
	/* TODO: not to reset guest simply here. */
	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}

M
Marc Orr 已提交
208 209 210 211 212 213 214 215 216 217
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
	return fixed_bits_valid(control, low, high);
}

static inline u64 vmx_control_msr(u32 low, u32 high)
{
	return low | ((u64)high << 32);
}

218 219
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
220
	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221
	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
222
	vmx->nested.need_vmcs12_to_shadow_sync = false;
223 224 225 226 227 228
}

static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

229 230 231 232
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
		vmx->nested.hv_evmcs = NULL;
	}
233

234
	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
				     struct loaded_vmcs *prev)
{
	struct vmcs_host_state *dest, *src;

	if (unlikely(!vmx->guest_state_loaded))
		return;

	src = &prev->host_state;
	dest = &vmx->loaded_vmcs->host_state;

	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
	dest->ldt_sel = src->ldt_sel;
#ifdef CONFIG_X86_64
	dest->ds_sel = src->ds_sel;
	dest->es_sel = src->es_sel;
#endif
}

static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *prev;
	int cpu;

262
	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263 264 265 266 267 268 269 270 271 272 273 274
		return;

	cpu = get_cpu();
	prev = vmx->loaded_vmcs;
	vmx->loaded_vmcs = vmcs;
	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
	vmx_sync_vmcs_host_state(vmx, prev);
	put_cpu();

	vmx_register_cache_reset(vcpu);
}

275 276 277 278 279 280 281 282
/*
 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 * just stops using VMX.
 */
static void free_nested(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

283 284 285
	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
		vmx_switch_vmcs(vcpu, &vmx->vmcs01);

286 287 288
	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
		return;

289
	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290

291 292
	vmx->nested.vmxon = false;
	vmx->nested.smm.vmxon = false;
293
	vmx->nested.vmxon_ptr = INVALID_GPA;
294 295
	free_vpid(vmx->nested.vpid02);
	vmx->nested.posted_intr_nv = -1;
296
	vmx->nested.current_vmptr = INVALID_GPA;
297 298 299 300 301 302 303
	if (enable_shadow_vmcs) {
		vmx_disable_shadow_vmcs(vmx);
		vmcs_clear(vmx->vmcs01.shadow_vmcs);
		free_vmcs(vmx->vmcs01.shadow_vmcs);
		vmx->vmcs01.shadow_vmcs = NULL;
	}
	kfree(vmx->nested.cached_vmcs12);
304
	vmx->nested.cached_vmcs12 = NULL;
305
	kfree(vmx->nested.cached_shadow_vmcs12);
306
	vmx->nested.cached_shadow_vmcs12 = NULL;
307 308
	/* Unpin physical memory we referred to in the vmcs02 */
	if (vmx->nested.apic_access_page) {
309
		kvm_release_page_clean(vmx->nested.apic_access_page);
310 311
		vmx->nested.apic_access_page = NULL;
	}
312
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
313 314
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);

	nested_release_evmcs(vcpu);

	free_loaded_vmcs(&vmx->nested.vmcs02);
}

/*
 * Ensure that the current vmcs of the logical processor is the
 * vmcs01 of the vcpu before calling free_nested().
 */
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
330
	vmx_leave_nested(vcpu);
331 332 333
	vcpu_put(vcpu);
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#define EPTP_PA_MASK   GENMASK_ULL(51, 12)

static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
{
	return VALID_PAGE(root_hpa) &&
	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
}

static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
				       gpa_t addr)
{
	uint i;
	struct kvm_mmu_root_info *cached_root;

	WARN_ON_ONCE(!mmu_is_nested(vcpu));

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		cached_root = &vcpu->arch.mmu->prev_roots[i];

		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
					    eptp))
			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
	}
}

359 360 361 362 363
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
364
	u32 vm_exit_reason;
365 366 367
	unsigned long exit_qualification = vcpu->arch.exit_qualification;

	if (vmx->nested.pml_full) {
368
		vm_exit_reason = EXIT_REASON_PML_FULL;
369 370
		vmx->nested.pml_full = false;
		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	} else {
		if (fault->error_code & PFERR_RSVD_MASK)
			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
		else
			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;

		/*
		 * Although the caller (kvm_inject_emulated_page_fault) would
		 * have already synced the faulting address in the shadow EPT
		 * tables for the current EPTP12, we also need to sync it for
		 * any other cached EPTP02s based on the same EP4TA, since the
		 * TLB associates mappings to the EP4TA rather than the full EPTP.
		 */
		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
					   fault->address);
	}
387

388
	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
389 390 391
	vmcs12->guest_physical_address = fault->address;
}

392 393 394 395 396 397 398 399 400
static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
{
	kvm_init_shadow_ept_mmu(vcpu,
				to_vmx(vcpu)->nested.msrs.ept_caps &
				VMX_EPT_EXECUTE_ONLY_BIT,
				nested_ept_ad_enabled(vcpu),
				nested_ept_get_eptp(vcpu));
}

401 402 403 404 405
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
	WARN_ON(mmu_is_nested(vcpu));

	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
406
	nested_ept_new_eptp(vcpu);
407
	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;

	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}

static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
					    u16 error_code)
{
	bool inequality, bit;

	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
	inequality =
		(error_code & vmcs12->page_fault_error_code_mask) !=
		 vmcs12->page_fault_error_code_match;
	return inequality ^ bit;
}


/*
 * KVM wants to inject page-faults which it got to the guest. This function
 * checks whether in a nested guest, we need to inject them to L1 or L2.
 */
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	bool has_payload = vcpu->arch.exception.has_payload;
	unsigned long payload = vcpu->arch.exception.payload;

	if (nr == PF_VECTOR) {
		if (vcpu->arch.exception.nested_apf) {
			*exit_qual = vcpu->arch.apf.nested_apf_token;
			return 1;
		}
		if (nested_vmx_is_page_fault_vmexit(vmcs12,
						    vcpu->arch.exception.error_code)) {
			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
			return 1;
		}
	} else if (vmcs12->exception_bitmap & (1u << nr)) {
		if (nr == DB_VECTOR) {
			if (!has_payload) {
				payload = vcpu->arch.dr6;
458 459
				payload &= ~DR6_BT;
				payload ^= DR6_ACTIVE_LOW;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			}
			*exit_qual = payload;
		} else
			*exit_qual = 0;
		return 1;
	}

	return 0;
}


static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	WARN_ON(!is_guest_mode(vcpu));

	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
		!to_vmx(vcpu)->nested.nested_run_pending) {
		vmcs12->vm_exit_intr_error_code = fault->error_code;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
				  fault->address);
	} else {
		kvm_inject_page_fault(vcpu, fault);
	}
}

static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
					       struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return 0;

496 497
	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
498 499 500 501 502 503 504 505 506 507 508
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return 0;

509
	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
510 511 512 513 514 515 516 517 518 519 520
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return 0;

521
	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
522 523 524 525 526 527
		return -EINVAL;

	return 0;
}

/*
528 529 530
 * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
 * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
 * only the "disable intercept" case needs to be handled.
531
 */
532 533 534
static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
							unsigned long *msr_bitmap_l0,
							u32 msr, int type)
535
{
536 537
	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
538

539 540
	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
541 542
}

543 544
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
{
545 546 547 548 549 550 551 552 553 554
	int msr;

	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
		unsigned word = msr / BITS_PER_LONG;

		msr_bitmap[word] = ~0;
		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
	}
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
static inline									\
void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
					 unsigned long *msr_bitmap_l1,		\
					 unsigned long *msr_bitmap_l0, u32 msr)	\
{										\
	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
	else									\
		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
}
BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)

static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
						    unsigned long *msr_bitmap_l1,
						    unsigned long *msr_bitmap_l0,
						    u32 msr, int types)
{
	if (types & MSR_TYPE_R)
		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
						  msr_bitmap_l0, msr);
	if (types & MSR_TYPE_W)
		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
						   msr_bitmap_l0, msr);
}

583 584 585 586 587 588 589
/*
 * Merge L0's and L1's MSR bitmap, return false to indicate that
 * we do not use the hardware.
 */
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
590
	struct vcpu_vmx *vmx = to_vmx(vcpu);
591 592
	int msr;
	unsigned long *msr_bitmap_l1;
593 594
	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
595 596 597 598 599 600

	/* Nothing to do if the MSR bitmap is not in use.  */
	if (!cpu_has_vmx_msr_bitmap() ||
	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return false;

601
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
602 603
		return false;

604
	msr_bitmap_l1 = (unsigned long *)map->hva;
605

606 607 608
	/*
	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
609
	 * the x2APIC MSR range and selectively toggle those relevant to L2.
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	 */
	enable_x2apic_msr_intercepts(msr_bitmap_l0);

	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
			/*
			 * L0 need not intercept reads for MSRs between 0x800
			 * and 0x8ff, it just lets the processor take the value
			 * from the virtual-APIC page; take those 256 bits
			 * directly from the L1 bitmap.
			 */
			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
				unsigned word = msr / BITS_PER_LONG;

				msr_bitmap_l0[word] = msr_bitmap_l1[word];
			}
		}
627

628
		nested_vmx_disable_intercept_for_x2apic_msr(
629
			msr_bitmap_l1, msr_bitmap_l0,
630
			X2APIC_MSR(APIC_TASKPRI),
631
			MSR_TYPE_R | MSR_TYPE_W);
632 633

		if (nested_cpu_has_vid(vmcs12)) {
634
			nested_vmx_disable_intercept_for_x2apic_msr(
635 636 637
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_EOI),
				MSR_TYPE_W);
638
			nested_vmx_disable_intercept_for_x2apic_msr(
639 640 641 642
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_SELF_IPI),
				MSR_TYPE_W);
		}
643 644
	}

645 646 647 648
	/*
	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
	 */
649
#ifdef CONFIG_X86_64
650 651
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_FS_BASE, MSR_TYPE_RW);
652

653 654
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_GS_BASE, MSR_TYPE_RW);
655

656 657
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
658
#endif
659 660
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
661

662 663
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
664

665
	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
666 667 668 669 670 671 672

	return true;
}

static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
673 674
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
675 676

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
677
	    vmcs12->vmcs_link_pointer == INVALID_GPA)
678 679
		return;

680 681 682
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
683
		return;
684

685 686
	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
			      VMCS12_SIZE);
687 688 689 690 691 692
}

static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
					      struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
693
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
694 695

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
696
	    vmcs12->vmcs_link_pointer == INVALID_GPA)
697 698
		return;

699 700 701 702 703 704 705
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
		return;

	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
			       VMCS12_SIZE);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
}

/*
 * In nested virtualization, check if L1 has set
 * VM_EXIT_ACK_INTR_ON_EXIT
 */
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->vm_exit_controls &
		VM_EXIT_ACK_INTR_ON_EXIT;
}

static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
722
	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
		return -EINVAL;
	else
		return 0;
}

static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
					   struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
	    !nested_cpu_has_vid(vmcs12) &&
	    !nested_cpu_has_posted_intr(vmcs12))
		return 0;

	/*
	 * If virtualize x2apic mode is enabled,
	 * virtualize apic access must be disabled.
	 */
741 742
	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
743 744 745 746 747 748
		return -EINVAL;

	/*
	 * If virtual interrupt delivery is enabled,
	 * we must exit on external interrupts.
	 */
749
	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
750 751 752 753 754 755 756 757 758 759
		return -EINVAL;

	/*
	 * bits 15:8 should be zero in posted_intr_nv,
	 * the descriptor address has been already checked
	 * in nested_get_vmcs12_pages.
	 *
	 * bits 5:0 of posted_intr_desc_addr should be zero.
	 */
	if (nested_cpu_has_posted_intr(vmcs12) &&
760 761 762
	   (CC(!nested_cpu_has_vid(vmcs12)) ||
	    CC(!nested_exit_intr_ack_set(vcpu)) ||
	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
763
	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
764 765 766
		return -EINVAL;

	/* tpr shadow is needed by all apicv features. */
767
	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
768 769 770 771 772 773
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
774
				       u32 count, u64 addr)
775 776 777
{
	if (count == 0)
		return 0;
778 779 780

	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
781
		return -EINVAL;
782

783 784 785
	return 0;
}

786 787
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
						     struct vmcs12 *vmcs12)
788
{
789 790 791 792 793 794
	if (CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_exit_msr_load_count,
					   vmcs12->vm_exit_msr_load_addr)) ||
	    CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_exit_msr_store_count,
					   vmcs12->vm_exit_msr_store_addr)))
795
		return -EINVAL;
796

797 798 799
	return 0;
}

800 801
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
                                                      struct vmcs12 *vmcs12)
802
{
803 804 805
	if (CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_entry_msr_load_count,
					   vmcs12->vm_entry_msr_load_addr)))
806 807 808 809 810
                return -EINVAL;

	return 0;
}

811 812 813 814 815 816
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
					 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

817 818
	if (CC(!nested_cpu_has_ept(vmcs12)) ||
	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
819 820 821 822 823 824 825 826
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
							struct vmcs12 *vmcs12)
{
827 828
	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
	       !nested_cpu_has_ept(vmcs12)))
829 830 831 832 833 834 835
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
							 struct vmcs12 *vmcs12)
{
836 837
	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
	       !nested_cpu_has_ept(vmcs12)))
838 839 840 841 842 843 844 845 846 847
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return 0;

848 849
	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
850 851 852 853 854 855 856 857 858
		return -EINVAL;

	return 0;
}

static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
				       struct vmx_msr_entry *e)
{
	/* x2APIC MSR accesses are not allowed */
859
	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
860
		return -EINVAL;
861 862
	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
	    CC(e->index == MSR_IA32_UCODE_REV))
863
		return -EINVAL;
864
	if (CC(e->reserved != 0))
865 866 867 868 869 870 871
		return -EINVAL;
	return 0;
}

static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
				     struct vmx_msr_entry *e)
{
872 873 874
	if (CC(e->index == MSR_FS_BASE) ||
	    CC(e->index == MSR_GS_BASE) ||
	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
875 876 877 878 879 880 881 882
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
				      struct vmx_msr_entry *e)
{
883
	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
884 885 886 887 888
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

M
Marc Orr 已提交
889 890 891 892 893 894 895 896 897
static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				       vmx->nested.msrs.misc_high);

	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
}

898 899 900
/*
 * Load guest's/host's msr at nested entry/exit.
 * return 0 for success, entry index for failure.
M
Marc Orr 已提交
901 902 903 904 905
 *
 * One of the failure modes for MSR load/store is when a list exceeds the
 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 * as possible, process all valid entries before failing rather than precheck
 * for a capacity violation.
906 907 908 909 910
 */
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;
M
Marc Orr 已提交
911
	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
912 913

	for (i = 0; i < count; i++) {
M
Marc Orr 已提交
914 915 916
		if (unlikely(i >= max_msr_list_size))
			goto fail;

917 918 919 920 921 922 923 924 925 926 927 928 929
		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
					&e, sizeof(e))) {
			pr_debug_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
			goto fail;
		}
		if (nested_vmx_load_msr_check(vcpu, &e)) {
			pr_debug_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
			goto fail;
		}
930
		if (kvm_set_msr(vcpu, e.index, e.value)) {
931 932 933 934 935 936 937 938
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
				__func__, i, e.index, e.value);
			goto fail;
		}
	}
	return 0;
fail:
939
	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
940 941 942
	return i + 1;
}

943 944 945 946 947 948 949 950 951 952 953 954
static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
					    u32 msr_index,
					    u64 *data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * If the L0 hypervisor stored a more accurate value for the TSC that
	 * does not include the time taken for emulation of the L2->L1
	 * VM-exit in L0, use the more accurate value.
	 */
	if (msr_index == MSR_IA32_TSC) {
955 956
		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
						    MSR_IA32_TSC);
957

958 959
		if (i >= 0) {
			u64 val = vmx->msr_autostore.guest.val[i].value;
960 961 962 963 964 965 966 967 968 969 970 971 972 973

			*data = kvm_read_l1_tsc(vcpu, val);
			return true;
		}
	}

	if (kvm_get_msr(vcpu, msr_index, data)) {
		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
			msr_index);
		return false;
	}
	return true;
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
				     struct vmx_msr_entry *e)
{
	if (kvm_vcpu_read_guest(vcpu,
				gpa + i * sizeof(*e),
				e, 2 * sizeof(u32))) {
		pr_debug_ratelimited(
			"%s cannot read MSR entry (%u, 0x%08llx)\n",
			__func__, i, gpa + i * sizeof(*e));
		return false;
	}
	if (nested_vmx_store_msr_check(vcpu, e)) {
		pr_debug_ratelimited(
			"%s check failed (%u, 0x%x, 0x%x)\n",
			__func__, i, e->index, e->reserved);
		return false;
	}
	return true;
}

994 995
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
996
	u64 data;
997 998
	u32 i;
	struct vmx_msr_entry e;
M
Marc Orr 已提交
999
	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1000 1001

	for (i = 0; i < count; i++) {
M
Marc Orr 已提交
1002 1003 1004
		if (unlikely(i >= max_msr_list_size))
			return -EINVAL;

1005
		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1006
			return -EINVAL;
1007

1008
		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1009
			return -EINVAL;
1010

1011 1012 1013
		if (kvm_vcpu_write_guest(vcpu,
					 gpa + i * sizeof(e) +
					     offsetof(struct vmx_msr_entry, value),
1014
					 &data, sizeof(data))) {
1015 1016
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1017
				__func__, i, e.index, data);
1018 1019 1020 1021 1022 1023
			return -EINVAL;
		}
	}
	return 0;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	u32 count = vmcs12->vm_exit_msr_store_count;
	u64 gpa = vmcs12->vm_exit_msr_store_addr;
	struct vmx_msr_entry e;
	u32 i;

	for (i = 0; i < count; i++) {
		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
			return false;

		if (e.index == msr_index)
			return true;
	}
	return false;
}

static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
					   u32 msr_index)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
	bool in_vmcs12_store_list;
1048
	int msr_autostore_slot;
1049 1050 1051
	bool in_autostore_list;
	int last;

1052 1053
	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
	in_autostore_list = msr_autostore_slot >= 0;
1054 1055 1056
	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);

	if (in_vmcs12_store_list && !in_autostore_list) {
1057
		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
			/*
			 * Emulated VMEntry does not fail here.  Instead a less
			 * accurate value will be returned by
			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
			 * instead of reading the value from the vmcs02 VMExit
			 * MSR-store area.
			 */
			pr_warn_ratelimited(
				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
				msr_index);
			return;
		}
		last = autostore->nr++;
		autostore->val[last].index = msr_index;
	} else if (!in_vmcs12_store_list && in_autostore_list) {
		last = --autostore->nr;
1074
		autostore->val[msr_autostore_slot] = autostore->val[last];
1075 1076 1077
	}
}

1078
/*
1079 1080 1081 1082
 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
 * @entry_failure_code.
1083
 */
1084 1085
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
			       bool nested_ept, bool reload_pdptrs,
1086
			       enum vm_entry_failure_code *entry_failure_code)
1087
{
1088
	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1089 1090 1091
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
		return -EINVAL;
	}
1092

1093 1094 1095 1096
	/*
	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
	 * must not be dereferenced.
	 */
1097
	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1098 1099 1100
	    CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
		*entry_failure_code = ENTRY_FAIL_PDPTE;
		return -EINVAL;
1101 1102
	}

1103
	if (!nested_ept)
1104
		kvm_mmu_new_pgd(vcpu, cr3);
1105

1106
	vcpu->arch.cr3 = cr3;
1107
	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1108

1109
	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1110
	kvm_init_mmu(vcpu);
1111 1112 1113 1114 1115 1116 1117 1118 1119

	return 0;
}

/*
 * Returns if KVM is able to config CPU to tag TLB entries
 * populated by L2 differently than TLB entries populated
 * by L1.
 *
1120 1121 1122
 * If L0 uses EPT, L1 and L2 run with different EPTP because
 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
 * are tagged with different EPTP.
1123 1124 1125 1126 1127 1128 1129 1130 1131
 *
 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
 * with different VPID (L1 entries are tagged with vmx->vpid
 * while L2 entries are tagged with vmx->nested.vpid02).
 */
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

1132
	return enable_ept ||
1133 1134 1135
	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
}

1136 1137 1138 1139 1140 1141 1142
static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
					    struct vmcs12 *vmcs12,
					    bool is_vmenter)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
	 * full TLB flush from the guest's perspective.  This is required even
	 * if VPID is disabled in the host as KVM may need to synchronize the
	 * MMU in response to the guest TLB flush.
	 *
	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
	 * EPT is a special snowflake, as guest-physical mappings aren't
	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
	 * those mappings.
1155
	 */
1156 1157
	if (!nested_cpu_has_vpid(vmcs12)) {
		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158
		return;
1159 1160 1161 1162
	}

	/* L2 should never have a VPID if VPID is disabled. */
	WARN_ON(!enable_vpid);
1163 1164

	/*
1165 1166 1167 1168 1169
	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
	 * that the new vpid12 has never been used and thus represents a new
	 * guest ASID that cannot have entries in the TLB.
1170
	 */
1171
	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1172
		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1173 1174
		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
		return;
1175
	}
1176 1177 1178 1179 1180 1181 1182 1183 1184

	/*
	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
	 * KVM was unable to allocate a VPID for L2, flush the current context
	 * as the effective ASID is common to both L1 and L2.
	 */
	if (!nested_has_guest_tlb_tag(vcpu))
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1185 1186
}

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
	superset &= mask;
	subset &= mask;

	return (superset | subset) == superset;
}

static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved =
		/* feature (except bit 48; see below) */
		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
		/* reserved */
		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
	u64 vmx_basic = vmx->nested.msrs.basic;

	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
		return -EINVAL;

	/*
	 * KVM does not emulate a version of VMX that constrains physical
	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
	 */
	if (data & BIT_ULL(48))
		return -EINVAL;

	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
	    vmx_basic_vmcs_revision_id(data))
		return -EINVAL;

	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
		return -EINVAL;

	vmx->nested.msrs.basic = data;
	return 0;
}

static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 supported;
	u32 *lowp, *highp;

	switch (msr_index) {
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
		lowp = &vmx->nested.msrs.pinbased_ctls_low;
		highp = &vmx->nested.msrs.pinbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
		lowp = &vmx->nested.msrs.procbased_ctls_low;
		highp = &vmx->nested.msrs.procbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
		lowp = &vmx->nested.msrs.exit_ctls_low;
		highp = &vmx->nested.msrs.exit_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
		lowp = &vmx->nested.msrs.entry_ctls_low;
		highp = &vmx->nested.msrs.entry_ctls_high;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		lowp = &vmx->nested.msrs.secondary_ctls_low;
		highp = &vmx->nested.msrs.secondary_ctls_high;
		break;
	default:
		BUG();
	}

	supported = vmx_control_msr(*lowp, *highp);

	/* Check must-be-1 bits are still 1. */
	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
		return -EINVAL;

	/* Check must-be-0 bits are still 0. */
	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
		return -EINVAL;

	*lowp = data;
	*highp = data >> 32;
	return 0;
}

static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved_bits =
		/* feature */
		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
		/* reserved */
		GENMASK_ULL(13, 9) | BIT_ULL(31);
	u64 vmx_misc;

	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				   vmx->nested.msrs.misc_high);

	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
		return -EINVAL;

	if ((vmx->nested.msrs.pinbased_ctls_high &
	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
	    vmx_misc_preemption_timer_rate(data) !=
	    vmx_misc_preemption_timer_rate(vmx_misc))
		return -EINVAL;

	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
		return -EINVAL;

	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
		return -EINVAL;

	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
		return -EINVAL;

	vmx->nested.msrs.misc_low = data;
	vmx->nested.msrs.misc_high = data >> 32;

	return 0;
}

static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
	u64 vmx_ept_vpid_cap;

	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
					   vmx->nested.msrs.vpid_caps);

	/* Every bit is either reserved or a feature bit. */
	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
		return -EINVAL;

	vmx->nested.msrs.ept_caps = data;
	vmx->nested.msrs.vpid_caps = data >> 32;
	return 0;
}

static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 *msr;

	switch (msr_index) {
	case MSR_IA32_VMX_CR0_FIXED0:
		msr = &vmx->nested.msrs.cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		msr = &vmx->nested.msrs.cr4_fixed0;
		break;
	default:
		BUG();
	}

	/*
	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
	 * must be 1 in the restored value.
	 */
	if (!is_bitwise_subset(data, *msr, -1ULL))
		return -EINVAL;

	*msr = data;
	return 0;
}

/*
 * Called when userspace is restoring VMX MSRs.
 *
 * Returns 0 on success, non-0 otherwise.
 */
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * Don't allow changes to the VMX capability MSRs while the vCPU
	 * is in VMX operation.
	 */
	if (vmx->nested.vmxon)
		return -EBUSY;

	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		return vmx_restore_vmx_basic(vmx, data);
	case MSR_IA32_VMX_PINBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		/*
		 * The "non-true" VMX capability MSRs are generated from the
		 * "true" MSRs, so we do not support restoring them directly.
		 *
		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
		 * should restore the "true" MSRs with the must-be-1 bits
		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
		 * DEFAULT SETTINGS".
		 */
		return -EINVAL;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		return vmx_restore_control_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_MISC:
		return vmx_restore_vmx_misc(vmx, data);
	case MSR_IA32_VMX_CR0_FIXED0:
	case MSR_IA32_VMX_CR4_FIXED0:
		return vmx_restore_fixed0_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_CR0_FIXED1:
	case MSR_IA32_VMX_CR4_FIXED1:
		/*
		 * These MSRs are generated based on the vCPU's CPUID, so we
		 * do not support restoring them directly.
		 */
		return -EINVAL;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
	case MSR_IA32_VMX_VMCS_ENUM:
		vmx->nested.msrs.vmcs_enum = data;
		return 0;
1406 1407 1408 1409 1410
	case MSR_IA32_VMX_VMFUNC:
		if (data & ~vmx->nested.msrs.vmfunc_controls)
			return -EINVAL;
		vmx->nested.msrs.vmfunc_controls = data;
		return 0;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	default:
		/*
		 * The rest of the VMX capability MSRs do not support restore.
		 */
		return -EINVAL;
	}
}

/* Returns 0 on success, non-0 otherwise. */
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
{
	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		*pdata = msrs->basic;
		break;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_PINBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->pinbased_ctls_low,
			msrs->pinbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->procbased_ctls_low,
			msrs->procbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
		*pdata = vmx_control_msr(
			msrs->exit_ctls_low,
			msrs->exit_ctls_high);
		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		*pdata = vmx_control_msr(
			msrs->entry_ctls_low,
			msrs->entry_ctls_high);
		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_MISC:
		*pdata = vmx_control_msr(
			msrs->misc_low,
			msrs->misc_high);
		break;
	case MSR_IA32_VMX_CR0_FIXED0:
		*pdata = msrs->cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR0_FIXED1:
		*pdata = msrs->cr0_fixed1;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		*pdata = msrs->cr4_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED1:
		*pdata = msrs->cr4_fixed1;
		break;
	case MSR_IA32_VMX_VMCS_ENUM:
		*pdata = msrs->vmcs_enum;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		*pdata = vmx_control_msr(
			msrs->secondary_ctls_low,
			msrs->secondary_ctls_high);
		break;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		*pdata = msrs->ept_caps |
			((u64)msrs->vpid_caps << 32);
		break;
	case MSR_IA32_VMX_VMFUNC:
		*pdata = msrs->vmfunc_controls;
		break;
	default:
		return 1;
	}

	return 0;
}

/*
1498 1499 1500 1501 1502 1503
 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
 * been modified by the L1 guest.  Note, "writable" in this context means
 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
 * VM-exit information fields (which are actually writable if the vCPU is
 * configured to support "VMWRITE to any supported field in the VMCS").
1504 1505 1506 1507
 */
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1508
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1509 1510
	struct shadow_vmcs_field field;
	unsigned long val;
1511
	int i;
1512

1513 1514 1515
	if (WARN_ON(!shadow_vmcs))
		return;

1516 1517 1518 1519
	preempt_disable();

	vmcs_load(shadow_vmcs);

1520 1521
	for (i = 0; i < max_shadow_read_write_fields; i++) {
		field = shadow_read_write_fields[i];
1522 1523
		val = __vmcs_readl(field.encoding);
		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);

	preempt_enable();
}

static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
1534
	const struct shadow_vmcs_field *fields[] = {
1535 1536 1537 1538 1539 1540 1541 1542
		shadow_read_write_fields,
		shadow_read_only_fields
	};
	const int max_fields[] = {
		max_shadow_read_write_fields,
		max_shadow_read_only_fields
	};
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1543 1544 1545 1546
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
	struct shadow_vmcs_field field;
	unsigned long val;
	int i, q;
1547

1548 1549 1550
	if (WARN_ON(!shadow_vmcs))
		return;

1551 1552 1553 1554 1555
	vmcs_load(shadow_vmcs);

	for (q = 0; q < ARRAY_SIZE(fields); q++) {
		for (i = 0; i < max_fields[q]; i++) {
			field = fields[q][i];
1556 1557 1558
			val = vmcs12_read_any(vmcs12, field.encoding,
					      field.offset);
			__vmcs_writel(field.encoding, val);
1559 1560 1561 1562 1563 1564 1565
		}
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);
}

1566
static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1567 1568 1569 1570 1571 1572 1573 1574
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
	vmcs12->tpr_threshold = evmcs->tpr_threshold;
	vmcs12->guest_rip = evmcs->guest_rip;

1575
	if (unlikely(!(hv_clean_fields &
1576 1577 1578 1579 1580 1581 1582
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
		vmcs12->guest_rsp = evmcs->guest_rsp;
		vmcs12->guest_rflags = evmcs->guest_rflags;
		vmcs12->guest_interruptibility_info =
			evmcs->guest_interruptibility_info;
	}

1583
	if (unlikely(!(hv_clean_fields &
1584 1585 1586 1587 1588
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
		vmcs12->cpu_based_vm_exec_control =
			evmcs->cpu_based_vm_exec_control;
	}

1589
	if (unlikely(!(hv_clean_fields &
1590
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1591 1592 1593
		vmcs12->exception_bitmap = evmcs->exception_bitmap;
	}

1594
	if (unlikely(!(hv_clean_fields &
1595 1596 1597 1598
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
	}

1599
	if (unlikely(!(hv_clean_fields &
1600 1601 1602 1603 1604 1605 1606 1607 1608
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
		vmcs12->vm_entry_intr_info_field =
			evmcs->vm_entry_intr_info_field;
		vmcs12->vm_entry_exception_error_code =
			evmcs->vm_entry_exception_error_code;
		vmcs12->vm_entry_instruction_len =
			evmcs->vm_entry_instruction_len;
	}

1609
	if (unlikely(!(hv_clean_fields &
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
		vmcs12->host_cr0 = evmcs->host_cr0;
		vmcs12->host_cr3 = evmcs->host_cr3;
		vmcs12->host_cr4 = evmcs->host_cr4;
		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
		vmcs12->host_rip = evmcs->host_rip;
		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
		vmcs12->host_es_selector = evmcs->host_es_selector;
		vmcs12->host_cs_selector = evmcs->host_cs_selector;
		vmcs12->host_ss_selector = evmcs->host_ss_selector;
		vmcs12->host_ds_selector = evmcs->host_ds_selector;
		vmcs12->host_fs_selector = evmcs->host_fs_selector;
		vmcs12->host_gs_selector = evmcs->host_gs_selector;
		vmcs12->host_tr_selector = evmcs->host_tr_selector;
	}

1629
	if (unlikely(!(hv_clean_fields &
1630
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1631 1632 1633 1634 1635 1636 1637
		vmcs12->pin_based_vm_exec_control =
			evmcs->pin_based_vm_exec_control;
		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
		vmcs12->secondary_vm_exec_control =
			evmcs->secondary_vm_exec_control;
	}

1638
	if (unlikely(!(hv_clean_fields &
1639 1640 1641 1642 1643
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
	}

1644
	if (unlikely(!(hv_clean_fields &
1645 1646 1647 1648
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
		vmcs12->msr_bitmap = evmcs->msr_bitmap;
	}

1649
	if (unlikely(!(hv_clean_fields &
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
		vmcs12->guest_es_base = evmcs->guest_es_base;
		vmcs12->guest_cs_base = evmcs->guest_cs_base;
		vmcs12->guest_ss_base = evmcs->guest_ss_base;
		vmcs12->guest_ds_base = evmcs->guest_ds_base;
		vmcs12->guest_fs_base = evmcs->guest_fs_base;
		vmcs12->guest_gs_base = evmcs->guest_gs_base;
		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
		vmcs12->guest_tr_base = evmcs->guest_tr_base;
		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
		vmcs12->guest_es_limit = evmcs->guest_es_limit;
		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
		vmcs12->guest_es_selector = evmcs->guest_es_selector;
		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
	}

1689
	if (unlikely(!(hv_clean_fields &
1690 1691 1692 1693 1694 1695
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
		vmcs12->tsc_offset = evmcs->tsc_offset;
		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
	}

1696
	if (unlikely(!(hv_clean_fields &
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
		vmcs12->guest_cr0 = evmcs->guest_cr0;
		vmcs12->guest_cr3 = evmcs->guest_cr3;
		vmcs12->guest_cr4 = evmcs->guest_cr4;
		vmcs12->guest_dr7 = evmcs->guest_dr7;
	}

1708
	if (unlikely(!(hv_clean_fields &
1709 1710 1711 1712 1713 1714 1715 1716 1717
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
		vmcs12->host_fs_base = evmcs->host_fs_base;
		vmcs12->host_gs_base = evmcs->host_gs_base;
		vmcs12->host_tr_base = evmcs->host_tr_base;
		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
		vmcs12->host_idtr_base = evmcs->host_idtr_base;
		vmcs12->host_rsp = evmcs->host_rsp;
	}

1718
	if (unlikely(!(hv_clean_fields &
1719 1720 1721 1722 1723
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
		vmcs12->ept_pointer = evmcs->ept_pointer;
		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
	}

1724
	if (unlikely(!(hv_clean_fields &
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
		vmcs12->guest_pending_dbg_exceptions =
			evmcs->guest_pending_dbg_exceptions;
		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
		vmcs12->guest_activity_state = evmcs->guest_activity_state;
		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
	}

	/*
	 * Not used?
	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
	 * vmcs12->page_fault_error_code_mask =
	 *		evmcs->page_fault_error_code_mask;
	 * vmcs12->page_fault_error_code_match =
	 *		evmcs->page_fault_error_code_match;
	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
	 */

	/*
	 * Read only fields:
	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
	 * vmcs12->exit_qualification = evmcs->exit_qualification;
	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
	 *
	 * Not present in struct vmcs12:
	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
	 */

1779
	return;
1780 1781
}

1782
static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/*
	 * Should not be changed by KVM:
	 *
	 * evmcs->host_es_selector = vmcs12->host_es_selector;
	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
	 * evmcs->host_cr0 = vmcs12->host_cr0;
	 * evmcs->host_cr3 = vmcs12->host_cr3;
	 * evmcs->host_cr4 = vmcs12->host_cr4;
	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
	 * evmcs->host_rip = vmcs12->host_rip;
	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
	 * evmcs->host_fs_base = vmcs12->host_fs_base;
	 * evmcs->host_gs_base = vmcs12->host_gs_base;
	 * evmcs->host_tr_base = vmcs12->host_tr_base;
	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
	 * evmcs->host_rsp = vmcs12->host_rsp;
1812
	 * sync_vmcs02_to_vmcs12() doesn't read these:
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
	 * evmcs->ept_pointer = vmcs12->ept_pointer;
	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
	 * evmcs->page_fault_error_code_mask =
	 *		vmcs12->page_fault_error_code_mask;
	 * evmcs->page_fault_error_code_match =
	 *		vmcs12->page_fault_error_code_match;
	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
	 * evmcs->tsc_offset = vmcs12->tsc_offset;
	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
	 *
	 * Not present in struct vmcs12:
	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
	 */

	evmcs->guest_es_selector = vmcs12->guest_es_selector;
	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;

	evmcs->guest_es_limit = vmcs12->guest_es_limit;
	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;

	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;

	evmcs->guest_es_base = vmcs12->guest_es_base;
	evmcs->guest_cs_base = vmcs12->guest_cs_base;
	evmcs->guest_ss_base = vmcs12->guest_ss_base;
	evmcs->guest_ds_base = vmcs12->guest_ds_base;
	evmcs->guest_fs_base = vmcs12->guest_fs_base;
	evmcs->guest_gs_base = vmcs12->guest_gs_base;
	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
	evmcs->guest_tr_base = vmcs12->guest_tr_base;
	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;

	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;

	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;

	evmcs->guest_pending_dbg_exceptions =
		vmcs12->guest_pending_dbg_exceptions;
	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;

	evmcs->guest_activity_state = vmcs12->guest_activity_state;
	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;

	evmcs->guest_cr0 = vmcs12->guest_cr0;
	evmcs->guest_cr3 = vmcs12->guest_cr3;
	evmcs->guest_cr4 = vmcs12->guest_cr4;
	evmcs->guest_dr7 = vmcs12->guest_dr7;

	evmcs->guest_physical_address = vmcs12->guest_physical_address;

	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;

	evmcs->exit_qualification = vmcs12->exit_qualification;

	evmcs->guest_linear_address = vmcs12->guest_linear_address;
	evmcs->guest_rsp = vmcs12->guest_rsp;
	evmcs->guest_rflags = vmcs12->guest_rflags;

	evmcs->guest_interruptibility_info =
		vmcs12->guest_interruptibility_info;
	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
	evmcs->vm_entry_exception_error_code =
		vmcs12->vm_entry_exception_error_code;
	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;

	evmcs->guest_rip = vmcs12->guest_rip;

	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;

1942
	return;
1943 1944 1945 1946 1947 1948
}

/*
 * This is an equivalent of the nested hypervisor executing the vmptrld
 * instruction.
 */
1949 1950
static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
	struct kvm_vcpu *vcpu, bool from_launch)
1951 1952
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1953
	bool evmcs_gpa_changed = false;
1954
	u64 evmcs_gpa;
1955 1956

	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1957
		return EVMPTRLD_DISABLED;
1958

1959 1960
	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
		nested_release_evmcs(vcpu);
1961
		return EVMPTRLD_DISABLED;
1962
	}
1963

1964
	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1965
		vmx->nested.current_vmptr = INVALID_GPA;
1966 1967 1968

		nested_release_evmcs(vcpu);

1969
		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1970
				 &vmx->nested.hv_evmcs_map))
1971
			return EVMPTRLD_ERROR;
1972

1973
		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

		/*
		 * Currently, KVM only supports eVMCS version 1
		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
		 * value to first u32 field of eVMCS which should specify eVMCS
		 * VersionNumber.
		 *
		 * Guest should be aware of supported eVMCS versions by host by
		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
		 * expected to set this CPUID leaf according to the value
		 * returned in vmcs_version from nested_enable_evmcs().
		 *
		 * However, it turns out that Microsoft Hyper-V fails to comply
		 * to their own invented interface: When Hyper-V use eVMCS, it
		 * just sets first u32 field of eVMCS to revision_id specified
		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
		 * which is one of the supported versions specified in
		 * CPUID.0x4000000A.EAX[0:15].
		 *
		 * To overcome Hyper-V bug, we accept here either a supported
		 * eVMCS version or VMCS12 revision_id as valid values for first
		 * u32 field of eVMCS.
		 */
		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
			nested_release_evmcs(vcpu);
2000
			return EVMPTRLD_VMFAIL;
2001 2002
		}

2003
		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2004

2005
		evmcs_gpa_changed = true;
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
		/*
		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
		 * reloaded from guest's memory (read only fields, fields not
		 * present in struct hv_enlightened_vmcs, ...). Make sure there
		 * are no leftovers.
		 */
		if (from_launch) {
			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
			memset(vmcs12, 0, sizeof(*vmcs12));
			vmcs12->hdr.revision_id = VMCS12_REVISION;
		}

	}
2019 2020

	/*
2021
	 * Clean fields data can't be used on VMLAUNCH and when we switch
2022 2023 2024 2025 2026 2027
	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
	 */
	if (from_launch || evmcs_gpa_changed)
		vmx->nested.hv_evmcs->hv_clean_fields &=
			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

2028
	return EVMPTRLD_SUCCEEDED;
2029 2030
}

2031
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2032 2033 2034
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2035
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2036
		copy_vmcs12_to_enlightened(vmx);
2037
	else
2038 2039
		copy_vmcs12_to_shadow(vmx);

2040
	vmx->nested.need_vmcs12_to_shadow_sync = false;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
}

static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
	struct vcpu_vmx *vmx =
		container_of(timer, struct vcpu_vmx, nested.preemption_timer);

	vmx->nested.preemption_timer_expired = true;
	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
	kvm_vcpu_kick(&vmx->vcpu);

	return HRTIMER_NORESTART;
}

2055 2056 2057 2058 2059 2060 2061 2062 2063
static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;

	if (!vmx->nested.has_preemption_timer_deadline) {
2064 2065
		vmx->nested.preemption_timer_deadline =
			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2066
		vmx->nested.has_preemption_timer_deadline = true;
2067 2068
	}
	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2069 2070 2071 2072
}

static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
					u64 preemption_timeout)
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * A timer value of zero is architecturally guaranteed to cause
	 * a VMExit prior to executing any instructions in the guest.
	 */
	if (preemption_timeout == 0) {
		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
		return;
	}

	if (vcpu->arch.virtual_tsc_khz == 0)
		return;

	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
	preemption_timeout *= 1000000;
	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
	hrtimer_start(&vmx->nested.preemption_timer,
2092 2093
		      ktime_add_ns(ktime_get(), preemption_timeout),
		      HRTIMER_MODE_ABS_PINNED);
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
}

static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
		return vmcs12->guest_ia32_efer;
	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
	else
		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
}

static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
	/*
	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
	 * according to L0's settings (vmcs12 is irrelevant here).  Host
	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
	 * will be set as needed prior to VMLAUNCH/VMRESUME.
	 */
	if (vmx->nested.vmcs02_initialized)
		return;
	vmx->nested.vmcs02_initialized = true;

	/*
	 * We don't care what the EPTP value is we just need to guarantee
	 * it's valid so we don't get a false positive when doing early
	 * consistency checks.
	 */
	if (enable_ept && nested_early_check)
2125 2126
		vmcs_write64(EPT_POINTER,
			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

	/* All VMFUNCs are currently emulated through L0 vmexits.  */
	if (cpu_has_vmx_vmfunc())
		vmcs_write64(VM_FUNCTION_CONTROL, 0);

	if (cpu_has_vmx_posted_intr())
		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);

	if (cpu_has_vmx_msr_bitmap())
		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));

2138
	/*
2139 2140 2141
	 * PML is emulated for L2, but never enabled in hardware as the MMU
	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
	 * deal with filtering out L2 GPAs from the buffer.
2142 2143
	 */
	if (enable_pml) {
2144 2145
		vmcs_write64(PML_ADDRESS, 0);
		vmcs_write16(GUEST_PML_INDEX, -1);
2146
	}
2147

2148
	if (cpu_has_vmx_encls_vmexit())
2149
		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2150 2151 2152 2153 2154 2155

	/*
	 * Set the MSR load/store lists to match L0's settings.  Only the
	 * addresses are constant (for vmcs02), the counts can change based
	 * on L2's behavior, e.g. switching to/from long mode.
	 */
2156
	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2157 2158 2159 2160 2161 2162
	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));

	vmx_set_constant_host_state(vmx);
}

2163
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2164 2165 2166 2167
				      struct vmcs12 *vmcs12)
{
	prepare_vmcs02_constant_state(vmx);

2168
	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2169 2170 2171 2172 2173 2174 2175 2176 2177

	if (enable_vpid) {
		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
		else
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
	}
}

2178 2179
static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
				 struct vmcs12 *vmcs12)
2180
{
2181
	u32 exec_control;
2182 2183
	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);

2184
	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2185
		prepare_vmcs02_early_rare(vmx, vmcs12);
2186 2187 2188 2189

	/*
	 * PIN CONTROLS
	 */
2190
	exec_control = __pin_controls_get(vmcs01);
2191 2192
	exec_control |= (vmcs12->pin_based_vm_exec_control &
			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2193 2194

	/* Posted interrupts setting is only taken from vmcs12.  */
2195 2196
	vmx->nested.pi_pending = false;
	if (nested_cpu_has_posted_intr(vmcs12))
2197
		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2198
	else
2199
		exec_control &= ~PIN_BASED_POSTED_INTR;
2200
	pin_controls_set(vmx, exec_control);
2201 2202 2203 2204

	/*
	 * EXEC CONTROLS
	 */
2205
	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2206
	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2207
	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2208 2209 2210
	exec_control &= ~CPU_BASED_TPR_SHADOW;
	exec_control |= vmcs12->cpu_based_vm_exec_control;

2211
	vmx->nested.l1_tpr_threshold = -1;
2212
	if (exec_control & CPU_BASED_TPR_SHADOW)
2213 2214
		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
#ifdef CONFIG_X86_64
2215
	else
2216 2217 2218 2219 2220 2221 2222 2223 2224
		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
				CPU_BASED_CR8_STORE_EXITING;
#endif

	/*
	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
	 * for I/O port accesses.
	 */
	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;

	/*
	 * This bit will be computed in nested_get_vmcs12_pages, because
	 * we do not have access to L1's MSR bitmap yet.  For now, keep
	 * the same bit as before, hoping to avoid multiple VMWRITEs that
	 * only set/clear this bit.
	 */
	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;

2236
	exec_controls_set(vmx, exec_control);
2237 2238 2239 2240 2241

	/*
	 * SECONDARY EXEC CONTROLS
	 */
	if (cpu_has_secondary_exec_ctrls()) {
2242
		exec_control = __secondary_exec_controls_get(vmcs01);
2243 2244 2245

		/* Take the following fields only from vmcs12 */
		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2246
				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2247
				  SECONDARY_EXEC_ENABLE_INVPCID |
2248
				  SECONDARY_EXEC_ENABLE_RDTSCP |
2249
				  SECONDARY_EXEC_XSAVES |
2250
				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2251 2252
				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2253
				  SECONDARY_EXEC_ENABLE_VMFUNC |
2254 2255 2256
				  SECONDARY_EXEC_TSC_SCALING |
				  SECONDARY_EXEC_DESC);

2257
		if (nested_cpu_has(vmcs12,
2258 2259 2260 2261 2262
				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
			exec_control |= vmcs12->secondary_vm_exec_control;

		/* PML is emulated and never enabled in hardware for L2. */
		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2263 2264 2265 2266 2267

		/* VMCS shadowing for L2 is emulated for now */
		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;

		/*
2268 2269
		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
		 * will not have to rewrite the controls just for this bit.
2270
		 */
2271 2272 2273
		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
			exec_control |= SECONDARY_EXEC_DESC;
2274 2275 2276 2277 2278

		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
			vmcs_write16(GUEST_INTR_STATUS,
				vmcs12->guest_intr_status);

2279 2280 2281
		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;

2282 2283 2284
		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);

2285
		secondary_exec_controls_set(vmx, exec_control);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	}

	/*
	 * ENTRY CONTROLS
	 *
	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
	 * on the related bits (if supported by the CPU) in the hope that
	 * we can avoid VMWrites during vmx_set_efer().
	 */
2296 2297 2298
	exec_control = __vm_entry_controls_get(vmcs01);
	exec_control |= vmcs12->vm_entry_controls;
	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2299 2300 2301 2302 2303 2304
	if (cpu_has_load_ia32_efer()) {
		if (guest_efer & EFER_LMA)
			exec_control |= VM_ENTRY_IA32E_MODE;
		if (guest_efer != host_efer)
			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
	}
2305
	vm_entry_controls_set(vmx, exec_control);
2306 2307 2308 2309 2310 2311 2312 2313

	/*
	 * EXIT CONTROLS
	 *
	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
	 */
2314
	exec_control = __vm_exit_controls_get(vmcs01);
2315 2316
	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2317 2318
	else
		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2319
	vm_exit_controls_set(vmx, exec_control);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

	/*
	 * Interrupt/Exception Fields
	 */
	if (vmx->nested.nested_run_pending) {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
			     vmcs12->vm_entry_intr_info_field);
		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
			     vmcs12->vm_entry_exception_error_code);
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmcs12->vm_entry_instruction_len);
		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
			     vmcs12->guest_interruptibility_info);
		vmx->loaded_vmcs->nmi_known_unmasked =
			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
	} else {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
	}
}

2340
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
{
	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2364 2365
		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2382 2383

		vmx->segment_cache.bitmask = 0;
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	}

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vmcs12->guest_pending_dbg_exceptions);
		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);

		/*
		 * L1 may access the L2's PDPTR, so save them to construct
		 * vmcs12
		 */
		if (enable_ept) {
			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
		}
2404 2405 2406 2407

		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2408 2409 2410 2411 2412 2413 2414
	}

	if (nested_cpu_has_xsaves(vmcs12))
		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);

	/*
	 * Whether page-faults are trapped is determined by a combination of
2415 2416 2417 2418 2419 2420
	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
	 * doesn't care about page faults then we should set all of these to
	 * L1's desires. However, if L0 does care about (some) page faults, it
	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
	 * simply ask to exit on each and every L2 page fault. This is done by
	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2421 2422 2423 2424 2425
	 * Note that below we don't need special code to set EB.PF beyond the
	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
	 */
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	if (vmx_need_pf_intercept(&vmx->vcpu)) {
		/*
		 * TODO: if both L0 and L1 need the same MASK and MATCH,
		 * go ahead and use it?
		 */
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
	} else {
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
	}
2437 2438 2439 2440 2441 2442 2443 2444

	if (cpu_has_vmx_apicv()) {
		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
	}

2445 2446 2447 2448 2449 2450 2451
	/*
	 * Make sure the msr_autostore list is up to date before we set the
	 * count in the vmcs02.
	 */
	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);

	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

	set_cr4_guest_host_mask(vmx);
}

/*
 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
 * guest in a way that will both be appropriate to L1's requests, and our
 * needs. In addition to modifying the active vmcs (which is vmcs02), this
 * function also has additional necessary side-effects, like setting various
 * vcpu->arch fields.
 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 * is assigned to entry_failure_code on failure.
 */
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2470
			  bool from_vmentry,
2471
			  enum vm_entry_failure_code *entry_failure_code)
2472 2473
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2474
	bool load_guest_pdptrs_vmcs12 = false;
2475

2476
	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2477
		prepare_vmcs02_rare(vmx, vmcs12);
2478 2479
		vmx->nested.dirty_vmcs12 = false;

2480 2481
		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
			!(vmx->nested.hv_evmcs->hv_clean_fields &
2482
			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	}

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
	} else {
		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
	}
2493 2494 2495
	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2496 2497 2498 2499 2500 2501
	vmx_set_rflags(vcpu, vmcs12->guest_rflags);

	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
	 * bitwise-or of what L1 wants to trap for L2, and what we want to
	 * trap. Note that CR0.TS also needs updating - we do this later.
	 */
2502
	vmx_update_exception_bitmap(vcpu);
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
		vcpu->arch.pat = vmcs12->guest_ia32_pat;
	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
	}

2514 2515 2516 2517 2518 2519 2520 2521 2522
	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
			vcpu->arch.l1_tsc_offset,
			vmx_get_l2_tsc_offset(vcpu),
			vmx_get_l2_tsc_multiplier(vcpu));

	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
			vcpu->arch.l1_tsc_scaling_ratio,
			vmx_get_l2_tsc_multiplier(vcpu));

2523 2524
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
	if (kvm_has_tsc_control)
2525
		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2526

2527
	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

	if (nested_cpu_has_ept(vmcs12))
		nested_ept_init_mmu_context(vcpu);

	/*
	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
	 * bits which we consider mandatory enabled.
	 * The CR0_READ_SHADOW is what L2 should have expected to read given
	 * the specifications by L1; It's not enough to take
	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
	 * have more bits than L1 expected.
	 */
	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));

	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));

	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
	vmx_set_efer(vcpu, vcpu->arch.efer);

	/*
	 * Guest state is invalid and unrestricted guest is disabled,
	 * which means L1 attempted VMEntry to L2 with invalid state.
	 * Fail the VMEntry.
2554 2555 2556 2557 2558
	 *
	 * However when force loading the guest state (SMM exit or
	 * loading nested state after migration, it is possible to
	 * have invalid guest state now, which will be later fixed by
	 * restoring L2 register state
2559
	 */
2560
	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2561
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2562
		return -EINVAL;
2563 2564 2565 2566
	}

	/* Shadow page tables on either EPT or shadow page tables. */
	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2567
				from_vmentry, entry_failure_code))
2568
		return -EINVAL;
2569

2570 2571 2572
	/*
	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
	 * on nested VM-Exit, which can occur without actually running L2 and
2573
	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2574 2575 2576 2577 2578 2579
	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
	 * transition to HLT instead of running L2.
	 */
	if (enable_ept)
		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);

2580 2581 2582 2583 2584 2585 2586 2587 2588
	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
	    is_pae_paging(vcpu)) {
		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
	}

2589 2590 2591
	if (!enable_ept)
		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;

2592
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2593 2594
	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
				     vmcs12->guest_ia32_perf_global_ctrl)))
2595 2596
		return -EINVAL;

2597 2598
	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
	kvm_rip_write(vcpu, vmcs12->guest_rip);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

	/*
	 * It was observed that genuine Hyper-V running in L1 doesn't reset
	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
	 * bits when it changes a field in eVMCS. Mark all fields as clean
	 * here.
	 */
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
		vmx->nested.hv_evmcs->hv_clean_fields |=
			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

2610 2611 2612 2613 2614
	return 0;
}

static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
{
2615 2616
	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
	       nested_cpu_has_virtual_nmis(vmcs12)))
2617 2618
		return -EINVAL;

2619
	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2620
	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2621 2622 2623 2624 2625
		return -EINVAL;

	return 0;
}

2626
static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2627 2628 2629 2630
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/* Check for memory type validity */
2631
	switch (new_eptp & VMX_EPTP_MT_MASK) {
2632
	case VMX_EPTP_MT_UC:
2633
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2634 2635 2636
			return false;
		break;
	case VMX_EPTP_MT_WB:
2637
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2638 2639 2640 2641 2642 2643
			return false;
		break;
	default:
		return false;
	}

2644
	/* Page-walk levels validity. */
2645
	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2646 2647 2648 2649 2650 2651 2652 2653 2654
	case VMX_EPTP_PWL_5:
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
			return false;
		break;
	case VMX_EPTP_PWL_4:
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
			return false;
		break;
	default:
2655
		return false;
2656
	}
2657 2658

	/* Reserved bits should not be set */
2659
	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2660 2661 2662
		return false;

	/* AD, if set, should be supported */
2663
	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2664
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2665 2666 2667 2668 2669 2670
			return false;
	}

	return true;
}

2671 2672 2673 2674 2675
/*
 * Checks related to VM-Execution Control Fields
 */
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
                                              struct vmcs12 *vmcs12)
2676 2677 2678
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2679 2680 2681 2682 2683 2684
	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
				   vmx->nested.msrs.pinbased_ctls_low,
				   vmx->nested.msrs.pinbased_ctls_high)) ||
	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
				   vmx->nested.msrs.procbased_ctls_low,
				   vmx->nested.msrs.procbased_ctls_high)))
2685
		return -EINVAL;
2686

2687
	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2688 2689 2690
	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
				   vmx->nested.msrs.secondary_ctls_low,
				   vmx->nested.msrs.secondary_ctls_high)))
2691 2692
		return -EINVAL;

2693
	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
	    nested_vmx_check_nmi_controls(vmcs12) ||
	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2704
	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2705 2706
		return -EINVAL;

2707 2708 2709 2710
	if (!nested_cpu_has_preemption_timer(vmcs12) &&
	    nested_cpu_has_save_preemption_timer(vmcs12))
		return -EINVAL;

2711
	if (nested_cpu_has_ept(vmcs12) &&
2712
	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2713
		return -EINVAL;
2714 2715

	if (nested_cpu_has_vmfunc(vmcs12)) {
2716 2717
		if (CC(vmcs12->vm_function_control &
		       ~vmx->nested.msrs.vmfunc_controls))
2718
			return -EINVAL;
2719 2720

		if (nested_cpu_has_eptp_switching(vmcs12)) {
2721 2722
			if (CC(!nested_cpu_has_ept(vmcs12)) ||
			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2723
				return -EINVAL;
2724 2725 2726
		}
	}

2727 2728 2729
	return 0;
}

2730 2731 2732 2733 2734 2735 2736 2737
/*
 * Checks related to VM-Exit Control Fields
 */
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
                                         struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2738 2739 2740 2741
	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
				    vmx->nested.msrs.exit_ctls_low,
				    vmx->nested.msrs.exit_ctls_high)) ||
	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2742 2743 2744 2745 2746
		return -EINVAL;

	return 0;
}

2747 2748 2749 2750 2751
/*
 * Checks related to VM-Entry Control Fields
 */
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
2752 2753
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2754

2755 2756 2757
	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
				    vmx->nested.msrs.entry_ctls_low,
				    vmx->nested.msrs.entry_ctls_high)))
2758
		return -EINVAL;
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	/*
	 * From the Intel SDM, volume 3:
	 * Fields relevant to VM-entry event injection must be set properly.
	 * These fields are the VM-entry interruption-information field, the
	 * VM-entry exception error code, and the VM-entry instruction length.
	 */
	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
		u32 intr_info = vmcs12->vm_entry_intr_info_field;
		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
		bool should_have_error_code;
		bool urg = nested_cpu_has2(vmcs12,
					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;

		/* VM-entry interruption-info field: interruption type */
2777 2778 2779
		if (CC(intr_type == INTR_TYPE_RESERVED) ||
		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2780
			return -EINVAL;
2781 2782

		/* VM-entry interruption-info field: vector */
2783 2784 2785
		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2786
			return -EINVAL;
2787 2788 2789 2790 2791

		/* VM-entry interruption-info field: deliver error code */
		should_have_error_code =
			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
			x86_exception_has_error_code(vector);
2792
		if (CC(has_error_code != should_have_error_code))
2793
			return -EINVAL;
2794 2795

		/* VM-entry exception error code */
2796
		if (CC(has_error_code &&
2797
		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2798
			return -EINVAL;
2799 2800

		/* VM-entry interruption-info field: reserved bits */
2801
		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2802
			return -EINVAL;
2803 2804 2805 2806 2807 2808

		/* VM-entry instruction length */
		switch (intr_type) {
		case INTR_TYPE_SOFT_EXCEPTION:
		case INTR_TYPE_SOFT_INTR:
		case INTR_TYPE_PRIV_SW_EXCEPTION:
2809 2810 2811
			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
			    CC(vmcs12->vm_entry_instruction_len == 0 &&
			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2812
				return -EINVAL;
2813 2814 2815
		}
	}

2816 2817 2818 2819 2820 2821
	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
		return -EINVAL;

	return 0;
}

2822 2823 2824 2825 2826 2827
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
	    nested_check_vm_entry_controls(vcpu, vmcs12))
2828
		return -EINVAL;
2829

2830 2831 2832
	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
		return nested_evmcs_check_controls(vmcs12);

2833 2834 2835
	return 0;
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
#ifdef CONFIG_X86_64
	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
		!!(vcpu->arch.efer & EFER_LMA)))
		return -EINVAL;
#endif
	return 0;
}

2847 2848
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
2849 2850 2851
{
	bool ia32e;

2852 2853
	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2854
	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2855
		return -EINVAL;
2856

2857 2858
	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2859 2860
		return -EINVAL;

2861
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2862
	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2863 2864
		return -EINVAL;

2865 2866 2867 2868 2869
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
					   vmcs12->host_ia32_perf_global_ctrl)))
		return -EINVAL;

2870
#ifdef CONFIG_X86_64
2871
	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2872 2873 2874 2875 2876
#else
	ia32e = false;
#endif

	if (ia32e) {
2877
		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2878 2879
			return -EINVAL;
	} else {
2880
		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2881 2882 2883 2884
		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
		    CC((vmcs12->host_rip) >> 32))
			return -EINVAL;
	}
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_cs_selector == 0) ||
	    CC(vmcs12->host_tr_selector == 0) ||
	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2896 2897
		return -EINVAL;

2898 2899 2900 2901
	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2902 2903
	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2904
		return -EINVAL;
2905

2906 2907 2908 2909 2910 2911 2912
	/*
	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
	 * the values of the LMA and LME bits in the field must each be that of
	 * the host address-space size VM-exit control.
	 */
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2913 2914 2915
		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2916
			return -EINVAL;
2917 2918
	}

2919 2920 2921 2922 2923 2924
	return 0;
}

static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
2925 2926 2927
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
	struct vmcs_hdr hdr;
2928

2929
	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2930 2931
		return 0;

2932
	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2933 2934
		return -EINVAL;

2935 2936 2937 2938
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
                return -EINVAL;
2939

2940 2941 2942 2943
	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
					    offsetof(struct vmcs12, hdr),
					    sizeof(hdr))))
		return -EINVAL;
2944

2945 2946 2947
	if (CC(hdr.revision_id != VMCS12_REVISION) ||
	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
		return -EINVAL;
2948

2949
	return 0;
2950 2951
}

2952 2953 2954 2955 2956
/*
 * Checks related to Guest Non-register State
 */
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
{
2957
	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2958 2959
	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2960 2961 2962 2963 2964
		return -EINVAL;

	return 0;
}

2965 2966
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
					struct vmcs12 *vmcs12,
2967
					enum vm_entry_failure_code *entry_failure_code)
2968 2969 2970
{
	bool ia32e;

2971
	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2972

2973 2974
	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2975
		return -EINVAL;
2976

2977 2978 2979 2980
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
		return -EINVAL;

2981
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2982
	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2983
		return -EINVAL;
2984 2985

	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2986
		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2987
		return -EINVAL;
2988 2989
	}

2990 2991 2992 2993 2994
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
					   vmcs12->guest_ia32_perf_global_ctrl)))
		return -EINVAL;

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	/*
	 * If the load IA32_EFER VM-entry control is 1, the following checks
	 * are performed on the field for the IA32_EFER MSR:
	 * - Bits reserved in the IA32_EFER MSR must be 0.
	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
	 *   the IA-32e mode guest VM-exit control. It must also be identical
	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
	 *   CR0.PG) is 1.
	 */
	if (to_vmx(vcpu)->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3007 3008 3009 3010
		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3011
			return -EINVAL;
3012 3013 3014
	}

	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3015 3016
	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3017
		return -EINVAL;
3018

3019
	if (nested_check_guest_non_reg_state(vmcs12))
3020
		return -EINVAL;
3021 3022 3023 3024

	return 0;
}

3025
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3026 3027 3028
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long cr3, cr4;
3029
	bool vm_fail;
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

	if (!nested_early_check)
		return 0;

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);

	preempt_disable();

	vmx_prepare_switch_to_guest(vcpu);

	/*
	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
M
Miaohe Lin 已提交
3046
	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	 * there is no need to preserve other bits or save/restore the field.
	 */
	vmcs_writel(GUEST_RFLAGS, 0);

	cr3 = __get_current_cr3_fast();
	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
		vmcs_writel(HOST_CR3, cr3);
		vmx->loaded_vmcs->host_state.cr3 = cr3;
	}

	cr4 = cr4_read_shadow();
	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
		vmcs_writel(HOST_CR4, cr4);
		vmx->loaded_vmcs->host_state.cr4 = cr4;
	}

3063 3064
	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
				 vmx->loaded_vmcs->launched);
3065 3066 3067 3068 3069 3070

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

3071
	if (vm_fail) {
3072 3073
		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);

3074
		preempt_enable();
3075 3076 3077 3078

		trace_kvm_nested_vmenter_failed(
			"early hardware check VM-instruction error: ", error);
		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3079 3080 3081 3082 3083 3084 3085 3086
		return 1;
	}

	/*
	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
	 */
	if (hw_breakpoint_active())
		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3087
	local_irq_enable();
3088
	preempt_enable();
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

	/*
	 * A non-failing VMEntry means we somehow entered guest mode with
	 * an illegal RIP, and that's just the tip of the iceberg.  There
	 * is no telling what memory has been modified or what state has
	 * been exposed to unknown code.  Hitting this all but guarantees
	 * a (very critical) hardware issue.
	 */
	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
		VMX_EXIT_REASONS_FAILED_VMENTRY));

	return 0;
}

3103
static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3104 3105 3106
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

3107 3108 3109 3110 3111
	/*
	 * hv_evmcs may end up being not mapped after migration (when
	 * L2 was running), map it here to make sure vmcs12 changes are
	 * properly reflected.
	 */
3112
	if (vmx->nested.enlightened_vmcs_enabled &&
3113
	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3114 3115 3116 3117
		enum nested_evmptrld_status evmptrld_status =
			nested_vmx_handle_enlightened_vmptrld(vcpu, false);

		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3118
		    evmptrld_status == EVMPTRLD_ERROR)
3119
			return false;
3120 3121 3122 3123 3124 3125

		/*
		 * Post migration VMCS12 always provides the most actual
		 * information, copy it to eVMCS upon entry.
		 */
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3126
	}
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	return true;
}

static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct kvm_host_map *map;
	struct page *page;
	u64 hpa;

3139 3140
	if (!vcpu->arch.pdptrs_from_userspace &&
	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		/*
		 * Reload the guest's PDPTRs since after a migration
		 * the guest CR3 might be restored prior to setting the nested
		 * state which can lead to a load of wrong PDPTRs.
		 */
		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
			return false;
	}


3151 3152 3153 3154 3155 3156 3157 3158
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
		/*
		 * Translate L1 physical address to host physical
		 * address for vmcs02. Keep the page pinned, so this
		 * physical address remains valid. We keep a reference
		 * to it so we can release it later.
		 */
		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3159
			kvm_release_page_clean(vmx->nested.apic_access_page);
3160 3161 3162 3163 3164 3165 3166 3167
			vmx->nested.apic_access_page = NULL;
		}
		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
		if (!is_error_page(page)) {
			vmx->nested.apic_access_page = page;
			hpa = page_to_phys(vmx->nested.apic_access_page);
			vmcs_write64(APIC_ACCESS_ADDR, hpa);
		} else {
3168 3169 3170 3171 3172 3173 3174
			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
					     __func__);
			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			vcpu->run->internal.suberror =
				KVM_INTERNAL_ERROR_EMULATION;
			vcpu->run->internal.ndata = 0;
			return false;
3175 3176 3177 3178
		}
	}

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3179
		map = &vmx->nested.virtual_apic_map;
3180

3181 3182
		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
			/*
			 * The processor will never use the TPR shadow, simply
			 * clear the bit from the execution control.  Such a
			 * configuration is useless, but it happens in tests.
			 * For any other configuration, failing the vm entry is
			 * _not_ what the processor does but it's basically the
			 * only possibility we have.
			 */
3194
			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3195
		} else {
3196 3197 3198 3199
			/*
			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
			 * force VM-Entry to fail.
			 */
3200
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3201 3202 3203 3204
		}
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
3205 3206 3207 3208 3209 3210 3211 3212
		map = &vmx->nested.pi_desc_map;

		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
			vmx->nested.pi_desc =
				(struct pi_desc *)(((void *)map->hva) +
				offset_in_page(vmcs12->posted_intr_desc_addr));
			vmcs_write64(POSTED_INTR_DESC_ADDR,
				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3213 3214 3215 3216 3217 3218 3219 3220 3221
		} else {
			/*
			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
			 * access the contents of the VMCS12 posted interrupt
			 * descriptor. (Note that KVM may do this when it
			 * should not, per the architectural specification.)
			 */
			vmx->nested.pi_desc = NULL;
			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3222 3223 3224
		}
	}
	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3225
		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3226
	else
3227
		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3228 3229 3230 3231 3232 3233

	return true;
}

static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
3234 3235 3236 3237 3238 3239 3240 3241
	if (!nested_get_evmcs_page(vcpu)) {
		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
				     __func__);
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror =
			KVM_INTERNAL_ERROR_EMULATION;
		vcpu->run->internal.ndata = 0;

3242
		return false;
3243
	}
3244 3245 3246 3247

	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
		return false;

3248
	return true;
3249 3250
}

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
{
	struct vmcs12 *vmcs12;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t dst;

	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
		return 0;

	if (WARN_ON_ONCE(vmx->nested.pml_full))
		return 1;

	/*
	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
	 * set is already checked as part of A/D emulation.
	 */
	vmcs12 = get_vmcs12(vcpu);
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
		vmx->nested.pml_full = true;
		return 1;
	}

	gpa &= ~0xFFFull;
	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;

	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
				 offset_in_page(dst), sizeof(gpa)))
		return 0;

	vmcs12->guest_pml_index--;

	return 0;
}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
/*
 * Intel's VMX Instruction Reference specifies a common set of prerequisites
 * for running VMX instructions (except VMXON, whose prerequisites are
 * slightly different). It also specifies what exception to inject otherwise.
 * Note that many of these exceptions have priority over VM exits, so they
 * don't have to be checked again here.
 */
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
	if (!to_vmx(vcpu)->nested.vmxon) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 0;
	}

	return 1;
}

static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
{
	u8 rvi = vmx_get_rvi();
	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);

	return ((rvi & 0xf0) > (vppr & 0xf0));
}

static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12);

/*
 * If from_vmentry is false, this is being called from state restore (either RSM
 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3324 3325
 *
 * Returns:
3326 3327 3328 3329
 *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
 *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
 *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
 *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3330
 */
3331 3332
enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
							bool from_vmentry)
3333 3334 3335
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3336
	enum vm_entry_failure_code entry_failure_code;
3337
	bool evaluate_pending_interrupts;
3338 3339 3340 3341 3342
	union vmx_exit_reason exit_reason = {
		.basic = EXIT_REASON_INVALID_STATE,
		.failed_vmentry = 1,
	};
	u32 failed_index;
3343

3344
	kvm_service_local_tlb_flush_requests(vcpu);
3345

3346
	evaluate_pending_interrupts = exec_controls_get(vmx) &
3347
		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3348 3349 3350 3351 3352 3353 3354 3355 3356
	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);

	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
	if (kvm_mpx_supported() &&
		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	/*
	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
	 * software model to the pre-VMEntry host state.  When EPT is disabled,
	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
	 * path would need to manually save/restore vmcs01.GUEST_CR3.
	 */
	if (!enable_ept && !nested_early_check)
		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);

3376 3377
	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);

3378
	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3379 3380

	if (from_vmentry) {
3381 3382
		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3383
			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3384
		}
3385 3386 3387

		if (nested_vmx_check_vmentry_hw(vcpu)) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3388
			return NVMX_VMENTRY_VMFAIL;
3389 3390
		}

3391 3392
		if (nested_vmx_check_guest_state(vcpu, vmcs12,
						 &entry_failure_code)) {
3393
			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3394
			vmcs12->exit_qualification = entry_failure_code;
3395
			goto vmentry_fail_vmexit;
3396
		}
3397 3398 3399 3400
	}

	enter_guest_mode(vcpu);

3401
	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3402
		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3403
		vmcs12->exit_qualification = entry_failure_code;
3404
		goto vmentry_fail_vmexit_guest_mode;
3405
	}
3406 3407

	if (from_vmentry) {
3408 3409 3410 3411
		failed_index = nested_vmx_load_msr(vcpu,
						   vmcs12->vm_entry_msr_load_addr,
						   vmcs12->vm_entry_msr_load_count);
		if (failed_index) {
3412
			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3413
			vmcs12->exit_qualification = failed_index;
3414
			goto vmentry_fail_vmexit_guest_mode;
3415
		}
3416 3417 3418 3419 3420 3421 3422 3423
	} else {
		/*
		 * The MMU is not initialized to point at the right entities yet and
		 * "get pages" would need to read data from the guest (i.e. we will
		 * need to perform gpa to hpa translation). Request a call
		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
		 * have already been set at vmentry time and should not be reset.
		 */
3424
		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	}

	/*
	 * If L1 had a pending IRQ/NMI until it executed
	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
	 * disallowed (e.g. interrupts disabled), L0 needs to
	 * evaluate if this pending event should cause an exit from L2
	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
	 * intercept EXTERNAL_INTERRUPT).
	 *
	 * Usually this would be handled by the processor noticing an
	 * IRQ/NMI window request, or checking RVI during evaluation of
	 * pending virtual interrupts.  However, this setting was done
	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
	 */
	if (unlikely(evaluate_pending_interrupts))
		kvm_make_request(KVM_REQ_EVENT, vcpu);

3444 3445 3446 3447 3448 3449
	/*
	 * Do not start the preemption timer hrtimer until after we know
	 * we are successful, so that only nested_vmx_vmexit needs to cancel
	 * the timer.
	 */
	vmx->nested.preemption_timer_expired = false;
3450 3451 3452 3453
	if (nested_cpu_has_preemption_timer(vmcs12)) {
		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
		vmx_start_preemption_timer(vcpu, timer_value);
	}
3454

3455 3456 3457 3458 3459 3460
	/*
	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
	 * returned as far as L1 is concerned. It will only return (and set
	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
	 */
3461
	return NVMX_VMENTRY_SUCCESS;
3462 3463 3464 3465 3466 3467 3468

	/*
	 * A failed consistency check that leads to a VMExit during L1's
	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
	 * 26.7 "VM-entry failures during or after loading guest state".
	 */
vmentry_fail_vmexit_guest_mode:
3469
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3470 3471 3472 3473 3474 3475 3476
		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
	leave_guest_mode(vcpu);

vmentry_fail_vmexit:
	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	if (!from_vmentry)
3477
		return NVMX_VMENTRY_VMEXIT;
3478 3479

	load_vmcs12_host_state(vcpu, vmcs12);
3480
	vmcs12->vm_exit_reason = exit_reason.full;
3481
	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3482
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3483
	return NVMX_VMENTRY_VMEXIT;
3484 3485 3486 3487 3488 3489 3490 3491 3492
}

/*
 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 * for running an L2 nested guest.
 */
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
	struct vmcs12 *vmcs12;
3493
	enum nvmx_vmentry_status status;
3494 3495
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3496
	enum nested_evmptrld_status evmptrld_status;
3497 3498 3499 3500

	if (!nested_vmx_check_permission(vcpu))
		return 1;

3501 3502 3503
	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
	if (evmptrld_status == EVMPTRLD_ERROR) {
		kvm_queue_exception(vcpu, UD_VECTOR);
3504
		return 1;
3505
	} else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3506 3507
		return nested_vmx_failInvalid(vcpu);
	}
3508

3509
	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3510
	       vmx->nested.current_vmptr == INVALID_GPA))
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		return nested_vmx_failInvalid(vcpu);

	vmcs12 = get_vmcs12(vcpu);

	/*
	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
	 * rather than RFLAGS.ZF, and no error number is stored to the
	 * VM-instruction error field.
	 */
3521
	if (CC(vmcs12->hdr.shadow_vmcs))
3522 3523
		return nested_vmx_failInvalid(vcpu);

3524
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3525
		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
		/* Enlightened VMCS doesn't have launch state */
		vmcs12->launch_state = !launch;
	} else if (enable_shadow_vmcs) {
		copy_shadow_to_vmcs12(vmx);
	}

	/*
	 * The nested entry process starts with enforcing various prerequisites
	 * on vmcs12 as required by the Intel SDM, and act appropriately when
	 * they fail: As the SDM explains, some conditions should cause the
	 * instruction to fail, while others will cause the instruction to seem
	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
	 * To speed up the normal (success) code path, we should avoid checking
	 * for misconfigurations which will anyway be caught by the processor
	 * when using the merged vmcs02.
	 */
3542
	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3543
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3544

3545
	if (CC(vmcs12->launch_state == launch))
3546
		return nested_vmx_fail(vcpu,
3547 3548 3549
			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);

3550
	if (nested_vmx_check_controls(vcpu, vmcs12))
3551
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3552

3553 3554 3555
	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);

3556
	if (nested_vmx_check_host_state(vcpu, vmcs12))
3557
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3558 3559 3560 3561 3562 3563

	/*
	 * We're finally done with prerequisite checking, and can start with
	 * the nested entry.
	 */
	vmx->nested.nested_run_pending = 1;
3564
	vmx->nested.has_preemption_timer_deadline = false;
3565 3566 3567
	status = nested_vmx_enter_non_root_mode(vcpu, true);
	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
		goto vmentry_failed;
3568

3569 3570 3571 3572 3573 3574 3575 3576
	/* Emulate processing of posted interrupts on VM-Enter. */
	if (nested_cpu_has_posted_intr(vmcs12) &&
	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
		vmx->nested.pi_pending = true;
		kvm_make_request(KVM_REQ_EVENT, vcpu);
		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
	}

3577 3578 3579 3580 3581 3582 3583 3584 3585
	/* Hide L1D cache contents from the nested guest.  */
	vmx->vcpu.arch.l1tf_flush_l1d = true;

	/*
	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
	 * also be used as part of restoring nVMX state for
	 * snapshot restore (migration).
	 *
	 * In this flow, it is assumed that vmcs12 cache was
3586
	 * transferred as part of captured nVMX state and should
3587 3588 3589 3590 3591
	 * therefore not be read from guest memory (which may not
	 * exist on destination host yet).
	 */
	nested_cache_shadow_vmcs12(vcpu, vmcs12);

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	switch (vmcs12->guest_activity_state) {
	case GUEST_ACTIVITY_HLT:
		/*
		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
		 * awakened by event injection or by an NMI-window VM-exit or
		 * by an interrupt-window VM-exit, halt the vcpu.
		 */
		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
			vmx->nested.nested_run_pending = 0;
			return kvm_vcpu_halt(vcpu);
		}
		break;
	case GUEST_ACTIVITY_WAIT_SIPI:
3608
		vmx->nested.nested_run_pending = 0;
3609 3610 3611 3612
		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
		break;
	default:
		break;
3613
	}
3614

3615
	return 1;
3616 3617 3618 3619 3620 3621 3622 3623

vmentry_failed:
	vmx->nested.nested_run_pending = 0;
	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
		return 0;
	if (status == NVMX_VMENTRY_VMEXIT)
		return 1;
	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3624
	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3625 3626 3627 3628
}

/*
 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3629
 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
 * This function returns the new value we should put in vmcs12.guest_cr0.
 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 *     didn't trap the bit, because if L1 did, so would L0).
 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 *     been modified by L2, and L1 knows it. So just leave the old value of
 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 *     isn't relevant, because if L0 traps this bit it can set it to anything.
 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 *     changed these bits, and therefore they need to be updated, but L0
 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 */
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
			vcpu->arch.cr0_guest_owned_bits));
}

static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
			vcpu->arch.cr4_guest_owned_bits));
}

static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
				      struct vmcs12 *vmcs12)
{
	u32 idt_vectoring;
	unsigned int nr;

	if (vcpu->arch.exception.injected) {
		nr = vcpu->arch.exception.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (kvm_exception_is_soft(nr)) {
			vmcs12->vm_exit_instruction_len =
				vcpu->arch.event_exit_inst_len;
			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
		} else
			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;

		if (vcpu->arch.exception.has_error_code) {
			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
			vmcs12->idt_vectoring_error_code =
				vcpu->arch.exception.error_code;
		}

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	} else if (vcpu->arch.nmi_injected) {
		vmcs12->idt_vectoring_info_field =
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
	} else if (vcpu->arch.interrupt.injected) {
		nr = vcpu->arch.interrupt.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (vcpu->arch.interrupt.soft) {
			idt_vectoring |= INTR_TYPE_SOFT_INTR;
			vmcs12->vm_entry_instruction_len =
				vcpu->arch.event_exit_inst_len;
		} else
			idt_vectoring |= INTR_TYPE_EXT_INTR;

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	}
}


3707
void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	gfn_t gfn;

	/*
	 * Don't need to mark the APIC access page dirty; it is never
	 * written to by the CPU during APIC virtualization.
	 */

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
}

3728
static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3729 3730 3731 3732 3733 3734
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int max_irr;
	void *vapic_page;
	u16 status;

3735
	if (!vmx->nested.pi_pending)
3736
		return 0;
3737

3738 3739 3740
	if (!vmx->nested.pi_desc)
		goto mmio_needed;

3741
	vmx->nested.pi_pending = false;
3742

3743
	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3744
		return 0;
3745 3746 3747

	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
	if (max_irr != 256) {
3748 3749
		vapic_page = vmx->nested.virtual_apic_map.hva;
		if (!vapic_page)
3750
			goto mmio_needed;
3751

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
			vapic_page, &max_irr);
		status = vmcs_read16(GUEST_INTR_STATUS);
		if ((u8)max_irr > ((u8)status & 0xff)) {
			status &= ~0xff;
			status |= (u8)max_irr;
			vmcs_write16(GUEST_INTR_STATUS, status);
		}
	}

	nested_mark_vmcs12_pages_dirty(vcpu);
3763
	return 0;
3764 3765 3766 3767

mmio_needed:
	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
	return -ENXIO;
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
}

static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
					       unsigned long exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	u32 intr_info = nr | INTR_INFO_VALID_MASK;

	if (vcpu->arch.exception.has_error_code) {
		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
	}

	if (kvm_exception_is_soft(nr))
		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
	else
		intr_info |= INTR_TYPE_HARD_EXCEPTION;

	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
	    vmx_get_nmi_mask(vcpu))
		intr_info |= INTR_INFO_UNBLOCK_NMI;

	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
}

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
/*
 * Returns true if a debug trap is pending delivery.
 *
 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
 * exception may be inferred from the presence of an exception payload.
 */
static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.exception.pending &&
			vcpu->arch.exception.nr == DB_VECTOR &&
			vcpu->arch.exception.payload;
}

/*
 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
 * represents these debug traps with a payload that is said to be compatible
 * with the 'pending debug exceptions' field, write the payload to the VMCS
 * field if a VM-exit is delivered before the debug trap.
 */
static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
{
	if (vmx_pending_dbg_trap(vcpu))
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vcpu->arch.exception.payload);
}

3821 3822 3823 3824 3825 3826
static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
{
	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
	       to_vmx(vcpu)->nested.preemption_timer_expired;
}

3827
static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3828 3829 3830 3831 3832
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long exit_qual;
	bool block_nested_events =
	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3833
	bool mtf_pending = vmx->nested.mtf_pending;
3834 3835
	struct kvm_lapic *apic = vcpu->arch.apic;

3836 3837 3838 3839
	/*
	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
	 * this state is discarded.
	 */
3840 3841
	if (!block_nested_events)
		vmx->nested.mtf_pending = false;
3842

3843 3844 3845 3846
	if (lapic_in_kernel(vcpu) &&
		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
		if (block_nested_events)
			return -EBUSY;
3847
		nested_vmx_update_pending_dbg(vcpu);
3848
		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
		return 0;
	}

	if (lapic_in_kernel(vcpu) &&
	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
		if (block_nested_events)
			return -EBUSY;

		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
						apic->sipi_vector & 0xFFUL);
3863 3864
		return 0;
	}
3865

3866 3867
	/*
	 * Process any exceptions that are not debug traps before MTF.
3868 3869 3870 3871 3872
	 *
	 * Note that only a pending nested run can block a pending exception.
	 * Otherwise an injected NMI/interrupt should either be
	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
	 * while delivering the pending exception.
3873
	 */
3874

3875
	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3876
		if (vmx->nested.nested_run_pending)
3877
			return -EBUSY;
3878 3879
		if (!nested_vmx_check_exception(vcpu, &exit_qual))
			goto no_vmexit;
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

	if (mtf_pending) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_update_pending_dbg(vcpu);
		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
		return 0;
	}

3892
	if (vcpu->arch.exception.pending) {
3893
		if (vmx->nested.nested_run_pending)
3894
			return -EBUSY;
3895 3896
		if (!nested_vmx_check_exception(vcpu, &exit_qual))
			goto no_vmexit;
3897 3898 3899 3900
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

3901
	if (nested_vmx_preemption_timer_pending(vcpu)) {
3902 3903 3904 3905 3906 3907
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
		return 0;
	}

3908 3909 3910 3911 3912 3913
	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
		if (block_nested_events)
			return -EBUSY;
		goto no_vmexit;
	}

3914
	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3915 3916
		if (block_nested_events)
			return -EBUSY;
3917 3918 3919
		if (!nested_exit_on_nmi(vcpu))
			goto no_vmexit;

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
				  INTR_INFO_VALID_MASK, 0);
		/*
		 * The NMI-triggered VM exit counts as injection:
		 * clear this one and block further NMIs.
		 */
		vcpu->arch.nmi_pending = 0;
		vmx_set_nmi_mask(vcpu, true);
		return 0;
	}

3932
	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3933 3934
		if (block_nested_events)
			return -EBUSY;
3935 3936
		if (!nested_exit_on_intr(vcpu))
			goto no_vmexit;
3937 3938 3939 3940
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
		return 0;
	}

3941
no_vmexit:
3942
	return vmx_complete_nested_posted_interrupt(vcpu);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
}

static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	ktime_t remaining =
		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
	u64 value;

	if (ktime_to_ns(remaining) <= 0)
		return 0;

	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
	do_div(value, 1000000);
	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}

3959
static bool is_vmcs12_ext_field(unsigned long field)
3960
{
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	switch (field) {
	case GUEST_ES_SELECTOR:
	case GUEST_CS_SELECTOR:
	case GUEST_SS_SELECTOR:
	case GUEST_DS_SELECTOR:
	case GUEST_FS_SELECTOR:
	case GUEST_GS_SELECTOR:
	case GUEST_LDTR_SELECTOR:
	case GUEST_TR_SELECTOR:
	case GUEST_ES_LIMIT:
	case GUEST_CS_LIMIT:
	case GUEST_SS_LIMIT:
	case GUEST_DS_LIMIT:
	case GUEST_FS_LIMIT:
	case GUEST_GS_LIMIT:
	case GUEST_LDTR_LIMIT:
	case GUEST_TR_LIMIT:
	case GUEST_GDTR_LIMIT:
	case GUEST_IDTR_LIMIT:
	case GUEST_ES_AR_BYTES:
	case GUEST_DS_AR_BYTES:
	case GUEST_FS_AR_BYTES:
	case GUEST_GS_AR_BYTES:
	case GUEST_LDTR_AR_BYTES:
	case GUEST_TR_AR_BYTES:
	case GUEST_ES_BASE:
	case GUEST_CS_BASE:
	case GUEST_SS_BASE:
	case GUEST_DS_BASE:
	case GUEST_FS_BASE:
	case GUEST_GS_BASE:
	case GUEST_LDTR_BASE:
	case GUEST_TR_BASE:
	case GUEST_GDTR_BASE:
	case GUEST_IDTR_BASE:
	case GUEST_PENDING_DBG_EXCEPTIONS:
	case GUEST_BNDCFGS:
		return true;
	default:
		break;
	}
4002

4003 4004 4005 4006 4007 4008 4009
	return false;
}

static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	vmcs12->guest_pending_dbg_exceptions =
		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
	if (kvm_mpx_supported())
		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}

static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;

	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
		return;


	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);

	cpu = get_cpu();
	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4067
	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4068 4069 4070 4071

	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

	vmx->loaded_vmcs = &vmx->vmcs01;
4072
	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	put_cpu();
}

/*
 * Update the guest state fields of vmcs12 to reflect changes that
 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
 * VM-entry controls is also updated, since this is really a guest
 * state bit.)
 */
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4086
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4087 4088
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

4089 4090
	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100

	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);

	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
	vmcs12->guest_rip = kvm_rip_read(vcpu);
	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);

	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4101 4102 4103

	vmcs12->guest_interruptibility_info =
		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4104

4105 4106
	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4107 4108
	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4109 4110 4111
	else
		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;

4112
	if (nested_cpu_has_preemption_timer(vmcs12) &&
4113 4114 4115 4116
	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
	    !vmx->nested.nested_run_pending)
		vmcs12->vmx_preemption_timer_value =
			vmx_get_preemption_timer_value(vcpu);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

	/*
	 * In some cases (usually, nested EPT), L2 is allowed to change its
	 * own CR3 without exiting. If it has changed it, we must keep it.
	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
	 *
	 * Additionally, restore L2's PDPTR to vmcs12.
	 */
	if (enable_ept) {
		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4128 4129 4130 4131 4132 4133
		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
		}
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	}

	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);

	if (nested_cpu_has_vid(vmcs12))
		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);

	vmcs12->vm_entry_controls =
		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);

4145
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);

	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
		vmcs12->guest_ia32_efer = vcpu->arch.efer;
}

/*
 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 * and this function updates it to reflect the changes to the guest state while
 * L2 was running (and perhaps made some exits which were handled directly by L0
 * without going back to L1), and to reflect the exit reason.
 * Note that we do not have to copy here all VMCS fields, just those that
 * could have changed by the L2 guest or the exit - i.e., the guest-state and
 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 * which already writes to vmcs12 directly.
 */
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4164
			   u32 vm_exit_reason, u32 exit_intr_info,
4165 4166 4167
			   unsigned long exit_qualification)
{
	/* update exit information fields: */
4168
	vmcs12->vm_exit_reason = vm_exit_reason;
4169 4170
	if (to_vmx(vcpu)->exit_reason.enclave_mode)
		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	vmcs12->exit_qualification = exit_qualification;
	vmcs12->vm_exit_intr_info = exit_intr_info;

	vmcs12->idt_vectoring_info_field = 0;
	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
		vmcs12->launch_state = 1;

		/* vm_entry_intr_info_field is cleared on exit. Emulate this
		 * instead of reading the real value. */
		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;

		/*
		 * Transfer the event that L0 or L1 may wanted to inject into
		 * L2 to IDT_VECTORING_INFO_FIELD.
		 */
		vmcs12_save_pending_event(vcpu, vmcs12);
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

		/*
		 * According to spec, there's no need to store the guest's
		 * MSRs if the exit is due to a VM-entry failure that occurs
		 * during or after loading the guest state. Since this exit
		 * does not fall in that category, we need to save the MSRs.
		 */
		if (nested_vmx_store_msr(vcpu,
					 vmcs12->vm_exit_msr_store_addr,
					 vmcs12->vm_exit_msr_store_count))
			nested_vmx_abort(vcpu,
					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
	}

	/*
	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
	 * preserved above and would only end up incorrectly in L1.
	 */
	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);
}

/*
 * A part of what we need to when the nested L2 guest exits and we want to
 * run its L1 parent, is to reset L1's guest state to the host state specified
 * in vmcs12.
 * This function is to be called not only on normal nested exit, but also on
 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 * Failures During or After Loading Guest State").
 * This function should be called when the active VMCS is L1's (vmcs01).
 */
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12)
{
4225
	enum vm_entry_failure_code ignored;
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	struct kvm_segment seg;

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->host_ia32_efer;
	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	vmx_set_efer(vcpu, vcpu->arch.efer);

4236 4237
	kvm_rsp_write(vcpu, vmcs12->host_rsp);
	kvm_rip_write(vcpu, vmcs12->host_rip);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
	vmx_set_interrupt_shadow(vcpu, 0);

	/*
	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
	 * actually changed, because vmx_set_cr0 refers to efer set above.
	 *
	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
	 * (KVM doesn't change it);
	 */
4248
	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	vmx_set_cr0(vcpu, vmcs12->host_cr0);

	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs12->host_cr4);

	nested_ept_uninit_mmu_context(vcpu);

	/*
	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
	 * couldn't have changed.
	 */
4261
	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4262 4263
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);

4264
	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);

	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
		vmcs_write64(GUEST_BNDCFGS, 0);

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
		vcpu->arch.pat = vmcs12->host_ia32_pat;
	}
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4283 4284
		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
					 vmcs12->host_ia32_perf_global_ctrl));
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

	/* Set L1 segment info according to Intel SDM
	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.selector = vmcs12->host_cs_selector,
		.type = 11,
		.present = 1,
		.s = 1,
		.g = 1
	};
	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		seg.l = 1;
	else
		seg.db = 1;
4301
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.type = 3,
		.present = 1,
		.s = 1,
		.db = 1,
		.g = 1
	};
	seg.selector = vmcs12->host_ds_selector;
4312
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4313
	seg.selector = vmcs12->host_es_selector;
4314
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4315
	seg.selector = vmcs12->host_ss_selector;
4316
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4317 4318
	seg.selector = vmcs12->host_fs_selector;
	seg.base = vmcs12->host_fs_base;
4319
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4320 4321
	seg.selector = vmcs12->host_gs_selector;
	seg.base = vmcs12->host_gs_base;
4322
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4323 4324 4325 4326 4327 4328 4329
	seg = (struct kvm_segment) {
		.base = vmcs12->host_tr_base,
		.limit = 0x67,
		.selector = vmcs12->host_tr_selector,
		.type = 11,
		.present = 1
	};
4330
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4331

4332 4333
	memset(&seg, 0, sizeof(seg));
	seg.unusable = 1;
4334
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4335 4336 4337 4338 4339 4340 4341

	kvm_set_dr(vcpu, 7, 0x400);
	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);

	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
				vmcs12->vm_exit_msr_load_count))
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4342 4343

	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4344 4345 4346 4347
}

static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
{
4348
	struct vmx_uret_msr *efer_msr;
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
	unsigned int i;

	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
		return vmcs_read64(GUEST_IA32_EFER);

	if (cpu_has_load_ia32_efer())
		return host_efer;

	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
			return vmx->msr_autoload.guest.val[i].value;
	}

4362
	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	if (efer_msr)
		return efer_msr->data;

	return host_efer;
}

static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msr_entry g, h;
	gpa_t gpa;
	u32 i, j;

	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);

	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
		/*
		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
		 * as vmcs01.GUEST_DR7 contains a userspace defined value
		 * and vcpu->arch.dr7 is not squirreled away before the
		 * nested VMENTER (not worth adding a variable in nested_vmx).
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
		else
			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
	}

	/*
	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
	 * handle a variety of side effects to KVM's software model.
	 */
	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));

4398
	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4399 4400 4401 4402 4403 4404
	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));

	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));

	nested_ept_uninit_mmu_context(vcpu);
4405
	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4406
	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4407 4408 4409 4410 4411 4412 4413

	/*
	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
	 * VMFail, like everything else we just need to ensure our
	 * software model is up-to-date.
	 */
4414
	if (enable_ept && is_pae_paging(vcpu))
4415
		ept_save_pdptrs(vcpu);
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

	kvm_mmu_reset_context(vcpu);

	/*
	 * This nasty bit of open coding is a compromise between blindly
	 * loading L1's MSRs using the exit load lists (incorrect emulation
	 * of VMFail), leaving the nested VM's MSRs in the software model
	 * (incorrect behavior) and snapshotting the modified MSRs (too
	 * expensive since the lists are unbound by hardware).  For each
	 * MSR that was (prematurely) loaded from the nested VMEntry load
	 * list, reload it from the exit load list if it exists and differs
	 * from the guest value.  The intent is to stuff host state as
	 * silently as possible, not to fully process the exit load list.
	 */
	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
			pr_debug_ratelimited(
				"%s read MSR index failed (%u, 0x%08llx)\n",
				__func__, i, gpa);
			goto vmabort;
		}

		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
				pr_debug_ratelimited(
					"%s read MSR failed (%u, 0x%08llx)\n",
					__func__, j, gpa);
				goto vmabort;
			}
			if (h.index != g.index)
				continue;
			if (h.value == g.value)
				break;

			if (nested_vmx_load_msr_check(vcpu, &h)) {
				pr_debug_ratelimited(
					"%s check failed (%u, 0x%x, 0x%x)\n",
					__func__, j, h.index, h.reserved);
				goto vmabort;
			}

4459
			if (kvm_set_msr(vcpu, h.index, h.value)) {
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
				pr_debug_ratelimited(
					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
					__func__, j, h.index, h.value);
				goto vmabort;
			}
		}
	}

	return;

vmabort:
	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}

/*
 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 * and modify vmcs12 to make it see what it would expect to see there if
 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 */
4479
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4480 4481 4482 4483 4484 4485 4486 4487
		       u32 exit_intr_info, unsigned long exit_qualification)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	/* trying to cancel vmlaunch/vmresume is a bug */
	WARN_ON_ONCE(vmx->nested.nested_run_pending);

4488 4489 4490
	/* Similarly, triple faults in L2 should never escape. */
	WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));

4491 4492 4493 4494 4495 4496 4497 4498 4499
	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
		/*
		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
		 * Enlightened VMCS after migration and we still need to
		 * do that when something is forcing L2->L1 exit prior to
		 * the first L2 run.
		 */
		(void)nested_get_evmcs_page(vcpu);
	}
4500

4501 4502
	/* Service pending TLB flush requests for L2 before switching to L1. */
	kvm_service_local_tlb_flush_requests(vcpu);
4503

4504 4505 4506 4507 4508 4509 4510 4511
	/*
	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
	 * up-to-date before switching to L1.
	 */
	if (enable_ept && is_pae_paging(vcpu))
		vmx_ept_load_pdptrs(vcpu);

4512 4513
	leave_guest_mode(vcpu);

4514 4515 4516
	if (nested_cpu_has_preemption_timer(vmcs12))
		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);

4517 4518 4519 4520 4521
	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
	}
4522 4523

	if (likely(!vmx->fail)) {
4524
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4525

4526 4527 4528
		if (vm_exit_reason != -1)
			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
				       exit_intr_info, exit_qualification);
4529 4530

		/*
4531
		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
		 * also be used to capture vmcs12 cache as part of
		 * capturing nVMX state for snapshot (migration).
		 *
		 * Otherwise, this flush will dirty guest memory at a
		 * point it is already assumed by user-space to be
		 * immutable.
		 */
		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
	} else {
		/*
		 * The only expected VM-instruction error is "VM entry with
		 * invalid control field(s)." Anything else indicates a
		 * problem with L0.  And we should never get here with a
		 * VMFail of any type if early consistency checks are enabled.
		 */
		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		WARN_ON_ONCE(nested_early_check);
	}

	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	/* Update any VMCS fields that might have changed while L2 ran */
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4558 4559 4560
	if (kvm_has_tsc_control)
		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);

4561 4562
	if (vmx->nested.l1_tpr_threshold != -1)
		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4563 4564 4565 4566 4567 4568

	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
		vmx->nested.change_vmcs01_virtual_apic_mode = false;
		vmx_set_virtual_apic_mode(vcpu);
	}

4569 4570 4571 4572 4573
	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
		vmx_update_cpu_dirty_logging(vcpu);
	}

4574 4575
	/* Unpin physical memory we referred to in vmcs02 */
	if (vmx->nested.apic_access_page) {
4576
		kvm_release_page_clean(vmx->nested.apic_access_page);
4577 4578
		vmx->nested.apic_access_page = NULL;
	}
4579
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4580 4581
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
4582

4583 4584 4585 4586
	if (vmx->nested.reload_vmcs01_apic_access_page) {
		vmx->nested.reload_vmcs01_apic_access_page = false;
		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
	}
4587

4588
	if ((vm_exit_reason != -1) &&
4589
	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4590
		vmx->nested.need_vmcs12_to_shadow_sync = true;
4591 4592 4593 4594 4595

	/* in case we halted in L2 */
	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

	if (likely(!vmx->fail)) {
4596
		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4597
		    nested_exit_intr_ack_set(vcpu)) {
4598 4599 4600 4601 4602 4603
			int irq = kvm_cpu_get_interrupt(vcpu);
			WARN_ON(irq < 0);
			vmcs12->vm_exit_intr_info = irq |
				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
		}

4604
		if (vm_exit_reason != -1)
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
						       vmcs12->exit_qualification,
						       vmcs12->idt_vectoring_info_field,
						       vmcs12->vm_exit_intr_info,
						       vmcs12->vm_exit_intr_error_code,
						       KVM_ISA_VMX);

		load_vmcs12_host_state(vcpu, vmcs12);

		return;
	}

	/*
	 * After an early L2 VM-entry failure, we're now back
	 * in L1 which thinks it just finished a VMLAUNCH or
	 * VMRESUME instruction, so we need to set the failure
	 * flag and the VM-instruction error field of the VMCS
	 * accordingly, and skip the emulated instruction.
	 */
4624
	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

	/*
	 * Restore L1's host state to KVM's software model.  We're here
	 * because a consistency check was caught by hardware, which
	 * means some amount of guest state has been propagated to KVM's
	 * model and needs to be unwound to the host's state.
	 */
	nested_vmx_restore_host_state(vcpu);

	vmx->fail = 0;
}

4637 4638 4639 4640 4641
static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
{
	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
}

4642 4643 4644 4645
/*
 * Decode the memory-address operand of a vmx instruction, as recorded on an
 * exit caused by such an instruction (run by a guest hypervisor).
 * On success, returns 0. When the operand is invalid, returns 1 and throws
M
Miaohe Lin 已提交
4646
 * #UD, #GP, or #SS.
4647 4648
 */
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4649
			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
{
	gva_t off;
	bool exn;
	struct kvm_segment s;

	/*
	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
	 * Execution", on an exit, vmx_instruction_info holds most of the
	 * addressing components of the operand. Only the displacement part
	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
	 * For how an actual address is calculated from all these components,
	 * refer to Vol. 1, "Operand Addressing".
	 */
	int  scaling = vmx_instruction_info & 3;
	int  addr_size = (vmx_instruction_info >> 7) & 7;
	bool is_reg = vmx_instruction_info & (1u << 10);
	int  seg_reg = (vmx_instruction_info >> 15) & 7;
	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));

	if (is_reg) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* Addr = segment_base + offset */
	/* offset = base + [index * scale] + displacement */
	off = exit_qualification; /* holds the displacement */
4680 4681 4682 4683
	if (addr_size == 1)
		off = (gva_t)sign_extend64(off, 31);
	else if (addr_size == 0)
		off = (gva_t)sign_extend64(off, 15);
4684 4685 4686
	if (base_is_valid)
		off += kvm_register_read(vcpu, base_reg);
	if (index_is_valid)
4687
		off += kvm_register_read(vcpu, index_reg) << scaling;
4688 4689
	vmx_get_segment(vcpu, &s, seg_reg);

4690 4691 4692 4693 4694 4695
	/*
	 * The effective address, i.e. @off, of a memory operand is truncated
	 * based on the address size of the instruction.  Note that this is
	 * the *effective address*, i.e. the address prior to accounting for
	 * the segment's base.
	 */
4696
	if (addr_size == 1) /* 32 bit */
4697 4698 4699
		off &= 0xffffffff;
	else if (addr_size == 0) /* 16 bit */
		off &= 0xffff;
4700 4701 4702 4703

	/* Checks for #GP/#SS exceptions. */
	exn = false;
	if (is_long_mode(vcpu)) {
4704 4705 4706 4707 4708
		/*
		 * The virtual/linear address is never truncated in 64-bit
		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
		 * address when using FS/GS with a non-zero base.
		 */
4709 4710 4711 4712
		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
			*ret = s.base + off;
		else
			*ret = off;
4713

4714 4715 4716 4717 4718
		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
		 * non-canonical form. This is the only check on the memory
		 * destination for long mode!
		 */
		exn = is_noncanonical_address(*ret, vcpu);
4719
	} else {
4720 4721 4722 4723 4724 4725 4726
		/*
		 * When not in long mode, the virtual/linear address is
		 * unconditionally truncated to 32 bits regardless of the
		 * address size.
		 */
		*ret = (s.base + off) & 0xffffffff;

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		/* Protected mode: apply checks for segment validity in the
		 * following order:
		 * - segment type check (#GP(0) may be thrown)
		 * - usability check (#GP(0)/#SS(0))
		 * - limit check (#GP(0)/#SS(0))
		 */
		if (wr)
			/* #GP(0) if the destination operand is located in a
			 * read-only data segment or any code segment.
			 */
			exn = ((s.type & 0xa) == 0 || (s.type & 8));
		else
			/* #GP(0) if the source operand is located in an
			 * execute-only code segment
			 */
			exn = ((s.type & 0xa) == 8);
		if (exn) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
		 */
		exn = (s.unusable != 0);
4750 4751 4752 4753 4754 4755

		/*
		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
		 * outside the segment limit.  All CPUs that support VMX ignore
		 * limit checks for flat segments, i.e. segments with base==0,
		 * limit==0xffffffff and of type expand-up data or code.
4756
		 */
4757 4758
		if (!(s.base == 0 && s.limit == 0xffffffff &&
		     ((s.type & 8) || !(s.type & 4))))
4759
			exn = exn || ((u64)off + len - 1 > s.limit);
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	}
	if (exn) {
		kvm_queue_exception_e(vcpu,
				      seg_reg == VCPU_SREG_SS ?
						SS_VECTOR : GP_VECTOR,
				      0);
		return 1;
	}

	return 0;
}

4772 4773 4774 4775 4776 4777 4778 4779
void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx;

	if (!nested_vmx_allowed(vcpu))
		return;

	vmx = to_vmx(vcpu);
4780
	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4781 4782 4783 4784 4785 4786 4787 4788
		vmx->nested.msrs.entry_ctls_high |=
				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
		vmx->nested.msrs.exit_ctls_high |=
				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
	} else {
		vmx->nested.msrs.entry_ctls_high &=
				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
		vmx->nested.msrs.exit_ctls_high &=
4789
				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4790 4791 4792
	}
}

4793 4794
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
				int *ret)
4795 4796 4797
{
	gva_t gva;
	struct x86_exception e;
4798
	int r;
4799

4800
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4801
				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4802 4803 4804 4805
				sizeof(*vmpointer), &gva)) {
		*ret = 1;
		return -EINVAL;
	}
4806

4807 4808
	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
	if (r != X86EMUL_CONTINUE) {
4809
		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4810
		return -EINVAL;
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	}

	return 0;
}

/*
 * Allocate a shadow VMCS and associate it with the currently loaded
 * VMCS, unless such a shadow VMCS already exists. The newly allocated
 * VMCS is also VMCLEARed, so that it is ready for use.
 */
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;

	/*
	 * We should allocate a shadow vmcs for vmcs01 only when L1
	 * executes VMXON and free it when L1 executes VMXOFF.
	 * As it is invalid to execute VMXON twice, we shouldn't reach
	 * here when vmcs01 already have an allocated shadow vmcs.
	 */
	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);

	if (!loaded_vmcs->shadow_vmcs) {
		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
		if (loaded_vmcs->shadow_vmcs)
			vmcs_clear(loaded_vmcs->shadow_vmcs);
	}
	return loaded_vmcs->shadow_vmcs;
}

static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int r;

	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
	if (r < 0)
		goto out_vmcs02;

4851
	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4852 4853 4854
	if (!vmx->nested.cached_vmcs12)
		goto out_cached_vmcs12;

4855
	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4856
	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4857 4858 4859 4860 4861 4862 4863
	if (!vmx->nested.cached_shadow_vmcs12)
		goto out_cached_shadow_vmcs12;

	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
		goto out_shadow_vmcs;

	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4864
		     HRTIMER_MODE_ABS_PINNED);
4865 4866 4867 4868 4869 4870
	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;

	vmx->nested.vpid02 = allocate_vpid();

	vmx->nested.vmcs02_initialized = false;
	vmx->nested.vmxon = true;
4871

4872
	if (vmx_pt_mode_is_host_guest()) {
4873
		vmx->pt_desc.guest.ctl = 0;
4874
		pt_update_intercept_for_msr(vcpu);
4875 4876
	}

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	return 0;

out_shadow_vmcs:
	kfree(vmx->nested.cached_shadow_vmcs12);

out_cached_shadow_vmcs12:
	kfree(vmx->nested.cached_vmcs12);

out_cached_vmcs12:
	free_loaded_vmcs(&vmx->nested.vmcs02);

out_vmcs02:
	return -ENOMEM;
}

4892
/* Emulate the VMXON instruction. */
4893 4894 4895 4896
static int handle_vmon(struct kvm_vcpu *vcpu)
{
	int ret;
	gpa_t vmptr;
4897
	uint32_t revision;
4898
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4899 4900
	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4901 4902 4903 4904

	/*
	 * The Intel VMX Instruction Reference lists a bunch of bits that are
	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4905
	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	 * Otherwise, we should fail with #UD.  But most faulting conditions
	 * have already been checked by hardware, prior to the VM-exit for
	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
	 * that bit set to 1 in non-root mode.
	 */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* CPL=0 must be checked manually. */
	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

	if (vmx->nested.vmxon)
4923
		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4924 4925 4926 4927 4928 4929 4930

	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
			!= VMXON_NEEDED_FEATURES) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

4931 4932
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
		return ret;
4933 4934 4935 4936 4937 4938 4939 4940 4941

	/*
	 * SDM 3: 24.11.5
	 * The first 4 bytes of VMXON region contain the supported
	 * VMCS revision identifier
	 *
	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
	 * which replaces physical address width with 32
	 */
4942
	if (!page_address_valid(vcpu, vmptr))
4943 4944
		return nested_vmx_failInvalid(vcpu);

4945 4946
	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
	    revision != VMCS12_REVISION)
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
		return nested_vmx_failInvalid(vcpu);

	vmx->nested.vmxon_ptr = vmptr;
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

	return nested_vmx_succeed(vcpu);
}

static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4961
	if (vmx->nested.current_vmptr == INVALID_GPA)
4962 4963
		return;

4964 4965
	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));

4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
	if (enable_shadow_vmcs) {
		/* copy to memory all shadowed fields in case
		   they were modified */
		copy_shadow_to_vmcs12(vmx);
		vmx_disable_shadow_vmcs(vmx);
	}
	vmx->nested.posted_intr_nv = -1;

	/* Flush VMCS12 to guest memory */
	kvm_vcpu_write_guest_page(vcpu,
				  vmx->nested.current_vmptr >> PAGE_SHIFT,
				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);

	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);

4981
	vmx->nested.current_vmptr = INVALID_GPA;
4982 4983 4984 4985 4986 4987 4988
}

/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
	if (!nested_vmx_check_permission(vcpu))
		return 1;
4989

4990
	free_nested(vcpu);
4991 4992 4993 4994

	/* Process a latched INIT during time CPU was in VMX operation */
	kvm_make_request(KVM_REQ_EVENT, vcpu);

4995 4996 4997 4998 4999 5000 5001 5002 5003
	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 zero = 0;
	gpa_t vmptr;
5004
	u64 evmcs_gpa;
5005
	int r;
5006 5007 5008 5009

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5010 5011
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
		return r;
5012

5013
	if (!page_address_valid(vcpu, vmptr))
5014
		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5015 5016

	if (vmptr == vmx->nested.vmxon_ptr)
5017
		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5018

5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	/*
	 * When Enlightened VMEntry is enabled on the calling CPU we treat
	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
	 * way to distinguish it from VMCS12) and we must not corrupt it by
	 * writing to the non-existent 'launch_state' field. The area doesn't
	 * have to be the currently active EVMCS on the calling CPU and there's
	 * nothing KVM has to do to transition it from 'active' to 'non-active'
	 * state. It is possible that the area will stay mapped as
	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
	 */
	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5031 5032 5033 5034 5035 5036 5037
		if (vmptr == vmx->nested.current_vmptr)
			nested_release_vmcs12(vcpu);

		kvm_vcpu_write_guest(vcpu,
				     vmptr + offsetof(struct vmcs12,
						      launch_state),
				     &zero, sizeof(zero));
5038 5039
	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
		nested_release_evmcs(vcpu);
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
	return nested_vmx_run(vcpu, true);
}

/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{

	return nested_vmx_run(vcpu, false);
}

static int handle_vmread(struct kvm_vcpu *vcpu)
{
5060 5061
	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
						    : get_vmcs12(vcpu);
5062
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5063 5064
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5065
	struct x86_exception e;
5066 5067 5068
	unsigned long field;
	u64 value;
	gva_t gva = 0;
5069
	short offset;
5070
	int len, r;
5071 5072 5073 5074

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5075
	/*
5076
	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5077 5078
	 * any VMREAD sets the ALU flags for VMfailInvalid.
	 */
5079
	if (vmx->nested.current_vmptr == INVALID_GPA ||
5080
	    (is_guest_mode(vcpu) &&
5081
	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5082 5083 5084
		return nested_vmx_failInvalid(vcpu);

	/* Decode instruction info and find the field to read */
5085
	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5086 5087 5088

	offset = vmcs_field_to_offset(field);
	if (offset < 0)
5089
		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5090

5091 5092 5093
	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

5094 5095
	/* Read the field, zero-extended to a u64 value */
	value = vmcs12_read_any(vmcs12, field, offset);
5096

5097 5098 5099 5100 5101
	/*
	 * Now copy part of this value to register or memory, as requested.
	 * Note that the number of bits actually copied is 32 or 64 depending
	 * on the guest's mode (32 or 64 bit), not on the given field's length.
	 */
5102
	if (instr_info & BIT(10)) {
5103
		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5104
	} else {
5105
		len = is_64_bit_mode(vcpu) ? 8 : 4;
5106
		if (get_vmx_mem_address(vcpu, exit_qualification,
5107
					instr_info, true, len, &gva))
5108 5109
			return 1;
		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5110 5111
		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
		if (r != X86EMUL_CONTINUE)
5112
			return kvm_handle_memory_failure(vcpu, r, &e);
5113 5114 5115 5116 5117
	}

	return nested_vmx_succeed(vcpu);
}

5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
static bool is_shadow_field_rw(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RW(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}

static bool is_shadow_field_ro(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RO(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}
5141 5142 5143

static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
5144 5145
	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
						    : get_vmcs12(vcpu);
5146
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5147 5148 5149
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct x86_exception e;
5150
	unsigned long field;
5151
	short offset;
5152
	gva_t gva;
5153
	int len, r;
5154

5155 5156
	/*
	 * The value to write might be 32 or 64 bits, depending on L1's long
5157 5158
	 * mode, and eventually we need to write that into a field of several
	 * possible lengths. The code below first zero-extends the value to 64
5159
	 * bit (value), and then copies only the appropriate number of
5160 5161
	 * bits into the vmcs12 field.
	 */
5162
	u64 value = 0;
5163 5164 5165 5166

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5167
	/*
5168
	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5169 5170
	 * any VMWRITE sets the ALU flags for VMfailInvalid.
	 */
5171
	if (vmx->nested.current_vmptr == INVALID_GPA ||
5172
	    (is_guest_mode(vcpu) &&
5173
	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5174 5175
		return nested_vmx_failInvalid(vcpu);

5176
	if (instr_info & BIT(10))
5177
		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5178
	else {
5179
		len = is_64_bit_mode(vcpu) ? 8 : 4;
5180
		if (get_vmx_mem_address(vcpu, exit_qualification,
5181
					instr_info, false, len, &gva))
5182
			return 1;
5183 5184
		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
		if (r != X86EMUL_CONTINUE)
5185
			return kvm_handle_memory_failure(vcpu, r, &e);
5186 5187
	}

5188
	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5189 5190 5191

	offset = vmcs_field_to_offset(field);
	if (offset < 0)
5192
		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5193 5194 5195 5196 5197 5198 5199

	/*
	 * If the vCPU supports "VMWRITE to any supported field in the
	 * VMCS," then the "read-only" fields are actually read/write.
	 */
	if (vmcs_field_readonly(field) &&
	    !nested_cpu_has_vmwrite_any_field(vcpu))
5200
		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5201

5202 5203 5204 5205 5206 5207
	/*
	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
	 * vmcs12, else we may crush a field or consume a stale value.
	 */
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5208 5209

	/*
5210 5211 5212 5213 5214 5215
	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
	 * from L1 will return a different value than VMREAD from L2 (L1 sees
	 * the stripped down value, L2 sees the full value as stored by KVM).
5216
	 */
5217
	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5218
		value &= 0x1f0ff;
5219

5220
	vmcs12_write_any(vmcs12, field, offset, value);
5221 5222

	/*
5223 5224 5225 5226
	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5227
	 */
5228 5229 5230 5231 5232 5233 5234 5235
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
		/*
		 * L1 can read these fields without exiting, ensure the
		 * shadow VMCS is up-to-date.
		 */
		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
			preempt_disable();
			vmcs_load(vmx->vmcs01.shadow_vmcs);
5236

5237
			__vmcs_writel(field, value);
5238

5239 5240 5241
			vmcs_clear(vmx->vmcs01.shadow_vmcs);
			vmcs_load(vmx->loaded_vmcs->vmcs);
			preempt_enable();
5242
		}
5243
		vmx->nested.dirty_vmcs12 = true;
5244 5245 5246 5247 5248 5249 5250 5251 5252
	}

	return nested_vmx_succeed(vcpu);
}

static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
	vmx->nested.current_vmptr = vmptr;
	if (enable_shadow_vmcs) {
5253
		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5254 5255
		vmcs_write64(VMCS_LINK_POINTER,
			     __pa(vmx->vmcs01.shadow_vmcs));
5256
		vmx->nested.need_vmcs12_to_shadow_sync = true;
5257 5258 5259 5260 5261 5262 5263 5264 5265
	}
	vmx->nested.dirty_vmcs12 = true;
}

/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t vmptr;
5266
	int r;
5267 5268 5269 5270

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5271 5272
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
		return r;
5273

5274
	if (!page_address_valid(vcpu, vmptr))
5275
		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5276 5277

	if (vmptr == vmx->nested.vmxon_ptr)
5278
		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5279 5280

	/* Forbid normal VMPTRLD if Enlightened version was used */
5281
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5282 5283 5284
		return 1;

	if (vmx->nested.current_vmptr != vmptr) {
5285 5286
		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
		struct vmcs_hdr hdr;
5287

5288
		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5289 5290 5291 5292 5293 5294
			/*
			 * Reads from an unbacked page return all 1s,
			 * which means that the 32 bits located at the
			 * given physical address won't match the required
			 * VMCS12_REVISION identifier.
			 */
5295
			return nested_vmx_fail(vcpu,
5296 5297
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5298

5299 5300 5301 5302 5303 5304
		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
						 offsetof(struct vmcs12, hdr),
						 sizeof(hdr))) {
			return nested_vmx_fail(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5305

5306 5307
		if (hdr.revision_id != VMCS12_REVISION ||
		    (hdr.shadow_vmcs &&
5308
		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5309
			return nested_vmx_fail(vcpu,
5310 5311 5312 5313 5314 5315 5316 5317 5318
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}

		nested_release_vmcs12(vcpu);

		/*
		 * Load VMCS12 from guest memory since it is not already
		 * cached.
		 */
5319 5320 5321 5322 5323
		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
					  VMCS12_SIZE)) {
			return nested_vmx_fail(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333

		set_current_vmptr(vmx, vmptr);
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
5334
	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5335 5336 5337 5338
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
	struct x86_exception e;
	gva_t gva;
5339
	int r;
5340 5341 5342 5343

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5344
	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5345 5346
		return 1;

5347 5348
	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
				true, sizeof(gpa_t), &gva))
5349 5350
		return 1;
	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5351 5352 5353
	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
					sizeof(gpa_t), &e);
	if (r != X86EMUL_CONTINUE)
5354
		return kvm_handle_memory_failure(vcpu, r, &e);
5355

5356 5357 5358 5359 5360 5361 5362 5363
	return nested_vmx_succeed(vcpu);
}

/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info, types;
5364 5365
	unsigned long type, roots_to_free;
	struct kvm_mmu *mmu;
5366 5367 5368 5369 5370
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 eptp, gpa;
	} operand;
5371
	int i, r, gpr_index;
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_EPT) ||
	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5384 5385
	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
	type = kvm_register_read(vcpu, gpr_index);
5386 5387 5388 5389

	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;

	if (type >= 32 || !(types & (1 << type)))
5390
		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5391 5392 5393 5394

	/* According to the Intel VMX instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
5395
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5396
			vmx_instruction_info, false, sizeof(operand), &gva))
5397
		return 1;
5398 5399
	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
	if (r != X86EMUL_CONTINUE)
5400
		return kvm_handle_memory_failure(vcpu, r, &e);
5401

5402 5403 5404 5405 5406 5407
	/*
	 * Nested EPT roots are always held through guest_mmu,
	 * not root_mmu.
	 */
	mmu = &vcpu->arch.guest_mmu;

5408
	switch (type) {
5409
	case VMX_EPT_EXTENT_CONTEXT:
5410
		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5411
			return nested_vmx_fail(vcpu,
5412
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5413

5414
		roots_to_free = 0;
5415
		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5416 5417 5418 5419 5420
					    operand.eptp))
			roots_to_free |= KVM_MMU_ROOT_CURRENT;

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5421
						    mmu->prev_roots[i].pgd,
5422 5423 5424 5425
						    operand.eptp))
				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
		}
		break;
5426
	case VMX_EPT_EXTENT_GLOBAL:
5427
		roots_to_free = KVM_MMU_ROOTS_ALL;
5428 5429
		break;
	default:
5430
		BUG();
5431 5432 5433
		break;
	}

5434 5435 5436
	if (roots_to_free)
		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
	return nested_vmx_succeed(vcpu);
}

static int handle_invvpid(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info;
	unsigned long type, types;
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 vpid;
		u64 gla;
	} operand;
	u16 vpid02;
5452
	int r, gpr_index;
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_VPID) ||
			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5465 5466
	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
	type = kvm_register_read(vcpu, gpr_index);
5467 5468 5469 5470 5471

	types = (vmx->nested.msrs.vpid_caps &
			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;

	if (type >= 32 || !(types & (1 << type)))
5472
		return nested_vmx_fail(vcpu,
5473 5474 5475 5476 5477
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	/* according to the intel vmx instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
5478
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5479
			vmx_instruction_info, false, sizeof(operand), &gva))
5480
		return 1;
5481 5482
	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
	if (r != X86EMUL_CONTINUE)
5483
		return kvm_handle_memory_failure(vcpu, r, &e);
5484

5485
	if (operand.vpid >> 16)
5486
		return nested_vmx_fail(vcpu,
5487 5488 5489 5490 5491 5492 5493
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	vpid02 = nested_get_vpid02(vcpu);
	switch (type) {
	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
		if (!operand.vpid ||
		    is_noncanonical_address(operand.gla, vcpu))
5494
			return nested_vmx_fail(vcpu,
5495
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5496
		vpid_sync_vcpu_addr(vpid02, operand.gla);
5497 5498 5499 5500
		break;
	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
		if (!operand.vpid)
5501
			return nested_vmx_fail(vcpu,
5502
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5503
		vpid_sync_context(vpid02);
5504 5505
		break;
	case VMX_VPID_EXTENT_ALL_CONTEXT:
5506
		vpid_sync_context(vpid02);
5507 5508 5509 5510 5511 5512
		break;
	default:
		WARN_ON_ONCE(1);
		return kvm_skip_emulated_instruction(vcpu);
	}

5513 5514
	/*
	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5515 5516
	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
	 * roots as VPIDs are not tracked in the MMU role.
5517 5518 5519 5520 5521 5522 5523
	 *
	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
	 * an MMU when EPT is disabled.
	 *
	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
	 */
	if (!enable_ept)
5524
		kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5525

5526 5527 5528 5529 5530 5531
	return nested_vmx_succeed(vcpu);
}

static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
5532
	u32 index = kvm_rcx_read(vcpu);
5533
	u64 new_eptp;
5534

5535
	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5536 5537 5538 5539 5540
		return 1;
	if (index >= VMFUNC_EPTP_ENTRIES)
		return 1;

	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5541
				     &new_eptp, index * 8, 8))
5542 5543 5544 5545 5546 5547
		return 1;

	/*
	 * If the (L2) guest does a vmfunc to the currently
	 * active ept pointer, we don't have to do anything else
	 */
5548 5549
	if (vmcs12->ept_pointer != new_eptp) {
		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5550 5551
			return 1;

5552
		vmcs12->ept_pointer = new_eptp;
5553
		nested_ept_new_eptp(vcpu);
5554

5555 5556
		if (!nested_cpu_has_vpid(vmcs12))
			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5557 5558 5559 5560 5561 5562 5563 5564 5565
	}

	return 0;
}

static int handle_vmfunc(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
5566
	u32 function = kvm_rax_read(vcpu);
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578

	/*
	 * VMFUNC is only supported for nested guests, but we always enable the
	 * secondary control for simplicity; for non-nested mode, fake that we
	 * didn't by injecting #UD.
	 */
	if (!is_guest_mode(vcpu)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmcs12 = get_vmcs12(vcpu);
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588

	/*
	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
	 */
	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

5589
	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		goto fail;

	switch (function) {
	case 0:
		if (nested_vmx_eptp_switching(vcpu, vmcs12))
			goto fail;
		break;
	default:
		goto fail;
	}
	return kvm_skip_emulated_instruction(vcpu);

fail:
5603 5604 5605 5606 5607 5608
	/*
	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
	 * EXIT_REASON_VMFUNC as the exit reason.
	 */
	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5609
			  vmx_get_intr_info(vcpu),
5610
			  vmx_get_exit_qual(vcpu));
5611 5612 5613
	return 1;
}

5614 5615 5616 5617 5618 5619
/*
 * Return true if an IO instruction with the specified port and size should cause
 * a VM-exit into L1.
 */
bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
				 int size)
5620
{
5621
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5622 5623 5624
	gpa_t bitmap, last_bitmap;
	u8 b;

5625
	last_bitmap = INVALID_GPA;
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
	b = -1;

	while (size > 0) {
		if (port < 0x8000)
			bitmap = vmcs12->io_bitmap_a;
		else if (port < 0x10000)
			bitmap = vmcs12->io_bitmap_b;
		else
			return true;
		bitmap += (port & 0x7fff) / 8;

		if (last_bitmap != bitmap)
			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
				return true;
		if (b & (1 << (port & 7)))
			return true;

		port++;
		size--;
		last_bitmap = bitmap;
	}

	return false;
}

5651 5652 5653 5654
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification;
5655
	unsigned short port;
5656 5657 5658 5659 5660
	int size;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);

5661
	exit_qualification = vmx_get_exit_qual(vcpu);
5662 5663 5664 5665 5666 5667 5668

	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;

	return nested_vmx_check_io_bitmaps(vcpu, port, size);
}

5669
/*
5670
 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5671 5672 5673 5674 5675
 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 * disinterest in the current event (read or write a specific MSR) by using an
 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 */
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5676 5677
					struct vmcs12 *vmcs12,
					union vmx_exit_reason exit_reason)
5678
{
5679
	u32 msr_index = kvm_rcx_read(vcpu);
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
	gpa_t bitmap;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return true;

	/*
	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
	 * for the four combinations of read/write and low/high MSR numbers.
	 * First we need to figure out which of the four to use:
	 */
	bitmap = vmcs12->msr_bitmap;
5691
	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
		bitmap += 2048;
	if (msr_index >= 0xc0000000) {
		msr_index -= 0xc0000000;
		bitmap += 1024;
	}

	/* Then read the msr_index'th bit from this bitmap: */
	if (msr_index < 1024*8) {
		unsigned char b;
		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
			return true;
		return 1 & (b >> (msr_index & 7));
	} else
		return true; /* let L1 handle the wrong parameter */
}

/*
 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 * intercept (via guest_host_mask etc.) the current event.
 */
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12)
{
5716
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5717 5718 5719 5720 5721 5722 5723
	int cr = exit_qualification & 15;
	int reg;
	unsigned long val;

	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
		reg = (exit_qualification >> 8) & 15;
5724
		val = kvm_register_read(vcpu, reg);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
		switch (cr) {
		case 0:
			if (vmcs12->cr0_guest_host_mask &
			    (val ^ vmcs12->cr0_read_shadow))
				return true;
			break;
		case 3:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
				return true;
			break;
		case 4:
			if (vmcs12->cr4_guest_host_mask &
			    (vmcs12->cr4_read_shadow ^ val))
				return true;
			break;
		case 8:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
				return true;
			break;
		}
		break;
	case 2: /* clts */
		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
			return true;
		break;
	case 1: /* mov from cr */
		switch (cr) {
		case 3:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR3_STORE_EXITING)
				return true;
			break;
		case 8:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR8_STORE_EXITING)
				return true;
			break;
		}
		break;
	case 3: /* lmsw */
		/*
		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
		 * cr0. Other attempted changes are ignored, with no exit.
		 */
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
		if (vmcs12->cr0_guest_host_mask & 0xe &
		    (val ^ vmcs12->cr0_read_shadow))
			return true;
		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
		    !(vmcs12->cr0_read_shadow & 0x1) &&
		    (val & 0x1))
			return true;
		break;
	}
	return false;
}

5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	u32 encls_leaf;

	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
		return false;

	encls_leaf = kvm_rax_read(vcpu);
	if (encls_leaf > 62)
		encls_leaf = 63;
	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
}

5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, gpa_t bitmap)
{
	u32 vmx_instruction_info;
	unsigned long field;
	u8 b;

	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return true;

	/* Decode instruction info and find the field to access */
	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));

	/* Out-of-range fields always cause a VM exit from L2 to L1 */
	if (field >> 15)
		return true;

	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
		return true;

	return 1 & (b >> (field & 7));
}

5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
{
	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;

	if (nested_cpu_has_mtf(vmcs12))
		return true;

	/*
	 * An MTF VM-exit may be injected into the guest by setting the
	 * interruption-type to 7 (other event) and the vector field to 0. Such
	 * is the case regardless of the 'monitor trap flag' VM-execution
	 * control.
	 */
	return entry_intr_info == (INTR_INFO_VALID_MASK
				   | INTR_TYPE_OTHER_EVENT);
}

5839
/*
5840 5841
 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5842
 */
5843 5844
static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
				     union vmx_exit_reason exit_reason)
5845
{
5846
	u32 intr_info;
5847

5848
	switch ((u16)exit_reason.basic) {
5849
	case EXIT_REASON_EXCEPTION_NMI:
5850
		intr_info = vmx_get_intr_info(vcpu);
5851
		if (is_nmi(intr_info))
5852
			return true;
5853
		else if (is_page_fault(intr_info))
5854 5855
			return vcpu->arch.apf.host_apf_flags ||
			       vmx_need_pf_intercept(vcpu);
5856 5857 5858
		else if (is_debug(intr_info) &&
			 vcpu->guest_debug &
			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5859
			return true;
5860 5861
		else if (is_breakpoint(intr_info) &&
			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5862
			return true;
5863 5864 5865
		else if (is_alignment_check(intr_info) &&
			 !vmx_guest_inject_ac(vcpu))
			return true;
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
		return false;
	case EXIT_REASON_EXTERNAL_INTERRUPT:
		return true;
	case EXIT_REASON_MCE_DURING_VMENTRY:
		return true;
	case EXIT_REASON_EPT_VIOLATION:
		/*
		 * L0 always deals with the EPT violation. If nested EPT is
		 * used, and the nested mmu code discovers that the address is
		 * missing in the guest EPT table (EPT12), the EPT violation
		 * will be injected with nested_ept_inject_page_fault()
		 */
		return true;
	case EXIT_REASON_EPT_MISCONFIG:
		/*
		 * L2 never uses directly L1's EPT, but rather L0's own EPT
		 * table (shadow on EPT) or a merged EPT table that L0 built
		 * (EPT on EPT). So any problems with the structure of the
		 * table is L0's fault.
		 */
		return true;
	case EXIT_REASON_PREEMPTION_TIMER:
		return true;
	case EXIT_REASON_PML_FULL:
5890 5891 5892 5893
		/*
		 * PML is emulated for an L1 VMM and should never be enabled in
		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
		 */
5894 5895 5896 5897
		return true;
	case EXIT_REASON_VMFUNC:
		/* VM functions are emulated through L2->L0 vmexits. */
		return true;
5898 5899 5900 5901 5902 5903
	case EXIT_REASON_BUS_LOCK:
		/*
		 * At present, bus lock VM exit is never exposed to L1.
		 * Handle L2's bus locks in L0 directly.
		 */
		return true;
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
	default:
		break;
	}
	return false;
}

/*
 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
 * is_guest_mode (L2).
 */
5914 5915
static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
				     union vmx_exit_reason exit_reason)
5916 5917
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5918
	u32 intr_info;
5919

5920
	switch ((u16)exit_reason.basic) {
5921
	case EXIT_REASON_EXCEPTION_NMI:
5922
		intr_info = vmx_get_intr_info(vcpu);
5923 5924 5925 5926
		if (is_nmi(intr_info))
			return true;
		else if (is_page_fault(intr_info))
			return true;
5927 5928 5929
		return vmcs12->exception_bitmap &
				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
	case EXIT_REASON_EXTERNAL_INTERRUPT:
5930
		return nested_exit_on_intr(vcpu);
5931 5932
	case EXIT_REASON_TRIPLE_FAULT:
		return true;
5933 5934
	case EXIT_REASON_INTERRUPT_WINDOW:
		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5935
	case EXIT_REASON_NMI_WINDOW:
5936
		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
	case EXIT_REASON_TASK_SWITCH:
		return true;
	case EXIT_REASON_CPUID:
		return true;
	case EXIT_REASON_HLT:
		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
	case EXIT_REASON_INVD:
		return true;
	case EXIT_REASON_INVLPG:
		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_RDPMC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
	case EXIT_REASON_RDRAND:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
	case EXIT_REASON_RDSEED:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
	case EXIT_REASON_VMREAD:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmread_bitmap);
	case EXIT_REASON_VMWRITE:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmwrite_bitmap);
	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
		/*
		 * VMX instructions trap unconditionally. This allows L1 to
		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
		 */
		return true;
	case EXIT_REASON_CR_ACCESS:
		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
	case EXIT_REASON_DR_ACCESS:
		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
	case EXIT_REASON_IO_INSTRUCTION:
		return nested_vmx_exit_handled_io(vcpu, vmcs12);
	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
	case EXIT_REASON_INVALID_STATE:
		return true;
	case EXIT_REASON_MWAIT_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
	case EXIT_REASON_MONITOR_TRAP_FLAG:
5987
		return nested_vmx_exit_handled_mtf(vmcs12);
5988 5989 5990 5991 5992 5993 5994
	case EXIT_REASON_MONITOR_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
	case EXIT_REASON_PAUSE_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
			nested_cpu_has2(vmcs12,
				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
	case EXIT_REASON_MCE_DURING_VMENTRY:
5995
		return true;
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	case EXIT_REASON_TPR_BELOW_THRESHOLD:
		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
	case EXIT_REASON_APIC_ACCESS:
	case EXIT_REASON_APIC_WRITE:
	case EXIT_REASON_EOI_INDUCED:
		/*
		 * The controls for "virtualize APIC accesses," "APIC-
		 * register virtualization," and "virtual-interrupt
		 * delivery" only come from vmcs12.
		 */
		return true;
	case EXIT_REASON_INVPCID:
		return
			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_WBINVD:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
	case EXIT_REASON_XSETBV:
		return true;
	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
		/*
		 * This should never happen, since it is not possible to
		 * set XSS to a non-zero value---neither in L1 nor in L2.
		 * If if it were, XSS would have to be checked against
		 * the XSS exit bitmap in vmcs12.
		 */
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6023 6024 6025 6026
	case EXIT_REASON_UMWAIT:
	case EXIT_REASON_TPAUSE:
		return nested_cpu_has2(vmcs12,
			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6027 6028
	case EXIT_REASON_ENCLS:
		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6029 6030 6031 6032 6033
	default:
		return true;
	}
}

6034 6035 6036 6037
/*
 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
 * reflected into L1.
 */
6038
bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6039
{
6040
	struct vcpu_vmx *vmx = to_vmx(vcpu);
6041
	union vmx_exit_reason exit_reason = vmx->exit_reason;
6042 6043
	unsigned long exit_qual;
	u32 exit_intr_info;
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058

	WARN_ON_ONCE(vmx->nested.nested_run_pending);

	/*
	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
	 * has already loaded L2's state.
	 */
	if (unlikely(vmx->fail)) {
		trace_kvm_nested_vmenter_failed(
			"hardware VM-instruction error: ",
			vmcs_read32(VM_INSTRUCTION_ERROR));
		exit_intr_info = 0;
		exit_qual = 0;
		goto reflect_vmexit;
	}
6059

6060
	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6061

6062 6063 6064 6065 6066 6067
	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
		return false;

	/* If L1 doesn't want the exit, handle it in L0. */
	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6068 6069 6070
		return false;

	/*
6071 6072 6073 6074
	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
	 * need to be synthesized by querying the in-kernel LAPIC, but external
	 * interrupts are never reflected to L1 so it's a non-issue.
6075
	 */
6076
	exit_intr_info = vmx_get_intr_info(vcpu);
6077
	if (is_exception_with_error_code(exit_intr_info)) {
6078 6079 6080 6081 6082
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

		vmcs12->vm_exit_intr_error_code =
			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
	}
6083
	exit_qual = vmx_get_exit_qual(vcpu);
6084

6085
reflect_vmexit:
6086
	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6087 6088
	return true;
}
6089 6090 6091 6092 6093 6094 6095 6096 6097

static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				u32 user_data_size)
{
	struct vcpu_vmx *vmx;
	struct vmcs12 *vmcs12;
	struct kvm_nested_state kvm_state = {
		.flags = 0,
6098
		.format = KVM_STATE_NESTED_FORMAT_VMX,
6099
		.size = sizeof(kvm_state),
6100
		.hdr.vmx.flags = 0,
6101 6102
		.hdr.vmx.vmxon_pa = INVALID_GPA,
		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6103
		.hdr.vmx.preemption_timer_deadline = 0,
6104
	};
6105 6106
	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
		&user_kvm_nested_state->data.vmx[0];
6107 6108

	if (!vcpu)
6109
		return kvm_state.size + sizeof(*user_vmx_nested_state);
6110 6111 6112 6113 6114 6115

	vmx = to_vmx(vcpu);
	vmcs12 = get_vmcs12(vcpu);

	if (nested_vmx_allowed(vcpu) &&
	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6116 6117
		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6118 6119

		if (vmx_has_valid_vmcs12(vcpu)) {
6120
			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6121

6122 6123
			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6124 6125
				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;

6126 6127
			if (is_guest_mode(vcpu) &&
			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6128
			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6129
				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6130 6131 6132
		}

		if (vmx->nested.smm.vmxon)
6133
			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6134 6135

		if (vmx->nested.smm.guest_mode)
6136
			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6137 6138 6139 6140 6141 6142

		if (is_guest_mode(vcpu)) {
			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;

			if (vmx->nested.nested_run_pending)
				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6143 6144 6145

			if (vmx->nested.mtf_pending)
				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6146 6147 6148 6149 6150 6151 6152 6153

			if (nested_cpu_has_preemption_timer(vmcs12) &&
			    vmx->nested.has_preemption_timer_deadline) {
				kvm_state.hdr.vmx.flags |=
					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
				kvm_state.hdr.vmx.preemption_timer_deadline =
					vmx->nested.preemption_timer_deadline;
			}
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
		}
	}

	if (user_data_size < kvm_state.size)
		goto out;

	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
		return -EFAULT;

	if (!vmx_has_valid_vmcs12(vcpu))
		goto out;

	/*
	 * When running L2, the authoritative vmcs12 state is in the
	 * vmcs02. When running L1, the authoritative vmcs12 state is
	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6170
	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6171 6172 6173
	 * vmcs12 state is in the vmcs12 already.
	 */
	if (is_guest_mode(vcpu)) {
6174
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6175
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6176 6177 6178
	} else  {
		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6179
			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6180 6181 6182 6183 6184 6185 6186 6187
				/*
				 * L1 hypervisor is not obliged to keep eVMCS
				 * clean fields data always up-to-date while
				 * not in guest mode, 'hv_clean_fields' is only
				 * supposed to be actual upon vmentry so we need
				 * to ignore it here and do full copy.
				 */
				copy_enlightened_to_vmcs12(vmx, 0);
6188 6189 6190
			else if (enable_shadow_vmcs)
				copy_shadow_to_vmcs12(vmx);
		}
6191 6192
	}

6193 6194 6195
	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);

6196 6197 6198 6199
	/*
	 * Copy over the full allocated size of vmcs12 rather than just the size
	 * of the struct.
	 */
6200
	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6201 6202 6203
		return -EFAULT;

	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6204
	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6205
		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6206
				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
			return -EFAULT;
	}
out:
	return kvm_state.size;
}

/*
 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 */
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu)) {
		to_vmx(vcpu)->nested.nested_run_pending = 0;
		nested_vmx_vmexit(vcpu, -1, 0, 0);
	}
	free_nested(vcpu);
}

static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				struct kvm_nested_state *kvm_state)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
6231
	enum vm_entry_failure_code ignored;
6232 6233
	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
		&user_kvm_nested_state->data.vmx[0];
6234 6235
	int ret;

6236
	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6237 6238
		return -EINVAL;

6239
	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6240
		if (kvm_state->hdr.vmx.smm.flags)
6241 6242
			return -EINVAL;

6243
		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6244 6245
			return -EINVAL;

6246 6247 6248 6249 6250 6251 6252 6253 6254
		/*
		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
		 * enable eVMCS capability on vCPU. However, since then
		 * code was changed such that flag signals vmcs12 should
		 * be copied into eVMCS in guest memory.
		 *
		 * To preserve backwards compatability, allow user
		 * to set this flag even when there is no VMXON region.
		 */
6255 6256 6257 6258 6259
		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
			return -EINVAL;
	} else {
		if (!nested_vmx_allowed(vcpu))
			return -EINVAL;
6260

6261 6262
		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
			return -EINVAL;
6263
	}
6264

6265
	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6266 6267 6268
	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return -EINVAL;

6269
	if (kvm_state->hdr.vmx.smm.flags &
6270 6271 6272
	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
		return -EINVAL;

6273 6274 6275
	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
		return -EINVAL;

6276 6277 6278 6279 6280
	/*
	 * SMM temporarily disables VMX, so we cannot be in guest mode,
	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
	 * must be zero.
	 */
6281 6282 6283 6284
	if (is_smm(vcpu) ?
		(kvm_state->flags &
		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
		: kvm_state->hdr.vmx.smm.flags)
6285 6286
		return -EINVAL;

6287 6288
	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6289 6290
		return -EINVAL;

6291 6292
	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6293
			return -EINVAL;
6294

6295
	vmx_leave_nested(vcpu);
6296

6297
	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6298
		return 0;
6299

6300
	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6301 6302 6303 6304
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

6305 6306 6307 6308 6309
	/* Empty 'VMXON' state is permitted if no VMCS loaded */
	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
		/* See vmx_has_valid_vmcs12.  */
		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6310
		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6311 6312 6313 6314
			return -EINVAL;
		else
			return 0;
	}
6315

6316
	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6317 6318
		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6319 6320
			return -EINVAL;

6321
		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6322 6323
	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
		/*
6324 6325 6326 6327
		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
		 * restored yet. EVMCS will be mapped from
		 * nested_get_vmcs12_pages().
6328
		 */
6329
		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6330
		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6331 6332 6333 6334
	} else {
		return -EINVAL;
	}

6335
	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6336 6337 6338
		vmx->nested.smm.vmxon = true;
		vmx->nested.vmxon = false;

6339
		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6340 6341 6342 6343
			vmx->nested.smm.guest_mode = true;
	}

	vmcs12 = get_vmcs12(vcpu);
6344
	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6345 6346 6347 6348 6349 6350 6351 6352
		return -EFAULT;

	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
		return -EINVAL;

	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return 0;

6353 6354 6355
	vmx->nested.nested_run_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);

6356 6357 6358
	vmx->nested.mtf_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);

6359
	ret = -EINVAL;
6360
	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6361
	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6362 6363
		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);

6364 6365 6366
		if (kvm_state->size <
		    sizeof(*kvm_state) +
		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6367
			goto error_guest_mode;
6368 6369

		if (copy_from_user(shadow_vmcs12,
6370 6371
				   user_vmx_nested_state->shadow_vmcs12,
				   sizeof(*shadow_vmcs12))) {
6372 6373 6374
			ret = -EFAULT;
			goto error_guest_mode;
		}
6375 6376 6377

		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
		    !shadow_vmcs12->hdr.shadow_vmcs)
6378
			goto error_guest_mode;
6379 6380
	}

6381
	vmx->nested.has_preemption_timer_deadline = false;
6382 6383 6384 6385 6386 6387
	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
		vmx->nested.has_preemption_timer_deadline = true;
		vmx->nested.preemption_timer_deadline =
			kvm_state->hdr.vmx.preemption_timer_deadline;
	}

6388 6389
	if (nested_vmx_check_controls(vcpu, vmcs12) ||
	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6390
	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6391
		goto error_guest_mode;
6392 6393 6394

	vmx->nested.dirty_vmcs12 = true;
	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6395 6396
	if (ret)
		goto error_guest_mode;
6397 6398

	return 0;
6399 6400 6401 6402

error_guest_mode:
	vmx->nested.nested_run_pending = 0;
	return ret;
6403 6404
}

6405
void nested_vmx_set_vmcs_shadowing_bitmap(void)
6406 6407 6408
{
	if (enable_shadow_vmcs) {
		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6409
		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6410 6411 6412
	}
}

6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
/*
 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
 * that madness to get the encoding for comparison.
 */
#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))

static u64 nested_vmx_calc_vmcs_enum_msr(void)
{
	/*
	 * Note these are the so called "index" of the VMCS field encoding, not
	 * the index into vmcs12.
	 */
	unsigned int max_idx, idx;
	int i;

	/*
	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
	 * vmcs12, regardless of whether or not the associated feature is
	 * exposed to L1.  Simply find the field with the highest index.
	 */
	max_idx = 0;
	for (i = 0; i < nr_vmcs12_fields; i++) {
		/* The vmcs12 table is very, very sparsely populated. */
		if (!vmcs_field_to_offset_table[i])
			continue;

		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
		if (idx > max_idx)
			max_idx = idx;
	}

	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
}

6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
/*
 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 * returned for the various VMX controls MSRs when nested VMX is enabled.
 * The same values should also be used to verify that vmcs12 control fields are
 * valid during nested entry from L1 to L2.
 * Each of these control msrs has a low and high 32-bit half: A low bit is on
 * if the corresponding bit in the (32-bit) control field *must* be on, and a
 * bit in the high half is on if the corresponding bit in the control field
 * may be on. See also vmx_control_verify().
 */
6457
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
{
	/*
	 * Note that as a general rule, the high half of the MSRs (bits in
	 * the control fields which may be 1) should be initialized by the
	 * intersection of the underlying hardware's MSR (i.e., features which
	 * can be supported) and the list of features we want to expose -
	 * because they are known to be properly supported in our code.
	 * Also, usually, the low half of the MSRs (bits which must be 1) can
	 * be set to 0, meaning that L1 may turn off any of these bits. The
	 * reason is that if one of these bits is necessary, it will appear
	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6470
	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
	 * These rules have exceptions below.
	 */

	/* pin-based controls */
	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
		msrs->pinbased_ctls_low,
		msrs->pinbased_ctls_high);
	msrs->pinbased_ctls_low |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->pinbased_ctls_high &=
		PIN_BASED_EXT_INTR_MASK |
		PIN_BASED_NMI_EXITING |
		PIN_BASED_VIRTUAL_NMIS |
6484
		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
	msrs->pinbased_ctls_high |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		PIN_BASED_VMX_PREEMPTION_TIMER;

	/* exit controls */
	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
		msrs->exit_ctls_low,
		msrs->exit_ctls_high);
	msrs->exit_ctls_low =
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;

	msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
		VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
6500 6501
		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
	msrs->exit_ctls_high |=
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;

	/* We support free control of debug control saving. */
	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;

	/* entry controls */
	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
		msrs->entry_ctls_low,
		msrs->entry_ctls_high);
	msrs->entry_ctls_low =
		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
		VM_ENTRY_IA32E_MODE |
#endif
6520 6521
		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
	msrs->entry_ctls_high |=
		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);

	/* We support free control of debug control loading. */
	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;

	/* cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
		msrs->procbased_ctls_low,
		msrs->procbased_ctls_high);
	msrs->procbased_ctls_low =
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->procbased_ctls_high &=
6535
		CPU_BASED_INTR_WINDOW_EXITING |
6536
		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
		CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
	/*
	 * We can allow some features even when not supported by the
	 * hardware. For example, L1 can specify an MSR bitmap - and we
	 * can use it to avoid exits to L1 - even when L0 runs L2
	 * without MSR bitmaps.
	 */
	msrs->procbased_ctls_high |=
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		CPU_BASED_USE_MSR_BITMAPS;

	/* We support free control of CR3 access interception. */
	msrs->procbased_ctls_low &=
		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);

	/*
	 * secondary cpu-based controls.  Do not include those that
6564 6565
	 * depend on CPUID bits, they are added later by
	 * vmx_vcpu_after_set_cpuid.
6566
	 */
6567 6568 6569 6570 6571
	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
		      msrs->secondary_ctls_low,
		      msrs->secondary_ctls_high);

6572 6573 6574
	msrs->secondary_ctls_low = 0;
	msrs->secondary_ctls_high &=
		SECONDARY_EXEC_DESC |
6575
		SECONDARY_EXEC_ENABLE_RDTSCP |
6576
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6577
		SECONDARY_EXEC_WBINVD_EXITING |
6578 6579
		SECONDARY_EXEC_APIC_REGISTER_VIRT |
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6580 6581 6582
		SECONDARY_EXEC_RDRAND_EXITING |
		SECONDARY_EXEC_ENABLE_INVPCID |
		SECONDARY_EXEC_RDSEED_EXITING |
6583 6584
		SECONDARY_EXEC_XSAVES |
		SECONDARY_EXEC_TSC_SCALING;
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596

	/*
	 * We can emulate "VMCS shadowing," even if the hardware
	 * doesn't support it.
	 */
	msrs->secondary_ctls_high |=
		SECONDARY_EXEC_SHADOW_VMCS;

	if (enable_ept) {
		/* nested EPT: emulate EPT also to L1 */
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_EPT;
6597 6598 6599 6600
		msrs->ept_caps =
			VMX_EPT_PAGE_WALK_4_BIT |
			VMX_EPT_PAGE_WALK_5_BIT |
			VMX_EPTP_WB_BIT |
6601 6602 6603
			VMX_EPT_INVEPT_BIT |
			VMX_EPT_EXECUTE_ONLY_BIT;

6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
		msrs->ept_caps &= ept_caps;
		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
			VMX_EPT_1GB_PAGE_BIT;
		if (enable_ept_ad_bits) {
			msrs->secondary_ctls_high |=
				SECONDARY_EXEC_ENABLE_PML;
			msrs->ept_caps |= VMX_EPT_AD_BIT;
		}
	}

	if (cpu_has_vmx_vmfunc()) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VMFUNC;
		/*
		 * Advertise EPTP switching unconditionally
		 * since we emulate it
		 */
		if (enable_ept)
			msrs->vmfunc_controls =
				VMX_VMFUNC_EPTP_SWITCHING;
	}

	/*
	 * Old versions of KVM use the single-context version without
	 * checking for support, so declare that it is supported even
	 * though it is treated as global context.  The alternative is
	 * not failing the single-context invvpid, and it is worse.
	 */
	if (enable_vpid) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VPID;
		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
			VMX_VPID_EXTENT_SUPPORTED_MASK;
	}

	if (enable_unrestricted_guest)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_UNRESTRICTED_GUEST;

	if (flexpriority_enabled)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;

6648 6649 6650
	if (enable_sgx)
		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;

6651 6652 6653 6654 6655 6656 6657 6658
	/* miscellaneous data */
	rdmsr(MSR_IA32_VMX_MISC,
		msrs->misc_low,
		msrs->misc_high);
	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
	msrs->misc_low |=
		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6659 6660
		VMX_MISC_ACTIVITY_HLT |
		VMX_MISC_ACTIVITY_WAIT_SIPI;
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
	msrs->misc_high = 0;

	/*
	 * This MSR reports some information about VMX support. We
	 * should return information about the VMX we emulate for the
	 * guest, and the VMCS structure we give it - not about the
	 * VMX support of the underlying hardware.
	 */
	msrs->basic =
		VMCS12_REVISION |
		VMX_BASIC_TRUE_CTLS |
		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);

	if (cpu_has_vmx_basic_inout())
		msrs->basic |= VMX_BASIC_INOUT;

	/*
	 * These MSRs specify bits which the guest must keep fixed on
	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
	 * We picked the standard core2 setting.
	 */
#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;

	/* These MSRs specify bits which the guest must keep fixed off. */
	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);

6692
	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
}

void nested_vmx_hardware_unsetup(void)
{
	int i;

	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++)
			free_page((unsigned long)vmx_bitmap[i]);
	}
}

6705
__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6706 6707 6708 6709 6710 6711 6712
{
	int i;

	if (!cpu_has_vmx_shadow_vmcs())
		enable_shadow_vmcs = 0;
	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++) {
6713 6714 6715 6716
			/*
			 * The vmx_bitmap is not tied to a VM and so should
			 * not be charged to a memcg.
			 */
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
			vmx_bitmap[i] = (unsigned long *)
				__get_free_page(GFP_KERNEL);
			if (!vmx_bitmap[i]) {
				nested_vmx_hardware_unsetup();
				return -ENOMEM;
			}
		}

		init_vmcs_shadow_fields();
	}

6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6740 6741 6742

	return 0;
}
6743 6744 6745

struct kvm_x86_nested_ops vmx_nested_ops = {
	.check_events = vmx_check_nested_events,
6746
	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6747
	.triple_fault = nested_vmx_triple_fault,
6748 6749
	.get_state = vmx_get_nested_state,
	.set_state = vmx_set_nested_state,
6750
	.get_nested_state_pages = vmx_get_nested_state_pages,
6751
	.write_log_dirty = nested_vmx_write_pml_buffer,
6752 6753 6754
	.enable_evmcs = nested_enable_evmcs,
	.get_evmcs_version = nested_get_evmcs_version,
};