nested.c 208.3 KB
Newer Older
1 2
// SPDX-License-Identifier: GPL-2.0

3
#include <linux/objtool.h>
4 5 6 7 8 9
#include <linux/percpu.h>

#include <asm/debugreg.h>
#include <asm/mmu_context.h>

#include "cpuid.h"
10
#include "evmcs.h"
11 12 13
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
14
#include "pmu.h"
15
#include "sgx.h"
16
#include "trace.h"
17
#include "vmx.h"
18 19 20 21 22 23 24 25
#include "x86.h"

static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);

static bool __read_mostly nested_early_check = 0;
module_param(nested_early_check, bool, S_IRUGO);

26
#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Hyper-V requires all of these, so mark them as supported even though
 * they are just treated the same as all-context.
 */
#define VMX_VPID_EXTENT_SUPPORTED_MASK		\
	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)

#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5

enum {
	VMX_VMREAD_BITMAP,
	VMX_VMWRITE_BITMAP,
	VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];

#define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])

50 51 52 53 54 55
struct shadow_vmcs_field {
	u16	encoding;
	u16	offset;
};
static struct shadow_vmcs_field shadow_read_only_fields[] = {
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 57 58 59 60
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_only_fields =
	ARRAY_SIZE(shadow_read_only_fields);

61 62
static struct shadow_vmcs_field shadow_read_write_fields[] = {
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 64 65 66 67
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_write_fields =
	ARRAY_SIZE(shadow_read_write_fields);

68
static void init_vmcs_shadow_fields(void)
69 70 71 72 73 74 75
{
	int i, j;

	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);

	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76 77
		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
		u16 field = entry.encoding;
78 79 80

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_only_fields ||
81
		     shadow_read_only_fields[i + 1].encoding != field + 1))
82 83 84 85 86
			pr_err("Missing field from shadow_read_only_field %x\n",
			       field + 1);

		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
87
#ifdef CONFIG_X86_64
88
			continue;
89 90
#else
			entry.offset += sizeof(u32);
91
#endif
92
		shadow_read_only_fields[j++] = entry;
93 94 95 96
	}
	max_shadow_read_only_fields = j;

	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97 98
		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
		u16 field = entry.encoding;
99 100 101

		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
		    (i + 1 == max_shadow_read_write_fields ||
102
		     shadow_read_write_fields[i + 1].encoding != field + 1))
103 104 105
			pr_err("Missing field from shadow_read_write_field %x\n",
			       field + 1);

106 107
		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
			  field <= GUEST_TR_AR_BYTES,
108
			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		/*
		 * PML and the preemption timer can be emulated, but the
		 * processor cannot vmwrite to fields that don't exist
		 * on bare metal.
		 */
		switch (field) {
		case GUEST_PML_INDEX:
			if (!cpu_has_vmx_pml())
				continue;
			break;
		case VMX_PREEMPTION_TIMER_VALUE:
			if (!cpu_has_vmx_preemption_timer())
				continue;
			break;
		case GUEST_INTR_STATUS:
			if (!cpu_has_vmx_apicv())
				continue;
			break;
		default:
			break;
		}

		clear_bit(field, vmx_vmwrite_bitmap);
		clear_bit(field, vmx_vmread_bitmap);
		if (field & 1)
135
#ifdef CONFIG_X86_64
136
			continue;
137 138
#else
			entry.offset += sizeof(u32);
139
#endif
140
		shadow_read_write_fields[j++] = entry;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	}
	max_shadow_read_write_fields = j;
}

/*
 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 * set the success or error code of an emulated VMX instruction (as specified
 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 * instruction.
 */
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_CF);
	return kvm_skip_emulated_instruction(vcpu);
}

static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
				u32 vm_instruction_error)
{
	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
			    X86_EFLAGS_SF | X86_EFLAGS_OF))
			| X86_EFLAGS_ZF);
	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
	/*
177 178 179
	 * We don't need to force sync to shadow VMCS because
	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
	 * fields and thus must be synced.
180
	 */
181 182 183
	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;

184 185 186
	return kvm_skip_emulated_instruction(vcpu);
}

187 188 189 190 191 192 193 194
static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * failValid writes the error number to the current VMCS, which
	 * can't be done if there isn't a current VMCS.
	 */
195
	if (vmx->nested.current_vmptr == INVALID_GPA &&
196
	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197 198 199 200 201
		return nested_vmx_failInvalid(vcpu);

	return nested_vmx_failValid(vcpu, vm_instruction_error);
}

202 203 204 205 206 207 208
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
	/* TODO: not to reset guest simply here. */
	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}

M
Marc Orr 已提交
209 210 211 212 213 214 215 216 217 218
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
	return fixed_bits_valid(control, low, high);
}

static inline u64 vmx_control_msr(u32 low, u32 high)
{
	return low | ((u64)high << 32);
}

219 220
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
221
	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222
	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223
	vmx->nested.need_vmcs12_to_shadow_sync = false;
224 225 226 227 228 229
}

static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

230 231 232 233
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
		vmx->nested.hv_evmcs = NULL;
	}
234

235
	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 237
}

238 239 240 241 242 243 244 245 246 247 248
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
				     struct loaded_vmcs *prev)
{
	struct vmcs_host_state *dest, *src;

	if (unlikely(!vmx->guest_state_loaded))
		return;

	src = &prev->host_state;
	dest = &vmx->loaded_vmcs->host_state;

249 250
	vmx_set_vmcs_host_state(dest, src->cr3, src->fs_sel, src->gs_sel,
				src->fs_base, src->gs_base);
251 252 253 254 255 256 257 258 259 260 261 262 263
	dest->ldt_sel = src->ldt_sel;
#ifdef CONFIG_X86_64
	dest->ds_sel = src->ds_sel;
	dest->es_sel = src->es_sel;
#endif
}

static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *prev;
	int cpu;

264
	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
265 266 267 268 269 270 271 272 273
		return;

	cpu = get_cpu();
	prev = vmx->loaded_vmcs;
	vmx->loaded_vmcs = vmcs;
	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
	vmx_sync_vmcs_host_state(vmx, prev);
	put_cpu();

274 275 276 277 278 279 280
	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;

	/*
	 * All lazily updated registers will be reloaded from VMCS12 on both
	 * vmentry and vmexit.
	 */
	vcpu->arch.regs_dirty = 0;
281 282
}

283 284 285 286 287 288 289 290
/*
 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 * just stops using VMX.
 */
static void free_nested(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

291 292 293
	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
		vmx_switch_vmcs(vcpu, &vmx->vmcs01);

294 295 296
	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
		return;

297
	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
298

299 300
	vmx->nested.vmxon = false;
	vmx->nested.smm.vmxon = false;
301
	vmx->nested.vmxon_ptr = INVALID_GPA;
302 303
	free_vpid(vmx->nested.vpid02);
	vmx->nested.posted_intr_nv = -1;
304
	vmx->nested.current_vmptr = INVALID_GPA;
305 306 307 308 309 310 311
	if (enable_shadow_vmcs) {
		vmx_disable_shadow_vmcs(vmx);
		vmcs_clear(vmx->vmcs01.shadow_vmcs);
		free_vmcs(vmx->vmcs01.shadow_vmcs);
		vmx->vmcs01.shadow_vmcs = NULL;
	}
	kfree(vmx->nested.cached_vmcs12);
312
	vmx->nested.cached_vmcs12 = NULL;
313
	kfree(vmx->nested.cached_shadow_vmcs12);
314
	vmx->nested.cached_shadow_vmcs12 = NULL;
315 316
	/* Unpin physical memory we referred to in the vmcs02 */
	if (vmx->nested.apic_access_page) {
317
		kvm_release_page_clean(vmx->nested.apic_access_page);
318 319
		vmx->nested.apic_access_page = NULL;
	}
320
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
321 322
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);

	nested_release_evmcs(vcpu);

	free_loaded_vmcs(&vmx->nested.vmcs02);
}

/*
 * Ensure that the current vmcs of the logical processor is the
 * vmcs01 of the vcpu before calling free_nested().
 */
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
338
	vmx_leave_nested(vcpu);
339 340 341
	vcpu_put(vcpu);
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
#define EPTP_PA_MASK   GENMASK_ULL(51, 12)

static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
{
	return VALID_PAGE(root_hpa) &&
	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
}

static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
				       gpa_t addr)
{
	uint i;
	struct kvm_mmu_root_info *cached_root;

	WARN_ON_ONCE(!mmu_is_nested(vcpu));

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		cached_root = &vcpu->arch.mmu->prev_roots[i];

		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
					    eptp))
			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
	}
}

367 368 369 370 371
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
372
	u32 vm_exit_reason;
373 374 375
	unsigned long exit_qualification = vcpu->arch.exit_qualification;

	if (vmx->nested.pml_full) {
376
		vm_exit_reason = EXIT_REASON_PML_FULL;
377 378
		vmx->nested.pml_full = false;
		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	} else {
		if (fault->error_code & PFERR_RSVD_MASK)
			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
		else
			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;

		/*
		 * Although the caller (kvm_inject_emulated_page_fault) would
		 * have already synced the faulting address in the shadow EPT
		 * tables for the current EPTP12, we also need to sync it for
		 * any other cached EPTP02s based on the same EP4TA, since the
		 * TLB associates mappings to the EP4TA rather than the full EPTP.
		 */
		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
					   fault->address);
	}
395

396
	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
397 398 399
	vmcs12->guest_physical_address = fault->address;
}

400 401
static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
{
402 403 404 405 406
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);

	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
407 408 409 410
				nested_ept_ad_enabled(vcpu),
				nested_ept_get_eptp(vcpu));
}

411 412 413 414 415
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
	WARN_ON(mmu_is_nested(vcpu));

	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
416
	nested_ept_new_eptp(vcpu);
417
	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;

	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
}

static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}

static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
					    u16 error_code)
{
	bool inequality, bit;

	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
	inequality =
		(error_code & vmcs12->page_fault_error_code_mask) !=
		 vmcs12->page_fault_error_code_match;
	return inequality ^ bit;
}


/*
 * KVM wants to inject page-faults which it got to the guest. This function
 * checks whether in a nested guest, we need to inject them to L1 or L2.
 */
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	bool has_payload = vcpu->arch.exception.has_payload;
	unsigned long payload = vcpu->arch.exception.payload;

	if (nr == PF_VECTOR) {
		if (vcpu->arch.exception.nested_apf) {
			*exit_qual = vcpu->arch.apf.nested_apf_token;
			return 1;
		}
		if (nested_vmx_is_page_fault_vmexit(vmcs12,
						    vcpu->arch.exception.error_code)) {
			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
			return 1;
		}
	} else if (vmcs12->exception_bitmap & (1u << nr)) {
		if (nr == DB_VECTOR) {
			if (!has_payload) {
				payload = vcpu->arch.dr6;
468 469
				payload &= ~DR6_BT;
				payload ^= DR6_ACTIVE_LOW;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
			}
			*exit_qual = payload;
		} else
			*exit_qual = 0;
		return 1;
	}

	return 0;
}


static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
		struct x86_exception *fault)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	WARN_ON(!is_guest_mode(vcpu));

	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
		!to_vmx(vcpu)->nested.nested_run_pending) {
		vmcs12->vm_exit_intr_error_code = fault->error_code;
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
				  fault->address);
	} else {
		kvm_inject_page_fault(vcpu, fault);
	}
}

static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
					       struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return 0;

506 507
	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
508 509 510 511 512 513 514 515 516 517 518
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return 0;

519
	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
520 521 522 523 524 525 526 527 528 529 530
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
						struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
		return 0;

531
	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
532 533 534 535 536 537
		return -EINVAL;

	return 0;
}

/*
538 539 540
 * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
 * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
 * only the "disable intercept" case needs to be handled.
541
 */
542 543 544
static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
							unsigned long *msr_bitmap_l0,
							u32 msr, int type)
545
{
546 547
	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
548

549 550
	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
551 552
}

553 554
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
{
555 556 557 558 559 560 561 562 563 564
	int msr;

	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
		unsigned word = msr / BITS_PER_LONG;

		msr_bitmap[word] = ~0;
		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
	}
}

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
static inline									\
void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
					 unsigned long *msr_bitmap_l1,		\
					 unsigned long *msr_bitmap_l0, u32 msr)	\
{										\
	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
	else									\
		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
}
BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)

static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
						    unsigned long *msr_bitmap_l1,
						    unsigned long *msr_bitmap_l0,
						    u32 msr, int types)
{
	if (types & MSR_TYPE_R)
		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
						  msr_bitmap_l0, msr);
	if (types & MSR_TYPE_W)
		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
						   msr_bitmap_l0, msr);
}

593 594 595 596 597 598 599
/*
 * Merge L0's and L1's MSR bitmap, return false to indicate that
 * we do not use the hardware.
 */
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
600
	struct vcpu_vmx *vmx = to_vmx(vcpu);
601 602
	int msr;
	unsigned long *msr_bitmap_l1;
603
	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
604
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
605
	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
606 607 608 609 610 611

	/* Nothing to do if the MSR bitmap is not in use.  */
	if (!cpu_has_vmx_msr_bitmap() ||
	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return false;

612 613 614 615 616 617 618 619 620 621 622 623 624
	/*
	 * MSR bitmap update can be skipped when:
	 * - MSR bitmap for L1 hasn't changed.
	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
	 *   before.
	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
	 */
	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
	    evmcs->hv_enlightenments_control.msr_bitmap &&
	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
		return true;

625
	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
626 627
		return false;

628
	msr_bitmap_l1 = (unsigned long *)map->hva;
629

630 631 632
	/*
	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
633
	 * the x2APIC MSR range and selectively toggle those relevant to L2.
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	 */
	enable_x2apic_msr_intercepts(msr_bitmap_l0);

	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
			/*
			 * L0 need not intercept reads for MSRs between 0x800
			 * and 0x8ff, it just lets the processor take the value
			 * from the virtual-APIC page; take those 256 bits
			 * directly from the L1 bitmap.
			 */
			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
				unsigned word = msr / BITS_PER_LONG;

				msr_bitmap_l0[word] = msr_bitmap_l1[word];
			}
		}
651

652
		nested_vmx_disable_intercept_for_x2apic_msr(
653
			msr_bitmap_l1, msr_bitmap_l0,
654
			X2APIC_MSR(APIC_TASKPRI),
655
			MSR_TYPE_R | MSR_TYPE_W);
656 657

		if (nested_cpu_has_vid(vmcs12)) {
658
			nested_vmx_disable_intercept_for_x2apic_msr(
659 660 661
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_EOI),
				MSR_TYPE_W);
662
			nested_vmx_disable_intercept_for_x2apic_msr(
663 664 665 666
				msr_bitmap_l1, msr_bitmap_l0,
				X2APIC_MSR(APIC_SELF_IPI),
				MSR_TYPE_W);
		}
667 668
	}

669 670 671 672
	/*
	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
	 */
673
#ifdef CONFIG_X86_64
674 675
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_FS_BASE, MSR_TYPE_RW);
676

677 678
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_GS_BASE, MSR_TYPE_RW);
679

680 681
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
682
#endif
683 684
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
685

686 687
	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
688

689
	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
690

691 692
	vmx->nested.force_msr_bitmap_recalc = false;

693 694 695 696 697 698
	return true;
}

static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
699 700
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
701 702

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
703
	    vmcs12->vmcs_link_pointer == INVALID_GPA)
704 705
		return;

706 707 708
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
709
		return;
710

711 712
	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
			      VMCS12_SIZE);
713 714 715 716 717 718
}

static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
					      struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
719
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
720 721

	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
722
	    vmcs12->vmcs_link_pointer == INVALID_GPA)
723 724
		return;

725 726 727 728 729 730 731
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
		return;

	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
			       VMCS12_SIZE);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
}

/*
 * In nested virtualization, check if L1 has set
 * VM_EXIT_ACK_INTR_ON_EXIT
 */
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
	return get_vmcs12(vcpu)->vm_exit_controls &
		VM_EXIT_ACK_INTR_ON_EXIT;
}

static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
748
	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		return -EINVAL;
	else
		return 0;
}

static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
					   struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
	    !nested_cpu_has_vid(vmcs12) &&
	    !nested_cpu_has_posted_intr(vmcs12))
		return 0;

	/*
	 * If virtualize x2apic mode is enabled,
	 * virtualize apic access must be disabled.
	 */
767 768
	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
769 770 771 772 773 774
		return -EINVAL;

	/*
	 * If virtual interrupt delivery is enabled,
	 * we must exit on external interrupts.
	 */
775
	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
776 777 778 779 780 781 782 783 784 785
		return -EINVAL;

	/*
	 * bits 15:8 should be zero in posted_intr_nv,
	 * the descriptor address has been already checked
	 * in nested_get_vmcs12_pages.
	 *
	 * bits 5:0 of posted_intr_desc_addr should be zero.
	 */
	if (nested_cpu_has_posted_intr(vmcs12) &&
786 787 788
	   (CC(!nested_cpu_has_vid(vmcs12)) ||
	    CC(!nested_exit_intr_ack_set(vcpu)) ||
	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
789
	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
790 791 792
		return -EINVAL;

	/* tpr shadow is needed by all apicv features. */
793
	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
794 795 796 797 798 799
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
800
				       u32 count, u64 addr)
801 802 803
{
	if (count == 0)
		return 0;
804 805 806

	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
807
		return -EINVAL;
808

809 810 811
	return 0;
}

812 813
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
						     struct vmcs12 *vmcs12)
814
{
815 816 817 818 819 820
	if (CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_exit_msr_load_count,
					   vmcs12->vm_exit_msr_load_addr)) ||
	    CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_exit_msr_store_count,
					   vmcs12->vm_exit_msr_store_addr)))
821
		return -EINVAL;
822

823 824 825
	return 0;
}

826 827
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
                                                      struct vmcs12 *vmcs12)
828
{
829 830 831
	if (CC(nested_vmx_check_msr_switch(vcpu,
					   vmcs12->vm_entry_msr_load_count,
					   vmcs12->vm_entry_msr_load_addr)))
832 833 834 835 836
                return -EINVAL;

	return 0;
}

837 838 839 840 841 842
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
					 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

843 844
	if (CC(!nested_cpu_has_ept(vmcs12)) ||
	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
845 846 847 848 849 850 851 852
		return -EINVAL;

	return 0;
}

static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
							struct vmcs12 *vmcs12)
{
853 854
	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
	       !nested_cpu_has_ept(vmcs12)))
855 856 857 858 859 860 861
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
							 struct vmcs12 *vmcs12)
{
862 863
	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
	       !nested_cpu_has_ept(vmcs12)))
864 865 866 867 868 869 870 871 872 873
		return -EINVAL;
	return 0;
}

static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
						 struct vmcs12 *vmcs12)
{
	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return 0;

874 875
	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
876 877 878 879 880 881 882 883 884
		return -EINVAL;

	return 0;
}

static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
				       struct vmx_msr_entry *e)
{
	/* x2APIC MSR accesses are not allowed */
885
	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
886
		return -EINVAL;
887 888
	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
	    CC(e->index == MSR_IA32_UCODE_REV))
889
		return -EINVAL;
890
	if (CC(e->reserved != 0))
891 892 893 894 895 896 897
		return -EINVAL;
	return 0;
}

static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
				     struct vmx_msr_entry *e)
{
898 899 900
	if (CC(e->index == MSR_FS_BASE) ||
	    CC(e->index == MSR_GS_BASE) ||
	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
901 902 903 904 905 906 907 908
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
				      struct vmx_msr_entry *e)
{
909
	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
910 911 912 913 914
	    nested_vmx_msr_check_common(vcpu, e))
		return -EINVAL;
	return 0;
}

M
Marc Orr 已提交
915 916 917 918 919 920 921 922 923
static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				       vmx->nested.msrs.misc_high);

	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
}

924 925 926
/*
 * Load guest's/host's msr at nested entry/exit.
 * return 0 for success, entry index for failure.
M
Marc Orr 已提交
927 928 929 930 931
 *
 * One of the failure modes for MSR load/store is when a list exceeds the
 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 * as possible, process all valid entries before failing rather than precheck
 * for a capacity violation.
932 933 934 935 936
 */
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
	u32 i;
	struct vmx_msr_entry e;
M
Marc Orr 已提交
937
	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
938 939

	for (i = 0; i < count; i++) {
M
Marc Orr 已提交
940 941 942
		if (unlikely(i >= max_msr_list_size))
			goto fail;

943 944 945 946 947 948 949 950 951 952 953 954 955
		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
					&e, sizeof(e))) {
			pr_debug_ratelimited(
				"%s cannot read MSR entry (%u, 0x%08llx)\n",
				__func__, i, gpa + i * sizeof(e));
			goto fail;
		}
		if (nested_vmx_load_msr_check(vcpu, &e)) {
			pr_debug_ratelimited(
				"%s check failed (%u, 0x%x, 0x%x)\n",
				__func__, i, e.index, e.reserved);
			goto fail;
		}
956
		if (kvm_set_msr(vcpu, e.index, e.value)) {
957 958 959 960 961 962 963 964
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
				__func__, i, e.index, e.value);
			goto fail;
		}
	}
	return 0;
fail:
965
	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
966 967 968
	return i + 1;
}

969 970 971 972 973 974 975 976 977 978 979 980
static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
					    u32 msr_index,
					    u64 *data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * If the L0 hypervisor stored a more accurate value for the TSC that
	 * does not include the time taken for emulation of the L2->L1
	 * VM-exit in L0, use the more accurate value.
	 */
	if (msr_index == MSR_IA32_TSC) {
981 982
		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
						    MSR_IA32_TSC);
983

984 985
		if (i >= 0) {
			u64 val = vmx->msr_autostore.guest.val[i].value;
986 987 988 989 990 991 992 993 994 995 996 997 998 999

			*data = kvm_read_l1_tsc(vcpu, val);
			return true;
		}
	}

	if (kvm_get_msr(vcpu, msr_index, data)) {
		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
			msr_index);
		return false;
	}
	return true;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
				     struct vmx_msr_entry *e)
{
	if (kvm_vcpu_read_guest(vcpu,
				gpa + i * sizeof(*e),
				e, 2 * sizeof(u32))) {
		pr_debug_ratelimited(
			"%s cannot read MSR entry (%u, 0x%08llx)\n",
			__func__, i, gpa + i * sizeof(*e));
		return false;
	}
	if (nested_vmx_store_msr_check(vcpu, e)) {
		pr_debug_ratelimited(
			"%s check failed (%u, 0x%x, 0x%x)\n",
			__func__, i, e->index, e->reserved);
		return false;
	}
	return true;
}

1020 1021
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
1022
	u64 data;
1023 1024
	u32 i;
	struct vmx_msr_entry e;
M
Marc Orr 已提交
1025
	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1026 1027

	for (i = 0; i < count; i++) {
M
Marc Orr 已提交
1028 1029 1030
		if (unlikely(i >= max_msr_list_size))
			return -EINVAL;

1031
		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1032
			return -EINVAL;
1033

1034
		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1035
			return -EINVAL;
1036

1037 1038 1039
		if (kvm_vcpu_write_guest(vcpu,
					 gpa + i * sizeof(e) +
					     offsetof(struct vmx_msr_entry, value),
1040
					 &data, sizeof(data))) {
1041 1042
			pr_debug_ratelimited(
				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1043
				__func__, i, e.index, data);
1044 1045 1046 1047 1048 1049
			return -EINVAL;
		}
	}
	return 0;
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	u32 count = vmcs12->vm_exit_msr_store_count;
	u64 gpa = vmcs12->vm_exit_msr_store_addr;
	struct vmx_msr_entry e;
	u32 i;

	for (i = 0; i < count; i++) {
		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
			return false;

		if (e.index == msr_index)
			return true;
	}
	return false;
}

static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
					   u32 msr_index)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
	bool in_vmcs12_store_list;
1074
	int msr_autostore_slot;
1075 1076 1077
	bool in_autostore_list;
	int last;

1078 1079
	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
	in_autostore_list = msr_autostore_slot >= 0;
1080 1081 1082
	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);

	if (in_vmcs12_store_list && !in_autostore_list) {
1083
		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			/*
			 * Emulated VMEntry does not fail here.  Instead a less
			 * accurate value will be returned by
			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
			 * instead of reading the value from the vmcs02 VMExit
			 * MSR-store area.
			 */
			pr_warn_ratelimited(
				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
				msr_index);
			return;
		}
		last = autostore->nr++;
		autostore->val[last].index = msr_index;
	} else if (!in_vmcs12_store_list && in_autostore_list) {
		last = --autostore->nr;
1100
		autostore->val[msr_autostore_slot] = autostore->val[last];
1101 1102 1103
	}
}

1104
/*
1105 1106 1107 1108
 * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
 * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
 * @entry_failure_code.
1109
 */
1110 1111
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
			       bool nested_ept, bool reload_pdptrs,
1112
			       enum vm_entry_failure_code *entry_failure_code)
1113
{
1114
	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1115 1116 1117
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
		return -EINVAL;
	}
1118

1119 1120 1121 1122
	/*
	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
	 * must not be dereferenced.
	 */
1123
	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1124
	    CC(!load_pdptrs(vcpu, cr3))) {
1125 1126
		*entry_failure_code = ENTRY_FAIL_PDPTE;
		return -EINVAL;
1127 1128
	}

1129
	if (!nested_ept)
1130
		kvm_mmu_new_pgd(vcpu, cr3);
1131

1132
	vcpu->arch.cr3 = cr3;
1133
	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1134

1135
	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1136
	kvm_init_mmu(vcpu);
1137 1138 1139 1140 1141 1142 1143 1144 1145

	return 0;
}

/*
 * Returns if KVM is able to config CPU to tag TLB entries
 * populated by L2 differently than TLB entries populated
 * by L1.
 *
1146 1147 1148
 * If L0 uses EPT, L1 and L2 run with different EPTP because
 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
 * are tagged with different EPTP.
1149 1150 1151 1152 1153 1154 1155 1156 1157
 *
 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
 * with different VPID (L1 entries are tagged with vmx->vpid
 * while L2 entries are tagged with vmx->nested.vpid02).
 */
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

1158
	return enable_ept ||
1159 1160 1161
	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
}

1162 1163 1164 1165 1166 1167 1168
static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
					    struct vmcs12 *vmcs12,
					    bool is_vmenter)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
	 * full TLB flush from the guest's perspective.  This is required even
	 * if VPID is disabled in the host as KVM may need to synchronize the
	 * MMU in response to the guest TLB flush.
	 *
	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
	 * EPT is a special snowflake, as guest-physical mappings aren't
	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
	 * those mappings.
1181
	 */
1182 1183
	if (!nested_cpu_has_vpid(vmcs12)) {
		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1184
		return;
1185 1186 1187 1188
	}

	/* L2 should never have a VPID if VPID is disabled. */
	WARN_ON(!enable_vpid);
1189 1190

	/*
1191 1192 1193 1194 1195
	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
	 * that the new vpid12 has never been used and thus represents a new
	 * guest ASID that cannot have entries in the TLB.
1196
	 */
1197
	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1198
		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1199 1200
		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
		return;
1201
	}
1202 1203 1204 1205 1206 1207 1208 1209 1210

	/*
	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
	 * KVM was unable to allocate a VPID for L2, flush the current context
	 * as the effective ASID is common to both L1 and L2.
	 */
	if (!nested_has_guest_tlb_tag(vcpu))
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
	superset &= mask;
	subset &= mask;

	return (superset | subset) == superset;
}

static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved =
		/* feature (except bit 48; see below) */
		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
		/* reserved */
		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
	u64 vmx_basic = vmx->nested.msrs.basic;

	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
		return -EINVAL;

	/*
	 * KVM does not emulate a version of VMX that constrains physical
	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
	 */
	if (data & BIT_ULL(48))
		return -EINVAL;

	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
	    vmx_basic_vmcs_revision_id(data))
		return -EINVAL;

	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
		return -EINVAL;

	vmx->nested.msrs.basic = data;
	return 0;
}

static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 supported;
	u32 *lowp, *highp;

	switch (msr_index) {
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
		lowp = &vmx->nested.msrs.pinbased_ctls_low;
		highp = &vmx->nested.msrs.pinbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
		lowp = &vmx->nested.msrs.procbased_ctls_low;
		highp = &vmx->nested.msrs.procbased_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
		lowp = &vmx->nested.msrs.exit_ctls_low;
		highp = &vmx->nested.msrs.exit_ctls_high;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
		lowp = &vmx->nested.msrs.entry_ctls_low;
		highp = &vmx->nested.msrs.entry_ctls_high;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		lowp = &vmx->nested.msrs.secondary_ctls_low;
		highp = &vmx->nested.msrs.secondary_ctls_high;
		break;
	default:
		BUG();
	}

	supported = vmx_control_msr(*lowp, *highp);

	/* Check must-be-1 bits are still 1. */
	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
		return -EINVAL;

	/* Check must-be-0 bits are still 0. */
	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
		return -EINVAL;

	*lowp = data;
	*highp = data >> 32;
	return 0;
}

static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
	const u64 feature_and_reserved_bits =
		/* feature */
		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
		/* reserved */
		GENMASK_ULL(13, 9) | BIT_ULL(31);
	u64 vmx_misc;

	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
				   vmx->nested.msrs.misc_high);

	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
		return -EINVAL;

	if ((vmx->nested.msrs.pinbased_ctls_high &
	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
	    vmx_misc_preemption_timer_rate(data) !=
	    vmx_misc_preemption_timer_rate(vmx_misc))
		return -EINVAL;

	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
		return -EINVAL;

	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
		return -EINVAL;

	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
		return -EINVAL;

	vmx->nested.msrs.misc_low = data;
	vmx->nested.msrs.misc_high = data >> 32;

	return 0;
}

static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
	u64 vmx_ept_vpid_cap;

	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
					   vmx->nested.msrs.vpid_caps);

	/* Every bit is either reserved or a feature bit. */
	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
		return -EINVAL;

	vmx->nested.msrs.ept_caps = data;
	vmx->nested.msrs.vpid_caps = data >> 32;
	return 0;
}

static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
	u64 *msr;

	switch (msr_index) {
	case MSR_IA32_VMX_CR0_FIXED0:
		msr = &vmx->nested.msrs.cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		msr = &vmx->nested.msrs.cr4_fixed0;
		break;
	default:
		BUG();
	}

	/*
	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
	 * must be 1 in the restored value.
	 */
	if (!is_bitwise_subset(data, *msr, -1ULL))
		return -EINVAL;

	*msr = data;
	return 0;
}

/*
 * Called when userspace is restoring VMX MSRs.
 *
 * Returns 0 on success, non-0 otherwise.
 */
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * Don't allow changes to the VMX capability MSRs while the vCPU
	 * is in VMX operation.
	 */
	if (vmx->nested.vmxon)
		return -EBUSY;

	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		return vmx_restore_vmx_basic(vmx, data);
	case MSR_IA32_VMX_PINBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		/*
		 * The "non-true" VMX capability MSRs are generated from the
		 * "true" MSRs, so we do not support restoring them directly.
		 *
		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
		 * should restore the "true" MSRs with the must-be-1 bits
		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
		 * DEFAULT SETTINGS".
		 */
		return -EINVAL;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		return vmx_restore_control_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_MISC:
		return vmx_restore_vmx_misc(vmx, data);
	case MSR_IA32_VMX_CR0_FIXED0:
	case MSR_IA32_VMX_CR4_FIXED0:
		return vmx_restore_fixed0_msr(vmx, msr_index, data);
	case MSR_IA32_VMX_CR0_FIXED1:
	case MSR_IA32_VMX_CR4_FIXED1:
		/*
		 * These MSRs are generated based on the vCPU's CPUID, so we
		 * do not support restoring them directly.
		 */
		return -EINVAL;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
	case MSR_IA32_VMX_VMCS_ENUM:
		vmx->nested.msrs.vmcs_enum = data;
		return 0;
1432 1433 1434 1435 1436
	case MSR_IA32_VMX_VMFUNC:
		if (data & ~vmx->nested.msrs.vmfunc_controls)
			return -EINVAL;
		vmx->nested.msrs.vmfunc_controls = data;
		return 0;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	default:
		/*
		 * The rest of the VMX capability MSRs do not support restore.
		 */
		return -EINVAL;
	}
}

/* Returns 0 on success, non-0 otherwise. */
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
{
	switch (msr_index) {
	case MSR_IA32_VMX_BASIC:
		*pdata = msrs->basic;
		break;
	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
	case MSR_IA32_VMX_PINBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->pinbased_ctls_low,
			msrs->pinbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
	case MSR_IA32_VMX_PROCBASED_CTLS:
		*pdata = vmx_control_msr(
			msrs->procbased_ctls_low,
			msrs->procbased_ctls_high);
		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
	case MSR_IA32_VMX_EXIT_CTLS:
		*pdata = vmx_control_msr(
			msrs->exit_ctls_low,
			msrs->exit_ctls_high);
		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
	case MSR_IA32_VMX_ENTRY_CTLS:
		*pdata = vmx_control_msr(
			msrs->entry_ctls_low,
			msrs->entry_ctls_high);
		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
		break;
	case MSR_IA32_VMX_MISC:
		*pdata = vmx_control_msr(
			msrs->misc_low,
			msrs->misc_high);
		break;
	case MSR_IA32_VMX_CR0_FIXED0:
		*pdata = msrs->cr0_fixed0;
		break;
	case MSR_IA32_VMX_CR0_FIXED1:
		*pdata = msrs->cr0_fixed1;
		break;
	case MSR_IA32_VMX_CR4_FIXED0:
		*pdata = msrs->cr4_fixed0;
		break;
	case MSR_IA32_VMX_CR4_FIXED1:
		*pdata = msrs->cr4_fixed1;
		break;
	case MSR_IA32_VMX_VMCS_ENUM:
		*pdata = msrs->vmcs_enum;
		break;
	case MSR_IA32_VMX_PROCBASED_CTLS2:
		*pdata = vmx_control_msr(
			msrs->secondary_ctls_low,
			msrs->secondary_ctls_high);
		break;
	case MSR_IA32_VMX_EPT_VPID_CAP:
		*pdata = msrs->ept_caps |
			((u64)msrs->vpid_caps << 32);
		break;
	case MSR_IA32_VMX_VMFUNC:
		*pdata = msrs->vmfunc_controls;
		break;
	default:
		return 1;
	}

	return 0;
}

/*
1524 1525 1526 1527 1528 1529
 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
 * been modified by the L1 guest.  Note, "writable" in this context means
 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
 * VM-exit information fields (which are actually writable if the vCPU is
 * configured to support "VMWRITE to any supported field in the VMCS").
1530 1531 1532 1533
 */
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1534
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1535 1536
	struct shadow_vmcs_field field;
	unsigned long val;
1537
	int i;
1538

1539 1540 1541
	if (WARN_ON(!shadow_vmcs))
		return;

1542 1543 1544 1545
	preempt_disable();

	vmcs_load(shadow_vmcs);

1546 1547
	for (i = 0; i < max_shadow_read_write_fields; i++) {
		field = shadow_read_write_fields[i];
1548 1549
		val = __vmcs_readl(field.encoding);
		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);

	preempt_enable();
}

static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
1560
	const struct shadow_vmcs_field *fields[] = {
1561 1562 1563 1564 1565 1566 1567 1568
		shadow_read_write_fields,
		shadow_read_only_fields
	};
	const int max_fields[] = {
		max_shadow_read_write_fields,
		max_shadow_read_only_fields
	};
	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1569 1570 1571 1572
	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
	struct shadow_vmcs_field field;
	unsigned long val;
	int i, q;
1573

1574 1575 1576
	if (WARN_ON(!shadow_vmcs))
		return;

1577 1578 1579 1580 1581
	vmcs_load(shadow_vmcs);

	for (q = 0; q < ARRAY_SIZE(fields); q++) {
		for (i = 0; i < max_fields[q]; i++) {
			field = fields[q][i];
1582 1583 1584
			val = vmcs12_read_any(vmcs12, field.encoding,
					      field.offset);
			__vmcs_writel(field.encoding, val);
1585 1586 1587 1588 1589 1590 1591
		}
	}

	vmcs_clear(shadow_vmcs);
	vmcs_load(vmx->loaded_vmcs->vmcs);
}

1592
static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1593 1594 1595 1596 1597 1598 1599 1600
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
	vmcs12->tpr_threshold = evmcs->tpr_threshold;
	vmcs12->guest_rip = evmcs->guest_rip;

1601
	if (unlikely(!(hv_clean_fields &
1602 1603 1604 1605 1606 1607 1608
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
		vmcs12->guest_rsp = evmcs->guest_rsp;
		vmcs12->guest_rflags = evmcs->guest_rflags;
		vmcs12->guest_interruptibility_info =
			evmcs->guest_interruptibility_info;
	}

1609
	if (unlikely(!(hv_clean_fields &
1610 1611 1612 1613 1614
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
		vmcs12->cpu_based_vm_exec_control =
			evmcs->cpu_based_vm_exec_control;
	}

1615
	if (unlikely(!(hv_clean_fields &
1616
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1617 1618 1619
		vmcs12->exception_bitmap = evmcs->exception_bitmap;
	}

1620
	if (unlikely(!(hv_clean_fields &
1621 1622 1623 1624
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
	}

1625
	if (unlikely(!(hv_clean_fields &
1626 1627 1628 1629 1630 1631 1632 1633 1634
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
		vmcs12->vm_entry_intr_info_field =
			evmcs->vm_entry_intr_info_field;
		vmcs12->vm_entry_exception_error_code =
			evmcs->vm_entry_exception_error_code;
		vmcs12->vm_entry_instruction_len =
			evmcs->vm_entry_instruction_len;
	}

1635
	if (unlikely(!(hv_clean_fields &
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
		vmcs12->host_cr0 = evmcs->host_cr0;
		vmcs12->host_cr3 = evmcs->host_cr3;
		vmcs12->host_cr4 = evmcs->host_cr4;
		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
		vmcs12->host_rip = evmcs->host_rip;
		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
		vmcs12->host_es_selector = evmcs->host_es_selector;
		vmcs12->host_cs_selector = evmcs->host_cs_selector;
		vmcs12->host_ss_selector = evmcs->host_ss_selector;
		vmcs12->host_ds_selector = evmcs->host_ds_selector;
		vmcs12->host_fs_selector = evmcs->host_fs_selector;
		vmcs12->host_gs_selector = evmcs->host_gs_selector;
		vmcs12->host_tr_selector = evmcs->host_tr_selector;
	}

1655
	if (unlikely(!(hv_clean_fields &
1656
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1657 1658 1659 1660 1661 1662 1663
		vmcs12->pin_based_vm_exec_control =
			evmcs->pin_based_vm_exec_control;
		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
		vmcs12->secondary_vm_exec_control =
			evmcs->secondary_vm_exec_control;
	}

1664
	if (unlikely(!(hv_clean_fields &
1665 1666 1667 1668 1669
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
	}

1670
	if (unlikely(!(hv_clean_fields &
1671 1672 1673 1674
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
		vmcs12->msr_bitmap = evmcs->msr_bitmap;
	}

1675
	if (unlikely(!(hv_clean_fields &
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
		vmcs12->guest_es_base = evmcs->guest_es_base;
		vmcs12->guest_cs_base = evmcs->guest_cs_base;
		vmcs12->guest_ss_base = evmcs->guest_ss_base;
		vmcs12->guest_ds_base = evmcs->guest_ds_base;
		vmcs12->guest_fs_base = evmcs->guest_fs_base;
		vmcs12->guest_gs_base = evmcs->guest_gs_base;
		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
		vmcs12->guest_tr_base = evmcs->guest_tr_base;
		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
		vmcs12->guest_es_limit = evmcs->guest_es_limit;
		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
		vmcs12->guest_es_selector = evmcs->guest_es_selector;
		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
	}

1715
	if (unlikely(!(hv_clean_fields &
1716 1717 1718 1719 1720 1721
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
		vmcs12->tsc_offset = evmcs->tsc_offset;
		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
	}

1722
	if (unlikely(!(hv_clean_fields &
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
		vmcs12->guest_cr0 = evmcs->guest_cr0;
		vmcs12->guest_cr3 = evmcs->guest_cr3;
		vmcs12->guest_cr4 = evmcs->guest_cr4;
		vmcs12->guest_dr7 = evmcs->guest_dr7;
	}

1734
	if (unlikely(!(hv_clean_fields &
1735 1736 1737 1738 1739 1740 1741 1742 1743
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
		vmcs12->host_fs_base = evmcs->host_fs_base;
		vmcs12->host_gs_base = evmcs->host_gs_base;
		vmcs12->host_tr_base = evmcs->host_tr_base;
		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
		vmcs12->host_idtr_base = evmcs->host_idtr_base;
		vmcs12->host_rsp = evmcs->host_rsp;
	}

1744
	if (unlikely(!(hv_clean_fields &
1745 1746 1747 1748 1749
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
		vmcs12->ept_pointer = evmcs->ept_pointer;
		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
	}

1750
	if (unlikely(!(hv_clean_fields &
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
		vmcs12->guest_pending_dbg_exceptions =
			evmcs->guest_pending_dbg_exceptions;
		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
		vmcs12->guest_activity_state = evmcs->guest_activity_state;
		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
	}

	/*
	 * Not used?
	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
	 * vmcs12->page_fault_error_code_mask =
	 *		evmcs->page_fault_error_code_mask;
	 * vmcs12->page_fault_error_code_match =
	 *		evmcs->page_fault_error_code_match;
	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
	 */

	/*
	 * Read only fields:
	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
	 * vmcs12->exit_qualification = evmcs->exit_qualification;
	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
	 *
	 * Not present in struct vmcs12:
	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
	 */

1805
	return;
1806 1807
}

1808
static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
{
	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;

	/*
	 * Should not be changed by KVM:
	 *
	 * evmcs->host_es_selector = vmcs12->host_es_selector;
	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
	 * evmcs->host_cr0 = vmcs12->host_cr0;
	 * evmcs->host_cr3 = vmcs12->host_cr3;
	 * evmcs->host_cr4 = vmcs12->host_cr4;
	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
	 * evmcs->host_rip = vmcs12->host_rip;
	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
	 * evmcs->host_fs_base = vmcs12->host_fs_base;
	 * evmcs->host_gs_base = vmcs12->host_gs_base;
	 * evmcs->host_tr_base = vmcs12->host_tr_base;
	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
	 * evmcs->host_rsp = vmcs12->host_rsp;
1838
	 * sync_vmcs02_to_vmcs12() doesn't read these:
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
	 * evmcs->ept_pointer = vmcs12->ept_pointer;
	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
	 * evmcs->page_fault_error_code_mask =
	 *		vmcs12->page_fault_error_code_mask;
	 * evmcs->page_fault_error_code_match =
	 *		vmcs12->page_fault_error_code_match;
	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
	 * evmcs->tsc_offset = vmcs12->tsc_offset;
	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
	 *
	 * Not present in struct vmcs12:
	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
	 */

	evmcs->guest_es_selector = vmcs12->guest_es_selector;
	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;

	evmcs->guest_es_limit = vmcs12->guest_es_limit;
	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;

	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;

	evmcs->guest_es_base = vmcs12->guest_es_base;
	evmcs->guest_cs_base = vmcs12->guest_cs_base;
	evmcs->guest_ss_base = vmcs12->guest_ss_base;
	evmcs->guest_ds_base = vmcs12->guest_ds_base;
	evmcs->guest_fs_base = vmcs12->guest_fs_base;
	evmcs->guest_gs_base = vmcs12->guest_gs_base;
	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
	evmcs->guest_tr_base = vmcs12->guest_tr_base;
	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;

	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;

	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;

	evmcs->guest_pending_dbg_exceptions =
		vmcs12->guest_pending_dbg_exceptions;
	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;

	evmcs->guest_activity_state = vmcs12->guest_activity_state;
	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;

	evmcs->guest_cr0 = vmcs12->guest_cr0;
	evmcs->guest_cr3 = vmcs12->guest_cr3;
	evmcs->guest_cr4 = vmcs12->guest_cr4;
	evmcs->guest_dr7 = vmcs12->guest_dr7;

	evmcs->guest_physical_address = vmcs12->guest_physical_address;

	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;

	evmcs->exit_qualification = vmcs12->exit_qualification;

	evmcs->guest_linear_address = vmcs12->guest_linear_address;
	evmcs->guest_rsp = vmcs12->guest_rsp;
	evmcs->guest_rflags = vmcs12->guest_rflags;

	evmcs->guest_interruptibility_info =
		vmcs12->guest_interruptibility_info;
	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
	evmcs->vm_entry_exception_error_code =
		vmcs12->vm_entry_exception_error_code;
	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;

	evmcs->guest_rip = vmcs12->guest_rip;

	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;

1968
	return;
1969 1970 1971 1972 1973 1974
}

/*
 * This is an equivalent of the nested hypervisor executing the vmptrld
 * instruction.
 */
1975 1976
static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
	struct kvm_vcpu *vcpu, bool from_launch)
1977 1978
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
1979
	bool evmcs_gpa_changed = false;
1980
	u64 evmcs_gpa;
1981 1982

	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1983
		return EVMPTRLD_DISABLED;
1984

1985 1986
	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
		nested_release_evmcs(vcpu);
1987
		return EVMPTRLD_DISABLED;
1988
	}
1989

1990
	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1991
		vmx->nested.current_vmptr = INVALID_GPA;
1992 1993 1994

		nested_release_evmcs(vcpu);

1995
		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1996
				 &vmx->nested.hv_evmcs_map))
1997
			return EVMPTRLD_ERROR;
1998

1999
		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

		/*
		 * Currently, KVM only supports eVMCS version 1
		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
		 * value to first u32 field of eVMCS which should specify eVMCS
		 * VersionNumber.
		 *
		 * Guest should be aware of supported eVMCS versions by host by
		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
		 * expected to set this CPUID leaf according to the value
		 * returned in vmcs_version from nested_enable_evmcs().
		 *
		 * However, it turns out that Microsoft Hyper-V fails to comply
		 * to their own invented interface: When Hyper-V use eVMCS, it
		 * just sets first u32 field of eVMCS to revision_id specified
		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
		 * which is one of the supported versions specified in
		 * CPUID.0x4000000A.EAX[0:15].
		 *
		 * To overcome Hyper-V bug, we accept here either a supported
		 * eVMCS version or VMCS12 revision_id as valid values for first
		 * u32 field of eVMCS.
		 */
		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
			nested_release_evmcs(vcpu);
2026
			return EVMPTRLD_VMFAIL;
2027 2028
		}

2029
		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2030

2031
		evmcs_gpa_changed = true;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
		/*
		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
		 * reloaded from guest's memory (read only fields, fields not
		 * present in struct hv_enlightened_vmcs, ...). Make sure there
		 * are no leftovers.
		 */
		if (from_launch) {
			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
			memset(vmcs12, 0, sizeof(*vmcs12));
			vmcs12->hdr.revision_id = VMCS12_REVISION;
		}

	}
2045 2046

	/*
2047
	 * Clean fields data can't be used on VMLAUNCH and when we switch
2048 2049
	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
	 */
2050
	if (from_launch || evmcs_gpa_changed) {
2051 2052 2053
		vmx->nested.hv_evmcs->hv_clean_fields &=
			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

2054 2055 2056
		vmx->nested.force_msr_bitmap_recalc = true;
	}

2057
	return EVMPTRLD_SUCCEEDED;
2058 2059
}

2060
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2061 2062 2063
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2064
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2065
		copy_vmcs12_to_enlightened(vmx);
2066
	else
2067 2068
		copy_vmcs12_to_shadow(vmx);

2069
	vmx->nested.need_vmcs12_to_shadow_sync = false;
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
}

static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
	struct vcpu_vmx *vmx =
		container_of(timer, struct vcpu_vmx, nested.preemption_timer);

	vmx->nested.preemption_timer_expired = true;
	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
	kvm_vcpu_kick(&vmx->vcpu);

	return HRTIMER_NORESTART;
}

2084 2085 2086 2087 2088 2089 2090 2091 2092
static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;

	if (!vmx->nested.has_preemption_timer_deadline) {
2093 2094
		vmx->nested.preemption_timer_deadline =
			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2095
		vmx->nested.has_preemption_timer_deadline = true;
2096 2097
	}
	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2098 2099 2100 2101
}

static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
					u64 preemption_timeout)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/*
	 * A timer value of zero is architecturally guaranteed to cause
	 * a VMExit prior to executing any instructions in the guest.
	 */
	if (preemption_timeout == 0) {
		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
		return;
	}

	if (vcpu->arch.virtual_tsc_khz == 0)
		return;

	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
	preemption_timeout *= 1000000;
	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
	hrtimer_start(&vmx->nested.preemption_timer,
2121 2122
		      ktime_add_ns(ktime_get(), preemption_timeout),
		      HRTIMER_MODE_ABS_PINNED);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
}

static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
		return vmcs12->guest_ia32_efer;
	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
	else
		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
}

static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
	/*
	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
	 * according to L0's settings (vmcs12 is irrelevant here).  Host
	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
	 * will be set as needed prior to VMLAUNCH/VMRESUME.
	 */
	if (vmx->nested.vmcs02_initialized)
		return;
	vmx->nested.vmcs02_initialized = true;

	/*
	 * We don't care what the EPTP value is we just need to guarantee
	 * it's valid so we don't get a false positive when doing early
	 * consistency checks.
	 */
	if (enable_ept && nested_early_check)
2154 2155
		vmcs_write64(EPT_POINTER,
			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

	/* All VMFUNCs are currently emulated through L0 vmexits.  */
	if (cpu_has_vmx_vmfunc())
		vmcs_write64(VM_FUNCTION_CONTROL, 0);

	if (cpu_has_vmx_posted_intr())
		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);

	if (cpu_has_vmx_msr_bitmap())
		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));

2167
	/*
2168 2169 2170
	 * PML is emulated for L2, but never enabled in hardware as the MMU
	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
	 * deal with filtering out L2 GPAs from the buffer.
2171 2172
	 */
	if (enable_pml) {
2173 2174
		vmcs_write64(PML_ADDRESS, 0);
		vmcs_write16(GUEST_PML_INDEX, -1);
2175
	}
2176

2177
	if (cpu_has_vmx_encls_vmexit())
2178
		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2179 2180 2181 2182 2183 2184

	/*
	 * Set the MSR load/store lists to match L0's settings.  Only the
	 * addresses are constant (for vmcs02), the counts can change based
	 * on L2's behavior, e.g. switching to/from long mode.
	 */
2185
	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2186 2187 2188 2189 2190 2191
	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));

	vmx_set_constant_host_state(vmx);
}

2192
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2193 2194 2195 2196
				      struct vmcs12 *vmcs12)
{
	prepare_vmcs02_constant_state(vmx);

2197
	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2198 2199 2200 2201 2202 2203 2204 2205 2206

	if (enable_vpid) {
		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
		else
			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
	}
}

2207 2208
static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
				 struct vmcs12 *vmcs12)
2209
{
2210
	u32 exec_control;
2211 2212
	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);

2213
	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2214
		prepare_vmcs02_early_rare(vmx, vmcs12);
2215 2216 2217 2218

	/*
	 * PIN CONTROLS
	 */
2219
	exec_control = __pin_controls_get(vmcs01);
2220 2221
	exec_control |= (vmcs12->pin_based_vm_exec_control &
			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2222 2223

	/* Posted interrupts setting is only taken from vmcs12.  */
2224 2225
	vmx->nested.pi_pending = false;
	if (nested_cpu_has_posted_intr(vmcs12))
2226
		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2227
	else
2228
		exec_control &= ~PIN_BASED_POSTED_INTR;
2229
	pin_controls_set(vmx, exec_control);
2230 2231 2232 2233

	/*
	 * EXEC CONTROLS
	 */
2234
	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2235
	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2236
	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2237 2238 2239
	exec_control &= ~CPU_BASED_TPR_SHADOW;
	exec_control |= vmcs12->cpu_based_vm_exec_control;

2240
	vmx->nested.l1_tpr_threshold = -1;
2241
	if (exec_control & CPU_BASED_TPR_SHADOW)
2242 2243
		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
#ifdef CONFIG_X86_64
2244
	else
2245 2246 2247 2248 2249 2250 2251 2252 2253
		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
				CPU_BASED_CR8_STORE_EXITING;
#endif

	/*
	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
	 * for I/O port accesses.
	 */
	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;

	/*
	 * This bit will be computed in nested_get_vmcs12_pages, because
	 * we do not have access to L1's MSR bitmap yet.  For now, keep
	 * the same bit as before, hoping to avoid multiple VMWRITEs that
	 * only set/clear this bit.
	 */
	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;

2265
	exec_controls_set(vmx, exec_control);
2266 2267 2268 2269 2270

	/*
	 * SECONDARY EXEC CONTROLS
	 */
	if (cpu_has_secondary_exec_ctrls()) {
2271
		exec_control = __secondary_exec_controls_get(vmcs01);
2272 2273 2274

		/* Take the following fields only from vmcs12 */
		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2275
				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2276
				  SECONDARY_EXEC_ENABLE_INVPCID |
2277
				  SECONDARY_EXEC_ENABLE_RDTSCP |
2278
				  SECONDARY_EXEC_XSAVES |
2279
				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2280 2281
				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2282
				  SECONDARY_EXEC_ENABLE_VMFUNC |
2283 2284 2285
				  SECONDARY_EXEC_TSC_SCALING |
				  SECONDARY_EXEC_DESC);

2286
		if (nested_cpu_has(vmcs12,
2287 2288 2289 2290 2291
				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
			exec_control |= vmcs12->secondary_vm_exec_control;

		/* PML is emulated and never enabled in hardware for L2. */
		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2292 2293 2294 2295 2296

		/* VMCS shadowing for L2 is emulated for now */
		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;

		/*
2297 2298
		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
		 * will not have to rewrite the controls just for this bit.
2299
		 */
2300 2301 2302
		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
			exec_control |= SECONDARY_EXEC_DESC;
2303 2304 2305 2306 2307

		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
			vmcs_write16(GUEST_INTR_STATUS,
				vmcs12->guest_intr_status);

2308 2309 2310
		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;

2311 2312 2313
		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);

2314
		secondary_exec_controls_set(vmx, exec_control);
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	}

	/*
	 * ENTRY CONTROLS
	 *
	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
	 * on the related bits (if supported by the CPU) in the hope that
	 * we can avoid VMWrites during vmx_set_efer().
	 */
2325 2326 2327
	exec_control = __vm_entry_controls_get(vmcs01);
	exec_control |= vmcs12->vm_entry_controls;
	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2328 2329 2330 2331 2332 2333
	if (cpu_has_load_ia32_efer()) {
		if (guest_efer & EFER_LMA)
			exec_control |= VM_ENTRY_IA32E_MODE;
		if (guest_efer != host_efer)
			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
	}
2334
	vm_entry_controls_set(vmx, exec_control);
2335 2336 2337 2338 2339 2340 2341 2342

	/*
	 * EXIT CONTROLS
	 *
	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
	 */
2343
	exec_control = __vm_exit_controls_get(vmcs01);
2344 2345
	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2346 2347
	else
		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2348
	vm_exit_controls_set(vmx, exec_control);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

	/*
	 * Interrupt/Exception Fields
	 */
	if (vmx->nested.nested_run_pending) {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
			     vmcs12->vm_entry_intr_info_field);
		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
			     vmcs12->vm_entry_exception_error_code);
		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
			     vmcs12->vm_entry_instruction_len);
		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
			     vmcs12->guest_interruptibility_info);
		vmx->loaded_vmcs->nmi_known_unmasked =
			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
	} else {
		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
	}
}

2369
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
{
	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2393 2394
		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2411 2412

		vmx->segment_cache.bitmask = 0;
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	}

	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vmcs12->guest_pending_dbg_exceptions);
		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);

		/*
		 * L1 may access the L2's PDPTR, so save them to construct
		 * vmcs12
		 */
		if (enable_ept) {
			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
		}
2433 2434 2435 2436

		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2437 2438 2439 2440 2441 2442 2443
	}

	if (nested_cpu_has_xsaves(vmcs12))
		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);

	/*
	 * Whether page-faults are trapped is determined by a combination of
2444 2445 2446 2447 2448 2449
	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
	 * doesn't care about page faults then we should set all of these to
	 * L1's desires. However, if L0 does care about (some) page faults, it
	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
	 * simply ask to exit on each and every L2 page fault. This is done by
	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2450 2451 2452 2453 2454
	 * Note that below we don't need special code to set EB.PF beyond the
	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
	 */
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	if (vmx_need_pf_intercept(&vmx->vcpu)) {
		/*
		 * TODO: if both L0 and L1 need the same MASK and MATCH,
		 * go ahead and use it?
		 */
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
	} else {
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
	}
2466 2467 2468 2469 2470 2471 2472 2473

	if (cpu_has_vmx_apicv()) {
		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
	}

2474 2475 2476 2477 2478 2479 2480
	/*
	 * Make sure the msr_autostore list is up to date before we set the
	 * count in the vmcs02.
	 */
	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);

	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

	set_cr4_guest_host_mask(vmx);
}

/*
 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
 * guest in a way that will both be appropriate to L1's requests, and our
 * needs. In addition to modifying the active vmcs (which is vmcs02), this
 * function also has additional necessary side-effects, like setting various
 * vcpu->arch fields.
 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 * is assigned to entry_failure_code on failure.
 */
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2499
			  bool from_vmentry,
2500
			  enum vm_entry_failure_code *entry_failure_code)
2501 2502
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2503
	bool load_guest_pdptrs_vmcs12 = false;
2504

2505
	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2506
		prepare_vmcs02_rare(vmx, vmcs12);
2507 2508
		vmx->nested.dirty_vmcs12 = false;

2509 2510
		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
			!(vmx->nested.hv_evmcs->hv_clean_fields &
2511
			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	}

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
	} else {
		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
	}
2522 2523 2524
	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2525 2526 2527 2528 2529 2530
	vmx_set_rflags(vcpu, vmcs12->guest_rflags);

	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
	 * bitwise-or of what L1 wants to trap for L2, and what we want to
	 * trap. Note that CR0.TS also needs updating - we do this later.
	 */
2531
	vmx_update_exception_bitmap(vcpu);
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);

	if (vmx->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
		vcpu->arch.pat = vmcs12->guest_ia32_pat;
	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
	}

2543 2544 2545 2546 2547 2548 2549 2550 2551
	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
			vcpu->arch.l1_tsc_offset,
			vmx_get_l2_tsc_offset(vcpu),
			vmx_get_l2_tsc_multiplier(vcpu));

	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
			vcpu->arch.l1_tsc_scaling_ratio,
			vmx_get_l2_tsc_multiplier(vcpu));

2552 2553
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
	if (kvm_has_tsc_control)
2554
		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2555

2556
	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

	if (nested_cpu_has_ept(vmcs12))
		nested_ept_init_mmu_context(vcpu);

	/*
	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
	 * bits which we consider mandatory enabled.
	 * The CR0_READ_SHADOW is what L2 should have expected to read given
	 * the specifications by L1; It's not enough to take
	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
	 * have more bits than L1 expected.
	 */
	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));

	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));

	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
	vmx_set_efer(vcpu, vcpu->arch.efer);

	/*
	 * Guest state is invalid and unrestricted guest is disabled,
	 * which means L1 attempted VMEntry to L2 with invalid state.
	 * Fail the VMEntry.
2583 2584 2585 2586 2587
	 *
	 * However when force loading the guest state (SMM exit or
	 * loading nested state after migration, it is possible to
	 * have invalid guest state now, which will be later fixed by
	 * restoring L2 register state
2588
	 */
2589
	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2590
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2591
		return -EINVAL;
2592 2593 2594 2595
	}

	/* Shadow page tables on either EPT or shadow page tables. */
	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2596
				from_vmentry, entry_failure_code))
2597
		return -EINVAL;
2598

2599 2600 2601
	/*
	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
	 * on nested VM-Exit, which can occur without actually running L2 and
2602
	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2603 2604 2605 2606 2607 2608
	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
	 * transition to HLT instead of running L2.
	 */
	if (enable_ept)
		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);

2609 2610 2611 2612 2613 2614 2615 2616 2617
	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
	    is_pae_paging(vcpu)) {
		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
	}

2618 2619 2620
	if (!enable_ept)
		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;

2621
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2622
	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2623 2624
				     vmcs12->guest_ia32_perf_global_ctrl))) {
		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2625
		return -EINVAL;
2626
	}
2627

2628 2629
	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
	kvm_rip_write(vcpu, vmcs12->guest_rip);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	/*
	 * It was observed that genuine Hyper-V running in L1 doesn't reset
	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
	 * bits when it changes a field in eVMCS. Mark all fields as clean
	 * here.
	 */
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
		vmx->nested.hv_evmcs->hv_clean_fields |=
			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;

2641 2642 2643 2644 2645
	return 0;
}

static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
{
2646 2647
	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
	       nested_cpu_has_virtual_nmis(vmcs12)))
2648 2649
		return -EINVAL;

2650
	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2651
	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2652 2653 2654 2655 2656
		return -EINVAL;

	return 0;
}

2657
static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2658 2659 2660 2661
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

	/* Check for memory type validity */
2662
	switch (new_eptp & VMX_EPTP_MT_MASK) {
2663
	case VMX_EPTP_MT_UC:
2664
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2665 2666 2667
			return false;
		break;
	case VMX_EPTP_MT_WB:
2668
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2669 2670 2671 2672 2673 2674
			return false;
		break;
	default:
		return false;
	}

2675
	/* Page-walk levels validity. */
2676
	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2677 2678 2679 2680 2681 2682 2683 2684 2685
	case VMX_EPTP_PWL_5:
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
			return false;
		break;
	case VMX_EPTP_PWL_4:
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
			return false;
		break;
	default:
2686
		return false;
2687
	}
2688 2689

	/* Reserved bits should not be set */
2690
	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2691 2692 2693
		return false;

	/* AD, if set, should be supported */
2694
	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2695
		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2696 2697 2698 2699 2700 2701
			return false;
	}

	return true;
}

2702 2703 2704 2705 2706
/*
 * Checks related to VM-Execution Control Fields
 */
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
                                              struct vmcs12 *vmcs12)
2707 2708 2709
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2710 2711 2712 2713 2714 2715
	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
				   vmx->nested.msrs.pinbased_ctls_low,
				   vmx->nested.msrs.pinbased_ctls_high)) ||
	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
				   vmx->nested.msrs.procbased_ctls_low,
				   vmx->nested.msrs.procbased_ctls_high)))
2716
		return -EINVAL;
2717

2718
	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2719 2720 2721
	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
				   vmx->nested.msrs.secondary_ctls_low,
				   vmx->nested.msrs.secondary_ctls_high)))
2722 2723
		return -EINVAL;

2724
	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
	    nested_vmx_check_nmi_controls(vmcs12) ||
	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2735
	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2736 2737
		return -EINVAL;

2738 2739 2740 2741
	if (!nested_cpu_has_preemption_timer(vmcs12) &&
	    nested_cpu_has_save_preemption_timer(vmcs12))
		return -EINVAL;

2742
	if (nested_cpu_has_ept(vmcs12) &&
2743
	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2744
		return -EINVAL;
2745 2746

	if (nested_cpu_has_vmfunc(vmcs12)) {
2747 2748
		if (CC(vmcs12->vm_function_control &
		       ~vmx->nested.msrs.vmfunc_controls))
2749
			return -EINVAL;
2750 2751

		if (nested_cpu_has_eptp_switching(vmcs12)) {
2752 2753
			if (CC(!nested_cpu_has_ept(vmcs12)) ||
			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2754
				return -EINVAL;
2755 2756 2757
		}
	}

2758 2759 2760
	return 0;
}

2761 2762 2763 2764 2765 2766 2767 2768
/*
 * Checks related to VM-Exit Control Fields
 */
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
                                         struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

2769 2770 2771 2772
	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
				    vmx->nested.msrs.exit_ctls_low,
				    vmx->nested.msrs.exit_ctls_high)) ||
	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2773 2774 2775 2776 2777
		return -EINVAL;

	return 0;
}

2778 2779 2780 2781 2782
/*
 * Checks related to VM-Entry Control Fields
 */
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
2783 2784
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
2785

2786 2787 2788
	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
				    vmx->nested.msrs.entry_ctls_low,
				    vmx->nested.msrs.entry_ctls_high)))
2789
		return -EINVAL;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

	/*
	 * From the Intel SDM, volume 3:
	 * Fields relevant to VM-entry event injection must be set properly.
	 * These fields are the VM-entry interruption-information field, the
	 * VM-entry exception error code, and the VM-entry instruction length.
	 */
	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
		u32 intr_info = vmcs12->vm_entry_intr_info_field;
		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
		bool should_have_error_code;
		bool urg = nested_cpu_has2(vmcs12,
					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;

		/* VM-entry interruption-info field: interruption type */
2808 2809 2810
		if (CC(intr_type == INTR_TYPE_RESERVED) ||
		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2811
			return -EINVAL;
2812 2813

		/* VM-entry interruption-info field: vector */
2814 2815 2816
		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2817
			return -EINVAL;
2818 2819 2820 2821 2822

		/* VM-entry interruption-info field: deliver error code */
		should_have_error_code =
			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
			x86_exception_has_error_code(vector);
2823
		if (CC(has_error_code != should_have_error_code))
2824
			return -EINVAL;
2825 2826

		/* VM-entry exception error code */
2827
		if (CC(has_error_code &&
2828
		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2829
			return -EINVAL;
2830 2831

		/* VM-entry interruption-info field: reserved bits */
2832
		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2833
			return -EINVAL;
2834 2835 2836 2837 2838 2839

		/* VM-entry instruction length */
		switch (intr_type) {
		case INTR_TYPE_SOFT_EXCEPTION:
		case INTR_TYPE_SOFT_INTR:
		case INTR_TYPE_PRIV_SW_EXCEPTION:
2840 2841 2842
			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
			    CC(vmcs12->vm_entry_instruction_len == 0 &&
			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2843
				return -EINVAL;
2844 2845 2846
		}
	}

2847 2848 2849 2850 2851 2852
	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
		return -EINVAL;

	return 0;
}

2853 2854 2855 2856 2857 2858
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
	    nested_check_vm_entry_controls(vcpu, vmcs12))
2859
		return -EINVAL;
2860

2861 2862 2863
	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
		return nested_evmcs_check_controls(vmcs12);

2864 2865 2866
	return 0;
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
#ifdef CONFIG_X86_64
	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
		!!(vcpu->arch.efer & EFER_LMA)))
		return -EINVAL;
#endif
	return 0;
}

2878 2879
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
2880 2881 2882
{
	bool ia32e;

2883 2884
	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2885
	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2886
		return -EINVAL;
2887

2888 2889
	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2890 2891
		return -EINVAL;

2892
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2893
	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2894 2895
		return -EINVAL;

2896 2897 2898 2899 2900
	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
					   vmcs12->host_ia32_perf_global_ctrl)))
		return -EINVAL;

2901
#ifdef CONFIG_X86_64
2902
	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2903 2904 2905 2906 2907
#else
	ia32e = false;
#endif

	if (ia32e) {
2908
		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2909 2910
			return -EINVAL;
	} else {
2911
		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2912 2913 2914 2915
		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
		    CC((vmcs12->host_rip) >> 32))
			return -EINVAL;
	}
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
	    CC(vmcs12->host_cs_selector == 0) ||
	    CC(vmcs12->host_tr_selector == 0) ||
	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2927 2928
		return -EINVAL;

2929 2930 2931 2932
	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2933 2934
	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2935
		return -EINVAL;
2936

2937 2938 2939 2940 2941 2942 2943
	/*
	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
	 * the values of the LMA and LME bits in the field must each be that of
	 * the host address-space size VM-exit control.
	 */
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2944 2945 2946
		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2947
			return -EINVAL;
2948 2949
	}

2950 2951 2952 2953 2954 2955
	return 0;
}

static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
2956 2957 2958
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
	struct vmcs_hdr hdr;
2959

2960
	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2961 2962
		return 0;

2963
	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2964 2965
		return -EINVAL;

2966 2967 2968 2969
	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
                return -EINVAL;
2970

2971 2972 2973 2974
	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
					    offsetof(struct vmcs12, hdr),
					    sizeof(hdr))))
		return -EINVAL;
2975

2976 2977 2978
	if (CC(hdr.revision_id != VMCS12_REVISION) ||
	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
		return -EINVAL;
2979

2980
	return 0;
2981 2982
}

2983 2984 2985 2986 2987
/*
 * Checks related to Guest Non-register State
 */
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
{
2988
	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2989 2990
	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2991 2992 2993 2994 2995
		return -EINVAL;

	return 0;
}

2996 2997
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
					struct vmcs12 *vmcs12,
2998
					enum vm_entry_failure_code *entry_failure_code)
2999 3000 3001
{
	bool ia32e;

3002
	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3003

3004 3005
	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3006
		return -EINVAL;
3007

3008 3009 3010 3011
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
		return -EINVAL;

3012
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3013
	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3014
		return -EINVAL;
3015 3016

	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3017
		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3018
		return -EINVAL;
3019 3020
	}

3021 3022 3023 3024 3025
	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
					   vmcs12->guest_ia32_perf_global_ctrl)))
		return -EINVAL;

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	/*
	 * If the load IA32_EFER VM-entry control is 1, the following checks
	 * are performed on the field for the IA32_EFER MSR:
	 * - Bits reserved in the IA32_EFER MSR must be 0.
	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
	 *   the IA-32e mode guest VM-exit control. It must also be identical
	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
	 *   CR0.PG) is 1.
	 */
	if (to_vmx(vcpu)->nested.nested_run_pending &&
	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3038 3039 3040 3041
		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3042
			return -EINVAL;
3043 3044 3045
	}

	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3046 3047
	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3048
		return -EINVAL;
3049

3050
	if (nested_check_guest_non_reg_state(vmcs12))
3051
		return -EINVAL;
3052 3053 3054 3055

	return 0;
}

3056
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3057 3058
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
3059
	unsigned long cr4;
3060
	bool vm_fail;
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

	if (!nested_early_check)
		return 0;

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);

	preempt_disable();

	vmx_prepare_switch_to_guest(vcpu);

	/*
	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
M
Miaohe Lin 已提交
3077
	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	 * there is no need to preserve other bits or save/restore the field.
	 */
	vmcs_writel(GUEST_RFLAGS, 0);

	cr4 = cr4_read_shadow();
	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
		vmcs_writel(HOST_CR4, cr4);
		vmx->loaded_vmcs->host_state.cr4 = cr4;
	}

3088 3089
	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
				 vmx->loaded_vmcs->launched);
3090 3091 3092 3093 3094 3095

	if (vmx->msr_autoload.host.nr)
		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	if (vmx->msr_autoload.guest.nr)
		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);

3096
	if (vm_fail) {
3097 3098
		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);

3099
		preempt_enable();
3100 3101 3102 3103

		trace_kvm_nested_vmenter_failed(
			"early hardware check VM-instruction error: ", error);
		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3104 3105 3106 3107 3108 3109 3110 3111
		return 1;
	}

	/*
	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
	 */
	if (hw_breakpoint_active())
		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3112
	local_irq_enable();
3113
	preempt_enable();
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

	/*
	 * A non-failing VMEntry means we somehow entered guest mode with
	 * an illegal RIP, and that's just the tip of the iceberg.  There
	 * is no telling what memory has been modified or what state has
	 * been exposed to unknown code.  Hitting this all but guarantees
	 * a (very critical) hardware issue.
	 */
	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
		VMX_EXIT_REASONS_FAILED_VMENTRY));

	return 0;
}

3128
static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3129 3130 3131
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

3132 3133 3134 3135 3136
	/*
	 * hv_evmcs may end up being not mapped after migration (when
	 * L2 was running), map it here to make sure vmcs12 changes are
	 * properly reflected.
	 */
3137
	if (vmx->nested.enlightened_vmcs_enabled &&
3138
	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3139 3140 3141 3142
		enum nested_evmptrld_status evmptrld_status =
			nested_vmx_handle_enlightened_vmptrld(vcpu, false);

		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3143
		    evmptrld_status == EVMPTRLD_ERROR)
3144
			return false;
3145 3146 3147 3148 3149 3150

		/*
		 * Post migration VMCS12 always provides the most actual
		 * information, copy it to eVMCS upon entry.
		 */
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3151
	}
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	return true;
}

static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct kvm_host_map *map;
	struct page *page;
	u64 hpa;

3164 3165
	if (!vcpu->arch.pdptrs_from_userspace &&
	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3166 3167 3168 3169 3170
		/*
		 * Reload the guest's PDPTRs since after a migration
		 * the guest CR3 might be restored prior to setting the nested
		 * state which can lead to a load of wrong PDPTRs.
		 */
3171
		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3172 3173 3174 3175
			return false;
	}


3176 3177 3178 3179 3180 3181 3182 3183
	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
		/*
		 * Translate L1 physical address to host physical
		 * address for vmcs02. Keep the page pinned, so this
		 * physical address remains valid. We keep a reference
		 * to it so we can release it later.
		 */
		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3184
			kvm_release_page_clean(vmx->nested.apic_access_page);
3185 3186 3187 3188 3189 3190 3191 3192
			vmx->nested.apic_access_page = NULL;
		}
		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
		if (!is_error_page(page)) {
			vmx->nested.apic_access_page = page;
			hpa = page_to_phys(vmx->nested.apic_access_page);
			vmcs_write64(APIC_ACCESS_ADDR, hpa);
		} else {
3193 3194 3195 3196 3197 3198 3199
			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
					     __func__);
			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			vcpu->run->internal.suberror =
				KVM_INTERNAL_ERROR_EMULATION;
			vcpu->run->internal.ndata = 0;
			return false;
3200 3201 3202 3203
		}
	}

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3204
		map = &vmx->nested.virtual_apic_map;
3205

3206 3207
		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
			/*
			 * The processor will never use the TPR shadow, simply
			 * clear the bit from the execution control.  Such a
			 * configuration is useless, but it happens in tests.
			 * For any other configuration, failing the vm entry is
			 * _not_ what the processor does but it's basically the
			 * only possibility we have.
			 */
3219
			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3220
		} else {
3221 3222 3223 3224
			/*
			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
			 * force VM-Entry to fail.
			 */
3225
			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3226 3227 3228 3229
		}
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
3230 3231 3232 3233 3234 3235 3236 3237
		map = &vmx->nested.pi_desc_map;

		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
			vmx->nested.pi_desc =
				(struct pi_desc *)(((void *)map->hva) +
				offset_in_page(vmcs12->posted_intr_desc_addr));
			vmcs_write64(POSTED_INTR_DESC_ADDR,
				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3238 3239 3240 3241 3242 3243 3244 3245 3246
		} else {
			/*
			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
			 * access the contents of the VMCS12 posted interrupt
			 * descriptor. (Note that KVM may do this when it
			 * should not, per the architectural specification.)
			 */
			vmx->nested.pi_desc = NULL;
			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3247 3248 3249
		}
	}
	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3250
		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3251
	else
3252
		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3253 3254 3255 3256 3257 3258

	return true;
}

static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
3259 3260 3261 3262 3263 3264 3265 3266
	if (!nested_get_evmcs_page(vcpu)) {
		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
				     __func__);
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		vcpu->run->internal.suberror =
			KVM_INTERNAL_ERROR_EMULATION;
		vcpu->run->internal.ndata = 0;

3267
		return false;
3268
	}
3269 3270 3271 3272

	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
		return false;

3273
	return true;
3274 3275
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
{
	struct vmcs12 *vmcs12;
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t dst;

	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
		return 0;

	if (WARN_ON_ONCE(vmx->nested.pml_full))
		return 1;

	/*
	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
	 * set is already checked as part of A/D emulation.
	 */
	vmcs12 = get_vmcs12(vcpu);
	if (!nested_cpu_has_pml(vmcs12))
		return 0;

	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
		vmx->nested.pml_full = true;
		return 1;
	}

	gpa &= ~0xFFFull;
	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;

	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
				 offset_in_page(dst), sizeof(gpa)))
		return 0;

	vmcs12->guest_pml_index--;

	return 0;
}

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
/*
 * Intel's VMX Instruction Reference specifies a common set of prerequisites
 * for running VMX instructions (except VMXON, whose prerequisites are
 * slightly different). It also specifies what exception to inject otherwise.
 * Note that many of these exceptions have priority over VM exits, so they
 * don't have to be checked again here.
 */
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
	if (!to_vmx(vcpu)->nested.vmxon) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 0;
	}

	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 0;
	}

	return 1;
}

static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
{
	u8 rvi = vmx_get_rvi();
	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);

	return ((rvi & 0xf0) > (vppr & 0xf0));
}

static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12);

/*
 * If from_vmentry is false, this is being called from state restore (either RSM
 * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3349 3350
 *
 * Returns:
3351 3352 3353 3354
 *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
 *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
 *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
 *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3355
 */
3356 3357
enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
							bool from_vmentry)
3358 3359 3360
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3361
	enum vm_entry_failure_code entry_failure_code;
3362
	bool evaluate_pending_interrupts;
3363 3364 3365 3366 3367
	union vmx_exit_reason exit_reason = {
		.basic = EXIT_REASON_INVALID_STATE,
		.failed_vmentry = 1,
	};
	u32 failed_index;
3368

3369
	kvm_service_local_tlb_flush_requests(vcpu);
3370

3371
	evaluate_pending_interrupts = exec_controls_get(vmx) &
3372
		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3373 3374 3375 3376 3377 3378 3379 3380 3381
	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);

	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
	if (kvm_mpx_supported() &&
		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	/*
	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
	 * software model to the pre-VMEntry host state.  When EPT is disabled,
	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
	 * path would need to manually save/restore vmcs01.GUEST_CR3.
	 */
	if (!enable_ept && !nested_early_check)
		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);

3401 3402
	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);

3403
	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3404 3405

	if (from_vmentry) {
3406 3407
		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3408
			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3409
		}
3410 3411 3412

		if (nested_vmx_check_vmentry_hw(vcpu)) {
			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3413
			return NVMX_VMENTRY_VMFAIL;
3414 3415
		}

3416 3417
		if (nested_vmx_check_guest_state(vcpu, vmcs12,
						 &entry_failure_code)) {
3418
			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3419
			vmcs12->exit_qualification = entry_failure_code;
3420
			goto vmentry_fail_vmexit;
3421
		}
3422 3423 3424 3425
	}

	enter_guest_mode(vcpu);

3426
	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3427
		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3428
		vmcs12->exit_qualification = entry_failure_code;
3429
		goto vmentry_fail_vmexit_guest_mode;
3430
	}
3431 3432

	if (from_vmentry) {
3433 3434 3435 3436
		failed_index = nested_vmx_load_msr(vcpu,
						   vmcs12->vm_entry_msr_load_addr,
						   vmcs12->vm_entry_msr_load_count);
		if (failed_index) {
3437
			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3438
			vmcs12->exit_qualification = failed_index;
3439
			goto vmentry_fail_vmexit_guest_mode;
3440
		}
3441 3442 3443 3444 3445 3446 3447 3448
	} else {
		/*
		 * The MMU is not initialized to point at the right entities yet and
		 * "get pages" would need to read data from the guest (i.e. we will
		 * need to perform gpa to hpa translation). Request a call
		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
		 * have already been set at vmentry time and should not be reset.
		 */
3449
		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	}

	/*
	 * If L1 had a pending IRQ/NMI until it executed
	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
	 * disallowed (e.g. interrupts disabled), L0 needs to
	 * evaluate if this pending event should cause an exit from L2
	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
	 * intercept EXTERNAL_INTERRUPT).
	 *
	 * Usually this would be handled by the processor noticing an
	 * IRQ/NMI window request, or checking RVI during evaluation of
	 * pending virtual interrupts.  However, this setting was done
	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
	 */
	if (unlikely(evaluate_pending_interrupts))
		kvm_make_request(KVM_REQ_EVENT, vcpu);

3469 3470 3471 3472 3473 3474
	/*
	 * Do not start the preemption timer hrtimer until after we know
	 * we are successful, so that only nested_vmx_vmexit needs to cancel
	 * the timer.
	 */
	vmx->nested.preemption_timer_expired = false;
3475 3476 3477 3478
	if (nested_cpu_has_preemption_timer(vmcs12)) {
		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
		vmx_start_preemption_timer(vcpu, timer_value);
	}
3479

3480 3481 3482 3483 3484 3485
	/*
	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
	 * returned as far as L1 is concerned. It will only return (and set
	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
	 */
3486
	return NVMX_VMENTRY_SUCCESS;
3487 3488 3489 3490 3491 3492 3493

	/*
	 * A failed consistency check that leads to a VMExit during L1's
	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
	 * 26.7 "VM-entry failures during or after loading guest state".
	 */
vmentry_fail_vmexit_guest_mode:
3494
	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3495 3496 3497 3498 3499 3500 3501
		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
	leave_guest_mode(vcpu);

vmentry_fail_vmexit:
	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	if (!from_vmentry)
3502
		return NVMX_VMENTRY_VMEXIT;
3503 3504

	load_vmcs12_host_state(vcpu, vmcs12);
3505
	vmcs12->vm_exit_reason = exit_reason.full;
3506
	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3507
		vmx->nested.need_vmcs12_to_shadow_sync = true;
3508
	return NVMX_VMENTRY_VMEXIT;
3509 3510 3511 3512 3513 3514 3515 3516 3517
}

/*
 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 * for running an L2 nested guest.
 */
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
	struct vmcs12 *vmcs12;
3518
	enum nvmx_vmentry_status status;
3519 3520
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3521
	enum nested_evmptrld_status evmptrld_status;
3522 3523 3524 3525

	if (!nested_vmx_check_permission(vcpu))
		return 1;

3526 3527 3528
	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
	if (evmptrld_status == EVMPTRLD_ERROR) {
		kvm_queue_exception(vcpu, UD_VECTOR);
3529
		return 1;
3530
	}
3531

3532 3533 3534 3535 3536
	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);

	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
		return nested_vmx_failInvalid(vcpu);

3537
	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3538
	       vmx->nested.current_vmptr == INVALID_GPA))
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
		return nested_vmx_failInvalid(vcpu);

	vmcs12 = get_vmcs12(vcpu);

	/*
	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
	 * rather than RFLAGS.ZF, and no error number is stored to the
	 * VM-instruction error field.
	 */
3549
	if (CC(vmcs12->hdr.shadow_vmcs))
3550 3551
		return nested_vmx_failInvalid(vcpu);

3552
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3553
		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
		/* Enlightened VMCS doesn't have launch state */
		vmcs12->launch_state = !launch;
	} else if (enable_shadow_vmcs) {
		copy_shadow_to_vmcs12(vmx);
	}

	/*
	 * The nested entry process starts with enforcing various prerequisites
	 * on vmcs12 as required by the Intel SDM, and act appropriately when
	 * they fail: As the SDM explains, some conditions should cause the
	 * instruction to fail, while others will cause the instruction to seem
	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
	 * To speed up the normal (success) code path, we should avoid checking
	 * for misconfigurations which will anyway be caught by the processor
	 * when using the merged vmcs02.
	 */
3570
	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3571
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3572

3573
	if (CC(vmcs12->launch_state == launch))
3574
		return nested_vmx_fail(vcpu,
3575 3576 3577
			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);

3578
	if (nested_vmx_check_controls(vcpu, vmcs12))
3579
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3580

3581 3582 3583
	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);

3584
	if (nested_vmx_check_host_state(vcpu, vmcs12))
3585
		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3586 3587 3588 3589 3590 3591

	/*
	 * We're finally done with prerequisite checking, and can start with
	 * the nested entry.
	 */
	vmx->nested.nested_run_pending = 1;
3592
	vmx->nested.has_preemption_timer_deadline = false;
3593 3594 3595
	status = nested_vmx_enter_non_root_mode(vcpu, true);
	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
		goto vmentry_failed;
3596

3597 3598 3599 3600 3601 3602 3603 3604
	/* Emulate processing of posted interrupts on VM-Enter. */
	if (nested_cpu_has_posted_intr(vmcs12) &&
	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
		vmx->nested.pi_pending = true;
		kvm_make_request(KVM_REQ_EVENT, vcpu);
		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
	}

3605 3606 3607 3608 3609 3610 3611 3612 3613
	/* Hide L1D cache contents from the nested guest.  */
	vmx->vcpu.arch.l1tf_flush_l1d = true;

	/*
	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
	 * also be used as part of restoring nVMX state for
	 * snapshot restore (migration).
	 *
	 * In this flow, it is assumed that vmcs12 cache was
3614
	 * transferred as part of captured nVMX state and should
3615 3616 3617 3618 3619
	 * therefore not be read from guest memory (which may not
	 * exist on destination host yet).
	 */
	nested_cache_shadow_vmcs12(vcpu, vmcs12);

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	switch (vmcs12->guest_activity_state) {
	case GUEST_ACTIVITY_HLT:
		/*
		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
		 * awakened by event injection or by an NMI-window VM-exit or
		 * by an interrupt-window VM-exit, halt the vcpu.
		 */
		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
			vmx->nested.nested_run_pending = 0;
3632
			return kvm_emulate_halt_noskip(vcpu);
3633 3634 3635
		}
		break;
	case GUEST_ACTIVITY_WAIT_SIPI:
3636
		vmx->nested.nested_run_pending = 0;
3637 3638 3639 3640
		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
		break;
	default:
		break;
3641
	}
3642

3643
	return 1;
3644 3645 3646 3647 3648 3649 3650 3651

vmentry_failed:
	vmx->nested.nested_run_pending = 0;
	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
		return 0;
	if (status == NVMX_VMENTRY_VMEXIT)
		return 1;
	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3652
	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3653 3654 3655 3656
}

/*
 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3657
 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
 * This function returns the new value we should put in vmcs12.guest_cr0.
 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 *     didn't trap the bit, because if L1 did, so would L0).
 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 *     been modified by L2, and L1 knows it. So just leave the old value of
 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 *     isn't relevant, because if L0 traps this bit it can set it to anything.
 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 *     changed these bits, and therefore they need to be updated, but L0
 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 */
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
			vcpu->arch.cr0_guest_owned_bits));
}

static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	return
	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
			vcpu->arch.cr4_guest_owned_bits));
}

static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
				      struct vmcs12 *vmcs12)
{
	u32 idt_vectoring;
	unsigned int nr;

	if (vcpu->arch.exception.injected) {
		nr = vcpu->arch.exception.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (kvm_exception_is_soft(nr)) {
			vmcs12->vm_exit_instruction_len =
				vcpu->arch.event_exit_inst_len;
			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
		} else
			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;

		if (vcpu->arch.exception.has_error_code) {
			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
			vmcs12->idt_vectoring_error_code =
				vcpu->arch.exception.error_code;
		}

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	} else if (vcpu->arch.nmi_injected) {
		vmcs12->idt_vectoring_info_field =
			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
	} else if (vcpu->arch.interrupt.injected) {
		nr = vcpu->arch.interrupt.nr;
		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;

		if (vcpu->arch.interrupt.soft) {
			idt_vectoring |= INTR_TYPE_SOFT_INTR;
			vmcs12->vm_entry_instruction_len =
				vcpu->arch.event_exit_inst_len;
		} else
			idt_vectoring |= INTR_TYPE_EXT_INTR;

		vmcs12->idt_vectoring_info_field = idt_vectoring;
	}
}


3735
void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	gfn_t gfn;

	/*
	 * Don't need to mark the APIC access page dirty; it is never
	 * written to by the CPU during APIC virtualization.
	 */

	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}

	if (nested_cpu_has_posted_intr(vmcs12)) {
		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
}

3756
static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3757 3758 3759 3760 3761 3762
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int max_irr;
	void *vapic_page;
	u16 status;

3763
	if (!vmx->nested.pi_pending)
3764
		return 0;
3765

3766 3767 3768
	if (!vmx->nested.pi_desc)
		goto mmio_needed;

3769
	vmx->nested.pi_pending = false;
3770

3771
	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3772
		return 0;
3773 3774 3775

	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
	if (max_irr != 256) {
3776 3777
		vapic_page = vmx->nested.virtual_apic_map.hva;
		if (!vapic_page)
3778
			goto mmio_needed;
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
			vapic_page, &max_irr);
		status = vmcs_read16(GUEST_INTR_STATUS);
		if ((u8)max_irr > ((u8)status & 0xff)) {
			status &= ~0xff;
			status |= (u8)max_irr;
			vmcs_write16(GUEST_INTR_STATUS, status);
		}
	}

	nested_mark_vmcs12_pages_dirty(vcpu);
3791
	return 0;
3792 3793 3794 3795

mmio_needed:
	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
	return -ENXIO;
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
}

static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
					       unsigned long exit_qual)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	unsigned int nr = vcpu->arch.exception.nr;
	u32 intr_info = nr | INTR_INFO_VALID_MASK;

	if (vcpu->arch.exception.has_error_code) {
		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
	}

	if (kvm_exception_is_soft(nr))
		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
	else
		intr_info |= INTR_TYPE_HARD_EXCEPTION;

	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
	    vmx_get_nmi_mask(vcpu))
		intr_info |= INTR_INFO_UNBLOCK_NMI;

	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
/*
 * Returns true if a debug trap is pending delivery.
 *
 * In KVM, debug traps bear an exception payload. As such, the class of a #DB
 * exception may be inferred from the presence of an exception payload.
 */
static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.exception.pending &&
			vcpu->arch.exception.nr == DB_VECTOR &&
			vcpu->arch.exception.payload;
}

/*
 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
 * represents these debug traps with a payload that is said to be compatible
 * with the 'pending debug exceptions' field, write the payload to the VMCS
 * field if a VM-exit is delivered before the debug trap.
 */
static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
{
	if (vmx_pending_dbg_trap(vcpu))
		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
			    vcpu->arch.exception.payload);
}

3849 3850 3851 3852 3853 3854
static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
{
	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
	       to_vmx(vcpu)->nested.preemption_timer_expired;
}

3855
static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3856 3857 3858 3859 3860
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	unsigned long exit_qual;
	bool block_nested_events =
	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3861
	bool mtf_pending = vmx->nested.mtf_pending;
3862 3863
	struct kvm_lapic *apic = vcpu->arch.apic;

3864 3865 3866 3867
	/*
	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
	 * this state is discarded.
	 */
3868 3869
	if (!block_nested_events)
		vmx->nested.mtf_pending = false;
3870

3871 3872 3873 3874
	if (lapic_in_kernel(vcpu) &&
		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
		if (block_nested_events)
			return -EBUSY;
3875
		nested_vmx_update_pending_dbg(vcpu);
3876
		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
		return 0;
	}

	if (lapic_in_kernel(vcpu) &&
	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
		if (block_nested_events)
			return -EBUSY;

		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
						apic->sipi_vector & 0xFFUL);
3891 3892
		return 0;
	}
3893

3894 3895
	/*
	 * Process any exceptions that are not debug traps before MTF.
3896 3897 3898 3899 3900
	 *
	 * Note that only a pending nested run can block a pending exception.
	 * Otherwise an injected NMI/interrupt should either be
	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
	 * while delivering the pending exception.
3901
	 */
3902

3903
	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3904
		if (vmx->nested.nested_run_pending)
3905
			return -EBUSY;
3906 3907
		if (!nested_vmx_check_exception(vcpu, &exit_qual))
			goto no_vmexit;
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

	if (mtf_pending) {
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_update_pending_dbg(vcpu);
		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
		return 0;
	}

3920
	if (vcpu->arch.exception.pending) {
3921
		if (vmx->nested.nested_run_pending)
3922
			return -EBUSY;
3923 3924
		if (!nested_vmx_check_exception(vcpu, &exit_qual))
			goto no_vmexit;
3925 3926 3927 3928
		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
		return 0;
	}

3929
	if (nested_vmx_preemption_timer_pending(vcpu)) {
3930 3931 3932 3933 3934 3935
		if (block_nested_events)
			return -EBUSY;
		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
		return 0;
	}

3936 3937 3938 3939 3940 3941
	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
		if (block_nested_events)
			return -EBUSY;
		goto no_vmexit;
	}

3942
	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3943 3944
		if (block_nested_events)
			return -EBUSY;
3945 3946 3947
		if (!nested_exit_on_nmi(vcpu))
			goto no_vmexit;

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
				  INTR_INFO_VALID_MASK, 0);
		/*
		 * The NMI-triggered VM exit counts as injection:
		 * clear this one and block further NMIs.
		 */
		vcpu->arch.nmi_pending = 0;
		vmx_set_nmi_mask(vcpu, true);
		return 0;
	}

3960
	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3961 3962
		if (block_nested_events)
			return -EBUSY;
3963 3964
		if (!nested_exit_on_intr(vcpu))
			goto no_vmexit;
3965 3966 3967 3968
		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
		return 0;
	}

3969
no_vmexit:
3970
	return vmx_complete_nested_posted_interrupt(vcpu);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
}

static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
	ktime_t remaining =
		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
	u64 value;

	if (ktime_to_ns(remaining) <= 0)
		return 0;

	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
	do_div(value, 1000000);
	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}

3987
static bool is_vmcs12_ext_field(unsigned long field)
3988
{
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	switch (field) {
	case GUEST_ES_SELECTOR:
	case GUEST_CS_SELECTOR:
	case GUEST_SS_SELECTOR:
	case GUEST_DS_SELECTOR:
	case GUEST_FS_SELECTOR:
	case GUEST_GS_SELECTOR:
	case GUEST_LDTR_SELECTOR:
	case GUEST_TR_SELECTOR:
	case GUEST_ES_LIMIT:
	case GUEST_CS_LIMIT:
	case GUEST_SS_LIMIT:
	case GUEST_DS_LIMIT:
	case GUEST_FS_LIMIT:
	case GUEST_GS_LIMIT:
	case GUEST_LDTR_LIMIT:
	case GUEST_TR_LIMIT:
	case GUEST_GDTR_LIMIT:
	case GUEST_IDTR_LIMIT:
	case GUEST_ES_AR_BYTES:
	case GUEST_DS_AR_BYTES:
	case GUEST_FS_AR_BYTES:
	case GUEST_GS_AR_BYTES:
	case GUEST_LDTR_AR_BYTES:
	case GUEST_TR_AR_BYTES:
	case GUEST_ES_BASE:
	case GUEST_CS_BASE:
	case GUEST_SS_BASE:
	case GUEST_DS_BASE:
	case GUEST_FS_BASE:
	case GUEST_GS_BASE:
	case GUEST_LDTR_BASE:
	case GUEST_TR_BASE:
	case GUEST_GDTR_BASE:
	case GUEST_IDTR_BASE:
	case GUEST_PENDING_DBG_EXCEPTIONS:
	case GUEST_BNDCFGS:
		return true;
	default:
		break;
	}
4030

4031 4032 4033 4034 4035 4036 4037
	return false;
}

static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072

	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	vmcs12->guest_pending_dbg_exceptions =
		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
	if (kvm_mpx_supported())
		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);

	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}

static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int cpu;

	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
		return;


	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);

	cpu = get_cpu();
	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4095
	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4096 4097 4098 4099

	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

	vmx->loaded_vmcs = &vmx->vmcs01;
4100
	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	put_cpu();
}

/*
 * Update the guest state fields of vmcs12 to reflect changes that
 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
 * VM-entry controls is also updated, since this is really a guest
 * state bit.)
 */
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4114
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4115 4116
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);

4117 4118
	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);

	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
	vmcs12->guest_rip = kvm_rip_read(vcpu);
	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);

	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4129 4130 4131

	vmcs12->guest_interruptibility_info =
		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4132

4133 4134
	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4135 4136
	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4137 4138 4139
	else
		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;

4140
	if (nested_cpu_has_preemption_timer(vmcs12) &&
4141 4142 4143 4144
	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
	    !vmx->nested.nested_run_pending)
		vmcs12->vmx_preemption_timer_value =
			vmx_get_preemption_timer_value(vcpu);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155

	/*
	 * In some cases (usually, nested EPT), L2 is allowed to change its
	 * own CR3 without exiting. If it has changed it, we must keep it.
	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
	 *
	 * Additionally, restore L2's PDPTR to vmcs12.
	 */
	if (enable_ept) {
		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4156 4157 4158 4159 4160 4161
		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
		}
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	}

	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);

	if (nested_cpu_has_vid(vmcs12))
		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);

	vmcs12->vm_entry_controls =
		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);

4173
	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);

	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
		vmcs12->guest_ia32_efer = vcpu->arch.efer;
}

/*
 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 * and this function updates it to reflect the changes to the guest state while
 * L2 was running (and perhaps made some exits which were handled directly by L0
 * without going back to L1), and to reflect the exit reason.
 * Note that we do not have to copy here all VMCS fields, just those that
 * could have changed by the L2 guest or the exit - i.e., the guest-state and
 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 * which already writes to vmcs12 directly.
 */
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4192
			   u32 vm_exit_reason, u32 exit_intr_info,
4193 4194 4195
			   unsigned long exit_qualification)
{
	/* update exit information fields: */
4196
	vmcs12->vm_exit_reason = vm_exit_reason;
4197 4198
	if (to_vmx(vcpu)->exit_reason.enclave_mode)
		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	vmcs12->exit_qualification = exit_qualification;
	vmcs12->vm_exit_intr_info = exit_intr_info;

	vmcs12->idt_vectoring_info_field = 0;
	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);

	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
		vmcs12->launch_state = 1;

		/* vm_entry_intr_info_field is cleared on exit. Emulate this
		 * instead of reading the real value. */
		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;

		/*
		 * Transfer the event that L0 or L1 may wanted to inject into
		 * L2 to IDT_VECTORING_INFO_FIELD.
		 */
		vmcs12_save_pending_event(vcpu, vmcs12);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

		/*
		 * According to spec, there's no need to store the guest's
		 * MSRs if the exit is due to a VM-entry failure that occurs
		 * during or after loading the guest state. Since this exit
		 * does not fall in that category, we need to save the MSRs.
		 */
		if (nested_vmx_store_msr(vcpu,
					 vmcs12->vm_exit_msr_store_addr,
					 vmcs12->vm_exit_msr_store_count))
			nested_vmx_abort(vcpu,
					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	}

	/*
	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
	 * preserved above and would only end up incorrectly in L1.
	 */
	vcpu->arch.nmi_injected = false;
	kvm_clear_exception_queue(vcpu);
	kvm_clear_interrupt_queue(vcpu);
}

/*
 * A part of what we need to when the nested L2 guest exits and we want to
 * run its L1 parent, is to reset L1's guest state to the host state specified
 * in vmcs12.
 * This function is to be called not only on normal nested exit, but also on
 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 * Failures During or After Loading Guest State").
 * This function should be called when the active VMCS is L1's (vmcs01).
 */
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
				   struct vmcs12 *vmcs12)
{
4253
	enum vm_entry_failure_code ignored;
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	struct kvm_segment seg;

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
		vcpu->arch.efer = vmcs12->host_ia32_efer;
	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
	else
		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
	vmx_set_efer(vcpu, vcpu->arch.efer);

4264 4265
	kvm_rsp_write(vcpu, vmcs12->host_rsp);
	kvm_rip_write(vcpu, vmcs12->host_rip);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
	vmx_set_interrupt_shadow(vcpu, 0);

	/*
	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
	 * actually changed, because vmx_set_cr0 refers to efer set above.
	 *
	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
	 * (KVM doesn't change it);
	 */
4276
	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	vmx_set_cr0(vcpu, vmcs12->host_cr0);

	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs12->host_cr4);

	nested_ept_uninit_mmu_context(vcpu);

	/*
	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
	 * couldn't have changed.
	 */
4289
	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4290 4291
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);

4292
	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);

	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
		vmcs_write64(GUEST_BNDCFGS, 0);

	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
		vcpu->arch.pat = vmcs12->host_ia32_pat;
	}
	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4311 4312
		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
					 vmcs12->host_ia32_perf_global_ctrl));
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

	/* Set L1 segment info according to Intel SDM
	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.selector = vmcs12->host_cs_selector,
		.type = 11,
		.present = 1,
		.s = 1,
		.g = 1
	};
	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
		seg.l = 1;
	else
		seg.db = 1;
4329
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	seg = (struct kvm_segment) {
		.base = 0,
		.limit = 0xFFFFFFFF,
		.type = 3,
		.present = 1,
		.s = 1,
		.db = 1,
		.g = 1
	};
	seg.selector = vmcs12->host_ds_selector;
4340
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4341
	seg.selector = vmcs12->host_es_selector;
4342
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4343
	seg.selector = vmcs12->host_ss_selector;
4344
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4345 4346
	seg.selector = vmcs12->host_fs_selector;
	seg.base = vmcs12->host_fs_base;
4347
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4348 4349
	seg.selector = vmcs12->host_gs_selector;
	seg.base = vmcs12->host_gs_base;
4350
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4351 4352 4353 4354 4355 4356 4357
	seg = (struct kvm_segment) {
		.base = vmcs12->host_tr_base,
		.limit = 0x67,
		.selector = vmcs12->host_tr_selector,
		.type = 11,
		.present = 1
	};
4358
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4359

4360 4361
	memset(&seg, 0, sizeof(seg));
	seg.unusable = 1;
4362
	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4363 4364 4365 4366 4367 4368 4369

	kvm_set_dr(vcpu, 7, 0x400);
	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);

	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
				vmcs12->vm_exit_msr_load_count))
		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4370 4371

	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4372 4373 4374 4375
}

static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
{
4376
	struct vmx_uret_msr *efer_msr;
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	unsigned int i;

	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
		return vmcs_read64(GUEST_IA32_EFER);

	if (cpu_has_load_ia32_efer())
		return host_efer;

	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
			return vmx->msr_autoload.guest.val[i].value;
	}

4390
	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	if (efer_msr)
		return efer_msr->data;

	return host_efer;
}

static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmx_msr_entry g, h;
	gpa_t gpa;
	u32 i, j;

	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);

	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
		/*
		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
		 * as vmcs01.GUEST_DR7 contains a userspace defined value
		 * and vcpu->arch.dr7 is not squirreled away before the
		 * nested VMENTER (not worth adding a variable in nested_vmx).
		 */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
		else
			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
	}

	/*
	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
	 * handle a variety of side effects to KVM's software model.
	 */
	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));

4426
	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4427 4428 4429 4430 4431 4432
	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));

	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));

	nested_ept_uninit_mmu_context(vcpu);
4433
	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4434
	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4435 4436 4437 4438 4439 4440 4441

	/*
	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
	 * VMFail, like everything else we just need to ensure our
	 * software model is up-to-date.
	 */
4442
	if (enable_ept && is_pae_paging(vcpu))
4443
		ept_save_pdptrs(vcpu);
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486

	kvm_mmu_reset_context(vcpu);

	/*
	 * This nasty bit of open coding is a compromise between blindly
	 * loading L1's MSRs using the exit load lists (incorrect emulation
	 * of VMFail), leaving the nested VM's MSRs in the software model
	 * (incorrect behavior) and snapshotting the modified MSRs (too
	 * expensive since the lists are unbound by hardware).  For each
	 * MSR that was (prematurely) loaded from the nested VMEntry load
	 * list, reload it from the exit load list if it exists and differs
	 * from the guest value.  The intent is to stuff host state as
	 * silently as possible, not to fully process the exit load list.
	 */
	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
			pr_debug_ratelimited(
				"%s read MSR index failed (%u, 0x%08llx)\n",
				__func__, i, gpa);
			goto vmabort;
		}

		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
				pr_debug_ratelimited(
					"%s read MSR failed (%u, 0x%08llx)\n",
					__func__, j, gpa);
				goto vmabort;
			}
			if (h.index != g.index)
				continue;
			if (h.value == g.value)
				break;

			if (nested_vmx_load_msr_check(vcpu, &h)) {
				pr_debug_ratelimited(
					"%s check failed (%u, 0x%x, 0x%x)\n",
					__func__, j, h.index, h.reserved);
				goto vmabort;
			}

4487
			if (kvm_set_msr(vcpu, h.index, h.value)) {
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
				pr_debug_ratelimited(
					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
					__func__, j, h.index, h.value);
				goto vmabort;
			}
		}
	}

	return;

vmabort:
	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}

/*
 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 * and modify vmcs12 to make it see what it would expect to see there if
 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 */
4507
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4508 4509 4510 4511 4512 4513 4514 4515
		       u32 exit_intr_info, unsigned long exit_qualification)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

	/* trying to cancel vmlaunch/vmresume is a bug */
	WARN_ON_ONCE(vmx->nested.nested_run_pending);

4516 4517 4518
	/* Similarly, triple faults in L2 should never escape. */
	WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));

4519 4520 4521 4522 4523 4524 4525 4526 4527
	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
		/*
		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
		 * Enlightened VMCS after migration and we still need to
		 * do that when something is forcing L2->L1 exit prior to
		 * the first L2 run.
		 */
		(void)nested_get_evmcs_page(vcpu);
	}
4528

4529 4530
	/* Service pending TLB flush requests for L2 before switching to L1. */
	kvm_service_local_tlb_flush_requests(vcpu);
4531

4532 4533 4534 4535 4536 4537 4538 4539
	/*
	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
	 * up-to-date before switching to L1.
	 */
	if (enable_ept && is_pae_paging(vcpu))
		vmx_ept_load_pdptrs(vcpu);

4540 4541
	leave_guest_mode(vcpu);

4542 4543 4544
	if (nested_cpu_has_preemption_timer(vmcs12))
		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);

4545 4546 4547 4548 4549
	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
	}
4550 4551

	if (likely(!vmx->fail)) {
4552
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4553

4554 4555 4556
		if (vm_exit_reason != -1)
			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
				       exit_intr_info, exit_qualification);
4557 4558

		/*
4559
		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
		 * also be used to capture vmcs12 cache as part of
		 * capturing nVMX state for snapshot (migration).
		 *
		 * Otherwise, this flush will dirty guest memory at a
		 * point it is already assumed by user-space to be
		 * immutable.
		 */
		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
	} else {
		/*
		 * The only expected VM-instruction error is "VM entry with
		 * invalid control field(s)." Anything else indicates a
		 * problem with L0.  And we should never get here with a
		 * VMFail of any type if early consistency checks are enabled.
		 */
		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
		WARN_ON_ONCE(nested_early_check);
	}

	vmx_switch_vmcs(vcpu, &vmx->vmcs01);

	/* Update any VMCS fields that might have changed while L2 ran */
	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4586 4587 4588
	if (kvm_has_tsc_control)
		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);

4589 4590
	if (vmx->nested.l1_tpr_threshold != -1)
		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4591 4592 4593 4594 4595 4596

	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
		vmx->nested.change_vmcs01_virtual_apic_mode = false;
		vmx_set_virtual_apic_mode(vcpu);
	}

4597 4598 4599 4600 4601
	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
		vmx_update_cpu_dirty_logging(vcpu);
	}

4602 4603
	/* Unpin physical memory we referred to in vmcs02 */
	if (vmx->nested.apic_access_page) {
4604
		kvm_release_page_clean(vmx->nested.apic_access_page);
4605 4606
		vmx->nested.apic_access_page = NULL;
	}
4607
	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4608 4609
	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
	vmx->nested.pi_desc = NULL;
4610

4611 4612 4613 4614
	if (vmx->nested.reload_vmcs01_apic_access_page) {
		vmx->nested.reload_vmcs01_apic_access_page = false;
		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
	}
4615

4616
	if ((vm_exit_reason != -1) &&
4617
	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4618
		vmx->nested.need_vmcs12_to_shadow_sync = true;
4619 4620 4621 4622 4623

	/* in case we halted in L2 */
	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

	if (likely(!vmx->fail)) {
4624
		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4625
		    nested_exit_intr_ack_set(vcpu)) {
4626 4627 4628 4629 4630 4631
			int irq = kvm_cpu_get_interrupt(vcpu);
			WARN_ON(irq < 0);
			vmcs12->vm_exit_intr_info = irq |
				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
		}

4632
		if (vm_exit_reason != -1)
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
						       vmcs12->exit_qualification,
						       vmcs12->idt_vectoring_info_field,
						       vmcs12->vm_exit_intr_info,
						       vmcs12->vm_exit_intr_error_code,
						       KVM_ISA_VMX);

		load_vmcs12_host_state(vcpu, vmcs12);

		return;
	}

	/*
	 * After an early L2 VM-entry failure, we're now back
	 * in L1 which thinks it just finished a VMLAUNCH or
	 * VMRESUME instruction, so we need to set the failure
	 * flag and the VM-instruction error field of the VMCS
	 * accordingly, and skip the emulated instruction.
	 */
4652
	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664

	/*
	 * Restore L1's host state to KVM's software model.  We're here
	 * because a consistency check was caught by hardware, which
	 * means some amount of guest state has been propagated to KVM's
	 * model and needs to be unwound to the host's state.
	 */
	nested_vmx_restore_host_state(vcpu);

	vmx->fail = 0;
}

4665 4666 4667 4668 4669
static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
{
	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
}

4670 4671 4672 4673
/*
 * Decode the memory-address operand of a vmx instruction, as recorded on an
 * exit caused by such an instruction (run by a guest hypervisor).
 * On success, returns 0. When the operand is invalid, returns 1 and throws
M
Miaohe Lin 已提交
4674
 * #UD, #GP, or #SS.
4675 4676
 */
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4677
			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
{
	gva_t off;
	bool exn;
	struct kvm_segment s;

	/*
	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
	 * Execution", on an exit, vmx_instruction_info holds most of the
	 * addressing components of the operand. Only the displacement part
	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
	 * For how an actual address is calculated from all these components,
	 * refer to Vol. 1, "Operand Addressing".
	 */
	int  scaling = vmx_instruction_info & 3;
	int  addr_size = (vmx_instruction_info >> 7) & 7;
	bool is_reg = vmx_instruction_info & (1u << 10);
	int  seg_reg = (vmx_instruction_info >> 15) & 7;
	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));

	if (is_reg) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* Addr = segment_base + offset */
	/* offset = base + [index * scale] + displacement */
	off = exit_qualification; /* holds the displacement */
4708 4709 4710 4711
	if (addr_size == 1)
		off = (gva_t)sign_extend64(off, 31);
	else if (addr_size == 0)
		off = (gva_t)sign_extend64(off, 15);
4712 4713 4714
	if (base_is_valid)
		off += kvm_register_read(vcpu, base_reg);
	if (index_is_valid)
4715
		off += kvm_register_read(vcpu, index_reg) << scaling;
4716 4717
	vmx_get_segment(vcpu, &s, seg_reg);

4718 4719 4720 4721 4722 4723
	/*
	 * The effective address, i.e. @off, of a memory operand is truncated
	 * based on the address size of the instruction.  Note that this is
	 * the *effective address*, i.e. the address prior to accounting for
	 * the segment's base.
	 */
4724
	if (addr_size == 1) /* 32 bit */
4725 4726 4727
		off &= 0xffffffff;
	else if (addr_size == 0) /* 16 bit */
		off &= 0xffff;
4728 4729 4730 4731

	/* Checks for #GP/#SS exceptions. */
	exn = false;
	if (is_long_mode(vcpu)) {
4732 4733 4734 4735 4736
		/*
		 * The virtual/linear address is never truncated in 64-bit
		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
		 * address when using FS/GS with a non-zero base.
		 */
4737 4738 4739 4740
		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
			*ret = s.base + off;
		else
			*ret = off;
4741

4742 4743 4744 4745 4746
		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
		 * non-canonical form. This is the only check on the memory
		 * destination for long mode!
		 */
		exn = is_noncanonical_address(*ret, vcpu);
4747
	} else {
4748 4749 4750 4751 4752 4753 4754
		/*
		 * When not in long mode, the virtual/linear address is
		 * unconditionally truncated to 32 bits regardless of the
		 * address size.
		 */
		*ret = (s.base + off) & 0xffffffff;

4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
		/* Protected mode: apply checks for segment validity in the
		 * following order:
		 * - segment type check (#GP(0) may be thrown)
		 * - usability check (#GP(0)/#SS(0))
		 * - limit check (#GP(0)/#SS(0))
		 */
		if (wr)
			/* #GP(0) if the destination operand is located in a
			 * read-only data segment or any code segment.
			 */
			exn = ((s.type & 0xa) == 0 || (s.type & 8));
		else
			/* #GP(0) if the source operand is located in an
			 * execute-only code segment
			 */
			exn = ((s.type & 0xa) == 8);
		if (exn) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
		 */
		exn = (s.unusable != 0);
4778 4779 4780 4781 4782 4783

		/*
		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
		 * outside the segment limit.  All CPUs that support VMX ignore
		 * limit checks for flat segments, i.e. segments with base==0,
		 * limit==0xffffffff and of type expand-up data or code.
4784
		 */
4785 4786
		if (!(s.base == 0 && s.limit == 0xffffffff &&
		     ((s.type & 8) || !(s.type & 4))))
4787
			exn = exn || ((u64)off + len - 1 > s.limit);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	}
	if (exn) {
		kvm_queue_exception_e(vcpu,
				      seg_reg == VCPU_SREG_SS ?
						SS_VECTOR : GP_VECTOR,
				      0);
		return 1;
	}

	return 0;
}

4800 4801 4802 4803 4804 4805 4806 4807
void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx;

	if (!nested_vmx_allowed(vcpu))
		return;

	vmx = to_vmx(vcpu);
4808
	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4809 4810 4811 4812 4813 4814 4815 4816
		vmx->nested.msrs.entry_ctls_high |=
				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
		vmx->nested.msrs.exit_ctls_high |=
				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
	} else {
		vmx->nested.msrs.entry_ctls_high &=
				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
		vmx->nested.msrs.exit_ctls_high &=
4817
				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4818 4819 4820
	}
}

4821 4822
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
				int *ret)
4823 4824 4825
{
	gva_t gva;
	struct x86_exception e;
4826
	int r;
4827

4828
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4829
				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4830 4831 4832 4833
				sizeof(*vmpointer), &gva)) {
		*ret = 1;
		return -EINVAL;
	}
4834

4835 4836
	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
	if (r != X86EMUL_CONTINUE) {
4837
		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4838
		return -EINVAL;
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	}

	return 0;
}

/*
 * Allocate a shadow VMCS and associate it with the currently loaded
 * VMCS, unless such a shadow VMCS already exists. The newly allocated
 * VMCS is also VMCLEARed, so that it is ready for use.
 */
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;

	/*
4855 4856 4857 4858 4859 4860
	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
	 * when L1 executes VMXOFF or the vCPU is forced out of nested
	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
	 * should be impossible to already have an allocated shadow VMCS.  KVM
	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
	 * always be the loaded VMCS.
4861
	 */
4862 4863 4864 4865 4866 4867
	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
		return loaded_vmcs->shadow_vmcs;

	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
	if (loaded_vmcs->shadow_vmcs)
		vmcs_clear(loaded_vmcs->shadow_vmcs);
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

	return loaded_vmcs->shadow_vmcs;
}

static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	int r;

	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
	if (r < 0)
		goto out_vmcs02;

4881
	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4882 4883 4884
	if (!vmx->nested.cached_vmcs12)
		goto out_cached_vmcs12;

4885
	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4886
	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4887 4888 4889 4890 4891 4892 4893
	if (!vmx->nested.cached_shadow_vmcs12)
		goto out_cached_shadow_vmcs12;

	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
		goto out_shadow_vmcs;

	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4894
		     HRTIMER_MODE_ABS_PINNED);
4895 4896 4897 4898 4899 4900
	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;

	vmx->nested.vpid02 = allocate_vpid();

	vmx->nested.vmcs02_initialized = false;
	vmx->nested.vmxon = true;
4901

4902
	if (vmx_pt_mode_is_host_guest()) {
4903
		vmx->pt_desc.guest.ctl = 0;
4904
		pt_update_intercept_for_msr(vcpu);
4905 4906
	}

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
	return 0;

out_shadow_vmcs:
	kfree(vmx->nested.cached_shadow_vmcs12);

out_cached_shadow_vmcs12:
	kfree(vmx->nested.cached_vmcs12);

out_cached_vmcs12:
	free_loaded_vmcs(&vmx->nested.vmcs02);

out_vmcs02:
	return -ENOMEM;
}

4922
/* Emulate the VMXON instruction. */
4923 4924 4925 4926
static int handle_vmon(struct kvm_vcpu *vcpu)
{
	int ret;
	gpa_t vmptr;
4927
	uint32_t revision;
4928
	struct vcpu_vmx *vmx = to_vmx(vcpu);
4929 4930
	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4931 4932 4933 4934

	/*
	 * The Intel VMX Instruction Reference lists a bunch of bits that are
	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4935
	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
	 * Otherwise, we should fail with #UD.  But most faulting conditions
	 * have already been checked by hardware, prior to the VM-exit for
	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
	 * that bit set to 1 in non-root mode.
	 */
	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	/* CPL=0 must be checked manually. */
	if (vmx_get_cpl(vcpu)) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

	if (vmx->nested.vmxon)
4953
		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4954 4955 4956 4957 4958 4959 4960

	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
			!= VMXON_NEEDED_FEATURES) {
		kvm_inject_gp(vcpu, 0);
		return 1;
	}

4961 4962
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
		return ret;
4963 4964 4965 4966 4967 4968 4969 4970 4971

	/*
	 * SDM 3: 24.11.5
	 * The first 4 bytes of VMXON region contain the supported
	 * VMCS revision identifier
	 *
	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
	 * which replaces physical address width with 32
	 */
4972
	if (!page_address_valid(vcpu, vmptr))
4973 4974
		return nested_vmx_failInvalid(vcpu);

4975 4976
	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
	    revision != VMCS12_REVISION)
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
		return nested_vmx_failInvalid(vcpu);

	vmx->nested.vmxon_ptr = vmptr;
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

	return nested_vmx_succeed(vcpu);
}

static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);

4991
	if (vmx->nested.current_vmptr == INVALID_GPA)
4992 4993
		return;

4994 4995
	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));

4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
	if (enable_shadow_vmcs) {
		/* copy to memory all shadowed fields in case
		   they were modified */
		copy_shadow_to_vmcs12(vmx);
		vmx_disable_shadow_vmcs(vmx);
	}
	vmx->nested.posted_intr_nv = -1;

	/* Flush VMCS12 to guest memory */
	kvm_vcpu_write_guest_page(vcpu,
				  vmx->nested.current_vmptr >> PAGE_SHIFT,
				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);

	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);

5011
	vmx->nested.current_vmptr = INVALID_GPA;
5012 5013 5014 5015 5016 5017 5018
}

/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
	if (!nested_vmx_check_permission(vcpu))
		return 1;
5019

5020
	free_nested(vcpu);
5021 5022 5023 5024

	/* Process a latched INIT during time CPU was in VMX operation */
	kvm_make_request(KVM_REQ_EVENT, vcpu);

5025 5026 5027 5028 5029 5030 5031 5032 5033
	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 zero = 0;
	gpa_t vmptr;
5034
	u64 evmcs_gpa;
5035
	int r;
5036 5037 5038 5039

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5040 5041
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
		return r;
5042

5043
	if (!page_address_valid(vcpu, vmptr))
5044
		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5045 5046

	if (vmptr == vmx->nested.vmxon_ptr)
5047
		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5048

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	/*
	 * When Enlightened VMEntry is enabled on the calling CPU we treat
	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
	 * way to distinguish it from VMCS12) and we must not corrupt it by
	 * writing to the non-existent 'launch_state' field. The area doesn't
	 * have to be the currently active EVMCS on the calling CPU and there's
	 * nothing KVM has to do to transition it from 'active' to 'non-active'
	 * state. It is possible that the area will stay mapped as
	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
	 */
	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5061 5062 5063 5064 5065 5066 5067
		if (vmptr == vmx->nested.current_vmptr)
			nested_release_vmcs12(vcpu);

		kvm_vcpu_write_guest(vcpu,
				     vmptr + offsetof(struct vmcs12,
						      launch_state),
				     &zero, sizeof(zero));
5068 5069
	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
		nested_release_evmcs(vcpu);
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
	return nested_vmx_run(vcpu, true);
}

/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{

	return nested_vmx_run(vcpu, false);
}

static int handle_vmread(struct kvm_vcpu *vcpu)
{
5090 5091
	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
						    : get_vmcs12(vcpu);
5092
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5093 5094
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
5095
	struct x86_exception e;
5096 5097 5098
	unsigned long field;
	u64 value;
	gva_t gva = 0;
5099
	short offset;
5100
	int len, r;
5101 5102 5103 5104 5105

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	/* Decode instruction info and find the field to read */
5106
	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5107

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
		/*
		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
		 * any VMREAD sets the ALU flags for VMfailInvalid.
		 */
		if (vmx->nested.current_vmptr == INVALID_GPA ||
		    (is_guest_mode(vcpu) &&
		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
			return nested_vmx_failInvalid(vcpu);

		offset = get_vmcs12_field_offset(field);
		if (offset < 0)
			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5121

5122 5123
		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5124

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		/* Read the field, zero-extended to a u64 value */
		value = vmcs12_read_any(vmcs12, field, offset);
	} else {
		/*
		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
		 * unsupported. Unfortunately, certain versions of Windows 11
		 * don't comply with this requirement which is not enforced in
		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
		 * workaround, as misbehaving guests will panic on VM-Fail.
		 * Note, enlightened VMCS is incompatible with shadow VMCS so
		 * all VMREADs from L2 should go to L1.
		 */
		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
			return nested_vmx_failInvalid(vcpu);

		offset = evmcs_field_offset(field, NULL);
		if (offset < 0)
			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);

		/* Read the field, zero-extended to a u64 value */
		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
	}
5148

5149 5150 5151 5152 5153
	/*
	 * Now copy part of this value to register or memory, as requested.
	 * Note that the number of bits actually copied is 32 or 64 depending
	 * on the guest's mode (32 or 64 bit), not on the given field's length.
	 */
5154
	if (instr_info & BIT(10)) {
5155
		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5156
	} else {
5157
		len = is_64_bit_mode(vcpu) ? 8 : 4;
5158
		if (get_vmx_mem_address(vcpu, exit_qualification,
5159
					instr_info, true, len, &gva))
5160 5161
			return 1;
		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5162 5163
		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
		if (r != X86EMUL_CONTINUE)
5164
			return kvm_handle_memory_failure(vcpu, r, &e);
5165 5166 5167 5168 5169
	}

	return nested_vmx_succeed(vcpu);
}

5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
static bool is_shadow_field_rw(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RW(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}

static bool is_shadow_field_ro(unsigned long field)
{
	switch (field) {
#define SHADOW_FIELD_RO(x, y) case x:
#include "vmcs_shadow_fields.h"
		return true;
	default:
		break;
	}
	return false;
}
5193 5194 5195

static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
5196 5197
	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
						    : get_vmcs12(vcpu);
5198
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5199 5200 5201
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct x86_exception e;
5202
	unsigned long field;
5203
	short offset;
5204
	gva_t gva;
5205
	int len, r;
5206

5207 5208
	/*
	 * The value to write might be 32 or 64 bits, depending on L1's long
5209 5210
	 * mode, and eventually we need to write that into a field of several
	 * possible lengths. The code below first zero-extends the value to 64
5211
	 * bit (value), and then copies only the appropriate number of
5212 5213
	 * bits into the vmcs12 field.
	 */
5214
	u64 value = 0;
5215 5216 5217 5218

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5219
	/*
5220
	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5221 5222
	 * any VMWRITE sets the ALU flags for VMfailInvalid.
	 */
5223
	if (vmx->nested.current_vmptr == INVALID_GPA ||
5224
	    (is_guest_mode(vcpu) &&
5225
	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5226 5227
		return nested_vmx_failInvalid(vcpu);

5228
	if (instr_info & BIT(10))
5229
		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5230
	else {
5231
		len = is_64_bit_mode(vcpu) ? 8 : 4;
5232
		if (get_vmx_mem_address(vcpu, exit_qualification,
5233
					instr_info, false, len, &gva))
5234
			return 1;
5235 5236
		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
		if (r != X86EMUL_CONTINUE)
5237
			return kvm_handle_memory_failure(vcpu, r, &e);
5238 5239
	}

5240
	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5241

5242
	offset = get_vmcs12_field_offset(field);
5243
	if (offset < 0)
5244
		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5245 5246 5247 5248 5249 5250 5251

	/*
	 * If the vCPU supports "VMWRITE to any supported field in the
	 * VMCS," then the "read-only" fields are actually read/write.
	 */
	if (vmcs_field_readonly(field) &&
	    !nested_cpu_has_vmwrite_any_field(vcpu))
5252
		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5253

5254 5255 5256 5257 5258 5259
	/*
	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
	 * vmcs12, else we may crush a field or consume a stale value.
	 */
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5260 5261

	/*
5262 5263 5264 5265 5266 5267
	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
	 * from L1 will return a different value than VMREAD from L2 (L1 sees
	 * the stripped down value, L2 sees the full value as stored by KVM).
5268
	 */
5269
	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5270
		value &= 0x1f0ff;
5271

5272
	vmcs12_write_any(vmcs12, field, offset, value);
5273 5274

	/*
5275 5276 5277 5278
	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5279
	 */
5280 5281 5282 5283 5284 5285 5286 5287
	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
		/*
		 * L1 can read these fields without exiting, ensure the
		 * shadow VMCS is up-to-date.
		 */
		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
			preempt_disable();
			vmcs_load(vmx->vmcs01.shadow_vmcs);
5288

5289
			__vmcs_writel(field, value);
5290

5291 5292 5293
			vmcs_clear(vmx->vmcs01.shadow_vmcs);
			vmcs_load(vmx->loaded_vmcs->vmcs);
			preempt_enable();
5294
		}
5295
		vmx->nested.dirty_vmcs12 = true;
5296 5297 5298 5299 5300 5301 5302 5303 5304
	}

	return nested_vmx_succeed(vcpu);
}

static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
	vmx->nested.current_vmptr = vmptr;
	if (enable_shadow_vmcs) {
5305
		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5306 5307
		vmcs_write64(VMCS_LINK_POINTER,
			     __pa(vmx->vmcs01.shadow_vmcs));
5308
		vmx->nested.need_vmcs12_to_shadow_sync = true;
5309 5310
	}
	vmx->nested.dirty_vmcs12 = true;
5311
	vmx->nested.force_msr_bitmap_recalc = true;
5312 5313 5314 5315 5316 5317 5318
}

/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	gpa_t vmptr;
5319
	int r;
5320 5321 5322 5323

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5324 5325
	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
		return r;
5326

5327
	if (!page_address_valid(vcpu, vmptr))
5328
		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5329 5330

	if (vmptr == vmx->nested.vmxon_ptr)
5331
		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5332 5333

	/* Forbid normal VMPTRLD if Enlightened version was used */
5334
	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5335 5336 5337
		return 1;

	if (vmx->nested.current_vmptr != vmptr) {
5338 5339
		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
		struct vmcs_hdr hdr;
5340

5341
		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5342 5343 5344 5345 5346 5347
			/*
			 * Reads from an unbacked page return all 1s,
			 * which means that the 32 bits located at the
			 * given physical address won't match the required
			 * VMCS12_REVISION identifier.
			 */
5348
			return nested_vmx_fail(vcpu,
5349 5350
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5351

5352 5353 5354 5355 5356 5357
		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
						 offsetof(struct vmcs12, hdr),
						 sizeof(hdr))) {
			return nested_vmx_fail(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5358

5359 5360
		if (hdr.revision_id != VMCS12_REVISION ||
		    (hdr.shadow_vmcs &&
5361
		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5362
			return nested_vmx_fail(vcpu,
5363 5364 5365 5366 5367 5368 5369 5370 5371
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}

		nested_release_vmcs12(vcpu);

		/*
		 * Load VMCS12 from guest memory since it is not already
		 * cached.
		 */
5372 5373 5374 5375 5376
		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
					  VMCS12_SIZE)) {
			return nested_vmx_fail(vcpu,
				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
		}
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386

		set_current_vmptr(vmx, vmptr);
	}

	return nested_vmx_succeed(vcpu);
}

/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
5387
	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5388 5389 5390 5391
	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
	struct x86_exception e;
	gva_t gva;
5392
	int r;
5393 5394 5395 5396

	if (!nested_vmx_check_permission(vcpu))
		return 1;

5397
	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5398 5399
		return 1;

5400 5401
	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
				true, sizeof(gpa_t), &gva))
5402 5403
		return 1;
	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5404 5405 5406
	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
					sizeof(gpa_t), &e);
	if (r != X86EMUL_CONTINUE)
5407
		return kvm_handle_memory_failure(vcpu, r, &e);
5408

5409 5410 5411 5412 5413 5414 5415 5416
	return nested_vmx_succeed(vcpu);
}

/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info, types;
5417 5418
	unsigned long type, roots_to_free;
	struct kvm_mmu *mmu;
5419 5420 5421 5422 5423
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 eptp, gpa;
	} operand;
5424
	int i, r, gpr_index;
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_EPT) ||
	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5437 5438
	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
	type = kvm_register_read(vcpu, gpr_index);
5439 5440 5441 5442

	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;

	if (type >= 32 || !(types & (1 << type)))
5443
		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5444 5445 5446 5447

	/* According to the Intel VMX instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
5448
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5449
			vmx_instruction_info, false, sizeof(operand), &gva))
5450
		return 1;
5451 5452
	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
	if (r != X86EMUL_CONTINUE)
5453
		return kvm_handle_memory_failure(vcpu, r, &e);
5454

5455 5456 5457 5458 5459 5460
	/*
	 * Nested EPT roots are always held through guest_mmu,
	 * not root_mmu.
	 */
	mmu = &vcpu->arch.guest_mmu;

5461
	switch (type) {
5462
	case VMX_EPT_EXTENT_CONTEXT:
5463
		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5464
			return nested_vmx_fail(vcpu,
5465
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5466

5467
		roots_to_free = 0;
5468
		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5469 5470 5471 5472 5473
					    operand.eptp))
			roots_to_free |= KVM_MMU_ROOT_CURRENT;

		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5474
						    mmu->prev_roots[i].pgd,
5475 5476 5477 5478
						    operand.eptp))
				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
		}
		break;
5479
	case VMX_EPT_EXTENT_GLOBAL:
5480
		roots_to_free = KVM_MMU_ROOTS_ALL;
5481 5482
		break;
	default:
5483
		BUG();
5484 5485 5486
		break;
	}

5487 5488 5489
	if (roots_to_free)
		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	return nested_vmx_succeed(vcpu);
}

static int handle_invvpid(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	u32 vmx_instruction_info;
	unsigned long type, types;
	gva_t gva;
	struct x86_exception e;
	struct {
		u64 vpid;
		u64 gla;
	} operand;
	u16 vpid02;
5505
	int r, gpr_index;
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517

	if (!(vmx->nested.msrs.secondary_ctls_high &
	      SECONDARY_EXEC_ENABLE_VPID) ||
			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	if (!nested_vmx_check_permission(vcpu))
		return 1;

	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5518 5519
	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
	type = kvm_register_read(vcpu, gpr_index);
5520 5521 5522 5523 5524

	types = (vmx->nested.msrs.vpid_caps &
			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;

	if (type >= 32 || !(types & (1 << type)))
5525
		return nested_vmx_fail(vcpu,
5526 5527 5528 5529 5530
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	/* according to the intel vmx instruction reference, the memory
	 * operand is read even if it isn't needed (e.g., for type==global)
	 */
5531
	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5532
			vmx_instruction_info, false, sizeof(operand), &gva))
5533
		return 1;
5534 5535
	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
	if (r != X86EMUL_CONTINUE)
5536
		return kvm_handle_memory_failure(vcpu, r, &e);
5537

5538
	if (operand.vpid >> 16)
5539
		return nested_vmx_fail(vcpu,
5540 5541 5542 5543 5544 5545 5546
			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);

	vpid02 = nested_get_vpid02(vcpu);
	switch (type) {
	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
		if (!operand.vpid ||
		    is_noncanonical_address(operand.gla, vcpu))
5547
			return nested_vmx_fail(vcpu,
5548
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5549
		vpid_sync_vcpu_addr(vpid02, operand.gla);
5550 5551 5552 5553
		break;
	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
		if (!operand.vpid)
5554
			return nested_vmx_fail(vcpu,
5555
				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5556
		vpid_sync_context(vpid02);
5557 5558
		break;
	case VMX_VPID_EXTENT_ALL_CONTEXT:
5559
		vpid_sync_context(vpid02);
5560 5561 5562 5563 5564 5565
		break;
	default:
		WARN_ON_ONCE(1);
		return kvm_skip_emulated_instruction(vcpu);
	}

5566 5567
	/*
	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5568 5569
	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
	 * roots as VPIDs are not tracked in the MMU role.
5570 5571 5572 5573 5574 5575 5576
	 *
	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
	 * an MMU when EPT is disabled.
	 *
	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
	 */
	if (!enable_ept)
5577
		kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5578

5579 5580 5581 5582 5583 5584
	return nested_vmx_succeed(vcpu);
}

static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
				     struct vmcs12 *vmcs12)
{
5585
	u32 index = kvm_rcx_read(vcpu);
5586
	u64 new_eptp;
5587

5588
	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5589 5590 5591 5592 5593
		return 1;
	if (index >= VMFUNC_EPTP_ENTRIES)
		return 1;

	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5594
				     &new_eptp, index * 8, 8))
5595 5596 5597 5598 5599 5600
		return 1;

	/*
	 * If the (L2) guest does a vmfunc to the currently
	 * active ept pointer, we don't have to do anything else
	 */
5601 5602
	if (vmcs12->ept_pointer != new_eptp) {
		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5603 5604
			return 1;

5605
		vmcs12->ept_pointer = new_eptp;
5606
		nested_ept_new_eptp(vcpu);
5607

5608 5609
		if (!nested_cpu_has_vpid(vmcs12))
			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5610 5611 5612 5613 5614 5615 5616 5617 5618
	}

	return 0;
}

static int handle_vmfunc(struct kvm_vcpu *vcpu)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
5619
	u32 function = kvm_rax_read(vcpu);
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

	/*
	 * VMFUNC is only supported for nested guests, but we always enable the
	 * secondary control for simplicity; for non-nested mode, fake that we
	 * didn't by injecting #UD.
	 */
	if (!is_guest_mode(vcpu)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

	vmcs12 = get_vmcs12(vcpu);
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

	/*
	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
	 */
	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

5642
	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
		goto fail;

	switch (function) {
	case 0:
		if (nested_vmx_eptp_switching(vcpu, vmcs12))
			goto fail;
		break;
	default:
		goto fail;
	}
	return kvm_skip_emulated_instruction(vcpu);

fail:
5656 5657 5658 5659 5660 5661
	/*
	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
	 * EXIT_REASON_VMFUNC as the exit reason.
	 */
	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5662
			  vmx_get_intr_info(vcpu),
5663
			  vmx_get_exit_qual(vcpu));
5664 5665 5666
	return 1;
}

5667 5668 5669 5670 5671 5672
/*
 * Return true if an IO instruction with the specified port and size should cause
 * a VM-exit into L1.
 */
bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
				 int size)
5673
{
5674
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5675 5676 5677
	gpa_t bitmap, last_bitmap;
	u8 b;

5678
	last_bitmap = INVALID_GPA;
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
	b = -1;

	while (size > 0) {
		if (port < 0x8000)
			bitmap = vmcs12->io_bitmap_a;
		else if (port < 0x10000)
			bitmap = vmcs12->io_bitmap_b;
		else
			return true;
		bitmap += (port & 0x7fff) / 8;

		if (last_bitmap != bitmap)
			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
				return true;
		if (b & (1 << (port & 7)))
			return true;

		port++;
		size--;
		last_bitmap = bitmap;
	}

	return false;
}

5704 5705 5706 5707
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
				       struct vmcs12 *vmcs12)
{
	unsigned long exit_qualification;
5708
	unsigned short port;
5709 5710 5711 5712 5713
	int size;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);

5714
	exit_qualification = vmx_get_exit_qual(vcpu);
5715 5716 5717 5718 5719 5720 5721

	port = exit_qualification >> 16;
	size = (exit_qualification & 7) + 1;

	return nested_vmx_check_io_bitmaps(vcpu, port, size);
}

5722
/*
5723
 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5724 5725 5726 5727 5728
 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 * disinterest in the current event (read or write a specific MSR) by using an
 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 */
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5729 5730
					struct vmcs12 *vmcs12,
					union vmx_exit_reason exit_reason)
5731
{
5732
	u32 msr_index = kvm_rcx_read(vcpu);
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
	gpa_t bitmap;

	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
		return true;

	/*
	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
	 * for the four combinations of read/write and low/high MSR numbers.
	 * First we need to figure out which of the four to use:
	 */
	bitmap = vmcs12->msr_bitmap;
5744
	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
		bitmap += 2048;
	if (msr_index >= 0xc0000000) {
		msr_index -= 0xc0000000;
		bitmap += 1024;
	}

	/* Then read the msr_index'th bit from this bitmap: */
	if (msr_index < 1024*8) {
		unsigned char b;
		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
			return true;
		return 1 & (b >> (msr_index & 7));
	} else
		return true; /* let L1 handle the wrong parameter */
}

/*
 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 * intercept (via guest_host_mask etc.) the current event.
 */
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12)
{
5769
	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5770 5771 5772 5773 5774 5775 5776
	int cr = exit_qualification & 15;
	int reg;
	unsigned long val;

	switch ((exit_qualification >> 4) & 3) {
	case 0: /* mov to cr */
		reg = (exit_qualification >> 8) & 15;
5777
		val = kvm_register_read(vcpu, reg);
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
		switch (cr) {
		case 0:
			if (vmcs12->cr0_guest_host_mask &
			    (val ^ vmcs12->cr0_read_shadow))
				return true;
			break;
		case 3:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
				return true;
			break;
		case 4:
			if (vmcs12->cr4_guest_host_mask &
			    (vmcs12->cr4_read_shadow ^ val))
				return true;
			break;
		case 8:
			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
				return true;
			break;
		}
		break;
	case 2: /* clts */
		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
			return true;
		break;
	case 1: /* mov from cr */
		switch (cr) {
		case 3:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR3_STORE_EXITING)
				return true;
			break;
		case 8:
			if (vmcs12->cpu_based_vm_exec_control &
			    CPU_BASED_CR8_STORE_EXITING)
				return true;
			break;
		}
		break;
	case 3: /* lmsw */
		/*
		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
		 * cr0. Other attempted changes are ignored, with no exit.
		 */
		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
		if (vmcs12->cr0_guest_host_mask & 0xe &
		    (val ^ vmcs12->cr0_read_shadow))
			return true;
		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
		    !(vmcs12->cr0_read_shadow & 0x1) &&
		    (val & 0x1))
			return true;
		break;
	}
	return false;
}

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
					  struct vmcs12 *vmcs12)
{
	u32 encls_leaf;

	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
		return false;

	encls_leaf = kvm_rax_read(vcpu);
	if (encls_leaf > 62)
		encls_leaf = 63;
	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
}

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
	struct vmcs12 *vmcs12, gpa_t bitmap)
{
	u32 vmx_instruction_info;
	unsigned long field;
	u8 b;

	if (!nested_cpu_has_shadow_vmcs(vmcs12))
		return true;

	/* Decode instruction info and find the field to access */
	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));

	/* Out-of-range fields always cause a VM exit from L2 to L1 */
	if (field >> 15)
		return true;

	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
		return true;

	return 1 & (b >> (field & 7));
}

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
{
	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;

	if (nested_cpu_has_mtf(vmcs12))
		return true;

	/*
	 * An MTF VM-exit may be injected into the guest by setting the
	 * interruption-type to 7 (other event) and the vector field to 0. Such
	 * is the case regardless of the 'monitor trap flag' VM-execution
	 * control.
	 */
	return entry_intr_info == (INTR_INFO_VALID_MASK
				   | INTR_TYPE_OTHER_EVENT);
}

5892
/*
5893 5894
 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
 * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5895
 */
5896 5897
static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
				     union vmx_exit_reason exit_reason)
5898
{
5899
	u32 intr_info;
5900

5901
	switch ((u16)exit_reason.basic) {
5902
	case EXIT_REASON_EXCEPTION_NMI:
5903
		intr_info = vmx_get_intr_info(vcpu);
5904
		if (is_nmi(intr_info))
5905
			return true;
5906
		else if (is_page_fault(intr_info))
5907 5908
			return vcpu->arch.apf.host_apf_flags ||
			       vmx_need_pf_intercept(vcpu);
5909 5910 5911
		else if (is_debug(intr_info) &&
			 vcpu->guest_debug &
			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5912
			return true;
5913 5914
		else if (is_breakpoint(intr_info) &&
			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5915
			return true;
5916 5917 5918
		else if (is_alignment_check(intr_info) &&
			 !vmx_guest_inject_ac(vcpu))
			return true;
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
		return false;
	case EXIT_REASON_EXTERNAL_INTERRUPT:
		return true;
	case EXIT_REASON_MCE_DURING_VMENTRY:
		return true;
	case EXIT_REASON_EPT_VIOLATION:
		/*
		 * L0 always deals with the EPT violation. If nested EPT is
		 * used, and the nested mmu code discovers that the address is
		 * missing in the guest EPT table (EPT12), the EPT violation
		 * will be injected with nested_ept_inject_page_fault()
		 */
		return true;
	case EXIT_REASON_EPT_MISCONFIG:
		/*
		 * L2 never uses directly L1's EPT, but rather L0's own EPT
		 * table (shadow on EPT) or a merged EPT table that L0 built
		 * (EPT on EPT). So any problems with the structure of the
		 * table is L0's fault.
		 */
		return true;
	case EXIT_REASON_PREEMPTION_TIMER:
		return true;
	case EXIT_REASON_PML_FULL:
5943 5944 5945 5946
		/*
		 * PML is emulated for an L1 VMM and should never be enabled in
		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
		 */
5947 5948 5949 5950
		return true;
	case EXIT_REASON_VMFUNC:
		/* VM functions are emulated through L2->L0 vmexits. */
		return true;
5951 5952 5953 5954 5955 5956
	case EXIT_REASON_BUS_LOCK:
		/*
		 * At present, bus lock VM exit is never exposed to L1.
		 * Handle L2's bus locks in L0 directly.
		 */
		return true;
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
	default:
		break;
	}
	return false;
}

/*
 * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
 * is_guest_mode (L2).
 */
5967 5968
static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
				     union vmx_exit_reason exit_reason)
5969 5970
{
	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5971
	u32 intr_info;
5972

5973
	switch ((u16)exit_reason.basic) {
5974
	case EXIT_REASON_EXCEPTION_NMI:
5975
		intr_info = vmx_get_intr_info(vcpu);
5976 5977 5978 5979
		if (is_nmi(intr_info))
			return true;
		else if (is_page_fault(intr_info))
			return true;
5980 5981 5982
		return vmcs12->exception_bitmap &
				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
	case EXIT_REASON_EXTERNAL_INTERRUPT:
5983
		return nested_exit_on_intr(vcpu);
5984 5985
	case EXIT_REASON_TRIPLE_FAULT:
		return true;
5986 5987
	case EXIT_REASON_INTERRUPT_WINDOW:
		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5988
	case EXIT_REASON_NMI_WINDOW:
5989
		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
	case EXIT_REASON_TASK_SWITCH:
		return true;
	case EXIT_REASON_CPUID:
		return true;
	case EXIT_REASON_HLT:
		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
	case EXIT_REASON_INVD:
		return true;
	case EXIT_REASON_INVLPG:
		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_RDPMC:
		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
	case EXIT_REASON_RDRAND:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
	case EXIT_REASON_RDSEED:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
	case EXIT_REASON_VMREAD:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmread_bitmap);
	case EXIT_REASON_VMWRITE:
		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
			vmcs12->vmwrite_bitmap);
	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
		/*
		 * VMX instructions trap unconditionally. This allows L1 to
		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
		 */
		return true;
	case EXIT_REASON_CR_ACCESS:
		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
	case EXIT_REASON_DR_ACCESS:
		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
	case EXIT_REASON_IO_INSTRUCTION:
		return nested_vmx_exit_handled_io(vcpu, vmcs12);
	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
	case EXIT_REASON_INVALID_STATE:
		return true;
	case EXIT_REASON_MWAIT_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
	case EXIT_REASON_MONITOR_TRAP_FLAG:
6040
		return nested_vmx_exit_handled_mtf(vmcs12);
6041 6042 6043 6044 6045 6046 6047
	case EXIT_REASON_MONITOR_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
	case EXIT_REASON_PAUSE_INSTRUCTION:
		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
			nested_cpu_has2(vmcs12,
				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
	case EXIT_REASON_MCE_DURING_VMENTRY:
6048
		return true;
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
	case EXIT_REASON_TPR_BELOW_THRESHOLD:
		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
	case EXIT_REASON_APIC_ACCESS:
	case EXIT_REASON_APIC_WRITE:
	case EXIT_REASON_EOI_INDUCED:
		/*
		 * The controls for "virtualize APIC accesses," "APIC-
		 * register virtualization," and "virtual-interrupt
		 * delivery" only come from vmcs12.
		 */
		return true;
	case EXIT_REASON_INVPCID:
		return
			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
	case EXIT_REASON_WBINVD:
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
	case EXIT_REASON_XSETBV:
		return true;
	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
		/*
		 * This should never happen, since it is not possible to
		 * set XSS to a non-zero value---neither in L1 nor in L2.
		 * If if it were, XSS would have to be checked against
		 * the XSS exit bitmap in vmcs12.
		 */
		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6076 6077 6078 6079
	case EXIT_REASON_UMWAIT:
	case EXIT_REASON_TPAUSE:
		return nested_cpu_has2(vmcs12,
			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6080 6081
	case EXIT_REASON_ENCLS:
		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6082 6083 6084 6085 6086
	default:
		return true;
	}
}

6087 6088 6089 6090
/*
 * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
 * reflected into L1.
 */
6091
bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6092
{
6093
	struct vcpu_vmx *vmx = to_vmx(vcpu);
6094
	union vmx_exit_reason exit_reason = vmx->exit_reason;
6095 6096
	unsigned long exit_qual;
	u32 exit_intr_info;
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111

	WARN_ON_ONCE(vmx->nested.nested_run_pending);

	/*
	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
	 * has already loaded L2's state.
	 */
	if (unlikely(vmx->fail)) {
		trace_kvm_nested_vmenter_failed(
			"hardware VM-instruction error: ",
			vmcs_read32(VM_INSTRUCTION_ERROR));
		exit_intr_info = 0;
		exit_qual = 0;
		goto reflect_vmexit;
	}
6112

6113
	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6114

6115 6116 6117 6118 6119 6120
	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
		return false;

	/* If L1 doesn't want the exit, handle it in L0. */
	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6121 6122 6123
		return false;

	/*
6124 6125 6126 6127
	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
	 * need to be synthesized by querying the in-kernel LAPIC, but external
	 * interrupts are never reflected to L1 so it's a non-issue.
6128
	 */
6129
	exit_intr_info = vmx_get_intr_info(vcpu);
6130
	if (is_exception_with_error_code(exit_intr_info)) {
6131 6132 6133 6134 6135
		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);

		vmcs12->vm_exit_intr_error_code =
			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
	}
6136
	exit_qual = vmx_get_exit_qual(vcpu);
6137

6138
reflect_vmexit:
6139
	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6140 6141
	return true;
}
6142 6143 6144 6145 6146 6147 6148 6149 6150

static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				u32 user_data_size)
{
	struct vcpu_vmx *vmx;
	struct vmcs12 *vmcs12;
	struct kvm_nested_state kvm_state = {
		.flags = 0,
6151
		.format = KVM_STATE_NESTED_FORMAT_VMX,
6152
		.size = sizeof(kvm_state),
6153
		.hdr.vmx.flags = 0,
6154 6155
		.hdr.vmx.vmxon_pa = INVALID_GPA,
		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6156
		.hdr.vmx.preemption_timer_deadline = 0,
6157
	};
6158 6159
	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
		&user_kvm_nested_state->data.vmx[0];
6160 6161

	if (!vcpu)
6162
		return kvm_state.size + sizeof(*user_vmx_nested_state);
6163 6164 6165 6166 6167 6168

	vmx = to_vmx(vcpu);
	vmcs12 = get_vmcs12(vcpu);

	if (nested_vmx_allowed(vcpu) &&
	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6169 6170
		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6171 6172

		if (vmx_has_valid_vmcs12(vcpu)) {
6173
			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6174

6175 6176
			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6177 6178
				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;

6179 6180
			if (is_guest_mode(vcpu) &&
			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6181
			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6182
				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6183 6184 6185
		}

		if (vmx->nested.smm.vmxon)
6186
			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6187 6188

		if (vmx->nested.smm.guest_mode)
6189
			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6190 6191 6192 6193 6194 6195

		if (is_guest_mode(vcpu)) {
			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;

			if (vmx->nested.nested_run_pending)
				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6196 6197 6198

			if (vmx->nested.mtf_pending)
				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6199 6200 6201 6202 6203 6204 6205 6206

			if (nested_cpu_has_preemption_timer(vmcs12) &&
			    vmx->nested.has_preemption_timer_deadline) {
				kvm_state.hdr.vmx.flags |=
					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
				kvm_state.hdr.vmx.preemption_timer_deadline =
					vmx->nested.preemption_timer_deadline;
			}
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
		}
	}

	if (user_data_size < kvm_state.size)
		goto out;

	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
		return -EFAULT;

	if (!vmx_has_valid_vmcs12(vcpu))
		goto out;

	/*
	 * When running L2, the authoritative vmcs12 state is in the
	 * vmcs02. When running L1, the authoritative vmcs12 state is
	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6223
	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6224 6225 6226
	 * vmcs12 state is in the vmcs12 already.
	 */
	if (is_guest_mode(vcpu)) {
6227
		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6228
		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6229 6230 6231
	} else  {
		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6232
			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6233 6234 6235 6236 6237 6238 6239 6240
				/*
				 * L1 hypervisor is not obliged to keep eVMCS
				 * clean fields data always up-to-date while
				 * not in guest mode, 'hv_clean_fields' is only
				 * supposed to be actual upon vmentry so we need
				 * to ignore it here and do full copy.
				 */
				copy_enlightened_to_vmcs12(vmx, 0);
6241 6242 6243
			else if (enable_shadow_vmcs)
				copy_shadow_to_vmcs12(vmx);
		}
6244 6245
	}

6246 6247 6248
	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);

6249 6250 6251 6252
	/*
	 * Copy over the full allocated size of vmcs12 rather than just the size
	 * of the struct.
	 */
6253
	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6254 6255 6256
		return -EFAULT;

	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6257
	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6258
		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6259
				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
			return -EFAULT;
	}
out:
	return kvm_state.size;
}

/*
 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 */
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu)) {
		to_vmx(vcpu)->nested.nested_run_pending = 0;
		nested_vmx_vmexit(vcpu, -1, 0, 0);
	}
	free_nested(vcpu);
}

static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
				struct kvm_nested_state __user *user_kvm_nested_state,
				struct kvm_nested_state *kvm_state)
{
	struct vcpu_vmx *vmx = to_vmx(vcpu);
	struct vmcs12 *vmcs12;
6284
	enum vm_entry_failure_code ignored;
6285 6286
	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
		&user_kvm_nested_state->data.vmx[0];
6287 6288
	int ret;

6289
	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6290 6291
		return -EINVAL;

6292
	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6293
		if (kvm_state->hdr.vmx.smm.flags)
6294 6295
			return -EINVAL;

6296
		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6297 6298
			return -EINVAL;

6299 6300 6301 6302 6303 6304 6305 6306 6307
		/*
		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
		 * enable eVMCS capability on vCPU. However, since then
		 * code was changed such that flag signals vmcs12 should
		 * be copied into eVMCS in guest memory.
		 *
		 * To preserve backwards compatability, allow user
		 * to set this flag even when there is no VMXON region.
		 */
6308 6309 6310 6311 6312
		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
			return -EINVAL;
	} else {
		if (!nested_vmx_allowed(vcpu))
			return -EINVAL;
6313

6314 6315
		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
			return -EINVAL;
6316
	}
6317

6318
	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6319 6320 6321
	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return -EINVAL;

6322
	if (kvm_state->hdr.vmx.smm.flags &
6323 6324 6325
	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
		return -EINVAL;

6326 6327 6328
	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
		return -EINVAL;

6329 6330 6331 6332 6333
	/*
	 * SMM temporarily disables VMX, so we cannot be in guest mode,
	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
	 * must be zero.
	 */
6334 6335 6336 6337
	if (is_smm(vcpu) ?
		(kvm_state->flags &
		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
		: kvm_state->hdr.vmx.smm.flags)
6338 6339
		return -EINVAL;

6340 6341
	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6342 6343
		return -EINVAL;

6344 6345
	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6346
			return -EINVAL;
6347

6348
	vmx_leave_nested(vcpu);
6349

6350
	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6351
		return 0;
6352

6353
	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6354 6355 6356 6357
	ret = enter_vmx_operation(vcpu);
	if (ret)
		return ret;

6358 6359 6360 6361 6362
	/* Empty 'VMXON' state is permitted if no VMCS loaded */
	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
		/* See vmx_has_valid_vmcs12.  */
		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6363
		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6364 6365 6366 6367
			return -EINVAL;
		else
			return 0;
	}
6368

6369
	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6370 6371
		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6372 6373
			return -EINVAL;

6374
		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6375 6376
	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
		/*
6377 6378 6379 6380
		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
		 * restored yet. EVMCS will be mapped from
		 * nested_get_vmcs12_pages().
6381
		 */
6382
		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6383
		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6384 6385 6386 6387
	} else {
		return -EINVAL;
	}

6388
	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6389 6390 6391
		vmx->nested.smm.vmxon = true;
		vmx->nested.vmxon = false;

6392
		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6393 6394 6395 6396
			vmx->nested.smm.guest_mode = true;
	}

	vmcs12 = get_vmcs12(vcpu);
6397
	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6398 6399 6400 6401 6402 6403 6404 6405
		return -EFAULT;

	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
		return -EINVAL;

	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
		return 0;

6406 6407 6408
	vmx->nested.nested_run_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);

6409 6410 6411
	vmx->nested.mtf_pending =
		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);

6412
	ret = -EINVAL;
6413
	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6414
	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6415 6416
		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);

6417 6418 6419
		if (kvm_state->size <
		    sizeof(*kvm_state) +
		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6420
			goto error_guest_mode;
6421 6422

		if (copy_from_user(shadow_vmcs12,
6423 6424
				   user_vmx_nested_state->shadow_vmcs12,
				   sizeof(*shadow_vmcs12))) {
6425 6426 6427
			ret = -EFAULT;
			goto error_guest_mode;
		}
6428 6429 6430

		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
		    !shadow_vmcs12->hdr.shadow_vmcs)
6431
			goto error_guest_mode;
6432 6433
	}

6434
	vmx->nested.has_preemption_timer_deadline = false;
6435 6436 6437 6438 6439 6440
	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
		vmx->nested.has_preemption_timer_deadline = true;
		vmx->nested.preemption_timer_deadline =
			kvm_state->hdr.vmx.preemption_timer_deadline;
	}

6441 6442
	if (nested_vmx_check_controls(vcpu, vmcs12) ||
	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6443
	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6444
		goto error_guest_mode;
6445 6446

	vmx->nested.dirty_vmcs12 = true;
6447
	vmx->nested.force_msr_bitmap_recalc = true;
6448
	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6449 6450
	if (ret)
		goto error_guest_mode;
6451 6452

	return 0;
6453 6454 6455 6456

error_guest_mode:
	vmx->nested.nested_run_pending = 0;
	return ret;
6457 6458
}

6459
void nested_vmx_set_vmcs_shadowing_bitmap(void)
6460 6461 6462
{
	if (enable_shadow_vmcs) {
		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6463
		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6464 6465 6466
	}
}

6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
/*
 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
 * that madness to get the encoding for comparison.
 */
#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))

static u64 nested_vmx_calc_vmcs_enum_msr(void)
{
	/*
	 * Note these are the so called "index" of the VMCS field encoding, not
	 * the index into vmcs12.
	 */
	unsigned int max_idx, idx;
	int i;

	/*
	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
	 * vmcs12, regardless of whether or not the associated feature is
	 * exposed to L1.  Simply find the field with the highest index.
	 */
	max_idx = 0;
	for (i = 0; i < nr_vmcs12_fields; i++) {
		/* The vmcs12 table is very, very sparsely populated. */
6490
		if (!vmcs12_field_offsets[i])
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
			continue;

		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
		if (idx > max_idx)
			max_idx = idx;
	}

	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
}

6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
/*
 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 * returned for the various VMX controls MSRs when nested VMX is enabled.
 * The same values should also be used to verify that vmcs12 control fields are
 * valid during nested entry from L1 to L2.
 * Each of these control msrs has a low and high 32-bit half: A low bit is on
 * if the corresponding bit in the (32-bit) control field *must* be on, and a
 * bit in the high half is on if the corresponding bit in the control field
 * may be on. See also vmx_control_verify().
 */
6511
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
{
	/*
	 * Note that as a general rule, the high half of the MSRs (bits in
	 * the control fields which may be 1) should be initialized by the
	 * intersection of the underlying hardware's MSR (i.e., features which
	 * can be supported) and the list of features we want to expose -
	 * because they are known to be properly supported in our code.
	 * Also, usually, the low half of the MSRs (bits which must be 1) can
	 * be set to 0, meaning that L1 may turn off any of these bits. The
	 * reason is that if one of these bits is necessary, it will appear
	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6524
	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	 * These rules have exceptions below.
	 */

	/* pin-based controls */
	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
		msrs->pinbased_ctls_low,
		msrs->pinbased_ctls_high);
	msrs->pinbased_ctls_low |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->pinbased_ctls_high &=
		PIN_BASED_EXT_INTR_MASK |
		PIN_BASED_NMI_EXITING |
		PIN_BASED_VIRTUAL_NMIS |
6538
		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
	msrs->pinbased_ctls_high |=
		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		PIN_BASED_VMX_PREEMPTION_TIMER;

	/* exit controls */
	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
		msrs->exit_ctls_low,
		msrs->exit_ctls_high);
	msrs->exit_ctls_low =
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;

	msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
		VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
6554 6555
		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
	msrs->exit_ctls_high |=
		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;

	/* We support free control of debug control saving. */
	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;

	/* entry controls */
	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
		msrs->entry_ctls_low,
		msrs->entry_ctls_high);
	msrs->entry_ctls_low =
		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
		VM_ENTRY_IA32E_MODE |
#endif
6574 6575
		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
	msrs->entry_ctls_high |=
		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);

	/* We support free control of debug control loading. */
	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;

	/* cpu-based controls */
	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
		msrs->procbased_ctls_low,
		msrs->procbased_ctls_high);
	msrs->procbased_ctls_low =
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
	msrs->procbased_ctls_high &=
6589
		CPU_BASED_INTR_WINDOW_EXITING |
6590
		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
		CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
	/*
	 * We can allow some features even when not supported by the
	 * hardware. For example, L1 can specify an MSR bitmap - and we
	 * can use it to avoid exits to L1 - even when L0 runs L2
	 * without MSR bitmaps.
	 */
	msrs->procbased_ctls_high |=
		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
		CPU_BASED_USE_MSR_BITMAPS;

	/* We support free control of CR3 access interception. */
	msrs->procbased_ctls_low &=
		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);

	/*
	 * secondary cpu-based controls.  Do not include those that
6618 6619
	 * depend on CPUID bits, they are added later by
	 * vmx_vcpu_after_set_cpuid.
6620
	 */
6621 6622 6623 6624 6625
	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
		      msrs->secondary_ctls_low,
		      msrs->secondary_ctls_high);

6626 6627 6628
	msrs->secondary_ctls_low = 0;
	msrs->secondary_ctls_high &=
		SECONDARY_EXEC_DESC |
6629
		SECONDARY_EXEC_ENABLE_RDTSCP |
6630
		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6631
		SECONDARY_EXEC_WBINVD_EXITING |
6632 6633
		SECONDARY_EXEC_APIC_REGISTER_VIRT |
		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6634 6635 6636
		SECONDARY_EXEC_RDRAND_EXITING |
		SECONDARY_EXEC_ENABLE_INVPCID |
		SECONDARY_EXEC_RDSEED_EXITING |
6637 6638
		SECONDARY_EXEC_XSAVES |
		SECONDARY_EXEC_TSC_SCALING;
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650

	/*
	 * We can emulate "VMCS shadowing," even if the hardware
	 * doesn't support it.
	 */
	msrs->secondary_ctls_high |=
		SECONDARY_EXEC_SHADOW_VMCS;

	if (enable_ept) {
		/* nested EPT: emulate EPT also to L1 */
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_EPT;
6651 6652 6653 6654
		msrs->ept_caps =
			VMX_EPT_PAGE_WALK_4_BIT |
			VMX_EPT_PAGE_WALK_5_BIT |
			VMX_EPTP_WB_BIT |
6655 6656 6657
			VMX_EPT_INVEPT_BIT |
			VMX_EPT_EXECUTE_ONLY_BIT;

6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
		msrs->ept_caps &= ept_caps;
		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
			VMX_EPT_1GB_PAGE_BIT;
		if (enable_ept_ad_bits) {
			msrs->secondary_ctls_high |=
				SECONDARY_EXEC_ENABLE_PML;
			msrs->ept_caps |= VMX_EPT_AD_BIT;
		}
	}

	if (cpu_has_vmx_vmfunc()) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VMFUNC;
		/*
		 * Advertise EPTP switching unconditionally
		 * since we emulate it
		 */
		if (enable_ept)
			msrs->vmfunc_controls =
				VMX_VMFUNC_EPTP_SWITCHING;
	}

	/*
	 * Old versions of KVM use the single-context version without
	 * checking for support, so declare that it is supported even
	 * though it is treated as global context.  The alternative is
	 * not failing the single-context invvpid, and it is worse.
	 */
	if (enable_vpid) {
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_ENABLE_VPID;
		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
			VMX_VPID_EXTENT_SUPPORTED_MASK;
	}

	if (enable_unrestricted_guest)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_UNRESTRICTED_GUEST;

	if (flexpriority_enabled)
		msrs->secondary_ctls_high |=
			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;

6702 6703 6704
	if (enable_sgx)
		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;

6705 6706 6707 6708 6709 6710 6711 6712
	/* miscellaneous data */
	rdmsr(MSR_IA32_VMX_MISC,
		msrs->misc_low,
		msrs->misc_high);
	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
	msrs->misc_low |=
		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6713 6714
		VMX_MISC_ACTIVITY_HLT |
		VMX_MISC_ACTIVITY_WAIT_SIPI;
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
	msrs->misc_high = 0;

	/*
	 * This MSR reports some information about VMX support. We
	 * should return information about the VMX we emulate for the
	 * guest, and the VMCS structure we give it - not about the
	 * VMX support of the underlying hardware.
	 */
	msrs->basic =
		VMCS12_REVISION |
		VMX_BASIC_TRUE_CTLS |
		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);

	if (cpu_has_vmx_basic_inout())
		msrs->basic |= VMX_BASIC_INOUT;

	/*
	 * These MSRs specify bits which the guest must keep fixed on
	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
	 * We picked the standard core2 setting.
	 */
#define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;

	/* These MSRs specify bits which the guest must keep fixed off. */
	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);

6746
	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
}

void nested_vmx_hardware_unsetup(void)
{
	int i;

	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++)
			free_page((unsigned long)vmx_bitmap[i]);
	}
}

6759
__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6760 6761 6762 6763 6764 6765 6766
{
	int i;

	if (!cpu_has_vmx_shadow_vmcs())
		enable_shadow_vmcs = 0;
	if (enable_shadow_vmcs) {
		for (i = 0; i < VMX_BITMAP_NR; i++) {
6767 6768 6769 6770
			/*
			 * The vmx_bitmap is not tied to a VM and so should
			 * not be charged to a memcg.
			 */
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
			vmx_bitmap[i] = (unsigned long *)
				__get_free_page(GFP_KERNEL);
			if (!vmx_bitmap[i]) {
				nested_vmx_hardware_unsetup();
				return -ENOMEM;
			}
		}

		init_vmcs_shadow_fields();
	}

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6794 6795 6796

	return 0;
}
6797 6798

struct kvm_x86_nested_ops vmx_nested_ops = {
6799
	.leave_nested = vmx_leave_nested,
6800
	.check_events = vmx_check_nested_events,
6801
	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6802
	.triple_fault = nested_vmx_triple_fault,
6803 6804
	.get_state = vmx_get_nested_state,
	.set_state = vmx_set_nested_state,
6805
	.get_nested_state_pages = vmx_get_nested_state_pages,
6806
	.write_log_dirty = nested_vmx_write_pml_buffer,
6807 6808 6809
	.enable_evmcs = nested_enable_evmcs,
	.get_evmcs_version = nested_get_evmcs_version,
};