rt61pci.c 87.7 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt61pci
	Abstract: rt61pci device specific routines.
	Supported chipsets: RT2561, RT2561s, RT2661.
 */

27
#include <linux/crc-itu-t.h>
28 29 30 31 32
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/slab.h>
34 35 36 37 38 39 40
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt61pci.h"

41 42 43 44 45 46 47
/*
 * Allow hardware encryption to be disabled.
 */
static int modparam_nohwcrypt = 0;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

48 49 50 51 52 53 54
/*
 * Register access.
 * BBP and RF register require indirect register access,
 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
55
 * between each attempt. When the busy bit is still set at that time,
56 57 58
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
59 60 61 62 63 64 65
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			       H2M_MAILBOX_CSR_OWNER, (__reg))
66

A
Adam Baker 已提交
67
static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 69 70 71
			      const unsigned int word, const u8 value)
{
	u32 reg;

72 73
	mutex_lock(&rt2x00dev->csr_mutex);

74
	/*
75 76
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
77
	 */
78 79 80 81 82 83 84 85 86
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
	}
87 88

	mutex_unlock(&rt2x00dev->csr_mutex);
89 90
}

A
Adam Baker 已提交
91
static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 93 94 95
			     const unsigned int word, u8 *value)
{
	u32 reg;

96 97
	mutex_lock(&rt2x00dev->csr_mutex);

98
	/*
99 100 101 102 103 104
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
105
	 */
106 107 108 109 110
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111

112
		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113

114 115
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
116 117

	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 119

	mutex_unlock(&rt2x00dev->csr_mutex);
120 121
}

A
Adam Baker 已提交
122
static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 124 125 126
			     const unsigned int word, const u32 value)
{
	u32 reg;

127 128
	mutex_lock(&rt2x00dev->csr_mutex);

129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
142 143
	}

144
	mutex_unlock(&rt2x00dev->csr_mutex);
145 146
}

A
Adam Baker 已提交
147
static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 149 150 151 152
				const u8 command, const u8 token,
				const u8 arg0, const u8 arg1)
{
	u32 reg;

153 154
	mutex_lock(&rt2x00dev->csr_mutex);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
	}
171 172 173

	mutex_unlock(&rt2x00dev->csr_mutex);

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt61pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
210 211 212 213
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
214 215 216 217 218 219
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
220
		.word_base	= EEPROM_BASE,
221 222 223 224 225 226
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt61pci_bbp_read,
		.write		= rt61pci_bbp_write,
227
		.word_base	= BBP_BASE,
228 229 230 231 232 233
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt61pci_rf_write,
234
		.word_base	= RF_BASE,
235 236 237 238 239 240 241 242 243 244 245
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
I
Ivo van Doorn 已提交
246
	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 248
}

249
#ifdef CONFIG_RT2X00_LIB_LEDS
250
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
				   enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int a_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);

	if (led->type == LED_TYPE_RADIO) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_RADIO_STATUS, enabled);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_A_STATUS, a_mode);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * this means we need to convert the brightness
		 * argument into the matching level within that range.
		 */
		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				    brightness / (LED_FULL / 6), 0);
	}
}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

static int rt61pci_blink_set(struct led_classdev *led_cdev,
			     unsigned long *delay_on,
			     unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);

	return 0;
}
303 304 305 306 307 308 309 310 311 312 313

static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00_led *led,
			     enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt61pci_brightness_set;
	led->led_dev.blink_set = rt61pci_blink_set;
	led->flags = LED_INITIALIZED;
}
314
#endif /* CONFIG_RT2X00_LIB_LEDS */
315

316 317 318
/*
 * Configuration handlers.
 */
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
				     struct rt2x00lib_crypto *crypto,
				     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for shared keys. We have 1 register
		 * with key valid bits. The goal is simple, read
		 * the register, if that is full we have no slots
		 * left.
		 * Note that each BSS is allowed to have up to 4
		 * shared keys, so put a mask over the allowed
		 * entries.
		 */
		mask = (0xf << crypto->bssidx);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

347
		key->hw_key_idx += reg ? ffz(reg) : 0;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		/*
		 * The cipher types are stored over 2 registers.
		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
		 * Using the correct defines correctly will cause overhead,
		 * so just calculate the correct offset.
		 */
		if (key->hw_key_idx < 8) {
			field.bit_offset = (3 * key->hw_key_idx);
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
		} else {
			field.bit_offset = (3 * (key->hw_key_idx - 8));
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
		}

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
390
		 * to be provided separately for the descriptor.
391 392 393 394 395 396 397 398 399 400
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR0 contains only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
401
	 * defines directly will cause a lot of overhead, we use
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	 * a calculation to determine the correct bit directly.
	 */
	mask = 1 << key->hw_key_idx;

	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
	if (crypto->cmd == SET_KEY)
		reg |= mask;
	else if (crypto->cmd == DISABLE_KEY)
		reg &= ~mask;
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);

	return 0;
}

static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct hw_pairwise_ta_entry addr_entry;
	struct hw_key_entry key_entry;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for pairwise keys. We have 2 registers
429 430
		 * with key valid bits. The goal is simple: read
		 * the first register. If that is full, move to
431
		 * the next register.
432 433
		 * When both registers are full, we drop the key.
		 * Otherwise, we use the first invalid entry.
434 435 436 437 438 439 440 441 442
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (reg && reg == ~0) {
			key->hw_key_idx = 32;
			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
			if (reg && reg == ~0)
				return -ENOSPC;
		}

443
		key->hw_key_idx += reg ? ffz(reg) : 0;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		memset(&addr_entry, 0, sizeof(addr_entry));
		memcpy(&addr_entry, crypto->address, ETH_ALEN);
		addr_entry.cipher = crypto->cipher;

		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &addr_entry, sizeof(addr_entry));

		/*
468 469
		 * Enable pairwise lookup table for given BSS idx.
		 * Without this, received frames will not be decrypted
470 471 472 473 474 475 476 477 478 479
		 * by the hardware.
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
		reg |= (1 << crypto->bssidx);
		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
D
Daniel Mack 已提交
480
		 * to be provided separately for the descriptor.
481 482 483 484 485 486 487 488 489 490
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
491
	 * defines directly will cause a lot of overhead, we use
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	 * a calculation to determine the correct bit directly.
	 */
	if (key->hw_key_idx < 32) {
		mask = 1 << key->hw_key_idx;

		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
	} else {
		mask = 1 << (key->hw_key_idx - 32);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
	}

	return 0;
}

I
Ivo van Doorn 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
				  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534
			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
I
Ivo van Doorn 已提交
535 536 537
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 539
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
540 541 542 543 544 545 546 547 548
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

549 550 551 552
static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
				struct rt2x00_intf *intf,
				struct rt2x00intf_conf *conf,
				const unsigned int flags)
553
{
554 555
	unsigned int beacon_base;
	u32 reg;
556

557 558 559
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Clear current synchronisation setup.
560
		 * For the Beacon base registers, we only need to clear
561 562 563 564 565
		 * the first byte since that byte contains the VALID and OWNER
		 * bits which (when set to 0) will invalidate the entire beacon.
		 */
		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
		rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
566

567 568 569 570
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574 575
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
	}
576

577 578 579 580
	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);
581

582 583 584
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
					      conf->mac, sizeof(conf->mac));
	}
585

586 587 588 589
	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
		conf->bssid[1] = cpu_to_le32(reg);
590

591 592 593
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
					      conf->bssid, sizeof(conf->bssid));
	}
594 595
}

I
Ivo van Doorn 已提交
596 597
static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_erp *erp)
598 599 600 601
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
602
	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
603
	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
604 605 606
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
607
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
608
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
609
			   !!erp->short_preamble);
610 611
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);

612
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
613

614 615 616 617 618
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
			   erp->beacon_int * 16);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

619 620 621
	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622

623 624 625 626 627
	rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
	rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
628 629 630
}

static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
631
				      struct antenna_setup *ant)
632 633 634 635 636 637 638 639 640
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

641
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
642 643 644 645

	/*
	 * Configure the RX antenna.
	 */
646
	switch (ant->rx) {
647
	case ANTENNA_HW_DIVERSITY:
648
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650
				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651 652
		break;
	case ANTENNA_A:
653
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 657 658
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659 660
		break;
	case ANTENNA_B:
661
	default:
662
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 666 667
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668 669 670 671 672 673 674 675 676
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677
				      struct antenna_setup *ant)
678 679 680 681 682 683 684 685 686
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

687
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
688 689 690
	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));

691 692 693
	/*
	 * Configure the RX antenna.
	 */
694
	switch (ant->rx) {
695
	case ANTENNA_HW_DIVERSITY:
696
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
697 698
		break;
	case ANTENNA_A:
699 700
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
701 702
		break;
	case ANTENNA_B:
703
	default:
704 705
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
					   const int p1, const int p2)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);

721 722 723 724 725 726 727
	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);

	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
728 729 730
}

static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
731
					struct antenna_setup *ant)
732 733 734 735 736 737 738 739
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);
740 741 742 743 744 745

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
746 747 748
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
749 750 751
		break;
	case ANTENNA_HW_DIVERSITY:
		/*
752 753 754
		 * FIXME: Antenna selection for the rf 2529 is very confusing
		 * in the legacy driver. Just default to antenna B until the
		 * legacy code can be properly translated into rt2x00 code.
755 756
		 */
	case ANTENNA_B:
757
	default:
758 759 760
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
761 762 763 764
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

struct antenna_sel {
	u8 word;
	/*
	 * value[0] -> non-LNA
	 * value[1] -> LNA
	 */
	u8 value[2];
};

static const struct antenna_sel antenna_sel_a[] = {
	{ 96,  { 0x58, 0x78 } },
	{ 104, { 0x38, 0x48 } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x60, 0x60 } },
	{ 97,  { 0x58, 0x58 } },
	{ 98,  { 0x58, 0x58 } },
};

static const struct antenna_sel antenna_sel_bg[] = {
	{ 96,  { 0x48, 0x68 } },
	{ 104, { 0x2c, 0x3c } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x50, 0x50 } },
	{ 97,  { 0x48, 0x48 } },
	{ 98,  { 0x48, 0x48 } },
};

800 801
static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
			       struct antenna_setup *ant)
802 803 804 805 806 807
{
	const struct antenna_sel *sel;
	unsigned int lna;
	unsigned int i;
	u32 reg;

808 809 810 811 812 813 814
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

815
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
816 817 818 819 820 821 822
		sel = antenna_sel_a;
		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	} else {
		sel = antenna_sel_bg;
		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
	}

823 824 825 826 827
	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);

	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);

828
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
829
			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
830
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
831
			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
832

833 834
	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);

835
	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
836
		rt61pci_config_antenna_5x(rt2x00dev, ant);
837
	else if (rt2x00_rf(rt2x00dev, RF2527))
838
		rt61pci_config_antenna_2x(rt2x00dev, ant);
839
	else if (rt2x00_rf(rt2x00dev, RF2529)) {
840
		if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
841
			rt61pci_config_antenna_2x(rt2x00dev, ant);
842
		else
843
			rt61pci_config_antenna_2529(rt2x00dev, ant);
844 845 846
	}
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain = 0;

	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
	} else {
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
	}

	rt2x00dev->lna_gain = lna_gain;
}

static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
				   struct rf_channel *rf, const int txpower)
{
	u8 r3;
	u8 r94;
	u8 smart;

	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

880
	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
	rt61pci_bbp_write(rt2x00dev, 3, r3);

	r94 = 6;
	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
		r94 += txpower - MAX_TXPOWER;
	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
		r94 += txpower;
	rt61pci_bbp_write(rt2x00dev, 94, r94);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	msleep(1);
}

static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				   const int txpower)
{
	struct rf_channel rf;

	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);

	rt61pci_config_channel(rt2x00dev, &rf, txpower);
}

static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929
				    struct rt2x00lib_conf *libconf)
930 931 932
{
	u32 reg;

933
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
934 935 936
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
937 938 939 940 941 942
	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
}
943

I
Ivo van Doorn 已提交
944 945 946 947 948 949 950 951 952 953 954
static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
955
				   rt2x00dev->beacon_int - 10);
I
Ivo van Doorn 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);

		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);

		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
	}
}

988
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
989 990
			   struct rt2x00lib_conf *libconf,
			   const unsigned int flags)
991
{
992 993 994
	/* Always recalculate LNA gain before changing configuration */
	rt61pci_config_lna_gain(rt2x00dev, libconf);

995
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
996 997
		rt61pci_config_channel(rt2x00dev, &libconf->rf,
				       libconf->conf->power_level);
998 999
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1000
		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1001 1002
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt61pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
1003 1004
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt61pci_config_ps(rt2x00dev, libconf);
1005 1006 1007 1008 1009
}

/*
 * Link tuning
 */
1010 1011
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual)
1012 1013 1014 1015 1016 1017 1018
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1019
	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1020 1021 1022 1023 1024

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1025
	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1026 1027
}

1028 1029
static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				   struct link_qual *qual, u8 vgc_level)
1030
{
1031
	if (qual->vgc_level != vgc_level) {
1032
		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1033 1034
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
1035 1036 1037
	}
}

1038 1039
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				struct link_qual *qual)
1040
{
1041
	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1042 1043
}

1044 1045
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual, const u32 count)
1046 1047 1048 1049 1050 1051 1052
{
	u8 up_bound;
	u8 low_bound;

	/*
	 * Determine r17 bounds.
	 */
1053
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		low_bound = 0x28;
		up_bound = 0x48;
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	} else {
		low_bound = 0x20;
		up_bound = 0x40;
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	}

1069 1070 1071 1072 1073 1074 1075
	/*
	 * If we are not associated, we should go straight to the
	 * dynamic CCA tuning.
	 */
	if (!rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

1076 1077 1078
	/*
	 * Special big-R17 for very short distance
	 */
1079 1080
	if (qual->rssi >= -35) {
		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1081 1082 1083 1084 1085 1086
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
1087 1088
	if (qual->rssi >= -58) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1089 1090 1091 1092 1093 1094
		return;
	}

	/*
	 * Special big-R17 for middle-short distance
	 */
1095 1096
	if (qual->rssi >= -66) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1097 1098 1099 1100 1101 1102
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
1103 1104
	if (qual->rssi >= -74) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1105 1106 1107 1108 1109 1110 1111
		return;
	}

	/*
	 * Special case: Change up_bound based on the rssi.
	 * Lower up_bound when rssi is weaker then -74 dBm.
	 */
1112
	up_bound -= 2 * (-74 - qual->rssi);
1113 1114 1115
	if (low_bound > up_bound)
		up_bound = low_bound;

1116 1117
	if (qual->vgc_level > up_bound) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1118 1119 1120
		return;
	}

1121 1122
dynamic_cca_tune:

1123 1124 1125 1126
	/*
	 * r17 does not yet exceed upper limit, continue and base
	 * the r17 tuning on the false CCA count.
	 */
1127 1128 1129 1130
	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1131 1132 1133
}

/*
1134
 * Firmware functions
1135 1136 1137
 */
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
1138
	u16 chip;
1139 1140
	char *fw_name;

1141 1142 1143
	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
	switch (chip) {
	case RT2561_PCI_ID:
1144 1145
		fw_name = FIRMWARE_RT2561;
		break;
1146
	case RT2561s_PCI_ID:
1147 1148
		fw_name = FIRMWARE_RT2561s;
		break;
1149
	case RT2661_PCI_ID:
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		fw_name = FIRMWARE_RT2661;
		break;
	default:
		fw_name = NULL;
		break;
	}

	return fw_name;
}

1160 1161
static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				  const u8 *data, const size_t len)
1162
{
1163
	u16 fw_crc;
1164 1165 1166
	u16 crc;

	/*
1167 1168 1169 1170 1171 1172
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
1173 1174
	 * The last 2 bytes in the firmware array are the crc checksum itself.
	 * This means that we should never pass those 2 bytes to the crc
1175 1176
	 * algorithm.
	 */
1177 1178 1179 1180 1181
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc itu-t algorithm.
	 */
1182 1183 1184 1185
	crc = crc_itu_t(0, data, len - 2);
	crc = crc_itu_t_byte(crc, 0);
	crc = crc_itu_t_byte(crc, 0);

1186
	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1187 1188
}

1189 1190
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				 const u8 *data, const size_t len)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
{
	int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
		if (reg)
			break;
		msleep(1);
	}

	if (!reg) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

	/*
	 * Prepare MCU and mailbox for firmware loading.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);

	/*
	 * Write firmware to device.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
			break;
		msleep(1);
	}

	if (i == 100) {
		ERROR(rt2x00dev, "MCU Control register not ready.\n");
		return -EBUSY;
	}

1249 1250 1251 1252 1253
	/*
	 * Hardware needs another millisecond before it is ready.
	 */
	msleep(1);

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	/*
	 * Reset MAC and BBP registers.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1274 1275 1276
/*
 * Initialization functions.
 */
1277
static bool rt61pci_get_entry_state(struct queue_entry *entry)
1278
{
1279
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1280 1281
	u32 word;

1282 1283
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1284

1285 1286 1287 1288 1289 1290 1291
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);

		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
1292 1293
}

1294
static void rt61pci_clear_entry(struct queue_entry *entry)
1295
{
1296
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1297
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1298 1299
	u32 word;

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 5, &word);
		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 5, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
1315 1316
}

I
Ivo van Doorn 已提交
1317
static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1318
{
1319
	struct queue_entry_priv_pci *entry_priv;
1320 1321 1322 1323 1324 1325 1326
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
I
Ivo van Doorn 已提交
1327
			   rt2x00dev->tx[0].limit);
1328
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
I
Ivo van Doorn 已提交
1329
			   rt2x00dev->tx[1].limit);
1330
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
I
Ivo van Doorn 已提交
1331
			   rt2x00dev->tx[2].limit);
1332
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
I
Ivo van Doorn 已提交
1333
			   rt2x00dev->tx[3].limit);
1334 1335 1336 1337
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
I
Ivo van Doorn 已提交
1338
			   rt2x00dev->tx[0].desc_size / 4);
1339 1340
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);

1341
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1342
	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1343
	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1344
			   entry_priv->desc_dma);
1345 1346
	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);

1347
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1348
	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1349
	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1350
			   entry_priv->desc_dma);
1351 1352
	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);

1353
	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1354
	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1355
	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1356
			   entry_priv->desc_dma);
1357 1358
	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);

1359
	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1360
	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1361
	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1362
			   entry_priv->desc_dma);
1363 1364 1365
	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
I
Ivo van Doorn 已提交
1366
	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1367 1368 1369 1370 1371
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
			   rt2x00dev->rx->desc_size / 4);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);

1372
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1373
	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1374
	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1375
			   entry_priv->desc_dma);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);

	/*
	 * CCK TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);

	/*
	 * OFDM TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);

1460 1461 1462 1463 1464 1465 1466 1467 1468
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);

	/*
	 * Invalidate all Shared Keys (SEC_CSR0),
	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
	 */
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);

	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);

	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);

	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);

	/*
	 * Reset MAC and BBP registers.
	 */
	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1543
static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1544 1545 1546 1547 1548 1549 1550
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt61pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
1551
			return 0;
1552 1553 1554 1555 1556
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616

	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
	rt61pci_bbp_write(rt2x00dev, 107, 0x04);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt61pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
			      enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1617 1618
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
}

static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize all registers.
	 */
1670 1671 1672
	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
		     rt61pci_init_registers(rt2x00dev) ||
		     rt61pci_init_bbp(rt2x00dev)))
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		return -EIO;

	/*
	 * Enable RX.
	 */
	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1688
	 * Disable power
1689
	 */
1690
	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1691 1692 1693 1694
}

static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
1695
	u32 reg, reg2;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	unsigned int i;
	char put_to_sleep;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1712 1713
		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1714
		if (state == !put_to_sleep)
1715
			return 0;
1716
		rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		msleep(10);
	}

	return -EBUSY;
}

static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				    enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt61pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt61pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
1736
	case STATE_RADIO_RX_ON_LINK:
1737
	case STATE_RADIO_RX_OFF:
1738
	case STATE_RADIO_RX_OFF_LINK:
1739 1740 1741 1742 1743
		rt61pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt61pci_toggle_irq(rt2x00dev, state);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt61pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1756 1757 1758 1759
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1760 1761 1762 1763 1764 1765 1766
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1767 1768
				  struct sk_buff *skb,
				  struct txentry_desc *txdesc)
1769
{
I
Ivo van Doorn 已提交
1770
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1771 1772
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
	__le32 *txd = entry_priv->desc;
1773 1774 1775 1776 1777 1778
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	rt2x00_desc_read(txd, 1, &word);
I
Ivo van Doorn 已提交
1779 1780 1781 1782
	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1783
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1784 1785
	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1786
	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1787 1788 1789
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
I
Ivo van Doorn 已提交
1790 1791 1792 1793
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1794 1795
	rt2x00_desc_write(txd, 2, word);

1796
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
I
Ivo van Doorn 已提交
1797 1798
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1799 1800
	}

1801
	rt2x00_desc_read(txd, 5, &word);
1802 1803 1804
	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
			   skbdesc->entry->entry_idx);
1805
	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1806
			   TXPOWER_TO_DEV(rt2x00dev->tx_power));
1807 1808 1809
	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
	rt2x00_desc_write(txd, 5, word);

1810 1811 1812 1813 1814
	if (txdesc->queue != QID_BEACON) {
		rt2x00_desc_read(txd, 6, &word);
		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(txd, 6, word);
1815

1816
		rt2x00_desc_read(txd, 11, &word);
1817 1818
		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
				   txdesc->length);
1819 1820
		rt2x00_desc_write(txd, 11, word);
	}
1821

1822 1823 1824 1825 1826
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1827 1828 1829 1830
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1831
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1832
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1833
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1834
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1835
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1836
	rt2x00_set_field32(&word, TXD_W0_OFDM,
1837
			   (txdesc->rate_mode == RATE_MODE_OFDM));
I
Ivo van Doorn 已提交
1838
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1839
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1840
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1841 1842 1843 1844 1845
	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1846
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1847
	rt2x00_set_field32(&word, TXD_W0_BURST,
I
Ivo van Doorn 已提交
1848
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1849
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1850
	rt2x00_desc_write(txd, 0, word);
1851 1852 1853 1854 1855 1856 1857

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len =
		(txdesc->queue == QID_BEACON) ?  TXINFO_SIZE : TXD_DESC_SIZE;
1858 1859 1860 1861 1862
}

/*
 * TX data initialization
 */
1863 1864
static void rt61pci_write_beacon(struct queue_entry *entry,
				 struct txentry_desc *txdesc)
1865 1866
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1867
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	unsigned int beacon_base;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	/*
	 * Write the TX descriptor for the beacon.
	 */
	rt61pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);

	/*
	 * Dump beacon to userspace through debugfs.
	 */
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);

1889 1890 1891 1892
	/*
	 * Write entire beacon with descriptor to register.
	 */
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1893 1894 1895
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
				      entry_priv->desc, TXINFO_SIZE);
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1896 1897
				      entry->skb->data, entry->skb->len);

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * Enable beaconing again.
	 *
	 * For Wi-Fi faily generated beacons between participating
	 * stations. Set TBTT phase adaptive adjustment step to 8us.
	 */
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);

	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1911 1912 1913 1914 1915 1916 1917
	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

1918
static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1919
				  const enum data_queue_qid queue)
1920 1921 1922 1923
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1924 1925 1926 1927
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1928 1929 1930
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				  const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

1949 1950 1951 1952 1953
/*
 * RX control handlers
 */
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
1954
	u8 offset = rt2x00dev->lna_gain;
1955 1956 1957 1958 1959
	u8 lna;

	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
	switch (lna) {
	case 3:
1960
		offset += 90;
1961 1962
		break;
	case 2:
1963
		offset += 74;
1964 1965
		break;
	case 1:
1966
		offset += 64;
1967 1968 1969 1970 1971
		break;
	default:
		return 0;
	}

1972
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1973 1974 1975 1976 1977 1978 1979
		if (lna == 3 || lna == 2)
			offset += 10;
	}

	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}

I
Ivo van Doorn 已提交
1980
static void rt61pci_fill_rxdone(struct queue_entry *entry,
J
John Daiker 已提交
1981
				struct rxdone_entry_desc *rxdesc)
1982
{
1983
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1984
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1985 1986 1987
	u32 word0;
	u32 word1;

1988 1989
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 1, &word1);
1990

1991
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1992
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1993

1994 1995
	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1996 1997

	if (rxdesc->cipher != CIPHER_NONE) {
I
Ivo van Doorn 已提交
1998 1999
		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2000 2001
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

2002
		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2003
		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2004 2005 2006

		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
2007
		 * decryption. It has provided the data separately but rt2x00lib
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		 * should decide if it should be reinserted.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		/*
		 * FIXME: Legacy driver indicates that the frame does
		 * contain the Michael Mic. Unfortunately, in rt2x00
		 * the MIC seems to be missing completely...
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

2025 2026
	/*
	 * Obtain the status about this packet.
I
Ivo van Doorn 已提交
2027 2028 2029
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
2030
	 */
I
Ivo van Doorn 已提交
2031
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2032
	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
I
Ivo van Doorn 已提交
2033
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2034 2035 2036

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
2037 2038
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2039 2040
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
2041 2042 2043 2044 2045 2046 2047
}

/*
 * Interrupt functions.
 */
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
I
Ivo van Doorn 已提交
2048 2049 2050
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
2051
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
2052
	struct txdone_entry_desc txdesc;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	u32 word;
	u32 reg;
	u32 old_reg;
	int type;
	int index;

	/*
	 * During each loop we will compare the freshly read
	 * STA_CSR4 register value with the value read from
	 * the previous loop. If the 2 values are equal then
2063
	 * we should stop processing because the chance is
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	 * quite big that the device has been unplugged and
	 * we risk going into an endless loop.
	 */
	old_reg = 0;

	while (1) {
		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
			break;

		if (old_reg == reg)
			break;
		old_reg = reg;

		/*
		 * Skip this entry when it contains an invalid
I
Ivo van Doorn 已提交
2080
		 * queue identication number.
2081 2082
		 */
		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
I
Ivo van Doorn 已提交
2083 2084
		queue = rt2x00queue_get_queue(rt2x00dev, type);
		if (unlikely(!queue))
2085 2086 2087 2088 2089 2090 2091
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
I
Ivo van Doorn 已提交
2092
		if (unlikely(index >= queue->limit))
2093 2094
			continue;

I
Ivo van Doorn 已提交
2095
		entry = &queue->entries[index];
2096 2097
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
2098 2099 2100 2101 2102

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			return;

I
Ivo van Doorn 已提交
2103
		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2104
		while (entry != entry_done) {
I
Ivo van Doorn 已提交
2105 2106 2107
			/* Catch up.
			 * Just report any entries we missed as failed.
			 */
2108
			WARNING(rt2x00dev,
I
Ivo van Doorn 已提交
2109 2110 2111
				"TX status report missed for entry %d\n",
				entry_done->entry_idx);

I
Ivo van Doorn 已提交
2112 2113
			txdesc.flags = 0;
			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
I
Ivo van Doorn 已提交
2114 2115
			txdesc.retry = 0;

2116
			rt2x00pci_txdone(entry_done, &txdesc);
I
Ivo van Doorn 已提交
2117
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2118 2119
		}

2120 2121 2122
		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		txdesc.flags = 0;
		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
		case 0: /* Success, maybe with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 6: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
2134
		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2135

2136 2137 2138 2139 2140 2141 2142
		/*
		 * the frame was retried at least once
		 * -> hw used fallback rates
		 */
		if (txdesc.retry)
			__set_bit(TXDONE_FALLBACK, &txdesc.flags);

2143
		rt2x00pci_txdone(entry, &txdesc);
2144 2145 2146
	}
}

2147 2148 2149 2150 2151 2152 2153 2154
static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg_mcu;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);

	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg && !reg_mcu)
		return IRQ_NONE;

2174
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 2 - Tx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
		rt61pci_txdone(rt2x00dev);

	/*
	 * 3 - Handle MCU command done.
	 */
	if (reg_mcu)
		rt2x00pci_register_write(rt2x00dev,
					 M2H_CMD_DONE_CSR, 0xffffffff);

2202 2203 2204 2205 2206 2207
	/*
	 * 4 - MCU Autowakeup interrupt.
	 */
	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
		rt61pci_wakeup(rt2x00dev);

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;
	s8 value;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt61pci_eepromregister_read;
	eeprom.register_write = rt61pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
2243
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2244 2245 2246 2247 2248
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
2249 2250 2251 2252
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_B);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2265 2266
		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2311
		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
	}

	return 0;
}

static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2341 2342
	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2343

2344 2345 2346 2347
	if (!rt2x00_rf(rt2x00dev, RF5225) &&
	    !rt2x00_rf(rt2x00dev, RF5325) &&
	    !rt2x00_rf(rt2x00dev, RF2527) &&
	    !rt2x00_rf(rt2x00dev, RF2529)) {
2348 2349 2350 2351
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

2352
	/*
L
Luis Correia 已提交
2353
	 * Determine number of antennas.
2354 2355 2356 2357
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
		__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);

2358 2359 2360
	/*
	 * Identify default antenna configuration.
	 */
2361
	rt2x00dev->default_ant.tx =
2362
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2363
	rt2x00dev->default_ant.rx =
2364 2365 2366 2367 2368 2369 2370 2371 2372
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Read the Frame type.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);

	/*
2373
	 * Detect if this device has a hardware controlled radio.
2374 2375
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2376
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
		__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);

	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);

2397
	/*
2398
	 * When working with a RF2529 chip without double antenna,
2399 2400 2401
	 * the antenna settings should be gathered from the NIC
	 * eeprom word.
	 */
2402
	if (rt2x00_rf(rt2x00dev, RF2529) &&
2403
	    !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2404 2405 2406 2407
		rt2x00dev->default_ant.rx =
		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
		rt2x00dev->default_ant.tx =
		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2408 2409 2410 2411 2412 2413 2414

		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
	}

2415 2416 2417 2418 2419
	/*
	 * Store led settings, for correct led behaviour.
	 * If the eeprom value is invalid,
	 * switch to default led mode.
	 */
2420
#ifdef CONFIG_RT2X00_LIB_LEDS
2421
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2422 2423
	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);

2424 2425 2426 2427 2428
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	if (value == LED_MODE_SIGNAL_STRENGTH)
		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				 LED_TYPE_QUALITY);
2429

2430 2431
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2432 2433
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_0));
2434
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2435 2436
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_1));
2437
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2438 2439
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_2));
2440
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2441 2442
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_3));
2443
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2444 2445
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_4));
2446
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2447
			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2448
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2449 2450
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_G));
2451
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2452 2453
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_A));
2454
#endif /* CONFIG_RT2X00_LIB_LEDS */
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

	return 0;
}

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 */
static const struct rf_channel rf_vals_noseq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },

	/* 802.11 UNII */
	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 */
static const struct rf_channel rf_vals_seq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },

	/* 802.11 UNII */
	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};

2573
static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2574 2575
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
2576 2577
	struct channel_info *info;
	char *tx_power;
2578 2579
	unsigned int i;

2580 2581 2582 2583 2584
	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

2585 2586 2587 2588
	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
2589
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2590 2591 2592
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
	    IEEE80211_HW_PS_NULLFUNC_STACK;
2593

2594
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2595 2596 2597 2598 2599
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	 * As rt61 has a global fallback table we cannot specify
	 * more then one tx rate per frame but since the hw will
	 * try several rates (based on the fallback table) we should
	 * still initialize max_rates to the maximum number of rates
	 * we are going to try. Otherwise mac80211 will truncate our
	 * reported tx rates and the rc algortihm will end up with
	 * incorrect data.
	 */
	rt2x00dev->hw->max_rates = 7;
	rt2x00dev->hw->max_rate_tries = 1;

	/*
2612 2613
	 * Initialize hw_mode information.
	 */
2614 2615
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2616 2617 2618 2619 2620 2621 2622 2623 2624

	if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
		spec->num_channels = 14;
		spec->channels = rf_vals_noseq;
	} else {
		spec->num_channels = 14;
		spec->channels = rf_vals_seq;
	}

2625
	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2626
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2627
		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	}

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;
2638

2639 2640 2641
	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2642

2643 2644 2645 2646
	if (spec->num_channels > 14) {
		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
		for (i = 14; i < spec->num_channels; i++)
			info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2647
	}
2648 2649

	return 0;
2650 2651 2652 2653 2654 2655
}

static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

P
Pavel Roskin 已提交
2656 2657 2658 2659 2660
	/*
	 * Disable power saving.
	 */
	rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	/*
	 * Allocate eeprom data.
	 */
	retval = rt61pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt61pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
2675 2676 2677
	retval = rt61pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
2678

2679 2680 2681 2682 2683 2684
	/*
	 * This device has multiple filters for control frames,
	 * but has no a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);

2685
	/*
2686
	 * This device requires firmware and DMA mapped skbs.
2687
	 */
2688
	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2689
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2690 2691
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
2704 2705 2706 2707 2708 2709 2710 2711
static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
			   const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
2712
	u32 offset;
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
	if (retval)
		return retval;

2724 2725
	/*
	 * We only need to perform additional register initialization
2726
	 * for WMM queues.
2727 2728 2729 2730
	 */
	if (queue_idx >= 4)
		return 0;

2731 2732 2733
	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);

	/* Update WMM TXOP register */
2734 2735 2736 2737 2738 2739 2740
	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, field, queue->txop);
	rt2x00pci_register_write(rt2x00dev, offset, reg);
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->aifs);
	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_min);
	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_max);
	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);

	return 0;
}

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);

	return tsf;
}

static const struct ieee80211_ops rt61pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
2777 2778
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
2779 2780 2781
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
2782
	.configure_filter	= rt2x00mac_configure_filter,
2783
	.set_tim		= rt2x00mac_set_tim,
2784
	.set_key		= rt2x00mac_set_key,
2785
	.get_stats		= rt2x00mac_get_stats,
2786
	.bss_info_changed	= rt2x00mac_bss_info_changed,
2787
	.conf_tx		= rt61pci_conf_tx,
2788
	.get_tsf		= rt61pci_get_tsf,
2789
	.rfkill_poll		= rt2x00mac_rfkill_poll,
2790 2791 2792 2793 2794 2795
};

static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
	.irq_handler		= rt61pci_interrupt,
	.probe_hw		= rt61pci_probe_hw,
	.get_firmware_name	= rt61pci_get_firmware_name,
2796
	.check_firmware		= rt61pci_check_firmware,
2797 2798 2799
	.load_firmware		= rt61pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
2800 2801
	.get_entry_state	= rt61pci_get_entry_state,
	.clear_entry		= rt61pci_clear_entry,
2802 2803 2804 2805 2806 2807 2808
	.set_device_state	= rt61pci_set_device_state,
	.rfkill_poll		= rt61pci_rfkill_poll,
	.link_stats		= rt61pci_link_stats,
	.reset_tuner		= rt61pci_reset_tuner,
	.link_tuner		= rt61pci_link_tuner,
	.write_tx_desc		= rt61pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
2809
	.write_beacon		= rt61pci_write_beacon,
2810
	.kick_tx_queue		= rt61pci_kick_tx_queue,
2811
	.kill_tx_queue		= rt61pci_kill_tx_queue,
2812
	.fill_rxdone		= rt61pci_fill_rxdone,
2813 2814
	.config_shared_key	= rt61pci_config_shared_key,
	.config_pairwise_key	= rt61pci_config_pairwise_key,
I
Ivo van Doorn 已提交
2815
	.config_filter		= rt61pci_config_filter,
2816
	.config_intf		= rt61pci_config_intf,
2817
	.config_erp		= rt61pci_config_erp,
2818
	.config_ant		= rt61pci_config_ant,
2819 2820 2821
	.config			= rt61pci_config,
};

I
Ivo van Doorn 已提交
2822 2823 2824 2825
static const struct data_queue_desc rt61pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
2826
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2827 2828 2829 2830 2831 2832
};

static const struct data_queue_desc rt61pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
2833
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2834 2835 2836
};

static const struct data_queue_desc rt61pci_queue_bcn = {
2837
	.entry_num		= 4 * BEACON_ENTRIES,
2838
	.data_size		= 0, /* No DMA required for beacons */
I
Ivo van Doorn 已提交
2839
	.desc_size		= TXINFO_SIZE,
2840
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2841 2842
};

2843
static const struct rt2x00_ops rt61pci_ops = {
G
Gertjan van Wingerde 已提交
2844 2845 2846 2847 2848 2849
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 4,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
2850
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
2851 2852 2853 2854 2855
	.rx			= &rt61pci_queue_rx,
	.tx			= &rt61pci_queue_tx,
	.bcn			= &rt61pci_queue_bcn,
	.lib			= &rt61pci_rt2x00_ops,
	.hw			= &rt61pci_mac80211_ops,
2856
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
2857
	.debugfs		= &rt61pci_rt2x00debug,
2858 2859 2860 2861 2862 2863
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT61pci module information.
 */
2864
static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
	/* RT2561s */
	{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2561 v2 */
	{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2661 */
	{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
			"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");

static struct pci_driver rt61pci_driver = {
2886
	.name		= KBUILD_MODNAME,
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	.id_table	= rt61pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt61pci_init(void)
{
	return pci_register_driver(&rt61pci_driver);
}

static void __exit rt61pci_exit(void)
{
	pci_unregister_driver(&rt61pci_driver);
}

module_init(rt61pci_init);
module_exit(rt61pci_exit);