rt61pci.c 86.2 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt61pci
	Abstract: rt61pci device specific routines.
	Supported chipsets: RT2561, RT2561s, RT2661.
 */

27
#include <linux/crc-itu-t.h>
28 29 30 31 32 33 34 35 36 37 38 39
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt61pci.h"

40 41 42 43 44 45 46
/*
 * Allow hardware encryption to be disabled.
 */
static int modparam_nohwcrypt = 0;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

47 48 49 50 51 52 53 54 55 56 57
/*
 * Register access.
 * BBP and RF register require indirect register access,
 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
58 59 60 61 62 63 64
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			       H2M_MAILBOX_CSR_OWNER, (__reg))
65

A
Adam Baker 已提交
66
static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67 68 69 70
			      const unsigned int word, const u8 value)
{
	u32 reg;

71 72
	mutex_lock(&rt2x00dev->csr_mutex);

73
	/*
74 75
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
76
	 */
77 78 79 80 81 82 83 84 85
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
	}
86 87

	mutex_unlock(&rt2x00dev->csr_mutex);
88 89
}

A
Adam Baker 已提交
90
static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91 92 93 94
			     const unsigned int word, u8 *value)
{
	u32 reg;

95 96
	mutex_lock(&rt2x00dev->csr_mutex);

97
	/*
98 99 100 101 102 103
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
104
	 */
105 106 107 108 109
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110

111
		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112

113 114
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
115 116

	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117 118

	mutex_unlock(&rt2x00dev->csr_mutex);
119 120
}

A
Adam Baker 已提交
121
static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122 123 124 125
			     const unsigned int word, const u32 value)
{
	u32 reg;

126 127
	mutex_lock(&rt2x00dev->csr_mutex);

128 129 130 131 132 133 134 135 136 137 138 139 140
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
141 142
	}

143
	mutex_unlock(&rt2x00dev->csr_mutex);
144 145
}

A
Adam Baker 已提交
146
static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147 148 149 150 151
				const u8 command, const u8 token,
				const u8 arg0, const u8 arg1)
{
	u32 reg;

152 153
	mutex_lock(&rt2x00dev->csr_mutex);

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
	}
170 171 172

	mutex_unlock(&rt2x00dev->csr_mutex);

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
}

static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt61pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
209 210 211 212
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
213 214 215 216 217 218
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
219
		.word_base	= EEPROM_BASE,
220 221 222 223 224 225
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt61pci_bbp_read,
		.write		= rt61pci_bbp_write,
226
		.word_base	= BBP_BASE,
227 228 229 230 231 232
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt61pci_rf_write,
233
		.word_base	= RF_BASE,
234 235 236 237 238 239
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

240
#ifdef CONFIG_RT2X00_LIB_RFKILL
241 242 243 244 245
static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
I
Ivo van Doorn 已提交
246
	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247
}
248 249
#else
#define rt61pci_rfkill_poll	NULL
250
#endif /* CONFIG_RT2X00_LIB_RFKILL */
251

252
#ifdef CONFIG_RT2X00_LIB_LEDS
253
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
				   enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int a_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);

	if (led->type == LED_TYPE_RADIO) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_RADIO_STATUS, enabled);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_A_STATUS, a_mode);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * this means we need to convert the brightness
		 * argument into the matching level within that range.
		 */
		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				    brightness / (LED_FULL / 6), 0);
	}
}
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

static int rt61pci_blink_set(struct led_classdev *led_cdev,
			     unsigned long *delay_on,
			     unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);

	return 0;
}
306 307 308 309 310 311 312 313 314 315 316

static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00_led *led,
			     enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt61pci_brightness_set;
	led->led_dev.blink_set = rt61pci_blink_set;
	led->flags = LED_INITIALIZED;
}
317
#endif /* CONFIG_RT2X00_LIB_LEDS */
318

319 320 321
/*
 * Configuration handlers.
 */
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
				     struct rt2x00lib_crypto *crypto,
				     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for shared keys. We have 1 register
		 * with key valid bits. The goal is simple, read
		 * the register, if that is full we have no slots
		 * left.
		 * Note that each BSS is allowed to have up to 4
		 * shared keys, so put a mask over the allowed
		 * entries.
		 */
		mask = (0xf << crypto->bssidx);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

350
		key->hw_key_idx += reg ? ffz(reg) : 0;
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		/*
		 * The cipher types are stored over 2 registers.
		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
		 * Using the correct defines correctly will cause overhead,
		 * so just calculate the correct offset.
		 */
		if (key->hw_key_idx < 8) {
			field.bit_offset = (3 * key->hw_key_idx);
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
		} else {
			field.bit_offset = (3 * (key->hw_key_idx - 8));
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
		}

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
		 * to be provided seperately for the descriptor.
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR0 contains only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
	 * defines directly will cause a lot of overhead we use
	 * a calculation to determine the correct bit directly.
	 */
	mask = 1 << key->hw_key_idx;

	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
	if (crypto->cmd == SET_KEY)
		reg |= mask;
	else if (crypto->cmd == DISABLE_KEY)
		reg &= ~mask;
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);

	return 0;
}

static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct hw_pairwise_ta_entry addr_entry;
	struct hw_key_entry key_entry;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for pairwise keys. We have 2 registers
		 * with key valid bits. The goal is simple, read
		 * the first register, if that is full move to
		 * the next register.
		 * When both registers are full, we drop the key,
		 * otherwise we use the first invalid entry.
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (reg && reg == ~0) {
			key->hw_key_idx = 32;
			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
			if (reg && reg == ~0)
				return -ENOSPC;
		}

446
		key->hw_key_idx += reg ? ffz(reg) : 0;
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		memset(&addr_entry, 0, sizeof(addr_entry));
		memcpy(&addr_entry, crypto->address, ETH_ALEN);
		addr_entry.cipher = crypto->cipher;

		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &addr_entry, sizeof(addr_entry));

		/*
		 * Enable pairwise lookup table for given BSS idx,
		 * without this received frames will not be decrypted
		 * by the hardware.
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
		reg |= (1 << crypto->bssidx);
		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
		 * to be provided seperately for the descriptor.
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
	 * defines directly will cause a lot of overhead we use
	 * a calculation to determine the correct bit directly.
	 */
	if (key->hw_key_idx < 32) {
		mask = 1 << key->hw_key_idx;

		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
	} else {
		mask = 1 << (key->hw_key_idx - 32);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
	}

	return 0;
}

I
Ivo van Doorn 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
				  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
541 542
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
543 544 545 546 547 548 549 550 551
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

552 553 554 555
static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
				struct rt2x00_intf *intf,
				struct rt2x00intf_conf *conf,
				const unsigned int flags)
556
{
557 558
	unsigned int beacon_base;
	u32 reg;
559

560 561 562 563 564 565 566 567 568
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Clear current synchronisation setup.
		 * For the Beacon base registers we only need to clear
		 * the first byte since that byte contains the VALID and OWNER
		 * bits which (when set to 0) will invalidate the entire beacon.
		 */
		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
		rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
569

570 571 572 573
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
574
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
575
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
576
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
577 578
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
	}
579

580 581 582 583
	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);
584

585 586 587
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
					      conf->mac, sizeof(conf->mac));
	}
588

589 590 591 592
	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
		conf->bssid[1] = cpu_to_le32(reg);
593

594 595 596
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
					      conf->bssid, sizeof(conf->bssid));
	}
597 598
}

I
Ivo van Doorn 已提交
599 600
static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_erp *erp)
601 602 603 604
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
605
	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
606 607 608
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
609
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
610
			   !!erp->short_preamble);
611 612
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);

613
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
614

615 616 617
	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618

619 620 621 622 623
	rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
	rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624 625 626
}

static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
627
				      struct antenna_setup *ant)
628 629 630 631 632 633 634 635 636 637
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
638
			  rt2x00_rf(&rt2x00dev->chip, RF5325));
639 640 641 642

	/*
	 * Configure the RX antenna.
	 */
643
	switch (ant->rx) {
644
	case ANTENNA_HW_DIVERSITY:
645
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647
				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648 649
		break;
	case ANTENNA_A:
650
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653 654 655
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656 657
		break;
	case ANTENNA_B:
658
	default:
659
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662 663 664
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665 666 667 668 669 670 671 672 673
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674
				      struct antenna_setup *ant)
675 676 677 678 679 680 681 682 683 684
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
685
			  rt2x00_rf(&rt2x00dev->chip, RF2529));
686 687 688
	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));

689 690 691
	/*
	 * Configure the RX antenna.
	 */
692
	switch (ant->rx) {
693
	case ANTENNA_HW_DIVERSITY:
694
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
695 696
		break;
	case ANTENNA_A:
697 698
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
699 700
		break;
	case ANTENNA_B:
701
	default:
702 703
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
					   const int p1, const int p2)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);

719 720 721 722 723 724 725
	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);

	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
726 727 728
}

static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
729
					struct antenna_setup *ant)
730 731 732 733 734 735 736 737
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);
738 739 740 741 742 743

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
744 745 746
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
747 748 749
		break;
	case ANTENNA_HW_DIVERSITY:
		/*
750 751 752
		 * FIXME: Antenna selection for the rf 2529 is very confusing
		 * in the legacy driver. Just default to antenna B until the
		 * legacy code can be properly translated into rt2x00 code.
753 754
		 */
	case ANTENNA_B:
755
	default:
756 757 758
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
759 760 761 762
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

struct antenna_sel {
	u8 word;
	/*
	 * value[0] -> non-LNA
	 * value[1] -> LNA
	 */
	u8 value[2];
};

static const struct antenna_sel antenna_sel_a[] = {
	{ 96,  { 0x58, 0x78 } },
	{ 104, { 0x38, 0x48 } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x60, 0x60 } },
	{ 97,  { 0x58, 0x58 } },
	{ 98,  { 0x58, 0x58 } },
};

static const struct antenna_sel antenna_sel_bg[] = {
	{ 96,  { 0x48, 0x68 } },
	{ 104, { 0x2c, 0x3c } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x50, 0x50 } },
	{ 97,  { 0x48, 0x48 } },
	{ 98,  { 0x48, 0x48 } },
};

798 799
static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
			       struct antenna_setup *ant)
800 801 802 803 804 805
{
	const struct antenna_sel *sel;
	unsigned int lna;
	unsigned int i;
	u32 reg;

806 807 808 809 810 811 812
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

813
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
814 815 816 817 818 819 820
		sel = antenna_sel_a;
		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	} else {
		sel = antenna_sel_bg;
		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
	}

821 822 823 824 825
	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);

	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);

826
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
827
			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
828
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
829
			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
830

831 832 833 834
	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);

	if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
	    rt2x00_rf(&rt2x00dev->chip, RF5325))
835
		rt61pci_config_antenna_5x(rt2x00dev, ant);
836
	else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
837
		rt61pci_config_antenna_2x(rt2x00dev, ant);
838 839
	else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
		if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
840
			rt61pci_config_antenna_2x(rt2x00dev, ant);
841
		else
842
			rt61pci_config_antenna_2529(rt2x00dev, ant);
843 844 845
	}
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain = 0;

	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
	} else {
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
	}

	rt2x00dev->lna_gain = lna_gain;
}

static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
				   struct rf_channel *rf, const int txpower)
{
	u8 r3;
	u8 r94;
	u8 smart;

	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

	smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
		  rt2x00_rf(&rt2x00dev->chip, RF2527));

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
	rt61pci_bbp_write(rt2x00dev, 3, r3);

	r94 = 6;
	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
		r94 += txpower - MAX_TXPOWER;
	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
		r94 += txpower;
	rt61pci_bbp_write(rt2x00dev, 94, r94);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	msleep(1);
}

static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				   const int txpower)
{
	struct rf_channel rf;

	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);

	rt61pci_config_channel(rt2x00dev, &rf, txpower);
}

static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929
				    struct rt2x00lib_conf *libconf)
930 931 932
{
	u32 reg;

933 934 935 936 937 938 939
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
}
940

941 942 943 944
static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u32 reg;
945 946 947 948 949 950 951 952 953 954

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
955 956
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
			   libconf->conf->beacon_int * 16);
957 958 959
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
}

I
Ivo van Doorn 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
				   libconf->conf->beacon_int - 10);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);

		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);

		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
	}
}

1004
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1005 1006
			   struct rt2x00lib_conf *libconf,
			   const unsigned int flags)
1007
{
1008 1009 1010
	/* Always recalculate LNA gain before changing configuration */
	rt61pci_config_lna_gain(rt2x00dev, libconf);

1011
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1012 1013
		rt61pci_config_channel(rt2x00dev, &libconf->rf,
				       libconf->conf->power_level);
1014 1015
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1016
		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1017 1018 1019
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt61pci_config_retry_limit(rt2x00dev, libconf);
	if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1020
		rt61pci_config_duration(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
1021 1022
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt61pci_config_ps(rt2x00dev, libconf);
1023 1024 1025 1026 1027
}

/*
 * Link tuning
 */
1028 1029
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual)
1030 1031 1032 1033 1034 1035 1036
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1037
	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1038 1039 1040 1041 1042

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1043
	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1044 1045
}

1046 1047
static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				   struct link_qual *qual, u8 vgc_level)
1048
{
1049
	if (qual->vgc_level != vgc_level) {
1050
		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1051 1052
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
1053 1054 1055
	}
}

1056 1057
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				struct link_qual *qual)
1058
{
1059
	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1060 1061
}

1062 1063
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual, const u32 count)
1064 1065 1066 1067 1068 1069 1070
{
	u8 up_bound;
	u8 low_bound;

	/*
	 * Determine r17 bounds.
	 */
1071
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		low_bound = 0x28;
		up_bound = 0x48;
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	} else {
		low_bound = 0x20;
		up_bound = 0x40;
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	}

1087 1088 1089 1090 1091 1092 1093
	/*
	 * If we are not associated, we should go straight to the
	 * dynamic CCA tuning.
	 */
	if (!rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

1094 1095 1096
	/*
	 * Special big-R17 for very short distance
	 */
1097 1098
	if (qual->rssi >= -35) {
		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1099 1100 1101 1102 1103 1104
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
1105 1106
	if (qual->rssi >= -58) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1107 1108 1109 1110 1111 1112
		return;
	}

	/*
	 * Special big-R17 for middle-short distance
	 */
1113 1114
	if (qual->rssi >= -66) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1115 1116 1117 1118 1119 1120
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
1121 1122
	if (qual->rssi >= -74) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1123 1124 1125 1126 1127 1128 1129
		return;
	}

	/*
	 * Special case: Change up_bound based on the rssi.
	 * Lower up_bound when rssi is weaker then -74 dBm.
	 */
1130
	up_bound -= 2 * (-74 - qual->rssi);
1131 1132 1133
	if (low_bound > up_bound)
		up_bound = low_bound;

1134 1135
	if (qual->vgc_level > up_bound) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1136 1137 1138
		return;
	}

1139 1140
dynamic_cca_tune:

1141 1142 1143 1144
	/*
	 * r17 does not yet exceed upper limit, continue and base
	 * the r17 tuning on the false CCA count.
	 */
1145 1146 1147 1148
	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1149 1150 1151
}

/*
1152
 * Firmware functions
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
 */
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	char *fw_name;

	switch (rt2x00dev->chip.rt) {
	case RT2561:
		fw_name = FIRMWARE_RT2561;
		break;
	case RT2561s:
		fw_name = FIRMWARE_RT2561s;
		break;
	case RT2661:
		fw_name = FIRMWARE_RT2661;
		break;
	default:
		fw_name = NULL;
		break;
	}

	return fw_name;
}

1176 1177
static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				  const u8 *data, const size_t len)
1178
{
1179
	u16 fw_crc;
1180 1181 1182
	u16 crc;

	/*
1183 1184 1185 1186 1187 1188
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
1189 1190 1191 1192
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
1193 1194 1195 1196 1197
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc itu-t algorithm.
	 */
1198 1199 1200 1201
	crc = crc_itu_t(0, data, len - 2);
	crc = crc_itu_t_byte(crc, 0);
	crc = crc_itu_t_byte(crc, 0);

1202
	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1203 1204
}

1205 1206
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				 const u8 *data, const size_t len)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
		if (reg)
			break;
		msleep(1);
	}

	if (!reg) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

	/*
	 * Prepare MCU and mailbox for firmware loading.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);

	/*
	 * Write firmware to device.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
			break;
		msleep(1);
	}

	if (i == 100) {
		ERROR(rt2x00dev, "MCU Control register not ready.\n");
		return -EBUSY;
	}

1265 1266 1267 1268 1269
	/*
	 * Hardware needs another millisecond before it is ready.
	 */
	msleep(1);

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * Reset MAC and BBP registers.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1290 1291 1292
/*
 * Initialization functions.
 */
1293
static bool rt61pci_get_entry_state(struct queue_entry *entry)
1294
{
1295
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1296 1297
	u32 word;

1298 1299
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1300

1301 1302 1303 1304 1305 1306 1307
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);

		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
1308 1309
}

1310
static void rt61pci_clear_entry(struct queue_entry *entry)
1311
{
1312
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1313
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1314 1315
	u32 word;

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 5, &word);
		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 5, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
1331 1332
}

I
Ivo van Doorn 已提交
1333
static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1334
{
1335
	struct queue_entry_priv_pci *entry_priv;
1336 1337 1338 1339 1340 1341 1342
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
I
Ivo van Doorn 已提交
1343
			   rt2x00dev->tx[0].limit);
1344
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
I
Ivo van Doorn 已提交
1345
			   rt2x00dev->tx[1].limit);
1346
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
I
Ivo van Doorn 已提交
1347
			   rt2x00dev->tx[2].limit);
1348
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
I
Ivo van Doorn 已提交
1349
			   rt2x00dev->tx[3].limit);
1350 1351 1352 1353
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
I
Ivo van Doorn 已提交
1354
			   rt2x00dev->tx[0].desc_size / 4);
1355 1356
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);

1357
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1358
	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1359
	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1360
			   entry_priv->desc_dma);
1361 1362
	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);

1363
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1364
	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1365
	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1366
			   entry_priv->desc_dma);
1367 1368
	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);

1369
	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1370
	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1371
	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1372
			   entry_priv->desc_dma);
1373 1374
	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);

1375
	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1376
	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1377
	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1378
			   entry_priv->desc_dma);
1379 1380 1381
	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
I
Ivo van Doorn 已提交
1382
	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1383 1384 1385 1386 1387
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
			   rt2x00dev->rx->desc_size / 4);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);

1388
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1389
	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1390
	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1391
			   entry_priv->desc_dma);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);

	/*
	 * CCK TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);

	/*
	 * OFDM TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);

1476 1477 1478 1479 1480 1481 1482 1483 1484
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);

	/*
	 * Invalidate all Shared Keys (SEC_CSR0),
	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
	 */
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);

	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);

	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);

	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);

	/*
	 * Reset MAC and BBP registers.
	 */
	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1559
static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1560 1561 1562 1563 1564 1565 1566
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt61pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
1567
			return 0;
1568 1569 1570 1571 1572
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
}

static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
	rt61pci_bbp_write(rt2x00dev, 107, 0x04);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt61pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
			      enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1633 1634
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
}

static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize all registers.
	 */
1686 1687 1688
	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
		     rt61pci_init_registers(rt2x00dev) ||
		     rt61pci_init_bbp(rt2x00dev)))
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		return -EIO;

	/*
	 * Enable RX.
	 */
	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1704
	 * Disable power
1705
	 */
1706
	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
}

static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1729 1730
		state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
		if (state == !put_to_sleep)
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
			return 0;
		msleep(10);
	}

	return -EBUSY;
}

static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				    enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt61pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt61pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
1751
	case STATE_RADIO_RX_ON_LINK:
1752
	case STATE_RADIO_RX_OFF:
1753
	case STATE_RADIO_RX_OFF_LINK:
1754 1755 1756 1757 1758
		rt61pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt61pci_toggle_irq(rt2x00dev, state);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt61pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1771 1772 1773 1774
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1775 1776 1777 1778 1779 1780 1781
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1782 1783
				  struct sk_buff *skb,
				  struct txentry_desc *txdesc)
1784
{
I
Ivo van Doorn 已提交
1785
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1786
	__le32 *txd = skbdesc->desc;
1787 1788 1789 1790 1791 1792
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	rt2x00_desc_read(txd, 1, &word);
I
Ivo van Doorn 已提交
1793 1794 1795 1796
	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1797
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1798 1799
	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1800
	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1801 1802 1803
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
I
Ivo van Doorn 已提交
1804 1805 1806 1807
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1808 1809
	rt2x00_desc_write(txd, 2, word);

1810
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
I
Ivo van Doorn 已提交
1811 1812
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1813 1814
	}

1815
	rt2x00_desc_read(txd, 5, &word);
1816 1817 1818
	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
			   skbdesc->entry->entry_idx);
1819
	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1820
			   TXPOWER_TO_DEV(rt2x00dev->tx_power));
1821 1822 1823
	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
	rt2x00_desc_write(txd, 5, word);

1824 1825
	rt2x00_desc_read(txd, 6, &word);
	rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1826
			   skbdesc->skb_dma);
1827 1828
	rt2x00_desc_write(txd, 6, word);

1829 1830
	if (skbdesc->desc_len > TXINFO_SIZE) {
		rt2x00_desc_read(txd, 11, &word);
1831
		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1832 1833
		rt2x00_desc_write(txd, 11, word);
	}
1834 1835 1836 1837 1838

	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1839
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1840
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1841
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1842
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1843
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1844
	rt2x00_set_field32(&word, TXD_W0_OFDM,
1845
			   (txdesc->rate_mode == RATE_MODE_OFDM));
I
Ivo van Doorn 已提交
1846
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1847
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1848
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1849 1850 1851 1852 1853
	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1854
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1855
	rt2x00_set_field32(&word, TXD_W0_BURST,
I
Ivo van Doorn 已提交
1856
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1857
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1858 1859 1860 1861 1862 1863
	rt2x00_desc_write(txd, 0, word);
}

/*
 * TX data initialization
 */
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static void rt61pci_write_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	unsigned int beacon_base;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

	/*
	 * Write entire beacon with descriptor to register.
	 */
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
	rt2x00pci_register_multiwrite(rt2x00dev,
				      beacon_base,
				      skbdesc->desc, skbdesc->desc_len);
	rt2x00pci_register_multiwrite(rt2x00dev,
				      beacon_base + skbdesc->desc_len,
				      entry->skb->data, entry->skb->len);

	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

1899
static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1900
				  const enum data_queue_qid queue)
1901 1902 1903
{
	u32 reg;

1904
	if (queue == QID_BEACON) {
1905 1906 1907 1908 1909 1910 1911 1912
		/*
		 * For Wi-Fi faily generated beacons between participating
		 * stations. Set TBTT phase adaptive adjustment step to 8us.
		 */
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);

		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
		if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1913 1914
			rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
			rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1915 1916 1917 1918 1919 1920 1921
			rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
			rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
		}
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1922 1923 1924 1925
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1926 1927 1928
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				  const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

1947 1948 1949 1950 1951
/*
 * RX control handlers
 */
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
1952
	u8 offset = rt2x00dev->lna_gain;
1953 1954 1955 1956 1957
	u8 lna;

	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
	switch (lna) {
	case 3:
1958
		offset += 90;
1959 1960
		break;
	case 2:
1961
		offset += 74;
1962 1963
		break;
	case 1:
1964
		offset += 64;
1965 1966 1967 1968 1969
		break;
	default:
		return 0;
	}

1970
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1971 1972 1973 1974 1975 1976 1977
		if (lna == 3 || lna == 2)
			offset += 10;
	}

	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}

I
Ivo van Doorn 已提交
1978
static void rt61pci_fill_rxdone(struct queue_entry *entry,
J
John Daiker 已提交
1979
				struct rxdone_entry_desc *rxdesc)
1980
{
1981
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1982
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1983 1984 1985
	u32 word0;
	u32 word1;

1986 1987
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 1, &word1);
1988

1989
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1990
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1991

1992 1993 1994 1995 1996 1997 1998 1999
	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
		rxdesc->cipher =
		    rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
		rxdesc->cipher_status =
		    rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
	}

	if (rxdesc->cipher != CIPHER_NONE) {
I
Ivo van Doorn 已提交
2000 2001
		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2002 2003
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

2004
		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2005
		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. It has provided the data seperately but rt2x00lib
		 * should decide if it should be reinserted.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		/*
		 * FIXME: Legacy driver indicates that the frame does
		 * contain the Michael Mic. Unfortunately, in rt2x00
		 * the MIC seems to be missing completely...
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

2027 2028
	/*
	 * Obtain the status about this packet.
I
Ivo van Doorn 已提交
2029 2030 2031
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
2032
	 */
I
Ivo van Doorn 已提交
2033
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2034
	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
I
Ivo van Doorn 已提交
2035
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2036 2037 2038

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
2039 2040
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2041 2042
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
2043 2044 2045 2046 2047 2048 2049
}

/*
 * Interrupt functions.
 */
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
I
Ivo van Doorn 已提交
2050 2051 2052
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
2053
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
2054
	struct txdone_entry_desc txdesc;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	u32 word;
	u32 reg;
	u32 old_reg;
	int type;
	int index;

	/*
	 * During each loop we will compare the freshly read
	 * STA_CSR4 register value with the value read from
	 * the previous loop. If the 2 values are equal then
	 * we should stop processing because the chance it
	 * quite big that the device has been unplugged and
	 * we risk going into an endless loop.
	 */
	old_reg = 0;

	while (1) {
		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
			break;

		if (old_reg == reg)
			break;
		old_reg = reg;

		/*
		 * Skip this entry when it contains an invalid
I
Ivo van Doorn 已提交
2082
		 * queue identication number.
2083 2084
		 */
		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
I
Ivo van Doorn 已提交
2085 2086
		queue = rt2x00queue_get_queue(rt2x00dev, type);
		if (unlikely(!queue))
2087 2088 2089 2090 2091 2092 2093
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
I
Ivo van Doorn 已提交
2094
		if (unlikely(index >= queue->limit))
2095 2096
			continue;

I
Ivo van Doorn 已提交
2097
		entry = &queue->entries[index];
2098 2099
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
2100 2101 2102 2103 2104

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			return;

I
Ivo van Doorn 已提交
2105
		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2106
		while (entry != entry_done) {
I
Ivo van Doorn 已提交
2107 2108 2109
			/* Catch up.
			 * Just report any entries we missed as failed.
			 */
2110
			WARNING(rt2x00dev,
I
Ivo van Doorn 已提交
2111 2112 2113
				"TX status report missed for entry %d\n",
				entry_done->entry_idx);

I
Ivo van Doorn 已提交
2114 2115
			txdesc.flags = 0;
			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
I
Ivo van Doorn 已提交
2116 2117
			txdesc.retry = 0;

I
Ivo van Doorn 已提交
2118
			rt2x00lib_txdone(entry_done, &txdesc);
I
Ivo van Doorn 已提交
2119
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2120 2121
		}

2122 2123 2124
		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		txdesc.flags = 0;
		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
		case 0: /* Success, maybe with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 6: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
2136
		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2137

I
Ivo van Doorn 已提交
2138
		rt2x00lib_txdone(entry, &txdesc);
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	}
}

static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg_mcu;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);

	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg && !reg_mcu)
		return IRQ_NONE;

2161
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 2 - Tx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
		rt61pci_txdone(rt2x00dev);

	/*
	 * 3 - Handle MCU command done.
	 */
	if (reg_mcu)
		rt2x00pci_register_write(rt2x00dev,
					 M2H_CMD_DONE_CSR, 0xffffffff);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;
	s8 value;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt61pci_eepromregister_read;
	eeprom.register_write = rt61pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
2224
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2225 2226 2227 2228 2229
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
2230 2231 2232 2233
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_B);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2246 2247
		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2292
		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
	}

	return 0;
}

static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2322
	rt2x00_set_chip_rf(rt2x00dev, value, reg);
2323 2324 2325 2326 2327 2328 2329 2330 2331

	if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
	    !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

2332 2333 2334 2335 2336 2337
	/*
	 * Determine number of antenna's.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
		__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);

2338 2339 2340
	/*
	 * Identify default antenna configuration.
	 */
2341
	rt2x00dev->default_ant.tx =
2342
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2343
	rt2x00dev->default_ant.rx =
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Read the Frame type.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);

	/*
	 * Detect if this device has an hardware controlled radio.
	 */
2355
#ifdef CONFIG_RT2X00_LIB_RFKILL
2356
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2357
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2358
#endif /* CONFIG_RT2X00_LIB_RFKILL */
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
		__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);

	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);

2379 2380 2381 2382 2383 2384 2385
	/*
	 * When working with a RF2529 chip without double antenna
	 * the antenna settings should be gathered from the NIC
	 * eeprom word.
	 */
	if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
	    !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2386 2387 2388 2389
		rt2x00dev->default_ant.rx =
		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
		rt2x00dev->default_ant.tx =
		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2390 2391 2392 2393 2394 2395 2396

		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
	}

2397 2398 2399 2400 2401
	/*
	 * Store led settings, for correct led behaviour.
	 * If the eeprom value is invalid,
	 * switch to default led mode.
	 */
2402
#ifdef CONFIG_RT2X00_LIB_LEDS
2403
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2404 2405
	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);

2406 2407 2408 2409 2410
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	if (value == LED_MODE_SIGNAL_STRENGTH)
		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				 LED_TYPE_QUALITY);
2411

2412 2413
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2414 2415
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_0));
2416
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2417 2418
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_1));
2419
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2420 2421
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_2));
2422
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2423 2424
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_3));
2425
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2426 2427
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_4));
2428
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2429
			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2430
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2431 2432
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_G));
2433
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2434 2435
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_A));
2436
#endif /* CONFIG_RT2X00_LIB_LEDS */
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	return 0;
}

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 */
static const struct rf_channel rf_vals_noseq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },

	/* 802.11 UNII */
	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 */
static const struct rf_channel rf_vals_seq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },

	/* 802.11 UNII */
	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};

2555
static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2556 2557
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
2558 2559
	struct channel_info *info;
	char *tx_power;
2560 2561 2562 2563 2564 2565
	unsigned int i;

	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
2566
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2567 2568 2569
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
	    IEEE80211_HW_PS_NULLFUNC_STACK;
2570 2571
	rt2x00dev->hw->extra_tx_headroom = 0;

2572
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2573 2574 2575 2576 2577 2578 2579
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
2580 2581
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
		spec->num_channels = 14;
		spec->channels = rf_vals_noseq;
	} else {
		spec->num_channels = 14;
		spec->channels = rf_vals_seq;
	}

	if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
	    rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2593
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2594
		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	}

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;
2605

2606 2607 2608
	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2609

2610 2611 2612 2613
	if (spec->num_channels > 14) {
		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
		for (i = 14; i < spec->num_channels; i++)
			info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2614
	}
2615 2616

	return 0;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
}

static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt61pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt61pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
2637 2638 2639
	retval = rt61pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
2640 2641

	/*
2642
	 * This device requires firmware and DMA mapped skbs.
2643
	 */
2644
	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2645
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2646 2647
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
2660 2661 2662 2663 2664 2665 2666 2667
static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
			   const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
2668
	u32 offset;
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
	if (retval)
		return retval;

2680 2681 2682 2683 2684 2685 2686
	/*
	 * We only need to perform additional register initialization
	 * for WMM queues/
	 */
	if (queue_idx >= 4)
		return 0;

2687 2688 2689
	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);

	/* Update WMM TXOP register */
2690 2691 2692 2693 2694 2695 2696
	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, field, queue->txop);
	rt2x00pci_register_write(rt2x00dev, offset, reg);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->aifs);
	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_min);
	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_max);
	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);

	return 0;
}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);

	return tsf;
}

static const struct ieee80211_ops rt61pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
2733 2734
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
2735 2736 2737
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
2738
	.configure_filter	= rt2x00mac_configure_filter,
2739
	.set_key		= rt2x00mac_set_key,
2740
	.get_stats		= rt2x00mac_get_stats,
2741
	.bss_info_changed	= rt2x00mac_bss_info_changed,
2742
	.conf_tx		= rt61pci_conf_tx,
2743 2744 2745 2746 2747 2748 2749 2750
	.get_tx_stats		= rt2x00mac_get_tx_stats,
	.get_tsf		= rt61pci_get_tsf,
};

static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
	.irq_handler		= rt61pci_interrupt,
	.probe_hw		= rt61pci_probe_hw,
	.get_firmware_name	= rt61pci_get_firmware_name,
2751
	.check_firmware		= rt61pci_check_firmware,
2752 2753 2754
	.load_firmware		= rt61pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
2755 2756
	.get_entry_state	= rt61pci_get_entry_state,
	.clear_entry		= rt61pci_clear_entry,
2757 2758 2759 2760 2761 2762 2763
	.set_device_state	= rt61pci_set_device_state,
	.rfkill_poll		= rt61pci_rfkill_poll,
	.link_stats		= rt61pci_link_stats,
	.reset_tuner		= rt61pci_reset_tuner,
	.link_tuner		= rt61pci_link_tuner,
	.write_tx_desc		= rt61pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
2764
	.write_beacon		= rt61pci_write_beacon,
2765
	.kick_tx_queue		= rt61pci_kick_tx_queue,
2766
	.kill_tx_queue		= rt61pci_kill_tx_queue,
2767
	.fill_rxdone		= rt61pci_fill_rxdone,
2768 2769
	.config_shared_key	= rt61pci_config_shared_key,
	.config_pairwise_key	= rt61pci_config_pairwise_key,
I
Ivo van Doorn 已提交
2770
	.config_filter		= rt61pci_config_filter,
2771
	.config_intf		= rt61pci_config_intf,
2772
	.config_erp		= rt61pci_config_erp,
2773
	.config_ant		= rt61pci_config_ant,
2774 2775 2776
	.config			= rt61pci_config,
};

I
Ivo van Doorn 已提交
2777 2778 2779 2780
static const struct data_queue_desc rt61pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
2781
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2782 2783 2784 2785 2786 2787
};

static const struct data_queue_desc rt61pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
2788
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2789 2790 2791
};

static const struct data_queue_desc rt61pci_queue_bcn = {
2792
	.entry_num		= 4 * BEACON_ENTRIES,
2793
	.data_size		= 0, /* No DMA required for beacons */
I
Ivo van Doorn 已提交
2794
	.desc_size		= TXINFO_SIZE,
2795
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2796 2797
};

2798
static const struct rt2x00_ops rt61pci_ops = {
2799
	.name		= KBUILD_MODNAME,
2800 2801
	.max_sta_intf	= 1,
	.max_ap_intf	= 4,
2802 2803
	.eeprom_size	= EEPROM_SIZE,
	.rf_size	= RF_SIZE,
2804
	.tx_queues	= NUM_TX_QUEUES,
I
Ivo van Doorn 已提交
2805 2806 2807
	.rx		= &rt61pci_queue_rx,
	.tx		= &rt61pci_queue_tx,
	.bcn		= &rt61pci_queue_bcn,
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
	.lib		= &rt61pci_rt2x00_ops,
	.hw		= &rt61pci_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
	.debugfs	= &rt61pci_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT61pci module information.
 */
static struct pci_device_id rt61pci_device_table[] = {
	/* RT2561s */
	{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2561 v2 */
	{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2661 */
	{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
			"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");

static struct pci_driver rt61pci_driver = {
2840
	.name		= KBUILD_MODNAME,
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	.id_table	= rt61pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt61pci_init(void)
{
	return pci_register_driver(&rt61pci_driver);
}

static void __exit rt61pci_exit(void)
{
	pci_unregister_driver(&rt61pci_driver);
}

module_init(rt61pci_init);
module_exit(rt61pci_exit);