rt61pci.c 86.6 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt61pci
	Abstract: rt61pci device specific routines.
	Supported chipsets: RT2561, RT2561s, RT2661.
 */

27
#include <linux/crc-itu-t.h>
28 29 30 31 32
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
33
#include <linux/slab.h>
34 35 36 37 38 39 40
#include <linux/pci.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt61pci.h"

41 42 43 44 45 46 47
/*
 * Allow hardware encryption to be disabled.
 */
static int modparam_nohwcrypt = 0;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

48 49 50 51 52 53 54
/*
 * Register access.
 * BBP and RF register require indirect register access,
 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
 * These indirect registers work with busy bits,
 * and we will try maximal REGISTER_BUSY_COUNT times to access
 * the register while taking a REGISTER_BUSY_DELAY us delay
55
 * between each attempt. When the busy bit is still set at that time,
56 57 58
 * the access attempt is considered to have failed,
 * and we will print an error.
 */
59 60 61 62 63 64 65
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
#define WAIT_FOR_MCU(__dev, __reg) \
	rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
			       H2M_MAILBOX_CSR_OWNER, (__reg))
66

A
Adam Baker 已提交
67
static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 69 70 71
			      const unsigned int word, const u8 value)
{
	u32 reg;

72 73
	mutex_lock(&rt2x00dev->csr_mutex);

74
	/*
75 76
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
77
	 */
78 79 80 81 82 83 84 85 86
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
	}
87 88

	mutex_unlock(&rt2x00dev->csr_mutex);
89 90
}

A
Adam Baker 已提交
91
static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 93 94 95
			     const unsigned int word, u8 *value)
{
	u32 reg;

96 97
	mutex_lock(&rt2x00dev->csr_mutex);

98
	/*
99 100 101 102 103 104
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
105
	 */
106 107 108 109 110
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111

112
		rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113

114 115
		WAIT_FOR_BBP(rt2x00dev, &reg);
	}
116 117

	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118 119

	mutex_unlock(&rt2x00dev->csr_mutex);
120 121
}

A
Adam Baker 已提交
122
static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 124 125 126
			     const unsigned int word, const u32 value)
{
	u32 reg;

127 128
	mutex_lock(&rt2x00dev->csr_mutex);

129 130 131 132 133 134 135 136 137 138 139 140 141
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);

		rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
142 143
	}

144
	mutex_unlock(&rt2x00dev->csr_mutex);
145 146
}

A
Adam Baker 已提交
147
static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 149 150 151 152
				const u8 command, const u8 token,
				const u8 arg0, const u8 arg1)
{
	u32 reg;

153 154
	mutex_lock(&rt2x00dev->csr_mutex);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
	/*
	 * Wait until the MCU becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
		rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
		rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
		rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
	}
171 172 173

	mutex_unlock(&rt2x00dev->csr_mutex);

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
}

static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
static const struct rt2x00debug rt61pci_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
210 211 212 213
		.read		= rt2x00pci_register_read,
		.write		= rt2x00pci_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
214 215 216 217 218 219
		.word_size	= sizeof(u32),
		.word_count	= CSR_REG_SIZE / sizeof(u32),
	},
	.eeprom	= {
		.read		= rt2x00_eeprom_read,
		.write		= rt2x00_eeprom_write,
220
		.word_base	= EEPROM_BASE,
221 222 223 224 225 226
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
		.read		= rt61pci_bbp_read,
		.write		= rt61pci_bbp_write,
227
		.word_base	= BBP_BASE,
228 229 230 231 232 233
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
		.read		= rt2x00_rf_read,
		.write		= rt61pci_rf_write,
234
		.word_base	= RF_BASE,
235 236 237 238 239 240 241 242 243 244 245
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
I
Ivo van Doorn 已提交
246
	return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 248
}

249
#ifdef CONFIG_RT2X00_LIB_LEDS
250
static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
				   enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
	unsigned int a_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
	unsigned int bg_mode =
	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);

	if (led->type == LED_TYPE_RADIO) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_RADIO_STATUS, enabled);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_ASSOC) {
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
				   MCU_LEDCS_LINK_A_STATUS, a_mode);

		rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
				    (led->rt2x00dev->led_mcu_reg & 0xff),
				    ((led->rt2x00dev->led_mcu_reg >> 8)));
	} else if (led->type == LED_TYPE_QUALITY) {
		/*
		 * The brightness is divided into 6 levels (0 - 5),
		 * this means we need to convert the brightness
		 * argument into the matching level within that range.
		 */
		rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
				    brightness / (LED_FULL / 6), 0);
	}
}
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

static int rt61pci_blink_set(struct led_classdev *led_cdev,
			     unsigned long *delay_on,
			     unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u32 reg;

	rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
	rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);

	return 0;
}
303 304 305 306 307 308 309 310 311 312 313

static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
			     struct rt2x00_led *led,
			     enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt61pci_brightness_set;
	led->led_dev.blink_set = rt61pci_blink_set;
	led->flags = LED_INITIALIZED;
}
314
#endif /* CONFIG_RT2X00_LIB_LEDS */
315

316 317 318
/*
 * Configuration handlers.
 */
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
				     struct rt2x00lib_crypto *crypto,
				     struct ieee80211_key_conf *key)
{
	struct hw_key_entry key_entry;
	struct rt2x00_field32 field;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for shared keys. We have 1 register
		 * with key valid bits. The goal is simple, read
		 * the register, if that is full we have no slots
		 * left.
		 * Note that each BSS is allowed to have up to 4
		 * shared keys, so put a mask over the allowed
		 * entries.
		 */
		mask = (0xf << crypto->bssidx);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

347
		key->hw_key_idx += reg ? ffz(reg) : 0;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		/*
		 * The cipher types are stored over 2 registers.
		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
		 * Using the correct defines correctly will cause overhead,
		 * so just calculate the correct offset.
		 */
		if (key->hw_key_idx < 8) {
			field.bit_offset = (3 * key->hw_key_idx);
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
		} else {
			field.bit_offset = (3 * (key->hw_key_idx - 8));
			field.bit_mask = 0x7 << field.bit_offset;

			rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
			rt2x00_set_field32(&reg, field, crypto->cipher);
			rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
		}

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
390
		 * to be provided separately for the descriptor.
391 392 393 394 395 396 397 398 399 400
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR0 contains only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
401
	 * defines directly will cause a lot of overhead, we use
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	 * a calculation to determine the correct bit directly.
	 */
	mask = 1 << key->hw_key_idx;

	rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
	if (crypto->cmd == SET_KEY)
		reg |= mask;
	else if (crypto->cmd == DISABLE_KEY)
		reg &= ~mask;
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);

	return 0;
}

static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
				       struct rt2x00lib_crypto *crypto,
				       struct ieee80211_key_conf *key)
{
	struct hw_pairwise_ta_entry addr_entry;
	struct hw_key_entry key_entry;
	u32 mask;
	u32 reg;

	if (crypto->cmd == SET_KEY) {
		/*
		 * rt2x00lib can't determine the correct free
		 * key_idx for pairwise keys. We have 2 registers
429 430
		 * with key valid bits. The goal is simple: read
		 * the first register. If that is full, move to
431
		 * the next register.
432 433
		 * When both registers are full, we drop the key.
		 * Otherwise, we use the first invalid entry.
434 435 436 437 438 439 440 441 442
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (reg && reg == ~0) {
			key->hw_key_idx = 32;
			rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
			if (reg && reg == ~0)
				return -ENOSPC;
		}

443
		key->hw_key_idx += reg ? ffz(reg) : 0;
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

		/*
		 * Upload key to hardware
		 */
		memcpy(key_entry.key, crypto->key,
		       sizeof(key_entry.key));
		memcpy(key_entry.tx_mic, crypto->tx_mic,
		       sizeof(key_entry.tx_mic));
		memcpy(key_entry.rx_mic, crypto->rx_mic,
		       sizeof(key_entry.rx_mic));

		memset(&addr_entry, 0, sizeof(addr_entry));
		memcpy(&addr_entry, crypto->address, ETH_ALEN);
		addr_entry.cipher = crypto->cipher;

		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &key_entry, sizeof(key_entry));

		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
		rt2x00pci_register_multiwrite(rt2x00dev, reg,
					      &addr_entry, sizeof(addr_entry));

		/*
468 469
		 * Enable pairwise lookup table for given BSS idx.
		 * Without this, received frames will not be decrypted
470 471 472 473 474 475 476 477 478 479
		 * by the hardware.
		 */
		rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
		reg |= (1 << crypto->bssidx);
		rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);

		/*
		 * The driver does not support the IV/EIV generation
		 * in hardware. However it doesn't support the IV/EIV
		 * inside the ieee80211 frame either, but requires it
D
Daniel Mack 已提交
480
		 * to be provided separately for the descriptor.
481 482 483 484 485 486 487 488 489 490
		 * rt2x00lib will cut the IV/EIV data out of all frames
		 * given to us by mac80211, but we must tell mac80211
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
	}

	/*
	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
	 * a particular key is valid. Because using the FIELD32()
491
	 * defines directly will cause a lot of overhead, we use
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	 * a calculation to determine the correct bit directly.
	 */
	if (key->hw_key_idx < 32) {
		mask = 1 << key->hw_key_idx;

		rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
	} else {
		mask = 1 << (key->hw_key_idx - 32);

		rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
		if (crypto->cmd == SET_KEY)
			reg |= mask;
		else if (crypto->cmd == DISABLE_KEY)
			reg &= ~mask;
		rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
	}

	return 0;
}

I
Ivo van Doorn 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
				  const unsigned int filter_flags)
{
	u32 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534
			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
I
Ivo van Doorn 已提交
535 536 537
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
			   !(filter_flags & FIF_PROMISC_IN_BSS));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 539
			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
540 541 542 543 544 545 546 547 548
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
			   !(filter_flags & FIF_CONTROL));
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

549 550 551 552
static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
				struct rt2x00_intf *intf,
				struct rt2x00intf_conf *conf,
				const unsigned int flags)
553
{
554 555
	unsigned int beacon_base;
	u32 reg;
556

557 558 559
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Clear current synchronisation setup.
560
		 * For the Beacon base registers, we only need to clear
561 562 563 564 565
		 * the first byte since that byte contains the VALID and OWNER
		 * bits which (when set to 0) will invalidate the entire beacon.
		 */
		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
		rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
566

567 568 569 570
		/*
		 * Enable synchronisation.
		 */
		rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572
		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573
		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574 575
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
	}
576

577 578 579 580
	if (flags & CONFIG_UPDATE_MAC) {
		reg = le32_to_cpu(conf->mac[1]);
		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
		conf->mac[1] = cpu_to_le32(reg);
581

582 583 584
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
					      conf->mac, sizeof(conf->mac));
	}
585

586 587 588 589
	if (flags & CONFIG_UPDATE_BSSID) {
		reg = le32_to_cpu(conf->bssid[1]);
		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
		conf->bssid[1] = cpu_to_le32(reg);
590

591 592 593
		rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
					      conf->bssid, sizeof(conf->bssid));
	}
594 595
}

I
Ivo van Doorn 已提交
596 597
static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00lib_erp *erp)
598 599 600 601
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
602
	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
603
	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
604 605 606
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
607
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
608
	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
609
			   !!erp->short_preamble);
610 611
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);

612
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
613

614 615 616 617 618
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
			   erp->beacon_int * 16);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

619 620 621
	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
622

623 624 625 626 627
	rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
	rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
	rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
628 629 630
}

static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
631
				      struct antenna_setup *ant)
632 633 634 635 636 637 638 639 640
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

641
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
642 643 644 645

	/*
	 * Configure the RX antenna.
	 */
646
	switch (ant->rx) {
647
	case ANTENNA_HW_DIVERSITY:
648
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650
				  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651 652
		break;
	case ANTENNA_A:
653
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 657 658
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659 660
		break;
	case ANTENNA_B:
661
	default:
662
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663
		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664
		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 666 667
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		else
			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668 669 670 671 672 673 674 675 676
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677
				      struct antenna_setup *ant)
678 679 680 681 682 683 684 685 686
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);

687
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
688 689 690
	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));

691 692 693
	/*
	 * Configure the RX antenna.
	 */
694
	switch (ant->rx) {
695
	case ANTENNA_HW_DIVERSITY:
696
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
697 698
		break;
	case ANTENNA_A:
699 700
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
701 702
		break;
	case ANTENNA_B:
703
	default:
704 705
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
					   const int p1, const int p2)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);

721 722 723 724 725 726 727
	rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);

	rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
	rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
728 729 730
}

static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
731
					struct antenna_setup *ant)
732 733 734 735 736 737 738 739
{
	u8 r3;
	u8 r4;
	u8 r77;

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt61pci_bbp_read(rt2x00dev, 4, &r4);
	rt61pci_bbp_read(rt2x00dev, 77, &r77);
740 741 742 743 744 745

	/*
	 * Configure the RX antenna.
	 */
	switch (ant->rx) {
	case ANTENNA_A:
746 747 748
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
749 750 751
		break;
	case ANTENNA_HW_DIVERSITY:
		/*
752 753 754
		 * FIXME: Antenna selection for the rf 2529 is very confusing
		 * in the legacy driver. Just default to antenna B until the
		 * legacy code can be properly translated into rt2x00 code.
755 756
		 */
	case ANTENNA_B:
757
	default:
758 759 760
		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
		rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
761 762 763 764
		break;
	}

	rt61pci_bbp_write(rt2x00dev, 77, r77);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	rt61pci_bbp_write(rt2x00dev, 3, r3);
	rt61pci_bbp_write(rt2x00dev, 4, r4);
}

struct antenna_sel {
	u8 word;
	/*
	 * value[0] -> non-LNA
	 * value[1] -> LNA
	 */
	u8 value[2];
};

static const struct antenna_sel antenna_sel_a[] = {
	{ 96,  { 0x58, 0x78 } },
	{ 104, { 0x38, 0x48 } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x60, 0x60 } },
	{ 97,  { 0x58, 0x58 } },
	{ 98,  { 0x58, 0x58 } },
};

static const struct antenna_sel antenna_sel_bg[] = {
	{ 96,  { 0x48, 0x68 } },
	{ 104, { 0x2c, 0x3c } },
	{ 75,  { 0xfe, 0x80 } },
	{ 86,  { 0xfe, 0x80 } },
	{ 88,  { 0xfe, 0x80 } },
	{ 35,  { 0x50, 0x50 } },
	{ 97,  { 0x48, 0x48 } },
	{ 98,  { 0x48, 0x48 } },
};

800 801
static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
			       struct antenna_setup *ant)
802 803 804 805 806 807
{
	const struct antenna_sel *sel;
	unsigned int lna;
	unsigned int i;
	u32 reg;

808 809 810 811 812 813 814
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

815
	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
816 817 818 819 820 821 822
		sel = antenna_sel_a;
		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	} else {
		sel = antenna_sel_bg;
		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
	}

823 824 825 826 827
	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
		rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);

	rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);

828
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
829
			   rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
830
	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
831
			   rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
832

833 834
	rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);

835
	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
836
		rt61pci_config_antenna_5x(rt2x00dev, ant);
837
	else if (rt2x00_rf(rt2x00dev, RF2527))
838
		rt61pci_config_antenna_2x(rt2x00dev, ant);
839
	else if (rt2x00_rf(rt2x00dev, RF2529)) {
840
		if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
841
			rt61pci_config_antenna_2x(rt2x00dev, ant);
842
		else
843
			rt61pci_config_antenna_2529(rt2x00dev, ant);
844 845 846
	}
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
				    struct rt2x00lib_conf *libconf)
{
	u16 eeprom;
	short lna_gain = 0;

	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
	} else {
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
			lna_gain += 14;

		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
	}

	rt2x00dev->lna_gain = lna_gain;
}

static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
				   struct rf_channel *rf, const int txpower)
{
	u8 r3;
	u8 r94;
	u8 smart;

	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);

880
	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

	rt61pci_bbp_read(rt2x00dev, 3, &r3);
	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
	rt61pci_bbp_write(rt2x00dev, 3, r3);

	r94 = 6;
	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
		r94 += txpower - MAX_TXPOWER;
	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
		r94 += txpower;
	rt61pci_bbp_write(rt2x00dev, 94, r94);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	udelay(200);

	rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
	rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
	rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
	rt61pci_rf_write(rt2x00dev, 4, rf->rf4);

	msleep(1);
}

static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
				   const int txpower)
{
	struct rf_channel rf;

	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);

	rt61pci_config_channel(rt2x00dev, &rf, txpower);
}

static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929
				    struct rt2x00lib_conf *libconf)
930 931 932
{
	u32 reg;

933 934 935 936 937 938 939
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
			   libconf->conf->long_frame_max_tx_count);
	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
			   libconf->conf->short_frame_max_tx_count);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
}
940

I
Ivo van Doorn 已提交
941 942 943 944 945 946 947 948 949 950 951
static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u32 reg;

	if (state == STATE_SLEEP) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952
				   rt2x00dev->beacon_int - 10);
I
Ivo van Doorn 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);

		rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
	} else {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
		rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);

		rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
		rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
		rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);

		rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
	}
}

985
static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986 987
			   struct rt2x00lib_conf *libconf,
			   const unsigned int flags)
988
{
989 990 991
	/* Always recalculate LNA gain before changing configuration */
	rt61pci_config_lna_gain(rt2x00dev, libconf);

992
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993 994
		rt61pci_config_channel(rt2x00dev, &libconf->rf,
				       libconf->conf->power_level);
995 996
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997
		rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998 999
	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
		rt61pci_config_retry_limit(rt2x00dev, libconf);
I
Ivo van Doorn 已提交
1000 1001
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt61pci_config_ps(rt2x00dev, libconf);
1002 1003 1004 1005 1006
}

/*
 * Link tuning
 */
1007 1008
static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual)
1009 1010 1011 1012 1013 1014 1015
{
	u32 reg;

	/*
	 * Update FCS error count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016
	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017 1018 1019 1020 1021

	/*
	 * Update False CCA count from register.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022
	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 1024
}

1025 1026
static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
				   struct link_qual *qual, u8 vgc_level)
1027
{
1028
	if (qual->vgc_level != vgc_level) {
1029
		rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030 1031
		qual->vgc_level = vgc_level;
		qual->vgc_level_reg = vgc_level;
1032 1033 1034
	}
}

1035 1036
static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
				struct link_qual *qual)
1037
{
1038
	rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 1040
}

1041 1042
static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
			       struct link_qual *qual, const u32 count)
1043 1044 1045 1046 1047 1048 1049
{
	u8 up_bound;
	u8 low_bound;

	/*
	 * Determine r17 bounds.
	 */
1050
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		low_bound = 0x28;
		up_bound = 0x48;
		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	} else {
		low_bound = 0x20;
		up_bound = 0x40;
		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
			low_bound += 0x10;
			up_bound += 0x10;
		}
	}

1066 1067 1068 1069 1070 1071 1072
	/*
	 * If we are not associated, we should go straight to the
	 * dynamic CCA tuning.
	 */
	if (!rt2x00dev->intf_associated)
		goto dynamic_cca_tune;

1073 1074 1075
	/*
	 * Special big-R17 for very short distance
	 */
1076 1077
	if (qual->rssi >= -35) {
		rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078 1079 1080 1081 1082 1083
		return;
	}

	/*
	 * Special big-R17 for short distance
	 */
1084 1085
	if (qual->rssi >= -58) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086 1087 1088 1089 1090 1091
		return;
	}

	/*
	 * Special big-R17 for middle-short distance
	 */
1092 1093
	if (qual->rssi >= -66) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094 1095 1096 1097 1098 1099
		return;
	}

	/*
	 * Special mid-R17 for middle distance
	 */
1100 1101
	if (qual->rssi >= -74) {
		rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102 1103 1104 1105 1106 1107 1108
		return;
	}

	/*
	 * Special case: Change up_bound based on the rssi.
	 * Lower up_bound when rssi is weaker then -74 dBm.
	 */
1109
	up_bound -= 2 * (-74 - qual->rssi);
1110 1111 1112
	if (low_bound > up_bound)
		up_bound = low_bound;

1113 1114
	if (qual->vgc_level > up_bound) {
		rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115 1116 1117
		return;
	}

1118 1119
dynamic_cca_tune:

1120 1121 1122 1123
	/*
	 * r17 does not yet exceed upper limit, continue and base
	 * the r17 tuning on the false CCA count.
	 */
1124 1125 1126 1127
	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
		rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
		rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 1129 1130
}

/*
1131
 * Firmware functions
1132 1133 1134
 */
static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
1135
	u16 chip;
1136 1137
	char *fw_name;

1138 1139 1140
	pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
	switch (chip) {
	case RT2561_PCI_ID:
1141 1142
		fw_name = FIRMWARE_RT2561;
		break;
1143
	case RT2561s_PCI_ID:
1144 1145
		fw_name = FIRMWARE_RT2561s;
		break;
1146
	case RT2661_PCI_ID:
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		fw_name = FIRMWARE_RT2661;
		break;
	default:
		fw_name = NULL;
		break;
	}

	return fw_name;
}

1157 1158
static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				  const u8 *data, const size_t len)
1159
{
1160
	u16 fw_crc;
1161 1162 1163
	u16 crc;

	/*
1164 1165 1166 1167 1168 1169
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
1170 1171
	 * The last 2 bytes in the firmware array are the crc checksum itself.
	 * This means that we should never pass those 2 bytes to the crc
1172 1173
	 * algorithm.
	 */
1174 1175 1176 1177 1178
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc itu-t algorithm.
	 */
1179 1180 1181 1182
	crc = crc_itu_t(0, data, len - 2);
	crc = crc_itu_t_byte(crc, 0);
	crc = crc_itu_t_byte(crc, 0);

1183
	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1184 1185
}

1186 1187
static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				 const u8 *data, const size_t len)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
{
	int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
		if (reg)
			break;
		msleep(1);
	}

	if (!reg) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

	/*
	 * Prepare MCU and mailbox for firmware loading.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
	rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);

	/*
	 * Write firmware to device.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);

	for (i = 0; i < 100; i++) {
		rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
		if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
			break;
		msleep(1);
	}

	if (i == 100) {
		ERROR(rt2x00dev, "MCU Control register not ready.\n");
		return -EBUSY;
	}

1246 1247 1248 1249 1250
	/*
	 * Hardware needs another millisecond before it is ready.
	 */
	msleep(1);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	/*
	 * Reset MAC and BBP registers.
	 */
	reg = 0;
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1271 1272 1273
/*
 * Initialization functions.
 */
1274
static bool rt61pci_get_entry_state(struct queue_entry *entry)
1275
{
1276
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1277 1278
	u32 word;

1279 1280
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
1281

1282 1283 1284 1285 1286 1287 1288
		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);

		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		        rt2x00_get_field32(word, TXD_W0_VALID));
	}
1289 1290
}

1291
static void rt61pci_clear_entry(struct queue_entry *entry)
1292
{
1293
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1294
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1295 1296
	u32 word;

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 5, &word);
		rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 5, word);

		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
		rt2x00_desc_write(entry_priv->desc, 0, word);
	}
1312 1313
}

I
Ivo van Doorn 已提交
1314
static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1315
{
1316
	struct queue_entry_priv_pci *entry_priv;
1317 1318 1319 1320 1321 1322 1323
	u32 reg;

	/*
	 * Initialize registers.
	 */
	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
I
Ivo van Doorn 已提交
1324
			   rt2x00dev->tx[0].limit);
1325
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
I
Ivo van Doorn 已提交
1326
			   rt2x00dev->tx[1].limit);
1327
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
I
Ivo van Doorn 已提交
1328
			   rt2x00dev->tx[2].limit);
1329
	rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
I
Ivo van Doorn 已提交
1330
			   rt2x00dev->tx[3].limit);
1331 1332 1333 1334
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
	rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
I
Ivo van Doorn 已提交
1335
			   rt2x00dev->tx[0].desc_size / 4);
1336 1337
	rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);

1338
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1339
	rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1340
	rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1341
			   entry_priv->desc_dma);
1342 1343
	rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);

1344
	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1345
	rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1346
	rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1347
			   entry_priv->desc_dma);
1348 1349
	rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);

1350
	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1351
	rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1352
	rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1353
			   entry_priv->desc_dma);
1354 1355
	rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);

1356
	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1357
	rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1358
	rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1359
			   entry_priv->desc_dma);
1360 1361 1362
	rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
I
Ivo van Doorn 已提交
1363
	rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1364 1365 1366 1367 1368
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
			   rt2x00dev->rx->desc_size / 4);
	rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
	rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);

1369
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
1370
	rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1371
	rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1372
			   entry_priv->desc_dma);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
	rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
	rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
	rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
	rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);

	/*
	 * CCK TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);

	/*
	 * OFDM TXD BBP registers
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);

1457 1458 1459 1460 1461 1462 1463 1464 1465
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);

	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

	rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);

	/*
	 * Invalidate all Shared Keys (SEC_CSR0),
	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
	 */
	rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
	rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);

	rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
	rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);

	rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);

	rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);

	rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	/*
	 * Clear all beacons
	 * For the Beacon base registers we only need to clear
	 * the first byte since that byte contains the VALID and OWNER
	 * bits which (when set to 0) will invalidate the entire beacon.
	 */
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
	rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	/*
	 * We must clear the error counters.
	 * These registers are cleared on read,
	 * so we may pass a useless variable to store the value.
	 */
	rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
	rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);

	/*
	 * Reset MAC and BBP registers.
	 */
	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);

	return 0;
}

1540
static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1541 1542 1543 1544 1545 1546 1547
{
	unsigned int i;
	u8 value;

	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt61pci_bbp_read(rt2x00dev, 0, &value);
		if ((value != 0xff) && (value != 0x00))
1548
			return 0;
1549 1550 1551 1552 1553
		udelay(REGISTER_BUSY_DELAY);
	}

	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
	return -EACCES;
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
}

static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 reg_id;
	u8 value;

	if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

	rt61pci_bbp_write(rt2x00dev, 3, 0x00);
	rt61pci_bbp_write(rt2x00dev, 15, 0x30);
	rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
	rt61pci_bbp_write(rt2x00dev, 22, 0x38);
	rt61pci_bbp_write(rt2x00dev, 23, 0x06);
	rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
	rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
	rt61pci_bbp_write(rt2x00dev, 34, 0x12);
	rt61pci_bbp_write(rt2x00dev, 37, 0x07);
	rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
	rt61pci_bbp_write(rt2x00dev, 41, 0x60);
	rt61pci_bbp_write(rt2x00dev, 53, 0x10);
	rt61pci_bbp_write(rt2x00dev, 54, 0x18);
	rt61pci_bbp_write(rt2x00dev, 60, 0x10);
	rt61pci_bbp_write(rt2x00dev, 61, 0x04);
	rt61pci_bbp_write(rt2x00dev, 62, 0x04);
	rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
	rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
	rt61pci_bbp_write(rt2x00dev, 99, 0x00);
	rt61pci_bbp_write(rt2x00dev, 102, 0x16);
	rt61pci_bbp_write(rt2x00dev, 107, 0x04);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt61pci_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
			      enum dev_state state)
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1614 1615
			   (state == STATE_RADIO_RX_OFF) ||
			   (state == STATE_RADIO_RX_OFF_LINK));
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
}

static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_OFF);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

		rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
	}

	/*
	 * Only toggle the interrupts bits we are going to use.
	 * Non-checked interrupt bits are disabled by default.
	 */
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
	rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
}

static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Initialize all registers.
	 */
1667 1668 1669
	if (unlikely(rt61pci_init_queues(rt2x00dev) ||
		     rt61pci_init_registers(rt2x00dev) ||
		     rt61pci_init_bbp(rt2x00dev)))
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		return -EIO;

	/*
	 * Enable RX.
	 */
	rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
	rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);

	return 0;
}

static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
1685
	 * Disable power
1686
	 */
1687
	rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
}

static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
	u32 reg;
	unsigned int i;
	char put_to_sleep;

	put_to_sleep = (state != STATE_AWAKE);

	rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
	rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
		rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1710 1711
		state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
		if (state == !put_to_sleep)
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
			return 0;
		msleep(10);
	}

	return -EBUSY;
}

static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				    enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt61pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt61pci_disable_radio(rt2x00dev);
		break;
	case STATE_RADIO_RX_ON:
1732
	case STATE_RADIO_RX_ON_LINK:
1733
	case STATE_RADIO_RX_OFF:
1734
	case STATE_RADIO_RX_OFF_LINK:
1735 1736 1737 1738 1739
		rt61pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt61pci_toggle_irq(rt2x00dev, state);
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt61pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1752 1753 1754 1755
	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

1756 1757 1758 1759 1760 1761 1762
	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1763 1764
				  struct sk_buff *skb,
				  struct txentry_desc *txdesc)
1765
{
I
Ivo van Doorn 已提交
1766
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1767 1768
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
	__le32 *txd = entry_priv->desc;
1769 1770 1771 1772 1773 1774
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
	rt2x00_desc_read(txd, 1, &word);
I
Ivo van Doorn 已提交
1775 1776 1777 1778
	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1779
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1780 1781
	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1782
	rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1783 1784 1785
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
I
Ivo van Doorn 已提交
1786 1787 1788 1789
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1790 1791
	rt2x00_desc_write(txd, 2, word);

1792
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
I
Ivo van Doorn 已提交
1793 1794
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1795 1796
	}

1797
	rt2x00_desc_read(txd, 5, &word);
1798 1799 1800
	rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
	rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
			   skbdesc->entry->entry_idx);
1801
	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1802
			   TXPOWER_TO_DEV(rt2x00dev->tx_power));
1803 1804 1805
	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
	rt2x00_desc_write(txd, 5, word);

1806 1807 1808 1809 1810
	if (txdesc->queue != QID_BEACON) {
		rt2x00_desc_read(txd, 6, &word);
		rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
				   skbdesc->skb_dma);
		rt2x00_desc_write(txd, 6, word);
1811

1812
		rt2x00_desc_read(txd, 11, &word);
1813 1814
		rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
				   txdesc->length);
1815 1816
		rt2x00_desc_write(txd, 11, word);
	}
1817

1818 1819 1820 1821 1822
	/*
	 * Writing TXD word 0 must the last to prevent a race condition with
	 * the device, whereby the device may take hold of the TXD before we
	 * finished updating it.
	 */
1823 1824 1825 1826
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
I
Ivo van Doorn 已提交
1827
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1828
	rt2x00_set_field32(&word, TXD_W0_ACK,
I
Ivo van Doorn 已提交
1829
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1830
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
I
Ivo van Doorn 已提交
1831
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1832
	rt2x00_set_field32(&word, TXD_W0_OFDM,
1833
			   (txdesc->rate_mode == RATE_MODE_OFDM));
I
Ivo van Doorn 已提交
1834
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1835
	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1836
			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1837 1838 1839 1840 1841
	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1842
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1843
	rt2x00_set_field32(&word, TXD_W0_BURST,
I
Ivo van Doorn 已提交
1844
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1845
	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1846
	rt2x00_desc_write(txd, 0, word);
1847 1848 1849 1850 1851 1852 1853

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len =
		(txdesc->queue == QID_BEACON) ?  TXINFO_SIZE : TXD_DESC_SIZE;
1854 1855 1856 1857 1858
}

/*
 * TX data initialization
 */
1859 1860
static void rt61pci_write_beacon(struct queue_entry *entry,
				 struct txentry_desc *txdesc)
1861 1862
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1863
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	unsigned int beacon_base;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

	/*
	 * Write entire beacon with descriptor to register.
	 */
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1879 1880 1881
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
				      entry_priv->desc, TXINFO_SIZE);
	rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1882 1883
				      entry->skb->data, entry->skb->len);

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	/*
	 * Enable beaconing again.
	 *
	 * For Wi-Fi faily generated beacons between participating
	 * stations. Set TBTT phase adaptive adjustment step to 8us.
	 */
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);

	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
	rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);

1897 1898 1899 1900 1901 1902 1903
	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

1904
static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1905
				  const enum data_queue_qid queue)
1906 1907 1908 1909
{
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1910 1911 1912 1913
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1914 1915 1916
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				  const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
		rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
		return;
	}

	rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
	rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
}

1935 1936 1937 1938 1939
/*
 * RX control handlers
 */
static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
{
1940
	u8 offset = rt2x00dev->lna_gain;
1941 1942 1943 1944 1945
	u8 lna;

	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
	switch (lna) {
	case 3:
1946
		offset += 90;
1947 1948
		break;
	case 2:
1949
		offset += 74;
1950 1951
		break;
	case 1:
1952
		offset += 64;
1953 1954 1955 1956 1957
		break;
	default:
		return 0;
	}

1958
	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1959 1960 1961 1962 1963 1964 1965
		if (lna == 3 || lna == 2)
			offset += 10;
	}

	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
}

I
Ivo van Doorn 已提交
1966
static void rt61pci_fill_rxdone(struct queue_entry *entry,
J
John Daiker 已提交
1967
				struct rxdone_entry_desc *rxdesc)
1968
{
1969
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1970
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1971 1972 1973
	u32 word0;
	u32 word1;

1974 1975
	rt2x00_desc_read(entry_priv->desc, 0, &word0);
	rt2x00_desc_read(entry_priv->desc, 1, &word1);
1976

1977
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1978
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1979

1980 1981
	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1982 1983

	if (rxdesc->cipher != CIPHER_NONE) {
I
Ivo van Doorn 已提交
1984 1985
		_rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
		_rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1986 1987
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

1988
		_rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1989
		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1990 1991 1992

		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
1993
		 * decryption. It has provided the data separately but rt2x00lib
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
		 * should decide if it should be reinserted.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		/*
		 * FIXME: Legacy driver indicates that the frame does
		 * contain the Michael Mic. Unfortunately, in rt2x00
		 * the MIC seems to be missing completely...
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

2011 2012
	/*
	 * Obtain the status about this packet.
I
Ivo van Doorn 已提交
2013 2014 2015
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
2016
	 */
I
Ivo van Doorn 已提交
2017
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2018
	rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
I
Ivo van Doorn 已提交
2019
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2020 2021 2022

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
2023 2024
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2025 2026
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
2027 2028 2029 2030 2031 2032 2033
}

/*
 * Interrupt functions.
 */
static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
{
I
Ivo van Doorn 已提交
2034 2035 2036
	struct data_queue *queue;
	struct queue_entry *entry;
	struct queue_entry *entry_done;
2037
	struct queue_entry_priv_pci *entry_priv;
I
Ivo van Doorn 已提交
2038
	struct txdone_entry_desc txdesc;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	u32 word;
	u32 reg;
	u32 old_reg;
	int type;
	int index;

	/*
	 * During each loop we will compare the freshly read
	 * STA_CSR4 register value with the value read from
	 * the previous loop. If the 2 values are equal then
2049
	 * we should stop processing because the chance is
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	 * quite big that the device has been unplugged and
	 * we risk going into an endless loop.
	 */
	old_reg = 0;

	while (1) {
		rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
		if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
			break;

		if (old_reg == reg)
			break;
		old_reg = reg;

		/*
		 * Skip this entry when it contains an invalid
I
Ivo van Doorn 已提交
2066
		 * queue identication number.
2067 2068
		 */
		type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
I
Ivo van Doorn 已提交
2069 2070
		queue = rt2x00queue_get_queue(rt2x00dev, type);
		if (unlikely(!queue))
2071 2072 2073 2074 2075 2076 2077
			continue;

		/*
		 * Skip this entry when it contains an invalid
		 * index number.
		 */
		index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
I
Ivo van Doorn 已提交
2078
		if (unlikely(index >= queue->limit))
2079 2080
			continue;

I
Ivo van Doorn 已提交
2081
		entry = &queue->entries[index];
2082 2083
		entry_priv = entry->priv_data;
		rt2x00_desc_read(entry_priv->desc, 0, &word);
2084 2085 2086 2087 2088

		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
		    !rt2x00_get_field32(word, TXD_W0_VALID))
			return;

I
Ivo van Doorn 已提交
2089
		entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2090
		while (entry != entry_done) {
I
Ivo van Doorn 已提交
2091 2092 2093
			/* Catch up.
			 * Just report any entries we missed as failed.
			 */
2094
			WARNING(rt2x00dev,
I
Ivo van Doorn 已提交
2095 2096 2097
				"TX status report missed for entry %d\n",
				entry_done->entry_idx);

I
Ivo van Doorn 已提交
2098 2099
			txdesc.flags = 0;
			__set_bit(TXDONE_UNKNOWN, &txdesc.flags);
I
Ivo van Doorn 已提交
2100 2101
			txdesc.retry = 0;

I
Ivo van Doorn 已提交
2102
			rt2x00lib_txdone(entry_done, &txdesc);
I
Ivo van Doorn 已提交
2103
			entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2104 2105
		}

2106 2107 2108
		/*
		 * Obtain the status about this packet.
		 */
I
Ivo van Doorn 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		txdesc.flags = 0;
		switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
		case 0: /* Success, maybe with retry */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			break;
		case 6: /* Failure, excessive retries */
			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
			/* Don't break, this is a failed frame! */
		default: /* Failure */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
		}
I
Ivo van Doorn 已提交
2120
		txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2121

I
Ivo van Doorn 已提交
2122
		rt2x00lib_txdone(entry, &txdesc);
2123 2124 2125
	}
}

2126 2127 2128 2129 2130 2131 2132 2133
static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg_mcu;
	u32 reg;

	/*
	 * Get the interrupt sources & saved to local variable.
	 * Write register value back to clear pending interrupts.
	 */
	rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
	rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);

	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg && !reg_mcu)
		return IRQ_NONE;

2153
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
		return IRQ_HANDLED;

	/*
	 * Handle interrupts, walk through all bits
	 * and run the tasks, the bits are checked in order of
	 * priority.
	 */

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
		rt2x00pci_rxdone(rt2x00dev);

	/*
	 * 2 - Tx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
		rt61pci_txdone(rt2x00dev);

	/*
	 * 3 - Handle MCU command done.
	 */
	if (reg_mcu)
		rt2x00pci_register_write(rt2x00dev,
					 M2H_CMD_DONE_CSR, 0xffffffff);

2181 2182 2183 2184 2185 2186
	/*
	 * 4 - MCU Autowakeup interrupt.
	 */
	if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
		rt61pci_wakeup(rt2x00dev);

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;
	u16 word;
	u8 *mac;
	s8 value;

	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt61pci_eepromregister_read;
	eeprom.register_write = rt61pci_eepromregister_write;
	eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
	if (!is_valid_ether_addr(mac)) {
		random_ether_addr(mac);
J
Johannes Berg 已提交
2222
		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2223 2224 2225 2226 2227
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
2228 2229 2230 2231
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_B);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_B);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2244 2245
		rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
				   LED_MODE_DEFAULT);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2290
		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	} else {
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
		if (value < -10 || value > 10)
			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
	}

	return 0;
}

static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
	rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2320 2321
	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2322

2323 2324 2325 2326
	if (!rt2x00_rf(rt2x00dev, RF5225) &&
	    !rt2x00_rf(rt2x00dev, RF5325) &&
	    !rt2x00_rf(rt2x00dev, RF2527) &&
	    !rt2x00_rf(rt2x00dev, RF2529)) {
2327 2328 2329 2330
		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
		return -ENODEV;
	}

2331
	/*
L
Luis Correia 已提交
2332
	 * Determine number of antennas.
2333 2334 2335 2336
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
		__set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);

2337 2338 2339
	/*
	 * Identify default antenna configuration.
	 */
2340
	rt2x00dev->default_ant.tx =
2341
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2342
	rt2x00dev->default_ant.rx =
2343 2344 2345 2346 2347 2348 2349 2350 2351
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

	/*
	 * Read the Frame type.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);

	/*
2352
	 * Detect if this device has a hardware controlled radio.
2353 2354
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2355
		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

	/*
	 * Read frequency offset and RF programming sequence.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
	if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
		__set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);

	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);

	/*
	 * Read external LNA informations.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);

	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);

2376
	/*
2377
	 * When working with a RF2529 chip without double antenna,
2378 2379 2380
	 * the antenna settings should be gathered from the NIC
	 * eeprom word.
	 */
2381
	if (rt2x00_rf(rt2x00dev, RF2529) &&
2382
	    !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2383 2384 2385 2386
		rt2x00dev->default_ant.rx =
		    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
		rt2x00dev->default_ant.tx =
		    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2387 2388 2389 2390 2391 2392 2393

		if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
			rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
		if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
			rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
	}

2394 2395 2396 2397 2398
	/*
	 * Store led settings, for correct led behaviour.
	 * If the eeprom value is invalid,
	 * switch to default led mode.
	 */
2399
#ifdef CONFIG_RT2X00_LIB_LEDS
2400
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2401 2402
	value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);

2403 2404 2405 2406 2407
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
	rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
	if (value == LED_MODE_SIGNAL_STRENGTH)
		rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
				 LED_TYPE_QUALITY);
2408

2409 2410
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2411 2412
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_0));
2413
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2414 2415
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_1));
2416
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2417 2418
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_2));
2419
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2420 2421
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_3));
2422
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2423 2424
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_GPIO_4));
2425
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2426
			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2427
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2428 2429
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_G));
2430
	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2431 2432
			   rt2x00_get_field16(eeprom,
					      EEPROM_LED_POLARITY_RDY_A));
2433
#endif /* CONFIG_RT2X00_LIB_LEDS */
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	return 0;
}

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
 */
static const struct rf_channel rf_vals_noseq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },

	/* 802.11 UNII */
	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
};

/*
 * RF value list for RF5225 & RF5325
 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
 */
static const struct rf_channel rf_vals_seq[] = {
	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
	{ 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
	{ 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
	{ 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
	{ 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
	{ 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
	{ 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
	{ 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
	{ 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
	{ 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
	{ 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
	{ 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
	{ 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
	{ 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
	{ 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
	{ 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
	{ 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },

	/* 802.11 UNII */
	{ 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
	{ 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
	{ 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
	{ 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
	{ 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
	{ 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },

	/* MMAC(Japan)J52 ch 34,38,42,46 */
	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
};

2552
static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2553 2554
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
2555 2556
	struct channel_info *info;
	char *tx_power;
2557 2558
	unsigned int i;

2559 2560 2561 2562 2563
	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

2564 2565 2566 2567
	/*
	 * Initialize all hw fields.
	 */
	rt2x00dev->hw->flags =
2568
	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2569 2570 2571
	    IEEE80211_HW_SIGNAL_DBM |
	    IEEE80211_HW_SUPPORTS_PS |
	    IEEE80211_HW_PS_NULLFUNC_STACK;
2572

2573
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2574 2575 2576 2577 2578 2579 2580
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
2581 2582
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2583 2584 2585 2586 2587 2588 2589 2590 2591

	if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
		spec->num_channels = 14;
		spec->channels = rf_vals_noseq;
	} else {
		spec->num_channels = 14;
		spec->channels = rf_vals_seq;
	}

2592
	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2593
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2594
		spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	}

	/*
	 * Create channel information array
	 */
	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;
2605

2606 2607 2608
	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
	for (i = 0; i < 14; i++)
		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2609

2610 2611 2612 2613
	if (spec->num_channels > 14) {
		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
		for (i = 14; i < spec->num_channels; i++)
			info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2614
	}
2615 2616

	return 0;
2617 2618 2619 2620 2621 2622
}

static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

P
Pavel Roskin 已提交
2623 2624 2625 2626 2627
	/*
	 * Disable power saving.
	 */
	rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	/*
	 * Allocate eeprom data.
	 */
	retval = rt61pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt61pci_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
2642 2643 2644
	retval = rt61pci_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
2645

2646 2647 2648 2649 2650 2651
	/*
	 * This device has multiple filters for control frames,
	 * but has no a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);

2652
	/*
2653
	 * This device requires firmware and DMA mapped skbs.
2654
	 */
2655
	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2656
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2657 2658
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

/*
 * IEEE80211 stack callback functions.
 */
2671 2672 2673 2674 2675 2676 2677 2678
static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
			   const struct ieee80211_tx_queue_params *params)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	struct data_queue *queue;
	struct rt2x00_field32 field;
	int retval;
	u32 reg;
2679
	u32 offset;
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

	/*
	 * First pass the configuration through rt2x00lib, that will
	 * update the queue settings and validate the input. After that
	 * we are free to update the registers based on the value
	 * in the queue parameter.
	 */
	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
	if (retval)
		return retval;

2691 2692
	/*
	 * We only need to perform additional register initialization
2693
	 * for WMM queues.
2694 2695 2696 2697
	 */
	if (queue_idx >= 4)
		return 0;

2698 2699 2700
	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);

	/* Update WMM TXOP register */
2701 2702 2703 2704 2705 2706 2707
	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
	field.bit_offset = (queue_idx & 1) * 16;
	field.bit_mask = 0xffff << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, offset, &reg);
	rt2x00_set_field32(&reg, field, queue->txop);
	rt2x00pci_register_write(rt2x00dev, offset, reg);
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

	/* Update WMM registers */
	field.bit_offset = queue_idx * 4;
	field.bit_mask = 0xf << field.bit_offset;

	rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->aifs);
	rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_min);
	rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);

	rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
	rt2x00_set_field32(&reg, field, queue->cw_max);
	rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);

	return 0;
}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
{
	struct rt2x00_dev *rt2x00dev = hw->priv;
	u64 tsf;
	u32 reg;

	rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
	rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);

	return tsf;
}

static const struct ieee80211_ops rt61pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
2744 2745
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
2746 2747 2748
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
2749
	.configure_filter	= rt2x00mac_configure_filter,
2750
	.set_tim		= rt2x00mac_set_tim,
2751
	.set_key		= rt2x00mac_set_key,
2752
	.get_stats		= rt2x00mac_get_stats,
2753
	.bss_info_changed	= rt2x00mac_bss_info_changed,
2754
	.conf_tx		= rt61pci_conf_tx,
2755
	.get_tsf		= rt61pci_get_tsf,
2756
	.rfkill_poll		= rt2x00mac_rfkill_poll,
2757 2758 2759 2760 2761 2762
};

static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
	.irq_handler		= rt61pci_interrupt,
	.probe_hw		= rt61pci_probe_hw,
	.get_firmware_name	= rt61pci_get_firmware_name,
2763
	.check_firmware		= rt61pci_check_firmware,
2764 2765 2766
	.load_firmware		= rt61pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
2767 2768
	.get_entry_state	= rt61pci_get_entry_state,
	.clear_entry		= rt61pci_clear_entry,
2769 2770 2771 2772 2773 2774 2775
	.set_device_state	= rt61pci_set_device_state,
	.rfkill_poll		= rt61pci_rfkill_poll,
	.link_stats		= rt61pci_link_stats,
	.reset_tuner		= rt61pci_reset_tuner,
	.link_tuner		= rt61pci_link_tuner,
	.write_tx_desc		= rt61pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
2776
	.write_beacon		= rt61pci_write_beacon,
2777
	.kick_tx_queue		= rt61pci_kick_tx_queue,
2778
	.kill_tx_queue		= rt61pci_kill_tx_queue,
2779
	.fill_rxdone		= rt61pci_fill_rxdone,
2780 2781
	.config_shared_key	= rt61pci_config_shared_key,
	.config_pairwise_key	= rt61pci_config_pairwise_key,
I
Ivo van Doorn 已提交
2782
	.config_filter		= rt61pci_config_filter,
2783
	.config_intf		= rt61pci_config_intf,
2784
	.config_erp		= rt61pci_config_erp,
2785
	.config_ant		= rt61pci_config_ant,
2786 2787 2788
	.config			= rt61pci_config,
};

I
Ivo van Doorn 已提交
2789 2790 2791 2792
static const struct data_queue_desc rt61pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= RXD_DESC_SIZE,
2793
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2794 2795 2796 2797 2798 2799
};

static const struct data_queue_desc rt61pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= DATA_FRAME_SIZE,
	.desc_size		= TXD_DESC_SIZE,
2800
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2801 2802 2803
};

static const struct data_queue_desc rt61pci_queue_bcn = {
2804
	.entry_num		= 4 * BEACON_ENTRIES,
2805
	.data_size		= 0, /* No DMA required for beacons */
I
Ivo van Doorn 已提交
2806
	.desc_size		= TXINFO_SIZE,
2807
	.priv_size		= sizeof(struct queue_entry_priv_pci),
I
Ivo van Doorn 已提交
2808 2809
};

2810
static const struct rt2x00_ops rt61pci_ops = {
G
Gertjan van Wingerde 已提交
2811 2812 2813 2814 2815 2816
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 4,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
2817
	.extra_tx_headroom	= 0,
G
Gertjan van Wingerde 已提交
2818 2819 2820 2821 2822
	.rx			= &rt61pci_queue_rx,
	.tx			= &rt61pci_queue_tx,
	.bcn			= &rt61pci_queue_bcn,
	.lib			= &rt61pci_rt2x00_ops,
	.hw			= &rt61pci_mac80211_ops,
2823
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
2824
	.debugfs		= &rt61pci_rt2x00debug,
2825 2826 2827 2828 2829 2830
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT61pci module information.
 */
2831
static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	/* RT2561s */
	{ PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2561 v2 */
	{ PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
	/* RT2661 */
	{ PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
			"PCI & PCMCIA chipset based cards");
MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
MODULE_FIRMWARE(FIRMWARE_RT2561);
MODULE_FIRMWARE(FIRMWARE_RT2561s);
MODULE_FIRMWARE(FIRMWARE_RT2661);
MODULE_LICENSE("GPL");

static struct pci_driver rt61pci_driver = {
2853
	.name		= KBUILD_MODNAME,
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	.id_table	= rt61pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};

static int __init rt61pci_init(void)
{
	return pci_register_driver(&rt61pci_driver);
}

static void __exit rt61pci_exit(void)
{
	pci_unregister_driver(&rt61pci_driver);
}

module_init(rt61pci_init);
module_exit(rt61pci_exit);