igb_ptp.c 34.2 KB
Newer Older
1
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 3 4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
15 16
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
21
#include <linux/ptp_classify.h>
22 23 24 25 26 27

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

28
/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 30
 * and this update value cannot be reprogrammed.
 *
31 32
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
33
 * counts nanoseconds, but the upper 24 bits are not available. The
34 35 36 37 38 39 40 41
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
42 43 44 45 46 47 48 49
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

70
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 73 74
#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
75
#define IGB_NBITS_82580			40
76

77 78
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);

79
/* SYSTIM read access for the 82576 */
80
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 82 83
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
84 85
	u64 val;
	u32 lo, hi;
86 87 88 89 90 91 92 93 94 95

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

96
/* SYSTIM read access for the 82580 */
97
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 99 100
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
101
	u32 lo, hi;
102
	u64 val;
103

104
	/* The timestamp latches on lowest register read. For the 82580
105 106 107
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
108
	rd32(E1000_SYSTIMR);
109 110 111 112 113 114 115 116 117
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

118
/* SYSTIM read access for I210/I211 */
119 120
static void igb_ptp_read_i210(struct igb_adapter *adapter,
			      struct timespec64 *ts)
121 122
{
	struct e1000_hw *hw = &adapter->hw;
123
	u32 sec, nsec;
124

125
	/* The timestamp latches on lowest register read. For I210/I211, the
126 127 128
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
129
	rd32(E1000_SYSTIMR);
130 131 132 133 134 135 136 137
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
138
			       const struct timespec64 *ts)
139 140 141
{
	struct e1000_hw *hw = &adapter->hw;

142
	/* Writing the SYSTIMR register is not necessary as it only provides
143 144 145
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
A
Arnd Bergmann 已提交
146
	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
174 175
	case e1000_82576:
	case e1000_82580:
176
	case e1000_i354:
177 178 179 180 181 182 183 184 185 186
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
187 188
	case e1000_i210:
	case e1000_i211:
189 190 191 192
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
193 194
		break;
	default:
195
		break;
196 197 198
	}
}

199
/* PTP clock operations */
200
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201
{
202 203 204 205
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

229
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230
{
231 232 233 234
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

255
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256
{
257 258
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
259 260 261
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
	timecounter_adjtime(&igb->tc, delta);
263 264 265 266 267
	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

268 269 270 271 272
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
273
	struct timespec64 now, then = ns_to_timespec64(delta);
274 275 276 277

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
278 279
	now = timespec64_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280 281 282 283 284 285 286

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287
				 struct timespec64 *ts)
288
{
289 290 291
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
292 293 294 295 296 297 298 299
	u64 ns;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

300
	*ts = ns_to_timespec64(ns);
301 302 303 304

	return 0;
}

305
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306
				struct timespec64 *ts)
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322
				 const struct timespec64 *ts)
323
{
324 325
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
326
	unsigned long flags;
327
	u64 ns;
328

329
	ns = timespec64_to_ns(ts);
330 331 332 333 334 335 336 337 338 339

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

340
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341
				const struct timespec64 *ts)
342 343 344 345 346 347 348 349 350 351 352 353 354 355
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

356 357 358
static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
{
	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359
	static const u32 mask[IGB_N_SDP] = {
360 361 362 363 364 365 366 367 368 369 370 371 372 373
		E1000_CTRL_SDP0_DIR,
		E1000_CTRL_SDP1_DIR,
		E1000_CTRL_EXT_SDP2_DIR,
		E1000_CTRL_EXT_SDP3_DIR,
	};

	if (input)
		*ptr &= ~mask[pin];
	else
		*ptr |= mask[pin];
}

static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
{
374
	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 376
		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
	};
377
	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 379
		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
	};
380
	static const u32 ts_sdp_en[IGB_N_SDP] = {
381 382
		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
	};
383
	struct e1000_hw *hw = &igb->hw;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	u32 ctrl, ctrl_ext, tssdp = 0;

	ctrl = rd32(E1000_CTRL);
	ctrl_ext = rd32(E1000_CTRL_EXT);
	tssdp = rd32(E1000_TSSDP);

	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);

	/* Make sure this pin is not enabled as an output. */
	tssdp &= ~ts_sdp_en[pin];

	if (chan == 1) {
		tssdp &= ~AUX1_SEL_SDP3;
		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
	} else {
		tssdp &= ~AUX0_SEL_SDP3;
		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
	}

	wr32(E1000_TSSDP, tssdp);
	wr32(E1000_CTRL, ctrl);
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

408
static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
409
{
410
	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 412
		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
	};
413
	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 415
		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
	};
416
	static const u32 ts_sdp_en[IGB_N_SDP] = {
417 418
		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
	};
419
	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 421 422
		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
	};
423
	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 425 426
		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
	};
427 428 429 430 431 432 433 434
	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
	};
	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
	};
435
	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436 437 438
		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
	};
439
	struct e1000_hw *hw = &igb->hw;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	u32 ctrl, ctrl_ext, tssdp = 0;

	ctrl = rd32(E1000_CTRL);
	ctrl_ext = rd32(E1000_CTRL_EXT);
	tssdp = rd32(E1000_TSSDP);

	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);

	/* Make sure this pin is not enabled as an input. */
	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
		tssdp &= ~AUX0_TS_SDP_EN;

	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
		tssdp &= ~AUX1_TS_SDP_EN;

	tssdp &= ~ts_sdp_sel_clr[pin];
456 457 458 459 460 461 462 463 464 465 466
	if (freq) {
		if (chan == 1)
			tssdp |= ts_sdp_sel_fc1[pin];
		else
			tssdp |= ts_sdp_sel_fc0[pin];
	} else {
		if (chan == 1)
			tssdp |= ts_sdp_sel_tt1[pin];
		else
			tssdp |= ts_sdp_sel_tt0[pin];
	}
467 468 469 470 471 472 473
	tssdp |= ts_sdp_en[pin];

	wr32(E1000_TSSDP, tssdp);
	wr32(E1000_CTRL, ctrl);
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

474 475 476 477 478 479
static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
				       struct ptp_clock_request *rq, int on)
{
	struct igb_adapter *igb =
		container_of(ptp, struct igb_adapter, ptp_caps);
	struct e1000_hw *hw = &igb->hw;
480
	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481
	unsigned long flags;
A
Arnd Bergmann 已提交
482
	struct timespec64 ts;
483
	int use_freq = 0, pin = -1;
484
	s64 ns;
485 486

	switch (rq->type) {
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	case PTP_CLK_REQ_EXTTS:
		if (on) {
			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
					   rq->extts.index);
			if (pin < 0)
				return -EBUSY;
		}
		if (rq->extts.index == 1) {
			tsauxc_mask = TSAUXC_EN_TS1;
			tsim_mask = TSINTR_AUTT1;
		} else {
			tsauxc_mask = TSAUXC_EN_TS0;
			tsim_mask = TSINTR_AUTT0;
		}
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsauxc = rd32(E1000_TSAUXC);
		tsim = rd32(E1000_TSIM);
		if (on) {
			igb_pin_extts(igb, rq->extts.index, pin);
			tsauxc |= tsauxc_mask;
			tsim |= tsim_mask;
		} else {
			tsauxc &= ~tsauxc_mask;
			tsim &= ~tsim_mask;
		}
		wr32(E1000_TSAUXC, tsauxc);
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;

	case PTP_CLK_REQ_PEROUT:
		if (on) {
			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
					   rq->perout.index);
			if (pin < 0)
				return -EBUSY;
		}
		ts.tv_sec = rq->perout.period.sec;
		ts.tv_nsec = rq->perout.period.nsec;
A
Arnd Bergmann 已提交
526
		ns = timespec64_to_ns(&ts);
527
		ns = ns >> 1;
528 529
		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
			   (ns == 250000000LL) || (ns == 500000000LL))) {
530 531 532
			if (ns < 8LL)
				return -EINVAL;
			use_freq = 1;
533
		}
A
Arnd Bergmann 已提交
534
		ts = ns_to_timespec64(ns);
535
		if (rq->perout.index == 1) {
536 537 538 539 540 541 542
			if (use_freq) {
				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
				tsim_mask = 0;
			} else {
				tsauxc_mask = TSAUXC_EN_TT1;
				tsim_mask = TSINTR_TT1;
			}
543 544
			trgttiml = E1000_TRGTTIML1;
			trgttimh = E1000_TRGTTIMH1;
545
			freqout = E1000_FREQOUT1;
546
		} else {
547 548 549 550 551 552 553
			if (use_freq) {
				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
				tsim_mask = 0;
			} else {
				tsauxc_mask = TSAUXC_EN_TT0;
				tsim_mask = TSINTR_TT0;
			}
554 555
			trgttiml = E1000_TRGTTIML0;
			trgttimh = E1000_TRGTTIMH0;
556
			freqout = E1000_FREQOUT0;
557 558 559 560
		}
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsauxc = rd32(E1000_TSAUXC);
		tsim = rd32(E1000_TSIM);
561 562 563 564 565 566 567
		if (rq->perout.index == 1) {
			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
			tsim &= ~TSINTR_TT1;
		} else {
			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
			tsim &= ~TSINTR_TT0;
		}
568 569
		if (on) {
			int i = rq->perout.index;
570
			igb_pin_perout(igb, i, pin, use_freq);
571 572 573 574
			igb->perout[i].start.tv_sec = rq->perout.start.sec;
			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
			igb->perout[i].period.tv_sec = ts.tv_sec;
			igb->perout[i].period.tv_nsec = ts.tv_nsec;
575 576
			wr32(trgttimh, rq->perout.start.sec);
			wr32(trgttiml, rq->perout.start.nsec);
577 578
			if (use_freq)
				wr32(freqout, ns);
579 580 581 582 583 584 585 586
			tsauxc |= tsauxc_mask;
			tsim |= tsim_mask;
		}
		wr32(E1000_TSAUXC, tsauxc);
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	case PTP_CLK_REQ_PPS:
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsim = rd32(E1000_TSIM);
		if (on)
			tsim |= TSINTR_SYS_WRAP;
		else
			tsim &= ~TSINTR_SYS_WRAP;
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;
	}

	return -EOPNOTSUPP;
}

602 603
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
				  struct ptp_clock_request *rq, int on)
604 605 606 607
{
	return -EOPNOTSUPP;
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621
static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
			      enum ptp_pin_function func, unsigned int chan)
{
	switch (func) {
	case PTP_PF_NONE:
	case PTP_PF_EXTTS:
	case PTP_PF_PEROUT:
		break;
	case PTP_PF_PHYSYNC:
		return -1;
	}
	return 0;
}

622 623 624 625 626 627
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
628
 **/
629
static void igb_ptp_tx_work(struct work_struct *work)
630 631 632 633 634 635 636 637 638
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

639 640 641 642
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
643
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
644
		adapter->tx_hwtstamp_timeouts++;
645
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
646 647 648
		return;
	}

649 650 651 652 653 654 655 656
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

657
static void igb_ptp_overflow_check(struct work_struct *work)
658
{
659 660
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
661
	struct timespec64 ts;
662

663
	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
664

D
David S. Miller 已提交
665 666
	pr_debug("igb overflow check at %lld.%09lu\n",
		 (long long) ts.tv_sec, ts.tv_nsec);
667 668 669

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
670 671
}

672 673 674 675 676 677 678 679
/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
680
 **/
681 682 683 684 685 686
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;

687
	/* Other hardware uses per-packet timestamps */
688 689 690 691 692 693 694 695 696 697 698 699 700
	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
701 702
	if (time_after(adapter->last_rx_timestamp, rx_event))
		rx_event = adapter->last_rx_timestamp;
703 704 705 706 707 708

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
709
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
710 711 712
	}
}

713 714
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
715
 * @adapter: Board private structure.
716 717 718 719
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
720
 **/
721
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
722
{
723 724 725
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
726
	int adjust = 0;
727

728 729
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
730

731
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	/* adjust timestamp for the TX latency based on link speed */
	if (adapter->hw.mac.type == e1000_i210) {
		switch (adapter->link_speed) {
		case SPEED_10:
			adjust = IGB_I210_TX_LATENCY_10;
			break;
		case SPEED_100:
			adjust = IGB_I210_TX_LATENCY_100;
			break;
		case SPEED_1000:
			adjust = IGB_I210_TX_LATENCY_1000;
			break;
		}
	}

	shhwtstamps.hwtstamp = ktime_sub_ns(shhwtstamps.hwtstamp, adjust);

749 750 751
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
752
	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
753 754
}

755 756 757 758 759 760 761 762 763
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
764
 **/
765 766 767 768
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
769
	__le64 *regval = (__le64 *)va;
770

771
	/* The timestamp is recorded in little endian format.
772 773 774 775 776 777 778 779 780 781 782 783 784 785
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
786
 **/
787
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
788 789 790 791 792
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;
793
	int adjust = 0;
794

795
	/* If this bit is set, then the RX registers contain the time stamp. No
796 797 798 799 800 801 802 803 804
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
805 806 807 808 809
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
810 811

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/* adjust timestamp for the RX latency based on link speed */
	if (adapter->hw.mac.type == e1000_i210) {
		switch (adapter->link_speed) {
		case SPEED_10:
			adjust = IGB_I210_RX_LATENCY_10;
			break;
		case SPEED_100:
			adjust = IGB_I210_RX_LATENCY_100;
			break;
		case SPEED_1000:
			adjust = IGB_I210_RX_LATENCY_1000;
			break;
		}
	}
	skb_hwtstamps(skb)->hwtstamp =
		ktime_add_ns(skb_hwtstamps(skb)->hwtstamp, adjust);

830 831 832 833
	/* Update the last_rx_timestamp timer in order to enable watchdog check
	 * for error case of latched timestamp on a dropped packet.
	 */
	adapter->last_rx_timestamp = jiffies;
834 835 836
}

/**
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
 * igb_ptp_get_ts_config - get hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 * to deconstruct the settings from the registers, just return a shadow copy
 * of the last known settings.
 **/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}
853

854
/**
855 856 857
 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 * @adapter: networking device structure
 * @config: hwtstamp configuration
858 859 860 861 862 863 864 865 866 867 868 869
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
870 871 872
 */
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
				      struct hwtstamp_config *config)
873 874 875 876 877 878 879 880 881 882
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	/* reserved for future extensions */
883
	if (config->flags)
884 885
		return -EINVAL;

886
	switch (config->tx_type) {
887 888 889 890 891 892 893 894
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

895
	switch (config->rx_filter) {
896 897 898 899 900 901 902 903 904 905 906 907 908
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
909 910 911 912
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
913 914
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
915
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
916 917 918
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
919
		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
920 921 922
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
923 924 925 926 927 928 929
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
930
			config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
931 932 933
			break;
		}
		/* fall through */
934
	default:
935
		config->rx_filter = HWTSTAMP_FILTER_NONE;
936 937 938 939 940 941 942 943 944
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

945
	/* Per-packet timestamping only works if all packets are
946
	 * timestamped, so enable timestamping in all packets as
947
	 * long as one Rx filter was configured.
948 949 950 951
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
952
		config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
953 954
		is_l2 = true;
		is_l4 = true;
955 956 957 958 959 960 961

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

996
		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
997 998 999 1000
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
1001
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1002 1003 1004 1005 1006 1007 1008 1009 1010
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
1011
	regval = rd32(E1000_TXSTMPL);
1012
	regval = rd32(E1000_TXSTMPH);
1013
	regval = rd32(E1000_RXSTMPL);
1014 1015
	regval = rd32(E1000_RXSTMPH);

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	return 0;
}

/**
 * igb_ptp_set_ts_config - set hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 **/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config config;
	int err;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = igb_ptp_set_timestamp_mode(adapter, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	memcpy(&adapter->tstamp_config, &config,
	       sizeof(adapter->tstamp_config));

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1043
		-EFAULT : 0;
1044 1045
}

1046 1047 1048 1049 1050 1051 1052
/**
 * igb_ptp_init - Initialize PTP functionality
 * @adapter: Board private structure
 *
 * This function is called at device probe to initialize the PTP
 * functionality.
 */
1053 1054 1055
void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1056
	struct net_device *netdev = adapter->netdev;
1057
	int i;
1058 1059

	switch (hw->mac.type) {
1060 1061 1062
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
J
Jiri Benc 已提交
1063
		adapter->ptp_caps.max_adj = 999999881;
1064 1065 1066 1067
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1068 1069
		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1070
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1071
		adapter->cc.read = igb_ptp_read_82576;
1072
		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1073 1074
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1075
		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1076
		break;
1077
	case e1000_82580:
1078
	case e1000_i354:
1079
	case e1000_i350:
1080
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1081 1082 1083 1084 1085
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1086
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1087 1088
		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1089
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1090
		adapter->cc.read = igb_ptp_read_82580;
1091
		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1092 1093
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
1094
		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1095
		break;
1096 1097
	case e1000_i210:
	case e1000_i211:
1098 1099 1100 1101 1102 1103 1104
		for (i = 0; i < IGB_N_SDP; i++) {
			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];

			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
			ppd->index = i;
			ppd->func = PTP_PF_NONE;
		}
1105
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1106
		adapter->ptp_caps.owner = THIS_MODULE;
1107
		adapter->ptp_caps.max_adj = 62499999;
1108 1109 1110
		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
		adapter->ptp_caps.n_pins = IGB_N_SDP;
1111
		adapter->ptp_caps.pps = 1;
1112
		adapter->ptp_caps.pin_config = adapter->sdp_config;
1113 1114
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1115 1116
		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1117
		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1118
		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1119 1120 1121 1122 1123 1124
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

1125 1126
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1127

1128
	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1129 1130
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
1131

1132 1133 1134
	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

1135 1136
	igb_ptp_reset(adapter);

1137 1138
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
1139 1140 1141
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1142
	} else {
1143 1144
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
1145
		adapter->ptp_flags |= IGB_PTP_ENABLED;
1146
	}
1147 1148
}

1149
/**
J
Jacob Keller 已提交
1150 1151
 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
 * @adapter: Board private structure
1152
 *
J
Jacob Keller 已提交
1153 1154 1155 1156
 * This function stops the overflow check work and PTP Tx timestamp work, and
 * will prepare the device for OS suspend.
 */
void igb_ptp_suspend(struct igb_adapter *adapter)
1157
{
1158
	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1159
		return;
1160 1161 1162

	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1163

1164
	cancel_work_sync(&adapter->ptp_tx_work);
1165 1166 1167
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
1168
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1169
	}
J
Jacob Keller 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
}

/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
{
	igb_ptp_suspend(adapter);
1181

1182 1183 1184 1185
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
1186
		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1187 1188
	}
}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1199
	unsigned long flags;
1200

1201
	/* reset the tstamp_config */
1202
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1203

1204 1205
	spin_lock_irqsave(&adapter->tmreg_lock, flags);

1206 1207 1208 1209 1210 1211
	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
1212
	case e1000_i354:
1213 1214 1215 1216
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		wr32(E1000_TSAUXC, 0x0);
1217
		wr32(E1000_TSSDP, 0x0);
1218
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1219 1220 1221 1222
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
1223
		goto out;
1224 1225
	}

1226 1227
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1228
		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1229

1230
		igb_ptp_write_i210(adapter, &ts);
1231 1232 1233 1234
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
1235 1236
out:
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1237 1238 1239 1240 1241 1242

	wrfl();

	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
1243
}