igb_ptp.c 34.4 KB
Newer Older
1
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 3 4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
15 16
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
21
#include <linux/ptp_classify.h>
22 23 24 25 26 27

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

28
/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 30
 * and this update value cannot be reprogrammed.
 *
31 32
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
33
 * counts nanoseconds, but the upper 24 bits are not available. The
34 35 36 37 38 39 40 41
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
42 43 44 45 46 47 48 49
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

70
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 73 74
#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
75
#define IGB_NBITS_82580			40
76

77 78
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);

79
/* SYSTIM read access for the 82576 */
80
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 82 83
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
84 85
	u64 val;
	u32 lo, hi;
86 87 88 89 90 91 92 93 94 95

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

96
/* SYSTIM read access for the 82580 */
97
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 99 100
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
101
	u32 lo, hi;
102
	u64 val;
103

104
	/* The timestamp latches on lowest register read. For the 82580
105 106 107
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
108
	rd32(E1000_SYSTIMR);
109 110 111 112 113 114 115 116 117
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

118
/* SYSTIM read access for I210/I211 */
119 120
static void igb_ptp_read_i210(struct igb_adapter *adapter,
			      struct timespec64 *ts)
121 122
{
	struct e1000_hw *hw = &adapter->hw;
123
	u32 sec, nsec;
124

125
	/* The timestamp latches on lowest register read. For I210/I211, the
126 127 128
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
129
	rd32(E1000_SYSTIMR);
130 131 132 133 134 135 136 137
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
138
			       const struct timespec64 *ts)
139 140 141
{
	struct e1000_hw *hw = &adapter->hw;

142
	/* Writing the SYSTIMR register is not necessary as it only provides
143 144 145
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
A
Arnd Bergmann 已提交
146
	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
174 175
	case e1000_82576:
	case e1000_82580:
176
	case e1000_i354:
177 178 179 180 181 182 183 184 185 186
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
187 188
	case e1000_i210:
	case e1000_i211:
189 190 191 192
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
193 194
		break;
	default:
195
		break;
196 197 198
	}
}

199
/* PTP clock operations */
200
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201
{
202 203 204 205
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

229
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230
{
231 232 233 234
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

255
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256
{
257 258
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
259 260 261
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);
262
	timecounter_adjtime(&igb->tc, delta);
263 264 265 266 267
	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

268 269 270 271 272
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
273
	struct timespec64 now, then = ns_to_timespec64(delta);
274 275 276 277

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
278 279
	now = timespec64_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280 281 282 283 284 285 286

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287
				 struct timespec64 *ts)
288
{
289 290 291
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
292 293 294 295 296 297 298 299
	u64 ns;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

300
	*ts = ns_to_timespec64(ns);
301 302 303 304

	return 0;
}

305
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306
				struct timespec64 *ts)
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322
				 const struct timespec64 *ts)
323
{
324 325
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
326
	unsigned long flags;
327
	u64 ns;
328

329
	ns = timespec64_to_ns(ts);
330 331 332 333 334 335 336 337 338 339

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

340
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341
				const struct timespec64 *ts)
342 343 344 345 346 347 348 349 350 351 352 353 354 355
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

356 357 358
static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
{
	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359
	static const u32 mask[IGB_N_SDP] = {
360 361 362 363 364 365 366 367 368 369 370 371 372 373
		E1000_CTRL_SDP0_DIR,
		E1000_CTRL_SDP1_DIR,
		E1000_CTRL_EXT_SDP2_DIR,
		E1000_CTRL_EXT_SDP3_DIR,
	};

	if (input)
		*ptr &= ~mask[pin];
	else
		*ptr |= mask[pin];
}

static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
{
374
	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 376
		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
	};
377
	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 379
		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
	};
380
	static const u32 ts_sdp_en[IGB_N_SDP] = {
381 382
		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
	};
383
	struct e1000_hw *hw = &igb->hw;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
	u32 ctrl, ctrl_ext, tssdp = 0;

	ctrl = rd32(E1000_CTRL);
	ctrl_ext = rd32(E1000_CTRL_EXT);
	tssdp = rd32(E1000_TSSDP);

	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);

	/* Make sure this pin is not enabled as an output. */
	tssdp &= ~ts_sdp_en[pin];

	if (chan == 1) {
		tssdp &= ~AUX1_SEL_SDP3;
		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
	} else {
		tssdp &= ~AUX0_SEL_SDP3;
		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
	}

	wr32(E1000_TSSDP, tssdp);
	wr32(E1000_CTRL, ctrl);
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

408
static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
409
{
410
	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 412
		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
	};
413
	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 415
		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
	};
416
	static const u32 ts_sdp_en[IGB_N_SDP] = {
417 418
		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
	};
419
	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 421 422
		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
	};
423
	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 425 426
		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
	};
427 428 429 430 431 432 433 434
	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
	};
	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
	};
435
	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436 437 438
		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
	};
439
	struct e1000_hw *hw = &igb->hw;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	u32 ctrl, ctrl_ext, tssdp = 0;

	ctrl = rd32(E1000_CTRL);
	ctrl_ext = rd32(E1000_CTRL_EXT);
	tssdp = rd32(E1000_TSSDP);

	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);

	/* Make sure this pin is not enabled as an input. */
	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
		tssdp &= ~AUX0_TS_SDP_EN;

	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
		tssdp &= ~AUX1_TS_SDP_EN;

	tssdp &= ~ts_sdp_sel_clr[pin];
456 457 458 459 460 461 462 463 464 465 466
	if (freq) {
		if (chan == 1)
			tssdp |= ts_sdp_sel_fc1[pin];
		else
			tssdp |= ts_sdp_sel_fc0[pin];
	} else {
		if (chan == 1)
			tssdp |= ts_sdp_sel_tt1[pin];
		else
			tssdp |= ts_sdp_sel_tt0[pin];
	}
467 468 469 470 471 472 473
	tssdp |= ts_sdp_en[pin];

	wr32(E1000_TSSDP, tssdp);
	wr32(E1000_CTRL, ctrl);
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

474 475 476 477 478 479
static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
				       struct ptp_clock_request *rq, int on)
{
	struct igb_adapter *igb =
		container_of(ptp, struct igb_adapter, ptp_caps);
	struct e1000_hw *hw = &igb->hw;
480
	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481
	unsigned long flags;
A
Arnd Bergmann 已提交
482
	struct timespec64 ts;
483
	int use_freq = 0, pin = -1;
484
	s64 ns;
485 486

	switch (rq->type) {
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	case PTP_CLK_REQ_EXTTS:
		if (on) {
			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
					   rq->extts.index);
			if (pin < 0)
				return -EBUSY;
		}
		if (rq->extts.index == 1) {
			tsauxc_mask = TSAUXC_EN_TS1;
			tsim_mask = TSINTR_AUTT1;
		} else {
			tsauxc_mask = TSAUXC_EN_TS0;
			tsim_mask = TSINTR_AUTT0;
		}
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsauxc = rd32(E1000_TSAUXC);
		tsim = rd32(E1000_TSIM);
		if (on) {
			igb_pin_extts(igb, rq->extts.index, pin);
			tsauxc |= tsauxc_mask;
			tsim |= tsim_mask;
		} else {
			tsauxc &= ~tsauxc_mask;
			tsim &= ~tsim_mask;
		}
		wr32(E1000_TSAUXC, tsauxc);
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;

	case PTP_CLK_REQ_PEROUT:
		if (on) {
			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
					   rq->perout.index);
			if (pin < 0)
				return -EBUSY;
		}
		ts.tv_sec = rq->perout.period.sec;
		ts.tv_nsec = rq->perout.period.nsec;
A
Arnd Bergmann 已提交
526
		ns = timespec64_to_ns(&ts);
527
		ns = ns >> 1;
528 529
		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
			   (ns == 250000000LL) || (ns == 500000000LL))) {
530 531 532
			if (ns < 8LL)
				return -EINVAL;
			use_freq = 1;
533
		}
A
Arnd Bergmann 已提交
534
		ts = ns_to_timespec64(ns);
535
		if (rq->perout.index == 1) {
536 537 538 539 540 541 542
			if (use_freq) {
				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
				tsim_mask = 0;
			} else {
				tsauxc_mask = TSAUXC_EN_TT1;
				tsim_mask = TSINTR_TT1;
			}
543 544
			trgttiml = E1000_TRGTTIML1;
			trgttimh = E1000_TRGTTIMH1;
545
			freqout = E1000_FREQOUT1;
546
		} else {
547 548 549 550 551 552 553
			if (use_freq) {
				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
				tsim_mask = 0;
			} else {
				tsauxc_mask = TSAUXC_EN_TT0;
				tsim_mask = TSINTR_TT0;
			}
554 555
			trgttiml = E1000_TRGTTIML0;
			trgttimh = E1000_TRGTTIMH0;
556
			freqout = E1000_FREQOUT0;
557 558 559 560
		}
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsauxc = rd32(E1000_TSAUXC);
		tsim = rd32(E1000_TSIM);
561 562 563 564 565 566 567
		if (rq->perout.index == 1) {
			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
			tsim &= ~TSINTR_TT1;
		} else {
			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
			tsim &= ~TSINTR_TT0;
		}
568 569
		if (on) {
			int i = rq->perout.index;
570
			igb_pin_perout(igb, i, pin, use_freq);
571 572 573 574
			igb->perout[i].start.tv_sec = rq->perout.start.sec;
			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
			igb->perout[i].period.tv_sec = ts.tv_sec;
			igb->perout[i].period.tv_nsec = ts.tv_nsec;
575 576
			wr32(trgttimh, rq->perout.start.sec);
			wr32(trgttiml, rq->perout.start.nsec);
577 578
			if (use_freq)
				wr32(freqout, ns);
579 580 581 582 583 584 585 586
			tsauxc |= tsauxc_mask;
			tsim |= tsim_mask;
		}
		wr32(E1000_TSAUXC, tsauxc);
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
	case PTP_CLK_REQ_PPS:
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsim = rd32(E1000_TSIM);
		if (on)
			tsim |= TSINTR_SYS_WRAP;
		else
			tsim &= ~TSINTR_SYS_WRAP;
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;
	}

	return -EOPNOTSUPP;
}

602 603
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
				  struct ptp_clock_request *rq, int on)
604 605 606 607
{
	return -EOPNOTSUPP;
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621
static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
			      enum ptp_pin_function func, unsigned int chan)
{
	switch (func) {
	case PTP_PF_NONE:
	case PTP_PF_EXTTS:
	case PTP_PF_PEROUT:
		break;
	case PTP_PF_PHYSYNC:
		return -1;
	}
	return 0;
}

622 623 624 625 626 627
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
628
 **/
629
static void igb_ptp_tx_work(struct work_struct *work)
630 631 632 633 634 635 636 637 638
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

639 640 641 642
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
643
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
644
		adapter->tx_hwtstamp_timeouts++;
645
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
646 647 648
		return;
	}

649 650 651 652 653 654 655 656
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

657
static void igb_ptp_overflow_check(struct work_struct *work)
658
{
659 660
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
661
	struct timespec64 ts;
662

663
	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
664

D
David S. Miller 已提交
665 666
	pr_debug("igb overflow check at %lld.%09lu\n",
		 (long long) ts.tv_sec, ts.tv_nsec);
667 668 669

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
670 671
}

672 673 674 675 676 677 678 679
/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
680
 **/
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;

	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
700 701
	if (time_after(adapter->last_rx_timestamp, rx_event))
		rx_event = adapter->last_rx_timestamp;
702 703 704 705 706 707

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
708
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
709 710 711
	}
}

712 713
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
714
 * @adapter: Board private structure.
715 716 717 718
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
719
 **/
720
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
721
{
722 723 724
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
725
	int adjust = 0;
726

727 728
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
729

730
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	/* adjust timestamp for the TX latency based on link speed */
	if (adapter->hw.mac.type == e1000_i210) {
		switch (adapter->link_speed) {
		case SPEED_10:
			adjust = IGB_I210_TX_LATENCY_10;
			break;
		case SPEED_100:
			adjust = IGB_I210_TX_LATENCY_100;
			break;
		case SPEED_1000:
			adjust = IGB_I210_TX_LATENCY_1000;
			break;
		}
	}

	shhwtstamps.hwtstamp = ktime_sub_ns(shhwtstamps.hwtstamp, adjust);

748 749 750
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
751
	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
752 753
}

754 755 756 757 758 759 760 761 762
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
763
 **/
764 765 766 767
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
768
	__le64 *regval = (__le64 *)va;
769

770
	/* The timestamp is recorded in little endian format.
771 772 773 774 775 776 777 778 779 780 781 782 783 784
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
785
 **/
786
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
787 788 789 790 791
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;
792
	int adjust = 0;
793

794
	/* If this bit is set, then the RX registers contain the time stamp. No
795 796 797 798 799 800 801 802 803
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
804 805 806 807 808
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
809 810

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	/* adjust timestamp for the RX latency based on link speed */
	if (adapter->hw.mac.type == e1000_i210) {
		switch (adapter->link_speed) {
		case SPEED_10:
			adjust = IGB_I210_RX_LATENCY_10;
			break;
		case SPEED_100:
			adjust = IGB_I210_RX_LATENCY_100;
			break;
		case SPEED_1000:
			adjust = IGB_I210_RX_LATENCY_1000;
			break;
		}
	}
	skb_hwtstamps(skb)->hwtstamp =
		ktime_add_ns(skb_hwtstamps(skb)->hwtstamp, adjust);

829 830 831 832
	/* Update the last_rx_timestamp timer in order to enable watchdog check
	 * for error case of latched timestamp on a dropped packet.
	 */
	adapter->last_rx_timestamp = jiffies;
833 834 835
}

/**
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
 * igb_ptp_get_ts_config - get hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 * to deconstruct the settings from the registers, just return a shadow copy
 * of the last known settings.
 **/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}
852

853
/**
854 855 856
 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 * @adapter: networking device structure
 * @config: hwtstamp configuration
857 858 859 860 861 862 863 864 865 866 867 868
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
869 870 871
 */
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
				      struct hwtstamp_config *config)
872 873 874 875 876 877 878 879 880 881
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	/* reserved for future extensions */
882
	if (config->flags)
883 884
		return -EINVAL;

885
	switch (config->tx_type) {
886 887 888 889 890 891 892 893
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

894
	switch (config->rx_filter) {
895 896 897 898 899 900 901 902 903 904 905 906 907
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
908 909 910 911
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
912 913
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
914
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
915 916 917
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
918
		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
919 920 921
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
922 923 924 925 926 927 928
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
929
			config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
930 931 932
			break;
		}
		/* fall through */
933
	default:
934
		config->rx_filter = HWTSTAMP_FILTER_NONE;
935 936 937 938 939 940 941 942 943
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

944
	/* Per-packet timestamping only works if all packets are
945
	 * timestamped, so enable timestamping in all packets as
946
	 * long as one Rx filter was configured.
947 948 949 950
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
951
		config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
952 953
		is_l2 = true;
		is_l4 = true;
954 955 956 957 958 959 960

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

995
		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
996 997 998 999
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
1000
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1001 1002 1003 1004 1005 1006 1007 1008 1009
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
1010
	regval = rd32(E1000_TXSTMPL);
1011
	regval = rd32(E1000_TXSTMPH);
1012
	regval = rd32(E1000_RXSTMPL);
1013 1014
	regval = rd32(E1000_RXSTMPH);

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	return 0;
}

/**
 * igb_ptp_set_ts_config - set hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 **/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config config;
	int err;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = igb_ptp_set_timestamp_mode(adapter, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	memcpy(&adapter->tstamp_config, &config,
	       sizeof(adapter->tstamp_config));

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1042
		-EFAULT : 0;
1043 1044 1045 1046 1047
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1048
	struct net_device *netdev = adapter->netdev;
1049
	int i;
1050 1051

	switch (hw->mac.type) {
1052 1053 1054
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
J
Jiri Benc 已提交
1055
		adapter->ptp_caps.max_adj = 999999881;
1056 1057 1058 1059
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1060 1061
		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1062
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1063
		adapter->cc.read = igb_ptp_read_82576;
1064
		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1065 1066 1067 1068 1069
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
1070
	case e1000_82580:
1071
	case e1000_i354:
1072
	case e1000_i350:
1073
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1074 1075 1076 1077 1078
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1079
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1080 1081
		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1082
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1083
		adapter->cc.read = igb_ptp_read_82580;
1084
		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1085 1086
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
1087 1088 1089
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
1090 1091
	case e1000_i210:
	case e1000_i211:
1092 1093 1094 1095 1096 1097 1098
		for (i = 0; i < IGB_N_SDP; i++) {
			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];

			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
			ppd->index = i;
			ppd->func = PTP_PF_NONE;
		}
1099
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1100
		adapter->ptp_caps.owner = THIS_MODULE;
1101
		adapter->ptp_caps.max_adj = 62499999;
1102 1103 1104
		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
		adapter->ptp_caps.n_pins = IGB_N_SDP;
1105
		adapter->ptp_caps.pps = 1;
1106
		adapter->ptp_caps.pin_config = adapter->sdp_config;
1107 1108
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1109 1110
		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1111
		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1112
		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1113 1114
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
1115 1116 1117 1118 1119 1120 1121 1122
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

1123 1124
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1125

1126 1127
	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1128
		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1129

1130 1131 1132 1133
		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
1134

1135 1136
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
1137

1138 1139 1140
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}
1141

1142 1143
	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
1144
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1145 1146 1147
		wr32(E1000_IMS, E1000_IMS_TS);
	}

1148 1149 1150
	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

1151 1152
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
1153 1154 1155
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1156
	} else {
1157 1158
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
1159 1160
		adapter->flags |= IGB_FLAG_PTP;
	}
1161 1162
}

1163 1164 1165 1166 1167 1168 1169
/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
1170
{
1171 1172
	switch (adapter->hw.mac.type) {
	case e1000_82576:
1173
	case e1000_82580:
1174
	case e1000_i354:
1175
	case e1000_i350:
1176
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1177
		break;
1178 1179 1180 1181
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
1182 1183 1184
	default:
		return;
	}
1185

1186
	cancel_work_sync(&adapter->ptp_tx_work);
1187 1188 1189
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
1190
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1191
	}
1192

1193 1194 1195 1196
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
1197
		adapter->flags &= ~IGB_FLAG_PTP;
1198 1199
	}
}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1210
	unsigned long flags;
1211 1212 1213 1214

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

1215
	/* reset the tstamp_config */
1216
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1217

1218 1219
	spin_lock_irqsave(&adapter->tmreg_lock, flags);

1220 1221 1222 1223 1224 1225
	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
1226
	case e1000_i354:
1227 1228 1229 1230
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		wr32(E1000_TSAUXC, 0x0);
1231
		wr32(E1000_TSSDP, 0x0);
1232
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1233 1234 1235 1236
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
1237
		goto out;
1238 1239
	}

1240 1241
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1242
		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1243

1244
		igb_ptp_write_i210(adapter, &ts);
1245 1246 1247 1248
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
1249 1250
out:
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1251
}