igb_ptp.c 26.6 KB
Newer Older
1
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 3 4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
15 16
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
21
#include <linux/ptp_classify.h>
22 23 24 25 26 27

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

28
/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 30
 * and this update value cannot be reprogrammed.
 *
31 32 33 34 35 36 37 38 39 40 41
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
 * counts nanoseconds, but the upper 24 bits are not availible. The
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
42 43 44 45 46 47 48 49
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

70
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 73 74 75
#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580			40
76

77 78
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);

79
/* SYSTIM read access for the 82576 */
80
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 82 83
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
84 85
	u64 val;
	u32 lo, hi;
86 87 88 89 90 91 92 93 94 95

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

96
/* SYSTIM read access for the 82580 */
97
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 99 100
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
101
	u32 lo, hi;
102
	u64 val;
103

104
	/* The timestamp latches on lowest register read. For the 82580
105 106 107
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
108
	rd32(E1000_SYSTIMR);
109 110 111 112 113 114 115 116 117
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

118
/* SYSTIM read access for I210/I211 */
119 120 121
static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;
122
	u32 sec, nsec;
123

124
	/* The timestamp latches on lowest register read. For I210/I211, the
125 126 127
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
128
	rd32(E1000_SYSTIMR);
129 130 131 132 133 134 135 136 137 138 139 140
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
			       const struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;

141
	/* Writing the SYSTIMR register is not necessary as it only provides
142 143 144 145 146 147
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
	wr32(E1000_SYSTIMH, ts->tv_sec);
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
173 174
	case e1000_82576:
	case e1000_82580:
175
	case e1000_i354:
176 177 178 179 180 181 182 183 184 185
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
186 187
	case e1000_i210:
	case e1000_i211:
188 189 190 191
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
192 193
		break;
	default:
194
		break;
195 196 197
	}
}

198
/* PTP clock operations */
199
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200
{
201 202 203 204
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

228
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229
{
230 231 232 233
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

254
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255
{
256 257
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
258 259 260
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);
261
	timecounter_adjtime(&igb->tc, delta);
262 263 264 265 266
	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	struct timespec now, then = ns_to_timespec(delta);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
	now = timespec_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec *)&now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
				 struct timespec *ts)
287
{
288 289 290
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	u64 ns;
	u32 remainder;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
				struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
				 const struct timespec *ts)
324
{
325 326
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
327
	unsigned long flags;
328
	u64 ns;
329 330 331 332 333 334 335 336 337 338 339 340 341

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
				const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

358 359
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
				  struct ptp_clock_request *rq, int on)
360 361 362 363
{
	return -EOPNOTSUPP;
}

364 365 366 367 368 369
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
370
 **/
371
static void igb_ptp_tx_work(struct work_struct *work)
372 373 374 375 376 377 378 379 380
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

381 382 383 384
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
385
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
386
		adapter->tx_hwtstamp_timeouts++;
387
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
388 389 390
		return;
	}

391 392 393 394 395 396 397 398
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

399
static void igb_ptp_overflow_check(struct work_struct *work)
400
{
401 402 403 404
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
	struct timespec ts;

405
	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
406 407 408 409 410

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
411 412
}

413 414 415 416 417 418 419 420
/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
421
 **/
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;

	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
441 442
	if (time_after(adapter->last_rx_timestamp, rx_event))
		rx_event = adapter->last_rx_timestamp;
443 444 445 446 447 448

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
449
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
450 451 452
	}
}

453 454
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
455
 * @adapter: Board private structure.
456 457 458 459
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
460
 **/
461
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
462
{
463 464 465
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
466

467 468
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
469

470
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
471 472 473
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
474
	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
475 476
}

477 478 479 480 481 482 483 484 485
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
486
 **/
487 488 489 490
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
491
	__le64 *regval = (__le64 *)va;
492

493
	/* The timestamp is recorded in little endian format.
494 495 496 497 498 499 500 501 502 503 504 505 506 507
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
508
 **/
509
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
510 511 512 513 514 515
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

516
	/* If this bit is set, then the RX registers contain the time stamp. No
517 518 519 520 521 522 523 524 525
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
526 527 528 529 530
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
531 532

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
533 534 535 536 537

	/* Update the last_rx_timestamp timer in order to enable watchdog check
	 * for error case of latched timestamp on a dropped packet.
	 */
	adapter->last_rx_timestamp = jiffies;
538 539 540
}

/**
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
 * igb_ptp_get_ts_config - get hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 * to deconstruct the settings from the registers, just return a shadow copy
 * of the last known settings.
 **/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}
557

558
/**
559 560 561
 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 * @adapter: networking device structure
 * @config: hwtstamp configuration
562 563 564 565 566 567 568 569 570 571 572 573
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
574 575 576
 */
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
				      struct hwtstamp_config *config)
577 578 579 580 581 582 583 584 585 586
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	/* reserved for future extensions */
587
	if (config->flags)
588 589
		return -EINVAL;

590
	switch (config->tx_type) {
591 592 593 594 595 596 597 598
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

599
	switch (config->rx_filter) {
600 601 602 603 604 605 606 607 608 609 610 611 612
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
613 614 615 616
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
617 618
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
619
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
620 621 622
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
623
		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
624 625 626
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
627 628 629 630 631 632 633
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
634
			config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
635 636 637
			break;
		}
		/* fall through */
638
	default:
639
		config->rx_filter = HWTSTAMP_FILTER_NONE;
640 641 642 643 644 645 646 647 648
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

649
	/* Per-packet timestamping only works if all packets are
650
	 * timestamped, so enable timestamping in all packets as
651
	 * long as one Rx filter was configured.
652 653 654 655
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
656
		config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
657 658
		is_l2 = true;
		is_l4 = true;
659 660 661 662 663 664 665

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

700
		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
701 702 703 704
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
705
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
706 707 708 709 710 711 712 713 714
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
715
	regval = rd32(E1000_TXSTMPL);
716
	regval = rd32(E1000_TXSTMPH);
717
	regval = rd32(E1000_RXSTMPL);
718 719
	regval = rd32(E1000_RXSTMPH);

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	return 0;
}

/**
 * igb_ptp_set_ts_config - set hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 **/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config config;
	int err;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = igb_ptp_set_timestamp_mode(adapter, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	memcpy(&adapter->tstamp_config, &config,
	       sizeof(adapter->tstamp_config));

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
747
		-EFAULT : 0;
748 749 750 751 752
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
753
	struct net_device *netdev = adapter->netdev;
754 755

	switch (hw->mac.type) {
756 757 758
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
J
Jiri Benc 已提交
759
		adapter->ptp_caps.max_adj = 999999881;
760 761 762 763 764 765
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
766
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
767
		adapter->cc.read = igb_ptp_read_82576;
768
		adapter->cc.mask = CYCLECOUNTER_MASK(64);
769 770 771 772 773
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
774
	case e1000_82580:
775
	case e1000_i354:
776
	case e1000_i350:
777
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
778 779 780 781 782
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
783 784 785
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
786
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
787
		adapter->cc.read = igb_ptp_read_82580;
788
		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
789 790
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
791 792 793
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
794 795
	case e1000_i210:
	case e1000_i211:
796
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
797
		adapter->ptp_caps.owner = THIS_MODULE;
798
		adapter->ptp_caps.max_adj = 62499999;
799 800
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
801 802 803 804
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
805
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
806 807
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
808 809 810 811 812 813 814 815
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

816 817
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
818

819 820 821
	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());
822

823 824 825 826
		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
827

828 829
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
830

831 832 833
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}
834

835 836
	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
837
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
838 839 840
		wr32(E1000_IMS, E1000_IMS_TS);
	}

841 842 843
	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

844 845
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
846 847 848
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
849
	} else {
850 851
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
852 853
		adapter->flags |= IGB_FLAG_PTP;
	}
854 855
}

856 857 858 859 860 861 862
/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
863
{
864 865
	switch (adapter->hw.mac.type) {
	case e1000_82576:
866
	case e1000_82580:
867
	case e1000_i354:
868
	case e1000_i350:
869
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
870
		break;
871 872 873 874
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
875 876 877
	default:
		return;
	}
878

879
	cancel_work_sync(&adapter->ptp_tx_work);
880 881 882
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
883
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
884
	}
885

886 887 888 889
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
890
		adapter->flags &= ~IGB_FLAG_PTP;
891 892
	}
}
893 894 895 896 897 898 899 900 901 902

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
903
	unsigned long flags;
904 905 906 907

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

908
	/* reset the tstamp_config */
909
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
910

911 912
	spin_lock_irqsave(&adapter->tmreg_lock, flags);

913 914 915 916 917 918
	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
919
	case e1000_i354:
920 921 922 923
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		wr32(E1000_TSAUXC, 0x0);
924
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
925 926 927 928
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
929
		goto out;
930 931
	}

932 933 934 935
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

936
		igb_ptp_write_i210(adapter, &ts);
937 938 939 940
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
941 942
out:
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
943
}