igb_ptp.c 32.6 KB
Newer Older
1
/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 3 4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
15 16
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20
 */
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
21
#include <linux/ptp_classify.h>
22 23 24 25 26 27

#include "igb.h"

#define INCVALUE_MASK		0x7fffffff
#define ISGN			0x80000000

28
/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 30
 * and this update value cannot be reprogrammed.
 *
31 32
 * Neither the 82576 nor the 82580 offer registers wide enough to hold
 * nanoseconds time values for very long. For the 82580, SYSTIM always
33
 * counts nanoseconds, but the upper 24 bits are not available. The
34 35 36 37 38 39 40 41
 * frequency is adjusted by changing the 32 bit fractional nanoseconds
 * register, TIMINCA.
 *
 * For the 82576, the SYSTIM register time unit is affect by the
 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
 * field are needed to provide the nominal 16 nanosecond period,
 * leaving 19 bits for fractional nanoseconds.
 *
42 43 44 45 46 47 48 49
 * We scale the NIC clock cycle by a large factor so that relatively
 * small clock corrections can be added or subtracted at each clock
 * tick. The drawbacks of a large factor are a) that the clock
 * register overflows more quickly (not such a big deal) and b) that
 * the increment per tick has to fit into 24 bits.  As a result we
 * need to use a shift of 19 so we can fit a value of 16 into the
 * TIMINCA register.
 *
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 *
 *             SYSTIMH            SYSTIML
 *        +--------------+   +---+---+------+
 *  82576 |      32      |   | 8 | 5 |  19  |
 *        +--------------+   +---+---+------+
 *         \________ 45 bits _______/  fract
 *
 *        +----------+---+   +--------------+
 *  82580 |    24    | 8 |   |      32      |
 *        +----------+---+   +--------------+
 *          reserved  \______ 40 bits _____/
 *
 *
 * The 45 bit 82576 SYSTIM overflows every
 *   2^45 * 10^-9 / 3600 = 9.77 hours.
 *
 * The 40 bit 82580 SYSTIM overflows every
 *   2^40 * 10^-9 /  60  = 18.3 minutes.
 */

70
#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71
#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72 73 74 75
#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
#define IGB_NBITS_82580			40
76

77 78
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);

79
/* SYSTIM read access for the 82576 */
80
static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 82 83
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
84 85
	u64 val;
	u32 lo, hi;
86 87 88 89 90 91 92 93 94 95

	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

96
/* SYSTIM read access for the 82580 */
97
static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 99 100
{
	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
	struct e1000_hw *hw = &igb->hw;
101
	u32 lo, hi;
102
	u64 val;
103

104
	/* The timestamp latches on lowest register read. For the 82580
105 106 107
	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
	 * need to provide nanosecond resolution, so we just ignore it.
	 */
108
	rd32(E1000_SYSTIMR);
109 110 111 112 113 114 115 116 117
	lo = rd32(E1000_SYSTIML);
	hi = rd32(E1000_SYSTIMH);

	val = ((u64) hi) << 32;
	val |= lo;

	return val;
}

118
/* SYSTIM read access for I210/I211 */
119 120 121
static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;
122
	u32 sec, nsec;
123

124
	/* The timestamp latches on lowest register read. For I210/I211, the
125 126 127
	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
	 * resolution, we can ignore it.
	 */
128
	rd32(E1000_SYSTIMR);
129 130 131 132 133 134 135 136 137 138 139 140
	nsec = rd32(E1000_SYSTIML);
	sec = rd32(E1000_SYSTIMH);

	ts->tv_sec = sec;
	ts->tv_nsec = nsec;
}

static void igb_ptp_write_i210(struct igb_adapter *adapter,
			       const struct timespec *ts)
{
	struct e1000_hw *hw = &adapter->hw;

141
	/* Writing the SYSTIMR register is not necessary as it only provides
142 143 144 145 146 147
	 * sub-nanosecond resolution.
	 */
	wr32(E1000_SYSTIML, ts->tv_nsec);
	wr32(E1000_SYSTIMH, ts->tv_sec);
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 * @adapter: board private structure
 * @hwtstamps: timestamp structure to update
 * @systim: unsigned 64bit system time value.
 *
 * We need to convert the system time value stored in the RX/TXSTMP registers
 * into a hwtstamp which can be used by the upper level timestamping functions.
 *
 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 * system time value. This is needed because reading the 64 bit time
 * value involves reading two (or three) 32 bit registers. The first
 * read latches the value. Ditto for writing.
 *
 * In addition, here have extended the system time with an overflow
 * counter in software.
 **/
static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
				       struct skb_shared_hwtstamps *hwtstamps,
				       u64 systim)
{
	unsigned long flags;
	u64 ns;

	switch (adapter->hw.mac.type) {
173 174
	case e1000_82576:
	case e1000_82580:
175
	case e1000_i354:
176 177 178 179 180 181 182 183 184 185
	case e1000_i350:
		spin_lock_irqsave(&adapter->tmreg_lock, flags);

		ns = timecounter_cyc2time(&adapter->tc, systim);

		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

		memset(hwtstamps, 0, sizeof(*hwtstamps));
		hwtstamps->hwtstamp = ns_to_ktime(ns);
		break;
186 187
	case e1000_i210:
	case e1000_i211:
188 189 190 191
		memset(hwtstamps, 0, sizeof(*hwtstamps));
		/* Upper 32 bits contain s, lower 32 bits contain ns. */
		hwtstamps->hwtstamp = ktime_set(systim >> 32,
						systim & 0xFFFFFFFF);
192 193
		break;
	default:
194
		break;
195 196 197
	}
}

198
/* PTP clock operations */
199
static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200
{
201 202 203 204
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	u64 rate;
	u32 incvalue;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 14;
	rate = div_u64(rate, 1953125);

	incvalue = 16 << IGB_82576_TSYNC_SHIFT;

	if (neg_adj)
		incvalue -= rate;
	else
		incvalue += rate;

	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));

	return 0;
}

228
static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229
{
230 231 232 233
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	struct e1000_hw *hw = &igb->hw;
	int neg_adj = 0;
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	u64 rate;
	u32 inca;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}
	rate = ppb;
	rate <<= 26;
	rate = div_u64(rate, 1953125);

	inca = rate & INCVALUE_MASK;
	if (neg_adj)
		inca |= ISGN;

	wr32(E1000_TIMINCA, inca);

	return 0;
}

254
static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255
{
256 257
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
258 259 260
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);
261
	timecounter_adjtime(&igb->tc, delta);
262 263 264 265 266
	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
	struct timespec now, then = ns_to_timespec(delta);

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, &now);
	now = timespec_add(now, then);
	igb_ptp_write_i210(igb, (const struct timespec *)&now);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
				 struct timespec *ts)
287
{
288 289 290
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	u64 ns;
	u32 remainder;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	ns = timecounter_read(&igb->tc);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
				struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_read_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
				 const struct timespec *ts)
324
{
325 326
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
327
	unsigned long flags;
328
	u64 ns;
329 330 331 332 333 334 335 336 337 338 339 340 341

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	timecounter_init(&igb->tc, &igb->cc, ns);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
				const struct timespec *ts)
{
	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
					       ptp_caps);
	unsigned long flags;

	spin_lock_irqsave(&igb->tmreg_lock, flags);

	igb_ptp_write_i210(igb, ts);

	spin_unlock_irqrestore(&igb->tmreg_lock, flags);

	return 0;
}

358 359 360
static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
{
	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
361
	static const u32 mask[IGB_N_SDP] = {
362 363 364 365 366 367 368 369 370 371 372 373 374 375
		E1000_CTRL_SDP0_DIR,
		E1000_CTRL_SDP1_DIR,
		E1000_CTRL_EXT_SDP2_DIR,
		E1000_CTRL_EXT_SDP3_DIR,
	};

	if (input)
		*ptr &= ~mask[pin];
	else
		*ptr |= mask[pin];
}

static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
{
376
	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
377 378
		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
	};
379
	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
380 381
		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
	};
382
	static const u32 ts_sdp_en[IGB_N_SDP] = {
383 384
		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
	};
385
	struct e1000_hw *hw = &igb->hw;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	u32 ctrl, ctrl_ext, tssdp = 0;

	ctrl = rd32(E1000_CTRL);
	ctrl_ext = rd32(E1000_CTRL_EXT);
	tssdp = rd32(E1000_TSSDP);

	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);

	/* Make sure this pin is not enabled as an output. */
	tssdp &= ~ts_sdp_en[pin];

	if (chan == 1) {
		tssdp &= ~AUX1_SEL_SDP3;
		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
	} else {
		tssdp &= ~AUX0_SEL_SDP3;
		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
	}

	wr32(E1000_TSSDP, tssdp);
	wr32(E1000_CTRL, ctrl);
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
{
412
	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
413 414
		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
	};
415
	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
416 417
		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
	};
418
	static const u32 ts_sdp_en[IGB_N_SDP] = {
419 420
		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
	};
421
	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
422 423 424
		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
	};
425
	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
426 427 428
		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
	};
429
	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
430 431 432
		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
	};
433
	struct e1000_hw *hw = &igb->hw;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	u32 ctrl, ctrl_ext, tssdp = 0;

	ctrl = rd32(E1000_CTRL);
	ctrl_ext = rd32(E1000_CTRL_EXT);
	tssdp = rd32(E1000_TSSDP);

	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);

	/* Make sure this pin is not enabled as an input. */
	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
		tssdp &= ~AUX0_TS_SDP_EN;

	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
		tssdp &= ~AUX1_TS_SDP_EN;

	tssdp &= ~ts_sdp_sel_clr[pin];
	if (chan == 1)
		tssdp |= ts_sdp_sel_tt1[pin];
	else
		tssdp |= ts_sdp_sel_tt0[pin];

	tssdp |= ts_sdp_en[pin];

	wr32(E1000_TSSDP, tssdp);
	wr32(E1000_CTRL, ctrl);
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

462 463 464 465 466 467
static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
				       struct ptp_clock_request *rq, int on)
{
	struct igb_adapter *igb =
		container_of(ptp, struct igb_adapter, ptp_caps);
	struct e1000_hw *hw = &igb->hw;
468
	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
469
	unsigned long flags;
470
	struct timespec ts;
471
	int pin = -1;
472
	s64 ns;
473 474

	switch (rq->type) {
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	case PTP_CLK_REQ_EXTTS:
		if (on) {
			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
					   rq->extts.index);
			if (pin < 0)
				return -EBUSY;
		}
		if (rq->extts.index == 1) {
			tsauxc_mask = TSAUXC_EN_TS1;
			tsim_mask = TSINTR_AUTT1;
		} else {
			tsauxc_mask = TSAUXC_EN_TS0;
			tsim_mask = TSINTR_AUTT0;
		}
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsauxc = rd32(E1000_TSAUXC);
		tsim = rd32(E1000_TSIM);
		if (on) {
			igb_pin_extts(igb, rq->extts.index, pin);
			tsauxc |= tsauxc_mask;
			tsim |= tsim_mask;
		} else {
			tsauxc &= ~tsauxc_mask;
			tsim &= ~tsim_mask;
		}
		wr32(E1000_TSAUXC, tsauxc);
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;

	case PTP_CLK_REQ_PEROUT:
		if (on) {
			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
					   rq->perout.index);
			if (pin < 0)
				return -EBUSY;
		}
		ts.tv_sec = rq->perout.period.sec;
		ts.tv_nsec = rq->perout.period.nsec;
		ns = timespec_to_ns(&ts);
		ns = ns >> 1;
		if (on && ns < 500000LL) {
			/* 2k interrupts per second is an awful lot. */
			return -EINVAL;
		}
		ts = ns_to_timespec(ns);
		if (rq->perout.index == 1) {
			tsauxc_mask = TSAUXC_EN_TT1;
			tsim_mask = TSINTR_TT1;
			trgttiml = E1000_TRGTTIML1;
			trgttimh = E1000_TRGTTIMH1;
		} else {
			tsauxc_mask = TSAUXC_EN_TT0;
			tsim_mask = TSINTR_TT0;
			trgttiml = E1000_TRGTTIML0;
			trgttimh = E1000_TRGTTIMH0;
		}
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsauxc = rd32(E1000_TSAUXC);
		tsim = rd32(E1000_TSIM);
		if (on) {
			int i = rq->perout.index;

			igb_pin_perout(igb, i, pin);
			igb->perout[i].start.tv_sec = rq->perout.start.sec;
			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
			igb->perout[i].period.tv_sec = ts.tv_sec;
			igb->perout[i].period.tv_nsec = ts.tv_nsec;
			wr32(trgttiml, rq->perout.start.sec);
			wr32(trgttimh, rq->perout.start.nsec);
			tsauxc |= tsauxc_mask;
			tsim |= tsim_mask;
		} else {
			tsauxc &= ~tsauxc_mask;
			tsim &= ~tsim_mask;
		}
		wr32(E1000_TSAUXC, tsauxc);
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	case PTP_CLK_REQ_PPS:
		spin_lock_irqsave(&igb->tmreg_lock, flags);
		tsim = rd32(E1000_TSIM);
		if (on)
			tsim |= TSINTR_SYS_WRAP;
		else
			tsim &= ~TSINTR_SYS_WRAP;
		wr32(E1000_TSIM, tsim);
		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
		return 0;
	}

	return -EOPNOTSUPP;
}

571 572
static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
				  struct ptp_clock_request *rq, int on)
573 574 575 576
{
	return -EOPNOTSUPP;
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590
static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
			      enum ptp_pin_function func, unsigned int chan)
{
	switch (func) {
	case PTP_PF_NONE:
	case PTP_PF_EXTTS:
	case PTP_PF_PEROUT:
		break;
	case PTP_PF_PHYSYNC:
		return -1;
	}
	return 0;
}

591 592 593 594 595 596
/**
 * igb_ptp_tx_work
 * @work: pointer to work struct
 *
 * This work function polls the TSYNCTXCTL valid bit to determine when a
 * timestamp has been taken for the current stored skb.
597
 **/
598
static void igb_ptp_tx_work(struct work_struct *work)
599 600 601 602 603 604 605 606 607
{
	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
						   ptp_tx_work);
	struct e1000_hw *hw = &adapter->hw;
	u32 tsynctxctl;

	if (!adapter->ptp_tx_skb)
		return;

608 609 610 611
	if (time_is_before_jiffies(adapter->ptp_tx_start +
				   IGB_PTP_TX_TIMEOUT)) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
612
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
613
		adapter->tx_hwtstamp_timeouts++;
614
		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
615 616 617
		return;
	}

618 619 620 621 622 623 624 625
	tsynctxctl = rd32(E1000_TSYNCTXCTL);
	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
		igb_ptp_tx_hwtstamp(adapter);
	else
		/* reschedule to check later */
		schedule_work(&adapter->ptp_tx_work);
}

626
static void igb_ptp_overflow_check(struct work_struct *work)
627
{
628 629 630 631
	struct igb_adapter *igb =
		container_of(work, struct igb_adapter, ptp_overflow_work.work);
	struct timespec ts;

632
	igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
633 634 635 636 637

	pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);

	schedule_delayed_work(&igb->ptp_overflow_work,
			      IGB_SYSTIM_OVERFLOW_PERIOD);
638 639
}

640 641 642 643 644 645 646 647
/**
 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 * @adapter: private network adapter structure
 *
 * This watchdog task is scheduled to detect error case where hardware has
 * dropped an Rx packet that was timestamped when the ring is full. The
 * particular error is rare but leaves the device in a state unable to timestamp
 * any future packets.
648
 **/
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
void igb_ptp_rx_hang(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
	unsigned long rx_event;

	if (hw->mac.type != e1000_82576)
		return;

	/* If we don't have a valid timestamp in the registers, just update the
	 * timeout counter and exit
	 */
	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
		adapter->last_rx_ptp_check = jiffies;
		return;
	}

	/* Determine the most recent watchdog or rx_timestamp event */
	rx_event = adapter->last_rx_ptp_check;
668 669
	if (time_after(adapter->last_rx_timestamp, rx_event))
		rx_event = adapter->last_rx_timestamp;
670 671 672 673 674 675

	/* Only need to read the high RXSTMP register to clear the lock */
	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
		rd32(E1000_RXSTMPH);
		adapter->last_rx_ptp_check = jiffies;
		adapter->rx_hwtstamp_cleared++;
676
		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
677 678 679
	}
}

680 681
/**
 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
682
 * @adapter: Board private structure.
683 684 685 686
 *
 * If we were asked to do hardware stamping and such a time stamp is
 * available, then it must have been for this skb here because we only
 * allow only one such packet into the queue.
687
 **/
688
static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
689
{
690 691 692
	struct e1000_hw *hw = &adapter->hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval;
693

694 695
	regval = rd32(E1000_TXSTMPL);
	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
696

697
	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
698 699 700
	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
	dev_kfree_skb_any(adapter->ptp_tx_skb);
	adapter->ptp_tx_skb = NULL;
701
	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
702 703
}

704 705 706 707 708 709 710 711 712
/**
 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 * @q_vector: Pointer to interrupt specific structure
 * @va: Pointer to address containing Rx buffer
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the first buffer of an
 * incoming frame.  The value is stored in little endian format starting on
 * byte 8.
713
 **/
714 715 716 717
void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
			 unsigned char *va,
			 struct sk_buff *skb)
{
718
	__le64 *regval = (__le64 *)va;
719

720
	/* The timestamp is recorded in little endian format.
721 722 723 724 725 726 727 728 729 730 731 732 733 734
	 * DWORD: 0        1        2        3
	 * Field: Reserved Reserved SYSTIML  SYSTIMH
	 */
	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
				   le64_to_cpu(regval[1]));
}

/**
 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 * @q_vector: Pointer to interrupt specific structure
 * @skb: Buffer containing timestamp and packet
 *
 * This function is meant to retrieve a timestamp from the internal registers
 * of the adapter and store it in the skb.
735
 **/
736
void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
737 738 739 740 741 742
			 struct sk_buff *skb)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	u64 regval;

743
	/* If this bit is set, then the RX registers contain the time stamp. No
744 745 746 747 748 749 750 751 752
	 * other packet will be time stamped until we read these registers, so
	 * read the registers to make them available again. Because only one
	 * packet can be time stamped at a time, we know that the register
	 * values must belong to this one here and therefore we don't need to
	 * compare any of the additional attributes stored for it.
	 *
	 * If nothing went wrong, then it should have a shared tx_flags that we
	 * can turn into a skb_shared_hwtstamps.
	 */
753 754 755 756 757
	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
		return;

	regval = rd32(E1000_RXSTMPL);
	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
758 759

	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
760 761 762 763 764

	/* Update the last_rx_timestamp timer in order to enable watchdog check
	 * for error case of latched timestamp on a dropped packet.
	 */
	adapter->last_rx_timestamp = jiffies;
765 766 767
}

/**
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
 * igb_ptp_get_ts_config - get hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 * to deconstruct the settings from the registers, just return a shadow copy
 * of the last known settings.
 **/
int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config *config = &adapter->tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}
784

785
/**
786 787 788
 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 * @adapter: networking device structure
 * @config: hwtstamp configuration
789 790 791 792 793 794 795 796 797 798 799 800
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
801 802 803
 */
static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
				      struct hwtstamp_config *config)
804 805 806 807 808 809 810 811 812 813
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_cfg = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	/* reserved for future extensions */
814
	if (config->flags)
815 816
		return -EINVAL;

817
	switch (config->tx_type) {
818 819 820 821 822 823 824 825
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

826
	switch (config->rx_filter) {
827 828 829 830 831 832 833 834 835 836 837 838 839
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
840 841 842 843
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
844 845
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
M
Matthew Vick 已提交
846
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
847 848 849
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
850
		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
851 852 853
		is_l2 = true;
		is_l4 = true;
		break;
M
Matthew Vick 已提交
854 855 856 857 858 859 860
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
		/* 82576 cannot timestamp all packets, which it needs to do to
		 * support both V1 Sync and Delay_Req messages
		 */
		if (hw->mac.type != e1000_82576) {
			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
861
			config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
862 863 864
			break;
		}
		/* fall through */
865
	default:
866
		config->rx_filter = HWTSTAMP_FILTER_NONE;
867 868 869 870 871 872 873 874 875
		return -ERANGE;
	}

	if (hw->mac.type == e1000_82575) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -EINVAL;
		return 0;
	}

876
	/* Per-packet timestamping only works if all packets are
877
	 * timestamped, so enable timestamping in all packets as
878
	 * long as one Rx filter was configured.
879 880 881 882
	 */
	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
883
		config->rx_filter = HWTSTAMP_FILTER_ALL;
M
Matthew Vick 已提交
884 885
		is_l2 = true;
		is_l4 = true;
886 887 888 889 890 891 892

		if ((hw->mac.type == e1000_i210) ||
		    (hw->mac.type == e1000_i211)) {
			regval = rd32(E1000_RXPBS);
			regval |= E1000_RXPBS_CFG_TS_EN;
			wr32(E1000_RXPBS, regval);
		}
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	}

	/* enable/disable TX */
	regval = rd32(E1000_TSYNCTXCTL);
	regval &= ~E1000_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	wr32(E1000_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = rd32(E1000_TSYNCRXCTL);
	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	wr32(E1000_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);

	/* define ethertype filter for timestamped packets */
	if (is_l2)
		wr32(E1000_ETQF(3),
		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
		      E1000_ETQF_1588 | /* enable timestamping */
		      ETH_P_1588));     /* 1588 eth protocol type */
	else
		wr32(E1000_ETQF(3), 0);

	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IPPROTO_UDP /* UDP */
			| E1000_FTQF_VF_BP /* VF not compared */
			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
			| E1000_FTQF_MASK); /* mask all inputs */
		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */

927
		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
928 929 930 931
		wr32(E1000_IMIREXT(3),
		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
		if (hw->mac.type == e1000_82576) {
			/* enable source port check */
932
			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
933 934 935 936 937 938 939 940 941
			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
		}
		wr32(E1000_FTQF(3), ftqf);
	} else {
		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
	}
	wrfl();

	/* clear TX/RX time stamp registers, just to be sure */
942
	regval = rd32(E1000_TXSTMPL);
943
	regval = rd32(E1000_TXSTMPH);
944
	regval = rd32(E1000_RXSTMPL);
945 946
	regval = rd32(E1000_RXSTMPH);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	return 0;
}

/**
 * igb_ptp_set_ts_config - set hardware time stamping config
 * @netdev:
 * @ifreq:
 *
 **/
int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct hwtstamp_config config;
	int err;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = igb_ptp_set_timestamp_mode(adapter, &config);
	if (err)
		return err;

	/* save these settings for future reference */
	memcpy(&adapter->tstamp_config, &config,
	       sizeof(adapter->tstamp_config));

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
974
		-EFAULT : 0;
975 976 977 978 979
}

void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
980
	struct net_device *netdev = adapter->netdev;
981
	int i;
982 983

	switch (hw->mac.type) {
984 985 986
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
J
Jiri Benc 已提交
987
		adapter->ptp_caps.max_adj = 999999881;
988 989 990 991 992 993
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
994
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
995
		adapter->cc.read = igb_ptp_read_82576;
996
		adapter->cc.mask = CYCLECOUNTER_MASK(64);
997 998 999 1000 1001
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
1002
	case e1000_82580:
1003
	case e1000_i354:
1004
	case e1000_i350:
1005
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1006 1007 1008 1009 1010
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1011 1012 1013
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
1014
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1015
		adapter->cc.read = igb_ptp_read_82580;
1016
		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1017 1018
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
1019 1020 1021
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
		break;
1022 1023
	case e1000_i210:
	case e1000_i211:
1024 1025 1026 1027 1028 1029 1030
		for (i = 0; i < IGB_N_SDP; i++) {
			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];

			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
			ppd->index = i;
			ppd->func = PTP_PF_NONE;
		}
1031
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1032
		adapter->ptp_caps.owner = THIS_MODULE;
1033
		adapter->ptp_caps.max_adj = 62499999;
1034 1035 1036
		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
		adapter->ptp_caps.n_pins = IGB_N_SDP;
1037
		adapter->ptp_caps.pps = 1;
1038
		adapter->ptp_caps.pin_config = adapter->sdp_config;
1039 1040 1041 1042
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
1043
		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1044
		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1045 1046
		/* Enable the timer functions by clearing bit 31. */
		wr32(E1000_TSAUXC, 0x0);
1047 1048 1049 1050 1051 1052 1053 1054
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	wrfl();

1055 1056
	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1057

1058 1059 1060
	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());
1061

1062 1063 1064 1065
		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
1066

1067 1068
		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check);
1069

1070 1071 1072
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}
1073

1074 1075
	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
1076
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1077 1078 1079
		wr32(E1000_IMS, E1000_IMS_TS);
	}

1080 1081 1082
	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

1083 1084
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
1085 1086 1087
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1088
	} else {
1089 1090
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
1091 1092
		adapter->flags |= IGB_FLAG_PTP;
	}
1093 1094
}

1095 1096 1097 1098 1099 1100 1101
/**
 * igb_ptp_stop - Disable PTP device and stop the overflow check.
 * @adapter: Board private structure.
 *
 * This function stops the PTP support and cancels the delayed work.
 **/
void igb_ptp_stop(struct igb_adapter *adapter)
1102
{
1103 1104
	switch (adapter->hw.mac.type) {
	case e1000_82576:
1105
	case e1000_82580:
1106
	case e1000_i354:
1107
	case e1000_i350:
1108
		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1109
		break;
1110 1111 1112 1113
	case e1000_i210:
	case e1000_i211:
		/* No delayed work to cancel. */
		break;
1114 1115 1116
	default:
		return;
	}
1117

1118
	cancel_work_sync(&adapter->ptp_tx_work);
1119 1120 1121
	if (adapter->ptp_tx_skb) {
		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
1122
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1123
	}
1124

1125 1126 1127 1128
	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
			 adapter->netdev->name);
1129
		adapter->flags &= ~IGB_FLAG_PTP;
1130 1131
	}
}
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
1142
	unsigned long flags;
1143 1144 1145 1146

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

1147
	/* reset the tstamp_config */
1148
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1149

1150 1151
	spin_lock_irqsave(&adapter->tmreg_lock, flags);

1152 1153 1154 1155 1156 1157
	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
1158
	case e1000_i354:
1159 1160 1161 1162
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		wr32(E1000_TSAUXC, 0x0);
1163
		wr32(E1000_TSSDP, 0x0);
1164
		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1165 1166 1167 1168
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
1169
		goto out;
1170 1171
	}

1172 1173 1174 1175
	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec ts = ktime_to_timespec(ktime_get_real());

1176
		igb_ptp_write_i210(adapter, &ts);
1177 1178 1179 1180
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
1181 1182
out:
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1183
}