bio.c 49.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
9
#include <linux/uio.h>
10
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
11 12 13
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
14
#include <linux/export.h>
L
Linus Torvalds 已提交
15 16
#include <linux/mempool.h>
#include <linux/workqueue.h>
17
#include <linux/cgroup.h>
18
#include <linux/blk-cgroup.h>
19
#include <linux/highmem.h>
20
#include <linux/sched/sysctl.h>
21
#include <linux/blk-crypto.h>
22
#include <linux/xarray.h>
L
Linus Torvalds 已提交
23

24
#include <trace/events/block.h>
25
#include "blk.h"
J
Josef Bacik 已提交
26
#include "blk-rq-qos.h"
27

28
struct bio_alloc_cache {
29
	struct bio		*free_list;
30 31 32
	unsigned int		nr;
};

33
static struct biovec_slab {
34 35 36
	int nr_vecs;
	char *name;
	struct kmem_cache *slab;
37 38 39 40
} bvec_slabs[] __read_mostly = {
	{ .nr_vecs = 16, .name = "biovec-16" },
	{ .nr_vecs = 64, .name = "biovec-64" },
	{ .nr_vecs = 128, .name = "biovec-128" },
41
	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
L
Linus Torvalds 已提交
42
};
43

44 45 46 47 48 49 50 51 52 53
static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
{
	switch (nr_vecs) {
	/* smaller bios use inline vecs */
	case 5 ... 16:
		return &bvec_slabs[0];
	case 17 ... 64:
		return &bvec_slabs[1];
	case 65 ... 128:
		return &bvec_slabs[2];
54
	case 129 ... BIO_MAX_VECS:
55 56 57 58 59 60
		return &bvec_slabs[3];
	default:
		BUG();
		return NULL;
	}
}
L
Linus Torvalds 已提交
61 62 63 64 65

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
66
struct bio_set fs_bio_set;
67
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
68

69 70 71 72 73 74 75 76 77 78
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
79
static DEFINE_XARRAY(bio_slabs);
80

81
static struct bio_slab *create_bio_slab(unsigned int size)
82
{
83
	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84

85 86
	if (!bslab)
		return NULL;
87

88 89
	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
	bslab->slab = kmem_cache_create(bslab->name, size,
90 91
			ARCH_KMALLOC_MINALIGN,
			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
92 93
	if (!bslab->slab)
		goto fail_alloc_slab;
94

95 96
	bslab->slab_ref = 1;
	bslab->slab_size = size;
97

98 99
	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
		return bslab;
100

101
	kmem_cache_destroy(bslab->slab);
102

103 104 105 106
fail_alloc_slab:
	kfree(bslab);
	return NULL;
}
107

108 109
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
110
	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
111
}
112

113 114 115 116
static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
	unsigned int size = bs_bio_slab_size(bs);
	struct bio_slab *bslab;
117

118 119 120 121 122 123
	mutex_lock(&bio_slab_lock);
	bslab = xa_load(&bio_slabs, size);
	if (bslab)
		bslab->slab_ref++;
	else
		bslab = create_bio_slab(size);
124
	mutex_unlock(&bio_slab_lock);
125 126 127 128

	if (bslab)
		return bslab->slab;
	return NULL;
129 130 131 132 133
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
134
	unsigned int slab_size = bs_bio_slab_size(bs);
135 136 137

	mutex_lock(&bio_slab_lock);

138
	bslab = xa_load(&bio_slabs, slab_size);
139 140 141
	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

142 143
	WARN_ON_ONCE(bslab->slab != bs->bio_slab);

144 145 146 147 148
	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

149 150
	xa_erase(&bio_slabs, slab_size);

151
	kmem_cache_destroy(bslab->slab);
152
	kfree(bslab);
153 154 155 156 157

out:
	mutex_unlock(&bio_slab_lock);
}

158
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
159
{
C
Christoph Hellwig 已提交
160
	BUG_ON(nr_vecs > BIO_MAX_VECS);
161

162
	if (nr_vecs == BIO_MAX_VECS)
163
		mempool_free(bv, pool);
164 165
	else if (nr_vecs > BIO_INLINE_VECS)
		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
166 167
}

168 169 170 171 172 173 174 175
/*
 * Make the first allocation restricted and don't dump info on allocation
 * failures, since we'll fall back to the mempool in case of failure.
 */
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
{
	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
176 177
}

178 179
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
		gfp_t gfp_mask)
L
Linus Torvalds 已提交
180
{
181
	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
L
Linus Torvalds 已提交
182

183
	if (WARN_ON_ONCE(!bvs))
184 185 186
		return NULL;

	/*
187 188
	 * Upgrade the nr_vecs request to take full advantage of the allocation.
	 * We also rely on this in the bvec_free path.
189
	 */
190
	*nr_vecs = bvs->nr_vecs;
191 192

	/*
C
Christoph Hellwig 已提交
193 194
	 * Try a slab allocation first for all smaller allocations.  If that
	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195
	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
196
	 */
197
	if (*nr_vecs < BIO_MAX_VECS) {
C
Christoph Hellwig 已提交
198
		struct bio_vec *bvl;
L
Linus Torvalds 已提交
199

200
		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201
		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
C
Christoph Hellwig 已提交
202
			return bvl;
203
		*nr_vecs = BIO_MAX_VECS;
204 205
	}

C
Christoph Hellwig 已提交
206
	return mempool_alloc(pool, gfp_mask);
L
Linus Torvalds 已提交
207 208
}

209
void bio_uninit(struct bio *bio)
L
Linus Torvalds 已提交
210
{
211 212 213 214 215 216
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
217 218
	if (bio_integrity(bio))
		bio_integrity_free(bio);
219 220

	bio_crypt_free_ctx(bio);
K
Kent Overstreet 已提交
221
}
222
EXPORT_SYMBOL(bio_uninit);
223

K
Kent Overstreet 已提交
224 225 226 227 228
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

229
	bio_uninit(bio);
K
Kent Overstreet 已提交
230 231

	if (bs) {
232
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
K
Kent Overstreet 已提交
233 234 235 236 237

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
238 239
		p -= bs->front_pad;

240
		mempool_free(p, &bs->bio_pool);
K
Kent Overstreet 已提交
241 242 243 244
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
245 246
}

247 248 249 250 251
/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
252 253
void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
	      unsigned short max_vecs, unsigned int opf)
L
Linus Torvalds 已提交
254
{
255
	bio->bi_next = NULL;
256 257
	bio->bi_bdev = bdev;
	bio->bi_opf = opf;
258 259 260 261 262 263 264 265 266 267 268 269 270
	bio->bi_flags = 0;
	bio->bi_ioprio = 0;
	bio->bi_write_hint = 0;
	bio->bi_status = 0;
	bio->bi_iter.bi_sector = 0;
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_idx = 0;
	bio->bi_iter.bi_bvec_done = 0;
	bio->bi_end_io = NULL;
	bio->bi_private = NULL;
#ifdef CONFIG_BLK_CGROUP
	bio->bi_blkg = NULL;
	bio->bi_issue.value = 0;
271 272
	if (bdev)
		bio_associate_blkg(bio);
273 274 275 276 277 278 279 280 281 282 283 284
#ifdef CONFIG_BLK_CGROUP_IOCOST
	bio->bi_iocost_cost = 0;
#endif
#endif
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
	bio->bi_crypt_context = NULL;
#endif
#ifdef CONFIG_BLK_DEV_INTEGRITY
	bio->bi_integrity = NULL;
#endif
	bio->bi_vcnt = 0;

285
	atomic_set(&bio->__bi_remaining, 1);
286
	atomic_set(&bio->__bi_cnt, 1);
287
	bio->bi_cookie = BLK_QC_T_NONE;
288 289

	bio->bi_max_vecs = max_vecs;
290 291
	bio->bi_io_vec = table;
	bio->bi_pool = NULL;
L
Linus Torvalds 已提交
292
}
293
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
294

K
Kent Overstreet 已提交
295 296 297
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
298 299
 * @bdev:	block device to use the bio for
 * @opf:	operation and flags for bio
K
Kent Overstreet 已提交
300 301 302 303 304 305 306
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
307
void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
K
Kent Overstreet 已提交
308
{
309
	bio_uninit(bio);
K
Kent Overstreet 已提交
310
	memset(bio, 0, BIO_RESET_BYTES);
311
	atomic_set(&bio->__bi_remaining, 1);
312
	bio->bi_bdev = bdev;
313 314
	if (bio->bi_bdev)
		bio_associate_blkg(bio);
315
	bio->bi_opf = opf;
K
Kent Overstreet 已提交
316 317 318
}
EXPORT_SYMBOL(bio_reset);

319
static struct bio *__bio_chain_endio(struct bio *bio)
K
Kent Overstreet 已提交
320
{
321 322
	struct bio *parent = bio->bi_private;

323
	if (bio->bi_status && !parent->bi_status)
324
		parent->bi_status = bio->bi_status;
K
Kent Overstreet 已提交
325
	bio_put(bio);
326 327 328 329 330 331
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
K
Kent Overstreet 已提交
332 333 334 335
}

/**
 * bio_chain - chain bio completions
336
 * @bio: the target bio
337
 * @parent: the parent bio of @bio
K
Kent Overstreet 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
351
	bio_inc_remaining(parent);
K
Kent Overstreet 已提交
352 353 354
}
EXPORT_SYMBOL(bio_chain);

355 356
struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
		unsigned int nr_pages, unsigned int opf, gfp_t gfp)
357
{
358
	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
359

360 361 362 363 364 365 366 367 368
	if (bio) {
		bio_chain(bio, new);
		submit_bio(bio);
	}

	return new;
}
EXPORT_SYMBOL_GPL(blk_next_bio);

369 370 371 372 373 374 375 376 377 378 379 380 381
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

382
		submit_bio_noacct(bio);
383 384 385 386 387 388 389 390
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

391 392
	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
393 394 395 396 397 398 399 400 401 402 403 404 405 406
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

407
	while ((bio = bio_list_pop(&current->bio_list[0])))
408
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
409
	current->bio_list[0] = nopunt;
410

411 412 413 414
	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;
415 416 417 418 419 420 421 422

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
423 424
/**
 * bio_alloc_bioset - allocate a bio for I/O
425 426 427
 * @bdev:	block device to allocate the bio for (can be %NULL)
 * @nr_vecs:	number of bvecs to pre-allocate
 * @opf:	operation and flags for bio
428
 * @gfp_mask:   the GFP_* mask given to the slab allocator
429
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
430
 *
431
 * Allocate a bio from the mempools in @bs.
432
 *
433 434 435 436 437 438
 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 * callers must never allocate more than 1 bio at a time from the general pool.
 * Callers that need to allocate more than 1 bio must always submit the
 * previously allocated bio for IO before attempting to allocate a new one.
 * Failure to do so can cause deadlocks under memory pressure.
439
 *
440 441 442 443
 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 * bios are not submitted until after you return - see the code in
 * submit_bio_noacct() that converts recursion into iteration, to prevent
 * stack overflows.
444
 *
445 446 447 448
 * This would normally mean allocating multiple bios under submit_bio_noacct()
 * would be susceptible to deadlocks, but we have
 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 * thread.
449
 *
450 451 452 453
 * However, we do not guarantee forward progress for allocations from other
 * mempools. Doing multiple allocations from the same mempool under
 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 * for per bio allocations.
454
 *
455
 * Returns: Pointer to new bio on success, NULL on failure.
456
 */
457 458
struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
			     unsigned int opf, gfp_t gfp_mask,
459
			     struct bio_set *bs)
L
Linus Torvalds 已提交
460
{
461
	gfp_t saved_gfp = gfp_mask;
T
Tejun Heo 已提交
462 463 464
	struct bio *bio;
	void *p;

465 466
	/* should not use nobvec bioset for nr_vecs > 0 */
	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
467
		return NULL;
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	/*
	 * submit_bio_noacct() converts recursion to iteration; this means if
	 * we're running beneath it, any bios we allocate and submit will not be
	 * submitted (and thus freed) until after we return.
	 *
	 * This exposes us to a potential deadlock if we allocate multiple bios
	 * from the same bio_set() while running underneath submit_bio_noacct().
	 * If we were to allocate multiple bios (say a stacking block driver
	 * that was splitting bios), we would deadlock if we exhausted the
	 * mempool's reserve.
	 *
	 * We solve this, and guarantee forward progress, with a rescuer
	 * workqueue per bio_set. If we go to allocate and there are bios on
	 * current->bio_list, we first try the allocation without
	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
	 * blocking to the rescuer workqueue before we retry with the original
	 * gfp_flags.
	 */
	if (current->bio_list &&
	    (!bio_list_empty(&current->bio_list[0]) ||
	     !bio_list_empty(&current->bio_list[1])) &&
	    bs->rescue_workqueue)
		gfp_mask &= ~__GFP_DIRECT_RECLAIM;

	p = mempool_alloc(&bs->bio_pool, gfp_mask);
	if (!p && gfp_mask != saved_gfp) {
		punt_bios_to_rescuer(bs);
		gfp_mask = saved_gfp;
497
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
498
	}
T
Tejun Heo 已提交
499 500
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
501

502
	bio = p + bs->front_pad;
503
	if (nr_vecs > BIO_INLINE_VECS) {
504
		struct bio_vec *bvl = NULL;
I
Ingo Molnar 已提交
505

506
		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
507 508 509
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
510
			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
511
		}
I
Ingo Molnar 已提交
512 513
		if (unlikely(!bvl))
			goto err_free;
514

515
		bio_init(bio, bdev, bvl, nr_vecs, opf);
516
	} else if (nr_vecs) {
517
		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
518
	} else {
519
		bio_init(bio, bdev, NULL, 0, opf);
L
Linus Torvalds 已提交
520
	}
521 522

	bio->bi_pool = bs;
L
Linus Torvalds 已提交
523
	return bio;
I
Ingo Molnar 已提交
524 525

err_free:
526
	mempool_free(p, &bs->bio_pool);
I
Ingo Molnar 已提交
527
	return NULL;
L
Linus Torvalds 已提交
528
}
529
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
530

531 532 533 534 535 536 537 538 539
/**
 * bio_kmalloc - kmalloc a bio for I/O
 * @gfp_mask:   the GFP_* mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 *
 * Use kmalloc to allocate and initialize a bio.
 *
 * Returns: Pointer to new bio on success, NULL on failure.
 */
540
struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
541 542 543 544 545 546 547 548 549
{
	struct bio *bio;

	if (nr_iovecs > UIO_MAXIOV)
		return NULL;

	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
	if (unlikely(!bio))
		return NULL;
550 551
	bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
		 0);
552 553 554 555 556
	bio->bi_pool = NULL;
	return bio;
}
EXPORT_SYMBOL(bio_kmalloc);

557
void zero_fill_bio(struct bio *bio)
L
Linus Torvalds 已提交
558
{
559 560
	struct bio_vec bv;
	struct bvec_iter iter;
L
Linus Torvalds 已提交
561

562 563
	bio_for_each_segment(bv, bio, iter)
		memzero_bvec(&bv);
L
Linus Torvalds 已提交
564
}
565
EXPORT_SYMBOL(zero_fill_bio);
L
Linus Torvalds 已提交
566

567 568 569 570 571 572 573 574 575 576
/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
577
static void bio_truncate(struct bio *bio, unsigned new_size)
578 579 580 581 582 583 584 585 586
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

587
	if (bio_op(bio) != REQ_OP_READ)
588 589 590 591 592 593 594 595 596 597
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
598 599
			zero_user(bv.bv_page, bv.bv_offset + offset,
				  bv.bv_len - offset);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630
/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
631
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

651 652 653 654 655 656 657 658 659
#define ALLOC_CACHE_MAX		512
#define ALLOC_CACHE_SLACK	 64

static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
				  unsigned int nr)
{
	unsigned int i = 0;
	struct bio *bio;

660 661
	while ((bio = cache->free_list) != NULL) {
		cache->free_list = bio->bi_next;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		cache->nr--;
		bio_free(bio);
		if (++i == nr)
			break;
	}
}

static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
	struct bio_set *bs;

	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
	if (bs->cache) {
		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);

		bio_alloc_cache_prune(cache, -1U);
	}
	return 0;
}

static void bio_alloc_cache_destroy(struct bio_set *bs)
{
	int cpu;

	if (!bs->cache)
		return;

	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
	for_each_possible_cpu(cpu) {
		struct bio_alloc_cache *cache;

		cache = per_cpu_ptr(bs->cache, cpu);
		bio_alloc_cache_prune(cache, -1U);
	}
	free_percpu(bs->cache);
}

L
Linus Torvalds 已提交
699 700 701 702 703 704
/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
705
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
L
Linus Torvalds 已提交
706 707 708
 **/
void bio_put(struct bio *bio)
{
709
	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
C
Christoph Hellwig 已提交
710
		BUG_ON(!atomic_read(&bio->__bi_cnt));
711 712 713
		if (!atomic_dec_and_test(&bio->__bi_cnt))
			return;
	}
714

715 716 717 718 719
	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
		struct bio_alloc_cache *cache;

		bio_uninit(bio);
		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
720 721
		bio->bi_next = cache->free_list;
		cache->free_list = bio;
722 723 724 725 726
		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
		put_cpu();
	} else {
		bio_free(bio);
727
	}
L
Linus Torvalds 已提交
728
}
729
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
730

731
static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
K
Kent Overstreet 已提交
732
{
733
	bio_set_flag(bio, BIO_CLONED);
S
Shaohua Li 已提交
734 735
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
736 737
	if (bio_flagged(bio_src, BIO_REMAPPED))
		bio_set_flag(bio, BIO_REMAPPED);
738
	bio->bi_ioprio = bio_src->bi_ioprio;
739
	bio->bi_write_hint = bio_src->bi_write_hint;
K
Kent Overstreet 已提交
740
	bio->bi_iter = bio_src->bi_iter;
741

742
	bio_clone_blkg_association(bio, bio_src);
743
	blkcg_bio_issue_init(bio);
744 745 746 747 748 749 750

	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
		return -ENOMEM;
	if (bio_integrity(bio_src) &&
	    bio_integrity_clone(bio, bio_src, gfp) < 0)
		return -ENOMEM;
	return 0;
K
Kent Overstreet 已提交
751 752 753
}

/**
754 755 756 757
 * bio_clone_fast - clone a bio that shares the original bio's biovec
 * @bio_src: bio to clone from
 * @gfp: allocation priority
 * @bs: bio_set to allocate from
K
Kent Overstreet 已提交
758
 *
759 760 761 762
 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
 * bio, but not the actual data it points to.
 *
 * The caller must ensure that the return bio is not freed before @bio_src.
K
Kent Overstreet 已提交
763
 */
764
struct bio *bio_clone_fast(struct bio *bio_src, gfp_t gfp, struct bio_set *bs)
K
Kent Overstreet 已提交
765
{
766
	struct bio *bio;
K
Kent Overstreet 已提交
767

768 769
	bio = bio_alloc_bioset(bio_src->bi_bdev, 0, bio_src->bi_opf, gfp, bs);
	if (!bio)
K
Kent Overstreet 已提交
770 771
		return NULL;

772 773
	if (__bio_clone(bio, bio_src, gfp) < 0) {
		bio_put(bio);
774 775
		return NULL;
	}
776
	bio->bi_io_vec = bio_src->bi_io_vec;
K
Kent Overstreet 已提交
777

778
	return bio;
K
Kent Overstreet 已提交
779 780 781
}
EXPORT_SYMBOL(bio_clone_fast);

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/**
 * __bio_clone_fast - clone a bio that shares the original bio's biovec
 * @bio: bio to clone into
 * @bio_src: bio to clone from
 * @gfp: allocation priority
 *
 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
 * The caller owns the returned bio, but not the actual data it points to.
 *
 * The caller must ensure that @bio_src is not freed before @bio.
 */
int __bio_clone_fast(struct bio *bio, struct bio *bio_src, gfp_t gfp)
{
	int ret;

	bio_init(bio, bio_src->bi_bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
	ret = __bio_clone(bio, bio_src, gfp);
	if (ret)
		bio_uninit(bio);
	return ret;
}
EXPORT_SYMBOL(__bio_clone_fast);

805 806
const char *bio_devname(struct bio *bio, char *buf)
{
807
	return bdevname(bio->bi_bdev, buf);
808 809 810
}
EXPORT_SYMBOL(bio_devname);

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
/**
 * bio_full - check if the bio is full
 * @bio:	bio to check
 * @len:	length of one segment to be added
 *
 * Return true if @bio is full and one segment with @len bytes can't be
 * added to the bio, otherwise return false
 */
static inline bool bio_full(struct bio *bio, unsigned len)
{
	if (bio->bi_vcnt >= bio->bi_max_vecs)
		return true;
	if (bio->bi_iter.bi_size > UINT_MAX - len)
		return true;
	return false;
}

828 829
static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
830
		bool *same_page)
831
{
832 833
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
834 835 836 837 838 839
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;
840

841
	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
842 843 844
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
845 846
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/**
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
 * @page: start page to add
 * @len: length of the data to add
 * @off: offset of the data relative to @page
 * @same_page: return if the segment has been merged inside the same page
 *
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 * useful optimisation for file systems with a block size smaller than the
 * page size.
 *
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
 * Return %true on success or %false on failure.
 */
static bool __bio_try_merge_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off, bool *same_page)
{
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
		return false;

	if (bio->bi_vcnt > 0) {
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page_is_mergeable(bv, page, len, off, same_page)) {
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
				return false;
			}
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
	}
	return false;
}

885 886 887 888 889 890 891 892
/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
893
{
894
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
895 896 897 898 899 900 901 902
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
903
	return __bio_try_merge_page(bio, page, len, offset, same_page);
904 905
}

L
Linus Torvalds 已提交
906
/**
907 908 909 910 911 912 913 914
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
K
Kent Overstreet 已提交
915
 *
916 917
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
L
Linus Torvalds 已提交
918
 */
919
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
920
		struct page *page, unsigned int len, unsigned int offset,
921
		unsigned int max_sectors, bool *same_page)
L
Linus Torvalds 已提交
922 923 924
{
	struct bio_vec *bvec;

925
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
L
Linus Torvalds 已提交
926 927
		return 0;

928
	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
929 930
		return 0;

931
	if (bio->bi_vcnt > 0) {
932
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
933
			return len;
934 935 936 937 938

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
939
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
940 941
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
942 943
	}

M
Ming Lei 已提交
944
	if (bio_full(bio, len))
L
Linus Torvalds 已提交
945 946
		return 0;

947
	if (bio->bi_vcnt >= queue_max_segments(q))
948 949
		return 0;

950 951 952 953 954
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
955
	bio->bi_iter.bi_size += len;
L
Linus Torvalds 已提交
956 957
	return len;
}
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
974 975 976
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
977
	bool same_page = false;
978 979
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
980
}
981
EXPORT_SYMBOL(bio_add_pc_page);
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * bio_add_zone_append_page - attempt to add page to zone-append bio
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
 * for a zone-append request. This can fail for a number of reasons, such as the
 * bio being full or the target block device is not a zoned block device or
 * other limitations of the target block device. The target block device must
 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
 * to an empty bio.
 *
 * Returns: number of bytes added to the bio, or 0 in case of a failure.
 */
int bio_add_zone_append_page(struct bio *bio, struct page *page,
			     unsigned int len, unsigned int offset)
{
1002
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	bool same_page = false;

	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
		return 0;

	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
		return 0;

	return bio_add_hw_page(q, bio, page, len, offset,
			       queue_max_zone_append_sectors(q), &same_page);
}
EXPORT_SYMBOL_GPL(bio_add_zone_append_page);

1016
/**
1017
 * __bio_add_page - add page(s) to a bio in a new segment
1018
 * @bio: destination bio
1019 1020 1021
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
1022 1023 1024 1025 1026 1027 1028 1029
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
K
Kent Overstreet 已提交
1030

1031
	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
M
Ming Lei 已提交
1032
	WARN_ON_ONCE(bio_full(bio, len));
1033 1034 1035 1036

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;
K
Kent Overstreet 已提交
1037 1038

	bio->bi_iter.bi_size += len;
1039
	bio->bi_vcnt++;
1040 1041 1042

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
1043 1044 1045 1046
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
1047
 *	bio_add_page	-	attempt to add page(s) to bio
1048
 *	@bio: destination bio
1049 1050 1051
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
1052
 *
1053
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1054 1055 1056 1057 1058
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
1059 1060 1061
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
M
Ming Lei 已提交
1062
		if (bio_full(bio, len))
1063 1064 1065
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
K
Kent Overstreet 已提交
1066
	return len;
L
Linus Torvalds 已提交
1067
}
1068
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * bio_add_folio - Attempt to add part of a folio to a bio.
 * @bio: BIO to add to.
 * @folio: Folio to add.
 * @len: How many bytes from the folio to add.
 * @off: First byte in this folio to add.
 *
 * Filesystems that use folios can call this function instead of calling
 * bio_add_page() for each page in the folio.  If @off is bigger than
 * PAGE_SIZE, this function can create a bio_vec that starts in a page
 * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
 *
 * Return: Whether the addition was successful.
 */
bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
		   size_t off)
{
	if (len > UINT_MAX || off > UINT_MAX)
1088
		return false;
1089 1090 1091
	return bio_add_page(bio, &folio->page, len, off) > 0;
}

1092
void __bio_release_pages(struct bio *bio, bool mark_dirty)
1093 1094 1095 1096
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

1097 1098 1099
	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
1100
		put_page(bvec->bv_page);
1101
	}
1102
}
1103
EXPORT_SYMBOL_GPL(__bio_release_pages);
1104

1105
void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1106
{
1107 1108
	size_t size = iov_iter_count(iter);

1109
	WARN_ON_ONCE(bio->bi_max_vecs);
1110

1111 1112 1113 1114 1115 1116 1117
	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
		size_t max_sectors = queue_max_zone_append_sectors(q);

		size = min(size, max_sectors << SECTOR_SHIFT);
	}

1118 1119 1120
	bio->bi_vcnt = iter->nr_segs;
	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1121
	bio->bi_iter.bi_size = size;
1122
	bio_set_flag(bio, BIO_NO_PAGE_REF);
1123
	bio_set_flag(bio, BIO_CLONED);
1124
}
1125

1126 1127 1128 1129 1130 1131 1132 1133
static void bio_put_pages(struct page **pages, size_t size, size_t off)
{
	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);

	for (i = 0; i < nr; i++)
		put_page(pages[i]);
}

1134 1135
#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

1136
/**
1137
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1138 1139 1140
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
1141
 * Pins pages from *iter and appends them to @bio's bvec array. The
1142
 * pages will have to be released using put_page() when done.
1143
 * For multi-segment *iter, this function only adds pages from the
1144
 * next non-empty segment of the iov iterator.
1145
 */
1146
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1147
{
1148 1149
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1150 1151
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
1152
	bool same_page = false;
1153 1154
	ssize_t size, left;
	unsigned len, i;
1155
	size_t offset;
1156 1157 1158 1159 1160 1161 1162 1163

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1164

J
Jens Axboe 已提交
1165
	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1166 1167 1168
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

1169 1170
	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
1171

1172
		len = min_t(size_t, PAGE_SIZE - offset, left);
1173 1174 1175 1176 1177

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
1178 1179 1180 1181
			if (WARN_ON_ONCE(bio_full(bio, len))) {
				bio_put_pages(pages + i, left, offset);
				return -EINVAL;
			}
1182 1183
			__bio_add_page(bio, page, len, offset);
		}
1184
		offset = 0;
1185 1186 1187 1188 1189
	}

	iov_iter_advance(iter, size);
	return 0;
}
1190

1191 1192 1193 1194
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1195
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1196 1197 1198 1199 1200 1201
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;
1202
	int ret = 0;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
1225
				max_append_sectors, &same_page) != len) {
1226
			bio_put_pages(pages + i, left, offset);
1227 1228 1229
			ret = -EINVAL;
			break;
		}
1230 1231 1232 1233 1234
		if (same_page)
			put_page(page);
		offset = 0;
	}

1235 1236
	iov_iter_advance(iter, size - left);
	return ret;
1237 1238
}

1239
/**
1240
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1241
 * @bio: bio to add pages to
1242 1243 1244 1245 1246
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
1247 1248 1249 1250 1251 1252
 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
 * to ensure the bvecs and pages stay referenced until the submitted I/O is
 * completed by a call to ->ki_complete() or returns with an error other than
 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
 * on IO completion. If it isn't, then pages should be released.
1253 1254
 *
 * The function tries, but does not guarantee, to pin as many pages as
1255
 * fit into the bio, or are requested in @iter, whatever is smaller. If
1256 1257
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
1258 1259 1260
 *
 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
 * responsible for setting BIO_WORKINGSET if necessary.
1261 1262 1263
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
1264
	int ret = 0;
1265

1266
	if (iov_iter_is_bvec(iter)) {
1267 1268 1269
		bio_iov_bvec_set(bio, iter);
		iov_iter_advance(iter, bio->bi_iter.bi_size);
		return 0;
1270
	}
1271 1272

	do {
1273
		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1274
			ret = __bio_iov_append_get_pages(bio, iter);
1275 1276
		else
			ret = __bio_iov_iter_get_pages(bio, iter);
M
Ming Lei 已提交
1277
	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1278

1279 1280
	/* don't account direct I/O as memory stall */
	bio_clear_flag(bio, BIO_WORKINGSET);
1281
	return bio->bi_vcnt ? 0 : ret;
1282
}
1283
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1284

1285
static void submit_bio_wait_endio(struct bio *bio)
1286
{
1287
	complete(bio->bi_private);
1288 1289 1290 1291 1292 1293 1294 1295
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
1296 1297 1298 1299
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
1300
 */
1301
int submit_bio_wait(struct bio *bio)
1302
{
1303 1304
	DECLARE_COMPLETION_ONSTACK_MAP(done,
			bio->bi_bdev->bd_disk->lockdep_map);
1305
	unsigned long hang_check;
1306

1307
	bio->bi_private = &done;
1308
	bio->bi_end_io = submit_bio_wait_endio;
J
Jens Axboe 已提交
1309
	bio->bi_opf |= REQ_SYNC;
1310
	submit_bio(bio);
1311 1312 1313 1314 1315 1316 1317 1318 1319

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);
1320

1321
	return blk_status_to_errno(bio->bi_status);
1322 1323 1324
}
EXPORT_SYMBOL(submit_bio_wait);

1325
void __bio_advance(struct bio *bio, unsigned bytes)
K
Kent Overstreet 已提交
1326 1327 1328 1329
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

1330
	bio_crypt_advance(bio, bytes);
K
Kent Overstreet 已提交
1331
	bio_advance_iter(bio, &bio->bi_iter, bytes);
K
Kent Overstreet 已提交
1332
}
1333
EXPORT_SYMBOL(__bio_advance);
K
Kent Overstreet 已提交
1334

1335 1336
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
K
Kent Overstreet 已提交
1337
{
1338
	while (src_iter->bi_size && dst_iter->bi_size) {
1339 1340 1341 1342 1343 1344 1345 1346
		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
		void *src_buf;

		src_buf = bvec_kmap_local(&src_bv);
		memcpy_to_bvec(&dst_bv, src_buf);
		kunmap_local(src_buf);
1347

P
Pavel Begunkov 已提交
1348 1349
		bio_advance_iter_single(src, src_iter, bytes);
		bio_advance_iter_single(dst, dst_iter, bytes);
K
Kent Overstreet 已提交
1350 1351
	}
}
1352 1353 1354
EXPORT_SYMBOL(bio_copy_data_iter);

/**
1355 1356 1357
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
1358 1359 1360 1361 1362 1363
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
1364 1365 1366 1367
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1368
}
K
Kent Overstreet 已提交
1369 1370
EXPORT_SYMBOL(bio_copy_data);

1371
void bio_free_pages(struct bio *bio)
1372 1373
{
	struct bio_vec *bvec;
1374
	struct bvec_iter_all iter_all;
1375

1376
	bio_for_each_segment_all(bvec, bio, iter_all)
1377 1378
		__free_page(bvec->bv_page);
}
1379
EXPORT_SYMBOL(bio_free_pages);
1380

L
Linus Torvalds 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1400
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
1412
	struct bio_vec *bvec;
1413
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1414

1415
	bio_for_each_segment_all(bvec, bio, iter_all) {
1416 1417
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
1425
 * the BIO and re-dirty the pages in process context.
L
Linus Torvalds 已提交
1426 1427
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1428 1429
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
L
Linus Torvalds 已提交
1430 1431
 */

1432
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1433

1434
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1441
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1442
{
1443
	struct bio *bio, *next;
L
Linus Torvalds 已提交
1444

1445 1446
	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
L
Linus Torvalds 已提交
1447
	bio_dirty_list = NULL;
1448
	spin_unlock_irq(&bio_dirty_lock);
L
Linus Torvalds 已提交
1449

1450 1451
	while ((bio = next) != NULL) {
		next = bio->bi_private;
L
Linus Torvalds 已提交
1452

1453
		bio_release_pages(bio, true);
L
Linus Torvalds 已提交
1454 1455 1456 1457 1458 1459
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
1460
	struct bio_vec *bvec;
1461
	unsigned long flags;
1462
	struct bvec_iter_all iter_all;
L
Linus Torvalds 已提交
1463

1464
	bio_for_each_segment_all(bvec, bio, iter_all) {
1465 1466
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
L
Linus Torvalds 已提交
1467 1468
	}

1469
	bio_release_pages(bio, false);
1470 1471 1472 1473 1474 1475 1476 1477
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
L
Linus Torvalds 已提交
1478 1479
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

1491
	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1492
		bio_clear_flag(bio, BIO_CHAIN);
1493
		return true;
1494
	}
1495 1496 1497 1498

	return false;
}

L
Linus Torvalds 已提交
1499 1500 1501 1502 1503
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
1504 1505 1506
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
N
NeilBrown 已提交
1507 1508 1509
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
1510
 *   last time.
L
Linus Torvalds 已提交
1511
 **/
1512
void bio_endio(struct bio *bio)
L
Linus Torvalds 已提交
1513
{
C
Christoph Hellwig 已提交
1514
again:
1515
	if (!bio_remaining_done(bio))
C
Christoph Hellwig 已提交
1516
		return;
1517 1518
	if (!bio_integrity_endio(bio))
		return;
L
Linus Torvalds 已提交
1519

1520
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1521
		rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
J
Josef Bacik 已提交
1522

1523
	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1524
		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1525 1526 1527
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

C
Christoph Hellwig 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
K
Kent Overstreet 已提交
1539
	}
C
Christoph Hellwig 已提交
1540

1541
	blk_throtl_bio_endio(bio);
S
Shaohua Li 已提交
1542 1543
	/* release cgroup info */
	bio_uninit(bio);
C
Christoph Hellwig 已提交
1544 1545
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
L
Linus Torvalds 已提交
1546
}
1547
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1548

K
Kent Overstreet 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
1559
 * Unless this is a discard request the newly allocated bio will point
1560 1561
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
K
Kent Overstreet 已提交
1562 1563 1564 1565
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
1566
	struct bio *split;
K
Kent Overstreet 已提交
1567 1568 1569 1570

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

1571 1572 1573 1574
	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

1575
	split = bio_clone_fast(bio, gfp, bs);
K
Kent Overstreet 已提交
1576 1577 1578 1579 1580 1581
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
1582
		bio_integrity_trim(split);
K
Kent Overstreet 已提交
1583 1584 1585

	bio_advance(bio, split->bi_iter.bi_size);

N
NeilBrown 已提交
1586
	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1587
		bio_set_flag(split, BIO_TRACE_COMPLETION);
N
NeilBrown 已提交
1588

K
Kent Overstreet 已提交
1589 1590 1591 1592
	return split;
}
EXPORT_SYMBOL(bio_split);

1593 1594 1595 1596 1597
/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
1598 1599 1600
 *
 * This function is typically used for bios that are cloned and submitted
 * to the underlying device in parts.
1601
 */
1602
void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1603
{
1604 1605 1606
	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
			 offset + size > bio->bi_iter.bi_size))
		return;
1607 1608

	size <<= 9;
1609
	if (offset == 0 && size == bio->bi_iter.bi_size)
1610 1611 1612
		return;

	bio_advance(bio, offset << 9);
1613
	bio->bi_iter.bi_size = size;
1614 1615

	if (bio_integrity(bio))
1616
		bio_integrity_trim(bio);
1617 1618 1619
}
EXPORT_SYMBOL_GPL(bio_trim);

L
Linus Torvalds 已提交
1620 1621 1622 1623
/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1624
int biovec_init_pool(mempool_t *pool, int pool_entries)
L
Linus Torvalds 已提交
1625
{
1626
	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
L
Linus Torvalds 已提交
1627

1628
	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
L
Linus Torvalds 已提交
1629 1630
}

1631 1632 1633 1634 1635 1636 1637
/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
L
Linus Torvalds 已提交
1638
{
1639
	bio_alloc_cache_destroy(bs);
1640 1641
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
1642
	bs->rescue_workqueue = NULL;
1643

1644 1645
	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);
1646

1647
	bioset_integrity_free(bs);
1648 1649 1650 1651 1652
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
L
Linus Torvalds 已提交
1653

1654 1655
/**
 * bioset_init - Initialize a bio_set
K
Kent Overstreet 已提交
1656
 * @bs:		pool to initialize
1657 1658 1659 1660 1661
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
K
Kent Overstreet 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
1674 1675 1676 1677 1678 1679 1680
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	bs->front_pad = front_pad;
1681 1682 1683 1684
	if (flags & BIOSET_NEED_BVECS)
		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	else
		bs->back_pad = 0;
1685 1686 1687 1688 1689

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1690
	bs->bio_slab = bio_find_or_create_slab(bs);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (flags & BIOSET_NEED_RESCUER) {
		bs->rescue_workqueue = alloc_workqueue("bioset",
							WQ_MEM_RECLAIM, 0);
		if (!bs->rescue_workqueue)
			goto bad;
	}
	if (flags & BIOSET_PERCPU_CACHE) {
		bs->cache = alloc_percpu(struct bio_alloc_cache);
		if (!bs->cache)
			goto bad;
		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
	}
1713 1714 1715 1716 1717 1718 1719 1720

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

1739 1740 1741
/**
 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
 * @kiocb:	kiocb describing the IO
1742
 * @bdev:	block device to allocate the bio for (can be %NULL)
1743
 * @nr_vecs:	number of iovecs to pre-allocate
1744
 * @opf:	operation and flags for bio
1745 1746 1747 1748 1749
 * @bs:		bio_set to allocate from
 *
 * Description:
 *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
 *    used to check if we should dip into the per-cpu bio_set allocation
1750 1751 1752
 *    cache. The allocation uses GFP_KERNEL internally. On return, the
 *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
 *    MUST be done from process context, not hard/soft IRQ.
1753 1754
 *
 */
1755 1756
struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
		unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
1757 1758 1759 1760 1761
{
	struct bio_alloc_cache *cache;
	struct bio *bio;

	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1762
		return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1763 1764

	cache = per_cpu_ptr(bs->cache, get_cpu());
1765 1766 1767
	if (cache->free_list) {
		bio = cache->free_list;
		cache->free_list = bio->bi_next;
1768 1769
		cache->nr--;
		put_cpu();
1770 1771
		bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
			 nr_vecs, opf);
1772 1773 1774 1775 1776
		bio->bi_pool = bs;
		bio_set_flag(bio, BIO_PERCPU_CACHE);
		return bio;
	}
	put_cpu();
1777
	bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1778 1779 1780 1781 1782
	bio_set_flag(bio, BIO_PERCPU_CACHE);
	return bio;
}
EXPORT_SYMBOL_GPL(bio_alloc_kiocb);

1783
static int __init init_bio(void)
L
Linus Torvalds 已提交
1784 1785 1786
{
	int i;

1787
	bio_integrity_init();
L
Linus Torvalds 已提交
1788

1789 1790
	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
		struct biovec_slab *bvs = bvec_slabs + i;
1791

1792 1793 1794
		bvs->slab = kmem_cache_create(bvs->name,
				bvs->nr_vecs * sizeof(struct bio_vec), 0,
				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1795 1796
	}

1797 1798 1799
	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
					bio_cpu_dead);

1800
	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
L
Linus Torvalds 已提交
1801 1802
		panic("bio: can't allocate bios\n");

1803
	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1804 1805
		panic("bio: can't create integrity pool\n");

L
Linus Torvalds 已提交
1806 1807 1808
	return 0;
}
subsys_initcall(init_bio);