ir-keytable.c 19.4 KB
Newer Older
1
/* ir-keytable.c - handle IR scancode->keycode tables
2 3
 *
 * Copyright (C) 2009 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14 15
 */


16
#include <linux/input.h>
17
#include <linux/slab.h>
18
#include "ir-core-priv.h"
19

20 21 22
/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
#define IR_TAB_MIN_SIZE	256
#define IR_TAB_MAX_SIZE	8192
23

24 25 26
/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
#define IR_KEYPRESS_TIMEOUT 250

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/**
 * ir_create_table() - initializes a scancode table
 * @rc_tab:	the ir_scancode_table to initialize
 * @name:	name to assign to the table
 * @ir_type:	ir type to assign to the new table
 * @size:	initial size of the table
 * @return:	zero on success or a negative error code
 *
 * This routine will initialize the ir_scancode_table and will allocate
 * memory to hold at least the specified number elements.
 */
static int ir_create_table(struct ir_scancode_table *rc_tab,
			   const char *name, u64 ir_type, size_t size)
{
	rc_tab->name = name;
	rc_tab->ir_type = ir_type;
	rc_tab->alloc = roundup_pow_of_two(size * sizeof(struct ir_scancode));
	rc_tab->size = rc_tab->alloc / sizeof(struct ir_scancode);
	rc_tab->scan = kmalloc(rc_tab->alloc, GFP_KERNEL);
	if (!rc_tab->scan)
		return -ENOMEM;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
		   rc_tab->size, rc_tab->alloc);
	return 0;
}

/**
 * ir_free_table() - frees memory allocated by a scancode table
 * @rc_tab:	the table whose mappings need to be freed
 *
 * This routine will free memory alloctaed for key mappings used by given
 * scancode table.
 */
static void ir_free_table(struct ir_scancode_table *rc_tab)
{
	rc_tab->size = 0;
	kfree(rc_tab->scan);
	rc_tab->scan = NULL;
}

68
/**
69 70
 * ir_resize_table() - resizes a scancode table if necessary
 * @rc_tab:	the ir_scancode_table to resize
71
 * @gfp_flags:	gfp flags to use when allocating memory
72
 * @return:	zero on success or a negative error code
73
 *
74 75
 * This routine will shrink the ir_scancode_table if it has lots of
 * unused entries and grow it if it is full.
76
 */
77
static int ir_resize_table(struct ir_scancode_table *rc_tab, gfp_t gfp_flags)
78
{
79 80 81 82 83 84 85 86 87
	unsigned int oldalloc = rc_tab->alloc;
	unsigned int newalloc = oldalloc;
	struct ir_scancode *oldscan = rc_tab->scan;
	struct ir_scancode *newscan;

	if (rc_tab->size == rc_tab->len) {
		/* All entries in use -> grow keytable */
		if (rc_tab->alloc >= IR_TAB_MAX_SIZE)
			return -ENOMEM;
88

89 90 91
		newalloc *= 2;
		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
	}
92

93 94 95 96 97
	if ((rc_tab->len * 3 < rc_tab->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
		/* Less than 1/3 of entries in use -> shrink keytable */
		newalloc /= 2;
		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
	}
98

99 100
	if (newalloc == oldalloc)
		return 0;
101

102
	newscan = kmalloc(newalloc, gfp_flags);
103 104 105 106
	if (!newscan) {
		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
		return -ENOMEM;
	}
107

108 109 110 111 112 113
	memcpy(newscan, rc_tab->scan, rc_tab->len * sizeof(struct ir_scancode));
	rc_tab->scan = newscan;
	rc_tab->alloc = newalloc;
	rc_tab->size = rc_tab->alloc / sizeof(struct ir_scancode);
	kfree(oldscan);
	return 0;
114 115
}

116
/**
117
 * ir_update_mapping() - set a keycode in the scancode->keycode table
118
 * @dev:	the struct input_dev device descriptor
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 * @rc_tab:	scancode table to be adjusted
 * @index:	index of the mapping that needs to be updated
 * @keycode:	the desired keycode
 * @return:	previous keycode assigned to the mapping
 *
 * This routine is used to update scancode->keycopde mapping at given
 * position.
 */
static unsigned int ir_update_mapping(struct input_dev *dev,
				      struct ir_scancode_table *rc_tab,
				      unsigned int index,
				      unsigned int new_keycode)
{
	int old_keycode = rc_tab->scan[index].keycode;
	int i;

	/* Did the user wish to remove the mapping? */
	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
			   index, rc_tab->scan[index].scancode);
		rc_tab->len--;
		memmove(&rc_tab->scan[index], &rc_tab->scan[index+ 1],
			(rc_tab->len - index) * sizeof(struct ir_scancode));
	} else {
		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
			   index,
			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
			   rc_tab->scan[index].scancode, new_keycode);
		rc_tab->scan[index].keycode = new_keycode;
		__set_bit(new_keycode, dev->keybit);
	}

	if (old_keycode != KEY_RESERVED) {
		/* A previous mapping was updated... */
		__clear_bit(old_keycode, dev->keybit);
		/* ... but another scancode might use the same keycode */
		for (i = 0; i < rc_tab->len; i++) {
			if (rc_tab->scan[i].keycode == old_keycode) {
				__set_bit(old_keycode, dev->keybit);
				break;
			}
		}

		/* Possibly shrink the keytable, failure is not a problem */
		ir_resize_table(rc_tab, GFP_ATOMIC);
	}

	return old_keycode;
}

/**
 * ir_locate_scancode() - set a keycode in the scancode->keycode table
 * @ir_dev:	the struct ir_input_dev device descriptor
 * @rc_tab:	scancode table to be searched
 * @scancode:	the desired scancode
 * @resize:	controls whether we allowed to resize the table to
 *		accomodate not yet present scancodes
 * @return:	index of the mapping containing scancode in question
 *		or -1U in case of failure.
178
 *
179 180 181
 * This routine is used to locate given scancode in ir_scancode_table.
 * If scancode is not yet present the routine will allocate a new slot
 * for it.
182
 */
183 184 185 186
static unsigned int ir_establish_scancode(struct ir_input_dev *ir_dev,
					  struct ir_scancode_table *rc_tab,
					  unsigned int scancode,
					  bool resize)
187
{
188
	unsigned int i;
189 190 191 192 193 194 195 196

	/*
	 * Unfortunately, some hardware-based IR decoders don't provide
	 * all bits for the complete IR code. In general, they provide only
	 * the command part of the IR code. Yet, as it is possible to replace
	 * the provided IR with another one, it is needed to allow loading
	 * IR tables from other remotes. So,
	 */
197
	if (ir_dev->props && ir_dev->props->scanmask)
198
		scancode &= ir_dev->props->scanmask;
199 200 201

	/* First check if we already have a mapping for this ir command */
	for (i = 0; i < rc_tab->len; i++) {
202 203 204
		if (rc_tab->scan[i].scancode == scancode)
			return i;

205
		/* Keytable is sorted from lowest to highest scancode */
206
		if (rc_tab->scan[i].scancode >= scancode)
207 208
			break;
	}
209

210 211 212 213 214
	/* No previous mapping found, we might need to grow the table */
	if (rc_tab->size == rc_tab->len) {
		if (!resize || ir_resize_table(rc_tab, GFP_ATOMIC))
			return -1U;
	}
215

216 217
	/* i is the proper index to insert our new keycode */
	if (i < rc_tab->len)
218 219
		memmove(&rc_tab->scan[i + 1], &rc_tab->scan[i],
			(rc_tab->len - i) * sizeof(struct ir_scancode));
220 221 222
	rc_tab->scan[i].scancode = scancode;
	rc_tab->scan[i].keycode = KEY_RESERVED;
	rc_tab->len++;
223

224
	return i;
225 226
}

227
/**
228
 * ir_setkeycode() - set a keycode in the scancode->keycode table
229 230
 * @dev:	the struct input_dev device descriptor
 * @scancode:	the desired scancode
231 232
 * @keycode:	result
 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
233
 *
234
 * This routine is used to handle evdev EVIOCSKEY ioctl.
235
 */
236
static int ir_setkeycode(struct input_dev *dev,
237 238
			 const struct input_keymap_entry *ke,
			 unsigned int *old_keycode)
239
{
240 241
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
242 243 244 245
	unsigned int index;
	unsigned int scancode;
	int retval;
	unsigned long flags;
246

247
	spin_lock_irqsave(&rc_tab->lock, flags);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
		if (index >= rc_tab->len) {
			retval = -EINVAL;
			goto out;
		}
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

		index = ir_establish_scancode(ir_dev, rc_tab, scancode, true);
		if (index >= rc_tab->len) {
			retval = -ENOMEM;
			goto out;
		}
	}

	*old_keycode = ir_update_mapping(dev, rc_tab, index, ke->keycode);

out:
270
	spin_unlock_irqrestore(&rc_tab->lock, flags);
271
	return retval;
272 273 274
}

/**
275 276 277 278
 * ir_setkeytable() - sets several entries in the scancode->keycode table
 * @dev:	the struct input_dev device descriptor
 * @to:		the struct ir_scancode_table to copy entries to
 * @from:	the struct ir_scancode_table to copy entries from
279
 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
280
 *
281
 * This routine is used to handle table initialization.
282
 */
283
static int ir_setkeytable(struct ir_input_dev *ir_dev,
284
			  const struct ir_scancode_table *from)
285
{
286
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
287 288 289 290 291 292 293 294 295 296
	unsigned int i, index;
	int rc;

	rc = ir_create_table(&ir_dev->rc_tab,
			     from->name, from->ir_type, from->size);
	if (rc)
		return rc;

	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
		   rc_tab->size, rc_tab->alloc);
297

298
	for (i = 0; i < from->size; i++) {
299 300 301 302
		index = ir_establish_scancode(ir_dev, rc_tab,
					      from->scan[i].scancode, false);
		if (index >= rc_tab->len) {
			rc = -ENOMEM;
303
			break;
304 305 306 307
		}

		ir_update_mapping(ir_dev->input_dev, rc_tab, index,
				  from->scan[i].keycode);
308
	}
309 310 311 312

	if (rc)
		ir_free_table(rc_tab);

313
	return rc;
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/**
 * ir_lookup_by_scancode() - locate mapping by scancode
 * @rc_tab:	the &struct ir_scancode_table to search
 * @scancode:	scancode to look for in the table
 * @return:	index in the table, -1U if not found
 *
 * This routine performs binary search in RC keykeymap table for
 * given scancode.
 */
static unsigned int ir_lookup_by_scancode(const struct ir_scancode_table *rc_tab,
					  unsigned int scancode)
{
	unsigned int start = 0;
	unsigned int end = rc_tab->len - 1;
	unsigned int mid;

	while (start <= end) {
		mid = (start + end) / 2;
		if (rc_tab->scan[mid].scancode < scancode)
			start = mid + 1;
		else if (rc_tab->scan[mid].scancode > scancode)
			end = mid - 1;
		else
			return mid;
	}

	return -1U;
}

345
/**
346
 * ir_getkeycode() - get a keycode from the scancode->keycode table
347 348
 * @dev:	the struct input_dev device descriptor
 * @scancode:	the desired scancode
349 350
 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 * @return:	always returns zero.
351
 *
352
 * This routine is used to handle evdev EVIOCGKEY ioctl.
353
 */
354
static int ir_getkeycode(struct input_dev *dev,
355
			 struct input_keymap_entry *ke)
356
{
357 358
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
359 360 361 362 363
	struct ir_scancode *entry;
	unsigned long flags;
	unsigned int index;
	unsigned int scancode;
	int retval;
364

365
	spin_lock_irqsave(&rc_tab->lock, flags);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		retval = input_scancode_to_scalar(ke, &scancode);
		if (retval)
			goto out;

		index = ir_lookup_by_scancode(rc_tab, scancode);
	}

	if (index >= rc_tab->len) {
		if (!(ke->flags & INPUT_KEYMAP_BY_INDEX))
			IR_dprintk(1, "unknown key for scancode 0x%04x\n",
				   scancode);
		retval = -EINVAL;
		goto out;
383 384
	}

385
	entry = &rc_tab->scan[index];
386

387 388 389 390 391 392 393 394
	ke->index = index;
	ke->keycode = entry->keycode;
	ke->len = sizeof(entry->scancode);
	memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));

out:
	spin_unlock_irqrestore(&rc_tab->lock, flags);
	return retval;
395 396 397 398
}

/**
 * ir_g_keycode_from_table() - gets the keycode that corresponds to a scancode
399
 * @input_dev:	the struct input_dev descriptor of the device
400 401 402 403
 * @scancode:	the scancode that we're seeking
 *
 * This routine is used by the input routines when a key is pressed at the
 * IR. The scancode is received and needs to be converted into a keycode.
404
 * If the key is not found, it returns KEY_RESERVED. Otherwise, returns the
405 406 407 408
 * corresponding keycode from the table.
 */
u32 ir_g_keycode_from_table(struct input_dev *dev, u32 scancode)
{
409 410 411 412 413 414 415 416 417 418 419 420 421
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
	unsigned int keycode;
	unsigned int index;
	unsigned long flags;

	spin_lock_irqsave(&rc_tab->lock, flags);

	index = ir_lookup_by_scancode(rc_tab, scancode);
	keycode = index < rc_tab->len ?
			rc_tab->scan[index].keycode : KEY_RESERVED;

	spin_unlock_irqrestore(&rc_tab->lock, flags);
422

423 424 425
	if (keycode != KEY_RESERVED)
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
			   dev->name, scancode, keycode);
426

427
	return keycode;
428
}
429
EXPORT_SYMBOL_GPL(ir_g_keycode_from_table);
430

431 432
/**
 * ir_keyup() - generates input event to cleanup a key press
433
 * @ir:         the struct ir_input_dev descriptor of the device
434
 *
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
 * This routine is used to signal that a key has been released on the
 * remote control. It reports a keyup input event via input_report_key().
 */
static void ir_keyup(struct ir_input_dev *ir)
{
	if (!ir->keypressed)
		return;

	IR_dprintk(1, "keyup key 0x%04x\n", ir->last_keycode);
	input_report_key(ir->input_dev, ir->last_keycode, 0);
	input_sync(ir->input_dev);
	ir->keypressed = false;
}

/**
 * ir_timer_keyup() - generates a keyup event after a timeout
 * @cookie:     a pointer to struct ir_input_dev passed to setup_timer()
 *
 * This routine will generate a keyup event some time after a keydown event
 * is generated when no further activity has been detected.
455
 */
456
static void ir_timer_keyup(unsigned long cookie)
457
{
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	struct ir_input_dev *ir = (struct ir_input_dev *)cookie;
	unsigned long flags;

	/*
	 * ir->keyup_jiffies is used to prevent a race condition if a
	 * hardware interrupt occurs at this point and the keyup timer
	 * event is moved further into the future as a result.
	 *
	 * The timer will then be reactivated and this function called
	 * again in the future. We need to exit gracefully in that case
	 * to allow the input subsystem to do its auto-repeat magic or
	 * a keyup event might follow immediately after the keydown.
	 */
	spin_lock_irqsave(&ir->keylock, flags);
	if (time_is_after_eq_jiffies(ir->keyup_jiffies))
		ir_keyup(ir);
	spin_unlock_irqrestore(&ir->keylock, flags);
}

/**
 * ir_repeat() - notifies the IR core that a key is still pressed
 * @dev:        the struct input_dev descriptor of the device
 *
 * This routine is used by IR decoders when a repeat message which does
 * not include the necessary bits to reproduce the scancode has been
 * received.
 */
void ir_repeat(struct input_dev *dev)
{
	unsigned long flags;
488 489
	struct ir_input_dev *ir = input_get_drvdata(dev);

490 491
	spin_lock_irqsave(&ir->keylock, flags);

492 493
	input_event(dev, EV_MSC, MSC_SCAN, ir->last_scancode);

494
	if (!ir->keypressed)
495
		goto out;
496

497 498 499 500 501
	ir->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&ir->timer_keyup, ir->keyup_jiffies);

out:
	spin_unlock_irqrestore(&ir->keylock, flags);
502
}
503
EXPORT_SYMBOL_GPL(ir_repeat);
504 505 506

/**
 * ir_keydown() - generates input event for a key press
507 508 509 510
 * @dev:        the struct input_dev descriptor of the device
 * @scancode:   the scancode that we're seeking
 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 *              support toggle values, this should be set to zero)
511 512 513 514 515
 *
 * This routine is used by the input routines when a key is pressed at the
 * IR. It gets the keycode for a scancode and reports an input event via
 * input_report_key().
 */
516
void ir_keydown(struct input_dev *dev, int scancode, u8 toggle)
517
{
518
	unsigned long flags;
519 520 521 522
	struct ir_input_dev *ir = input_get_drvdata(dev);

	u32 keycode = ir_g_keycode_from_table(dev, scancode);

523
	spin_lock_irqsave(&ir->keylock, flags);
524

525 526
	input_event(dev, EV_MSC, MSC_SCAN, scancode);

527 528 529 530 531
	/* Repeat event? */
	if (ir->keypressed &&
	    ir->last_scancode == scancode &&
	    ir->last_toggle == toggle)
		goto set_timer;
532

533 534
	/* Release old keypress */
	ir_keyup(ir);
535

536 537 538 539
	ir->last_scancode = scancode;
	ir->last_toggle = toggle;
	ir->last_keycode = keycode;

540

541 542
	if (keycode == KEY_RESERVED)
		goto out;
543

544

545 546 547 548 549
	/* Register a keypress */
	ir->keypressed = true;
	IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n",
		   dev->name, keycode, scancode);
	input_report_key(dev, ir->last_keycode, 1);
550 551
	input_sync(dev);

552 553 554 555 556
set_timer:
	ir->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
	mod_timer(&ir->timer_keyup, ir->keyup_jiffies);
out:
	spin_unlock_irqrestore(&ir->keylock, flags);
557 558 559
}
EXPORT_SYMBOL_GPL(ir_keydown);

560 561 562 563 564 565 566 567 568 569 570 571 572
static int ir_open(struct input_dev *input_dev)
{
	struct ir_input_dev *ir_dev = input_get_drvdata(input_dev);

	return ir_dev->props->open(ir_dev->props->priv);
}

static void ir_close(struct input_dev *input_dev)
{
	struct ir_input_dev *ir_dev = input_get_drvdata(input_dev);

	ir_dev->props->close(ir_dev->props->priv);
}
573

574
/**
575
 * __ir_input_register() - sets the IR keycode table and add the handlers
576 577 578 579
 *			    for keymap table get/set
 * @input_dev:	the struct input_dev descriptor of the device
 * @rc_tab:	the struct ir_scancode_table table of scancode/keymap
 *
580 581 582 583
 * This routine is used to initialize the input infrastructure
 * to work with an IR.
 * It will register the input/evdev interface for the device and
 * register the syfs code for IR class
584
 */
585
int __ir_input_register(struct input_dev *input_dev,
586
		      const struct ir_scancode_table *rc_tab,
587
		      struct ir_dev_props *props,
588
		      const char *driver_name)
589
{
590
	struct ir_input_dev *ir_dev;
591
	int rc;
592 593 594 595

	if (rc_tab->scan == NULL || !rc_tab->size)
		return -EINVAL;

596 597 598 599
	ir_dev = kzalloc(sizeof(*ir_dev), GFP_KERNEL);
	if (!ir_dev)
		return -ENOMEM;

600 601 602 603 604
	ir_dev->driver_name = kasprintf(GFP_KERNEL, "%s", driver_name);
	if (!ir_dev->driver_name) {
		rc = -ENOMEM;
		goto out_dev;
	}
605

606 607
	input_dev->getkeycode_new = ir_getkeycode;
	input_dev->setkeycode_new = ir_setkeycode;
608
	input_set_drvdata(input_dev, ir_dev);
609
	ir_dev->input_dev = input_dev;
610 611

	spin_lock_init(&ir_dev->rc_tab.lock);
612 613 614
	spin_lock_init(&ir_dev->keylock);
	setup_timer(&ir_dev->timer_keyup, ir_timer_keyup, (unsigned long)ir_dev);

615 616 617 618 619 620 621
	if (props) {
		ir_dev->props = props;
		if (props->open)
			input_dev->open = ir_open;
		if (props->close)
			input_dev->close = ir_close;
	}
622 623

	set_bit(EV_KEY, input_dev->evbit);
624
	set_bit(EV_REP, input_dev->evbit);
625 626
	set_bit(EV_MSC, input_dev->evbit);
	set_bit(MSC_SCAN, input_dev->mscbit);
627

628 629 630
	rc = ir_setkeytable(ir_dev, rc_tab);
	if (rc)
		goto out_name;
631

632
	rc = ir_register_class(input_dev);
633
	if (rc < 0)
634
		goto out_table;
635

636 637 638 639 640 641
	if (ir_dev->props)
		if (ir_dev->props->driver_type == RC_DRIVER_IR_RAW) {
			rc = ir_raw_event_register(input_dev);
			if (rc < 0)
				goto out_event;
		}
642

643 644
	IR_dprintk(1, "Registered input device on %s for %s remote%s.\n",
		   driver_name, rc_tab->name,
645 646
		   (ir_dev->props && ir_dev->props->driver_type == RC_DRIVER_IR_RAW) ?
			" in raw mode" : "");
647

648 649
	return 0;

650 651
out_event:
	ir_unregister_class(input_dev);
652
out_table:
653
	ir_free_table(&ir_dev->rc_tab);
654 655 656
out_name:
	kfree(ir_dev->driver_name);
out_dev:
657
	kfree(ir_dev);
658
	return rc;
659
}
660
EXPORT_SYMBOL_GPL(__ir_input_register);
661

662 663 664 665 666 667
/**
 * ir_input_unregister() - unregisters IR and frees resources
 * @input_dev:	the struct input_dev descriptor of the device

 * This routine is used to free memory and de-register interfaces.
 */
668
void ir_input_unregister(struct input_dev *input_dev)
669
{
670
	struct ir_input_dev *ir_dev = input_get_drvdata(input_dev);
671

672
	if (!ir_dev)
673 674
		return;

675
	IR_dprintk(1, "Freed keycode table\n");
676

677
	del_timer_sync(&ir_dev->timer_keyup);
678 679 680 681
	if (ir_dev->props)
		if (ir_dev->props->driver_type == RC_DRIVER_IR_RAW)
			ir_raw_event_unregister(input_dev);

682
	ir_free_table(&ir_dev->rc_tab);
683

684
	ir_unregister_class(input_dev);
685

686
	kfree(ir_dev->driver_name);
687
	kfree(ir_dev);
688
}
689
EXPORT_SYMBOL_GPL(ir_input_unregister);
690

691 692 693 694 695 696
int ir_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(ir_core_debug);
module_param_named(debug, ir_core_debug, int, 0644);

MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");