ir-keytable.c 15.5 KB
Newer Older
1 2 3
/* ir-register.c - handle IR scancode->keycode tables
 *
 * Copyright (C) 2009 by Mauro Carvalho Chehab <mchehab@redhat.com>
4 5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
13 14 15
 */


16
#include <linux/input.h>
17
#include <linux/slab.h>
18 19
#include <media/ir-common.h>

20
#define IR_TAB_MIN_SIZE	32
21
#define IR_TAB_MAX_SIZE	1024
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * ir_seek_table() - returns the element order on the table
 * @rc_tab:	the ir_scancode_table with the keymap to be used
 * @scancode:	the scancode that we're seeking
 *
 * This routine is used by the input routines when a key is pressed at the
 * IR. The scancode is received and needs to be converted into a keycode.
 * If the key is not found, it returns KEY_UNKNOWN. Otherwise, returns the
 * corresponding keycode from the table.
 */
static int ir_seek_table(struct ir_scancode_table *rc_tab, u32 scancode)
{
	int rc;
	unsigned long flags;
	struct ir_scancode *keymap = rc_tab->scan;

	spin_lock_irqsave(&rc_tab->lock, flags);

	/* FIXME: replace it by a binary search */

	for (rc = 0; rc < rc_tab->size; rc++)
		if (keymap[rc].scancode == scancode)
			goto exit;

	/* Not found */
	rc = -EINVAL;

exit:
	spin_unlock_irqrestore(&rc_tab->lock, flags);
	return rc;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68
/**
 * ir_roundup_tablesize() - gets an optimum value for the table size
 * @n_elems:		minimum number of entries to store keycodes
 *
 * This routine is used to choose the keycode table size.
 *
 * In order to have some empty space for new keycodes,
 * and knowing in advance that kmalloc allocates only power of two
 * segments, it optimizes the allocated space to have some spare space
 * for those new keycodes by using the maximum number of entries that
 * will be effectively be allocated by kmalloc.
 * In order to reduce the quantity of table resizes, it has a minimum
 * table size of IR_TAB_MIN_SIZE.
 */
69
static int ir_roundup_tablesize(int n_elems)
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
{
	size_t size;

	if (n_elems < IR_TAB_MIN_SIZE)
		n_elems = IR_TAB_MIN_SIZE;

	/*
	 * As kmalloc only allocates sizes of power of two, get as
	 * much entries as possible for the allocated memory segment
	 */
	size = roundup_pow_of_two(n_elems * sizeof(struct ir_scancode));
	n_elems = size / sizeof(struct ir_scancode);

	return n_elems;
}

/**
 * ir_copy_table() - copies a keytable, discarding the unused entries
 * @destin:	destin table
 * @origin:	origin table
 *
 * Copies all entries where the keycode is not KEY_UNKNOWN/KEY_RESERVED
92 93
 * Also copies table size and table protocol.
 * NOTE: It shouldn't copy the lock field
94 95
 */

96
static int ir_copy_table(struct ir_scancode_table *destin,
97 98 99 100 101
		 const struct ir_scancode_table *origin)
{
	int i, j = 0;

	for (i = 0; i < origin->size; i++) {
102 103 104 105 106 107
		if (origin->scan[i].keycode == KEY_UNKNOWN ||
		   origin->scan[i].keycode == KEY_RESERVED)
			continue;

		memcpy(&destin->scan[j], &origin->scan[i], sizeof(struct ir_scancode));
		j++;
108 109
	}
	destin->size = j;
110
	destin->ir_type = origin->ir_type;
111

112
	IR_dprintk(1, "Copied %d scancodes to the new keycode table\n", destin->size);
113 114 115 116

	return 0;
}

117 118 119 120 121 122 123 124 125 126
/**
 * ir_getkeycode() - get a keycode at the evdev scancode ->keycode table
 * @dev:	the struct input_dev device descriptor
 * @scancode:	the desired scancode
 * @keycode:	the keycode to be retorned.
 *
 * This routine is used to handle evdev EVIOCGKEY ioctl.
 * If the key is not found, returns -EINVAL, otherwise, returns 0.
 */
static int ir_getkeycode(struct input_dev *dev,
127
			 unsigned int scancode, unsigned int *keycode)
128
{
129
	int elem;
130 131
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
132

133 134 135 136 137
	elem = ir_seek_table(rc_tab, scancode);
	if (elem >= 0) {
		*keycode = rc_tab->scan[elem].keycode;
		return 0;
	}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	/*
	 * Scancode not found and table can't be expanded
	 */
	if (elem < 0 && rc_tab->size == IR_TAB_MAX_SIZE)
		return -EINVAL;

	/*
	 * If is there extra space, returns KEY_RESERVED,
	 * otherwise, input core won't let ir_setkeycode to work
	 */
	*keycode = KEY_RESERVED;
	return 0;
}

/**
 * ir_is_resize_needed() - Check if the table needs rezise
 * @table:		keycode table that may need to resize
 * @n_elems:		minimum number of entries to store keycodes
 *
 * Considering that kmalloc uses power of two storage areas, this
 * routine detects if the real alloced size will change. If not, it
 * just returns without doing nothing. Otherwise, it will extend or
 * reduce the table size to meet the new needs.
 *
 * It returns 0 if no resize is needed, 1 otherwise.
 */
static int ir_is_resize_needed(struct ir_scancode_table *table, int n_elems)
{
	int cur_size = ir_roundup_tablesize(table->size);
	int new_size = ir_roundup_tablesize(n_elems);

	if (cur_size == new_size)
		return 0;

	/* Resize is needed */
	return 1;
}

/**
 * ir_delete_key() - remove a keycode from the table
 * @rc_tab:		keycode table
 * @elem:		element to be removed
 *
 */
static void ir_delete_key(struct ir_scancode_table *rc_tab, int elem)
{
	unsigned long flags = 0;
	int newsize = rc_tab->size - 1;
	int resize = ir_is_resize_needed(rc_tab, newsize);
	struct ir_scancode *oldkeymap = rc_tab->scan;
189
	struct ir_scancode *newkeymap = NULL;
190

191
	if (resize)
192 193 194
		newkeymap = kzalloc(ir_roundup_tablesize(newsize) *
				    sizeof(*newkeymap), GFP_ATOMIC);

195 196
	/* There's no memory for resize. Keep the old table */
	if (!resize || !newkeymap) {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
		newkeymap = oldkeymap;

		/* We'll modify the live table. Lock it */
		spin_lock_irqsave(&rc_tab->lock, flags);
	}

	/*
	 * Copy the elements before the one that will be deleted
	 * if (!resize), both oldkeymap and newkeymap points
	 * to the same place, so, there's no need to copy
	 */
	if (resize && elem > 0)
		memcpy(newkeymap, oldkeymap,
		       elem * sizeof(*newkeymap));

	/*
	 * Copy the other elements overwriting the element to be removed
	 * This operation applies to both resize and non-resize case
	 */
	if (elem < newsize)
		memcpy(&newkeymap[elem], &oldkeymap[elem + 1],
		       (newsize - elem) * sizeof(*newkeymap));

	if (resize) {
		/*
		 * As the copy happened to a temporary table, only here
		 * it needs to lock while replacing the table pointers
		 * to use the new table
		 */
		spin_lock_irqsave(&rc_tab->lock, flags);
		rc_tab->size = newsize;
		rc_tab->scan = newkeymap;
		spin_unlock_irqrestore(&rc_tab->lock, flags);

		/* Frees the old keytable */
		kfree(oldkeymap);
	} else {
		rc_tab->size = newsize;
		spin_unlock_irqrestore(&rc_tab->lock, flags);
	}
}

/**
 * ir_insert_key() - insert a keycode at the table
 * @rc_tab:		keycode table
 * @scancode:	the desired scancode
 * @keycode:	the keycode to be retorned.
 *
 */
static int ir_insert_key(struct ir_scancode_table *rc_tab,
			  int scancode, int keycode)
{
	unsigned long flags;
	int elem = rc_tab->size;
	int newsize = rc_tab->size + 1;
	int resize = ir_is_resize_needed(rc_tab, newsize);
	struct ir_scancode *oldkeymap = rc_tab->scan;
	struct ir_scancode *newkeymap;

	if (resize) {
		newkeymap = kzalloc(ir_roundup_tablesize(newsize) *
				    sizeof(*newkeymap), GFP_ATOMIC);
		if (!newkeymap)
			return -ENOMEM;

		memcpy(newkeymap, oldkeymap,
		       rc_tab->size * sizeof(*newkeymap));
	} else
		newkeymap  = oldkeymap;

	/* Stores the new code at the table */
	IR_dprintk(1, "#%d: New scan 0x%04x with key 0x%04x\n",
		   rc_tab->size, scancode, keycode);

	spin_lock_irqsave(&rc_tab->lock, flags);
	rc_tab->size = newsize;
	if (resize) {
		rc_tab->scan = newkeymap;
		kfree(oldkeymap);
	}
	newkeymap[elem].scancode = scancode;
	newkeymap[elem].keycode  = keycode;
	spin_unlock_irqrestore(&rc_tab->lock, flags);

	return 0;
282 283 284 285 286 287 288 289 290 291 292 293 294
}

/**
 * ir_setkeycode() - set a keycode at the evdev scancode ->keycode table
 * @dev:	the struct input_dev device descriptor
 * @scancode:	the desired scancode
 * @keycode:	the keycode to be retorned.
 *
 * This routine is used to handle evdev EVIOCSKEY ioctl.
 * There's one caveat here: how can we increase the size of the table?
 * If the key is not found, returns -EINVAL, otherwise, returns 0.
 */
static int ir_setkeycode(struct input_dev *dev,
295
			 unsigned int scancode, unsigned int keycode)
296
{
297
	int rc = 0;
298 299
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
300
	struct ir_scancode *keymap = rc_tab->scan;
301
	unsigned long flags;
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	/*
	 * Handle keycode table deletions
	 *
	 * If userspace is adding a KEY_UNKNOWN or KEY_RESERVED,
	 * deal as a trial to remove an existing scancode attribution
	 * if table become too big, reduce it to save space
	 */
	if (keycode == KEY_UNKNOWN || keycode == KEY_RESERVED) {
		rc = ir_seek_table(rc_tab, scancode);
		if (rc < 0)
			return 0;

		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", rc, scancode);
		clear_bit(keymap[rc].keycode, dev->keybit);
		ir_delete_key(rc_tab, rc);

		return 0;
	}

	/*
	 * Handle keycode replacements
	 *
	 * If the scancode exists, just replace by the new value
	 */
327
	rc = ir_seek_table(rc_tab, scancode);
328 329 330
	if (rc >= 0) {
		IR_dprintk(1, "#%d: Replacing scan 0x%04x with key 0x%04x\n",
			rc, scancode, keycode);
331

332
		clear_bit(keymap[rc].keycode, dev->keybit);
333

334 335 336
		spin_lock_irqsave(&rc_tab->lock, flags);
		keymap[rc].keycode = keycode;
		spin_unlock_irqrestore(&rc_tab->lock, flags);
337

338
		set_bit(keycode, dev->keybit);
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return 0;
	}

	/*
	 * Handle new scancode inserts
	 *
	 * reallocate table if needed and insert a new keycode
	 */

	/* Avoid growing the table indefinitely */
	if (rc_tab->size + 1 > IR_TAB_MAX_SIZE)
		return -EINVAL;

	rc = ir_insert_key(rc_tab, scancode, keycode);
	if (rc < 0)
		return rc;
356 357 358
	set_bit(keycode, dev->keybit);

	return 0;
359 360 361 362
}

/**
 * ir_g_keycode_from_table() - gets the keycode that corresponds to a scancode
363
 * @input_dev:	the struct input_dev descriptor of the device
364 365 366 367
 * @scancode:	the scancode that we're seeking
 *
 * This routine is used by the input routines when a key is pressed at the
 * IR. The scancode is received and needs to be converted into a keycode.
368
 * If the key is not found, it returns KEY_RESERVED. Otherwise, returns the
369 370 371 372
 * corresponding keycode from the table.
 */
u32 ir_g_keycode_from_table(struct input_dev *dev, u32 scancode)
{
373 374
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
	struct ir_scancode_table *rc_tab = &ir_dev->rc_tab;
375
	struct ir_scancode *keymap = rc_tab->scan;
376
	int elem;
377

378 379 380 381
	elem = ir_seek_table(rc_tab, scancode);
	if (elem >= 0) {
		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
			   dev->name, scancode, keymap[elem].keycode);
382

383 384
		return rc_tab->scan[elem].keycode;
	}
385 386 387 388

	printk(KERN_INFO "%s: unknown key for scancode 0x%04x\n",
	       dev->name, scancode);

389 390
	/* Reports userspace that an unknown keycode were got */
	return KEY_RESERVED;
391
}
392
EXPORT_SYMBOL_GPL(ir_g_keycode_from_table);
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * ir_keyup() - generates input event to cleanup a key press
 * @input_dev:	the struct input_dev descriptor of the device
 *
 * This routine is used by the input routines when a key is pressed at the
 * IR. It reports a keyup input event via input_report_key().
 */
void ir_keyup(struct input_dev *dev)
{
	struct ir_input_dev *ir = input_get_drvdata(dev);

	if (!ir->keypressed)
		return;

408
	IR_dprintk(1, "keyup key 0x%04x\n", ir->keycode);
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	input_report_key(dev, ir->keycode, 0);
	input_sync(dev);
	ir->keypressed = 0;
}
EXPORT_SYMBOL_GPL(ir_keyup);

/**
 * ir_keydown() - generates input event for a key press
 * @input_dev:	the struct input_dev descriptor of the device
 * @scancode:	the scancode that we're seeking
 *
 * This routine is used by the input routines when a key is pressed at the
 * IR. It gets the keycode for a scancode and reports an input event via
 * input_report_key().
 */
void ir_keydown(struct input_dev *dev, int scancode)
{
	struct ir_input_dev *ir = input_get_drvdata(dev);

	u32 keycode = ir_g_keycode_from_table(dev, scancode);

	/* If already sent a keydown, do a keyup */
	if (ir->keypressed)
		ir_keyup(dev);

	if (KEY_RESERVED == keycode)
		return;

	ir->keycode = keycode;
	ir->keypressed = 1;

	IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n",
		dev->name, keycode, scancode);

	input_report_key(dev, ir->keycode, 1);
	input_sync(dev);

}
EXPORT_SYMBOL_GPL(ir_keydown);

449 450 451 452 453 454 455 456 457 458 459 460 461
static int ir_open(struct input_dev *input_dev)
{
	struct ir_input_dev *ir_dev = input_get_drvdata(input_dev);

	return ir_dev->props->open(ir_dev->props->priv);
}

static void ir_close(struct input_dev *input_dev)
{
	struct ir_input_dev *ir_dev = input_get_drvdata(input_dev);

	ir_dev->props->close(ir_dev->props->priv);
}
462

463
/**
464
 * ir_input_register() - sets the IR keycode table and add the handlers
465 466 467 468
 *			    for keymap table get/set
 * @input_dev:	the struct input_dev descriptor of the device
 * @rc_tab:	the struct ir_scancode_table table of scancode/keymap
 *
469 470 471 472
 * This routine is used to initialize the input infrastructure
 * to work with an IR.
 * It will register the input/evdev interface for the device and
 * register the syfs code for IR class
473
 */
474
int ir_input_register(struct input_dev *input_dev,
475
		      const struct ir_scancode_table *rc_tab,
476 477
		      const struct ir_dev_props *props,
		      const char *driver_name)
478
{
479 480
	struct ir_input_dev *ir_dev;
	struct ir_scancode  *keymap    = rc_tab->scan;
481
	int i, rc;
482 483 484 485

	if (rc_tab->scan == NULL || !rc_tab->size)
		return -EINVAL;

486 487 488 489
	ir_dev = kzalloc(sizeof(*ir_dev), GFP_KERNEL);
	if (!ir_dev)
		return -ENOMEM;

490
	spin_lock_init(&ir_dev->rc_tab.lock);
491

492 493 494 495
	ir_dev->driver_name = kmalloc(strlen(driver_name) + 1, GFP_KERNEL);
	if (!ir_dev->driver_name)
		return -ENOMEM;
	strcpy(ir_dev->driver_name, driver_name);
496
	ir_dev->rc_tab.name = rc_tab->name;
497 498 499
	ir_dev->rc_tab.size = ir_roundup_tablesize(rc_tab->size);
	ir_dev->rc_tab.scan = kzalloc(ir_dev->rc_tab.size *
				    sizeof(struct ir_scancode), GFP_KERNEL);
500 501
	if (!ir_dev->rc_tab.scan) {
		kfree(ir_dev);
502
		return -ENOMEM;
503
	}
504 505 506 507 508 509

	IR_dprintk(1, "Allocated space for %d keycode entries (%zd bytes)\n",
		ir_dev->rc_tab.size,
		ir_dev->rc_tab.size * sizeof(ir_dev->rc_tab.scan));

	ir_copy_table(&ir_dev->rc_tab, rc_tab);
510
	ir_dev->props = props;
511 512 513 514
	if (props && props->open)
		input_dev->open = ir_open;
	if (props && props->close)
		input_dev->close = ir_close;
515

516 517 518 519 520 521 522
	/* set the bits for the keys */
	IR_dprintk(1, "key map size: %d\n", rc_tab->size);
	for (i = 0; i < rc_tab->size; i++) {
		IR_dprintk(1, "#%d: setting bit for keycode 0x%04x\n",
			i, keymap[i].keycode);
		set_bit(keymap[i].keycode, input_dev->keybit);
	}
523 524 525
	clear_bit(0, input_dev->keybit);

	set_bit(EV_KEY, input_dev->evbit);
526 527 528

	input_dev->getkeycode = ir_getkeycode;
	input_dev->setkeycode = ir_setkeycode;
529
	input_set_drvdata(input_dev, ir_dev);
530

531
	rc = ir_register_class(input_dev);
532
	if (rc < 0)
533
		goto err;
534

535 536 537 538 539
	return 0;

err:
	kfree(rc_tab->scan);
	kfree(ir_dev);
540
	return rc;
541
}
542
EXPORT_SYMBOL_GPL(ir_input_register);
543

544 545 546 547 548 549
/**
 * ir_input_unregister() - unregisters IR and frees resources
 * @input_dev:	the struct input_dev descriptor of the device

 * This routine is used to free memory and de-register interfaces.
 */
550
void ir_input_unregister(struct input_dev *dev)
551
{
552
	struct ir_input_dev *ir_dev = input_get_drvdata(dev);
553
	struct ir_scancode_table *rc_tab;
554

555
	if (!ir_dev)
556 557
		return;

558 559
	IR_dprintk(1, "Freed keycode table\n");

560
	rc_tab = &ir_dev->rc_tab;
561 562 563
	rc_tab->size = 0;
	kfree(rc_tab->scan);
	rc_tab->scan = NULL;
564

565 566
	ir_unregister_class(dev);

567
	kfree(ir_dev);
568
}
569
EXPORT_SYMBOL_GPL(ir_input_unregister);
570

571 572 573 574 575 576
int ir_core_debug;    /* ir_debug level (0,1,2) */
EXPORT_SYMBOL_GPL(ir_core_debug);
module_param_named(debug, ir_core_debug, int, 0644);

MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_LICENSE("GPL");