/* ir-keytable.c - handle IR scancode->keycode tables * * Copyright (C) 2009 by Mauro Carvalho Chehab * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include "ir-core-priv.h" /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ #define IR_TAB_MIN_SIZE 256 #define IR_TAB_MAX_SIZE 8192 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */ #define IR_KEYPRESS_TIMEOUT 250 /** * ir_create_table() - initializes a scancode table * @rc_tab: the ir_scancode_table to initialize * @name: name to assign to the table * @ir_type: ir type to assign to the new table * @size: initial size of the table * @return: zero on success or a negative error code * * This routine will initialize the ir_scancode_table and will allocate * memory to hold at least the specified number elements. */ static int ir_create_table(struct ir_scancode_table *rc_tab, const char *name, u64 ir_type, size_t size) { rc_tab->name = name; rc_tab->ir_type = ir_type; rc_tab->alloc = roundup_pow_of_two(size * sizeof(struct ir_scancode)); rc_tab->size = rc_tab->alloc / sizeof(struct ir_scancode); rc_tab->scan = kmalloc(rc_tab->alloc, GFP_KERNEL); if (!rc_tab->scan) return -ENOMEM; IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", rc_tab->size, rc_tab->alloc); return 0; } /** * ir_free_table() - frees memory allocated by a scancode table * @rc_tab: the table whose mappings need to be freed * * This routine will free memory alloctaed for key mappings used by given * scancode table. */ static void ir_free_table(struct ir_scancode_table *rc_tab) { rc_tab->size = 0; kfree(rc_tab->scan); rc_tab->scan = NULL; } /** * ir_resize_table() - resizes a scancode table if necessary * @rc_tab: the ir_scancode_table to resize * @gfp_flags: gfp flags to use when allocating memory * @return: zero on success or a negative error code * * This routine will shrink the ir_scancode_table if it has lots of * unused entries and grow it if it is full. */ static int ir_resize_table(struct ir_scancode_table *rc_tab, gfp_t gfp_flags) { unsigned int oldalloc = rc_tab->alloc; unsigned int newalloc = oldalloc; struct ir_scancode *oldscan = rc_tab->scan; struct ir_scancode *newscan; if (rc_tab->size == rc_tab->len) { /* All entries in use -> grow keytable */ if (rc_tab->alloc >= IR_TAB_MAX_SIZE) return -ENOMEM; newalloc *= 2; IR_dprintk(1, "Growing table to %u bytes\n", newalloc); } if ((rc_tab->len * 3 < rc_tab->size) && (oldalloc > IR_TAB_MIN_SIZE)) { /* Less than 1/3 of entries in use -> shrink keytable */ newalloc /= 2; IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); } if (newalloc == oldalloc) return 0; newscan = kmalloc(newalloc, gfp_flags); if (!newscan) { IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); return -ENOMEM; } memcpy(newscan, rc_tab->scan, rc_tab->len * sizeof(struct ir_scancode)); rc_tab->scan = newscan; rc_tab->alloc = newalloc; rc_tab->size = rc_tab->alloc / sizeof(struct ir_scancode); kfree(oldscan); return 0; } /** * ir_update_mapping() - set a keycode in the scancode->keycode table * @dev: the struct input_dev device descriptor * @rc_tab: scancode table to be adjusted * @index: index of the mapping that needs to be updated * @keycode: the desired keycode * @return: previous keycode assigned to the mapping * * This routine is used to update scancode->keycopde mapping at given * position. */ static unsigned int ir_update_mapping(struct input_dev *dev, struct ir_scancode_table *rc_tab, unsigned int index, unsigned int new_keycode) { int old_keycode = rc_tab->scan[index].keycode; int i; /* Did the user wish to remove the mapping? */ if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", index, rc_tab->scan[index].scancode); rc_tab->len--; memmove(&rc_tab->scan[index], &rc_tab->scan[index+ 1], (rc_tab->len - index) * sizeof(struct ir_scancode)); } else { IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", index, old_keycode == KEY_RESERVED ? "New" : "Replacing", rc_tab->scan[index].scancode, new_keycode); rc_tab->scan[index].keycode = new_keycode; __set_bit(new_keycode, dev->keybit); } if (old_keycode != KEY_RESERVED) { /* A previous mapping was updated... */ __clear_bit(old_keycode, dev->keybit); /* ... but another scancode might use the same keycode */ for (i = 0; i < rc_tab->len; i++) { if (rc_tab->scan[i].keycode == old_keycode) { __set_bit(old_keycode, dev->keybit); break; } } /* Possibly shrink the keytable, failure is not a problem */ ir_resize_table(rc_tab, GFP_ATOMIC); } return old_keycode; } /** * ir_locate_scancode() - set a keycode in the scancode->keycode table * @ir_dev: the struct ir_input_dev device descriptor * @rc_tab: scancode table to be searched * @scancode: the desired scancode * @resize: controls whether we allowed to resize the table to * accomodate not yet present scancodes * @return: index of the mapping containing scancode in question * or -1U in case of failure. * * This routine is used to locate given scancode in ir_scancode_table. * If scancode is not yet present the routine will allocate a new slot * for it. */ static unsigned int ir_establish_scancode(struct ir_input_dev *ir_dev, struct ir_scancode_table *rc_tab, unsigned int scancode, bool resize) { unsigned int i; /* * Unfortunately, some hardware-based IR decoders don't provide * all bits for the complete IR code. In general, they provide only * the command part of the IR code. Yet, as it is possible to replace * the provided IR with another one, it is needed to allow loading * IR tables from other remotes. So, */ if (ir_dev->props && ir_dev->props->scanmask) scancode &= ir_dev->props->scanmask; /* First check if we already have a mapping for this ir command */ for (i = 0; i < rc_tab->len; i++) { if (rc_tab->scan[i].scancode == scancode) return i; /* Keytable is sorted from lowest to highest scancode */ if (rc_tab->scan[i].scancode >= scancode) break; } /* No previous mapping found, we might need to grow the table */ if (rc_tab->size == rc_tab->len) { if (!resize || ir_resize_table(rc_tab, GFP_ATOMIC)) return -1U; } /* i is the proper index to insert our new keycode */ if (i < rc_tab->len) memmove(&rc_tab->scan[i + 1], &rc_tab->scan[i], (rc_tab->len - i) * sizeof(struct ir_scancode)); rc_tab->scan[i].scancode = scancode; rc_tab->scan[i].keycode = KEY_RESERVED; rc_tab->len++; return i; } /** * ir_setkeycode() - set a keycode in the scancode->keycode table * @dev: the struct input_dev device descriptor * @scancode: the desired scancode * @keycode: result * @return: -EINVAL if the keycode could not be inserted, otherwise zero. * * This routine is used to handle evdev EVIOCSKEY ioctl. */ static int ir_setkeycode(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { struct ir_input_dev *ir_dev = input_get_drvdata(dev); struct ir_scancode_table *rc_tab = &ir_dev->rc_tab; unsigned int index; unsigned int scancode; int retval; unsigned long flags; spin_lock_irqsave(&rc_tab->lock, flags); if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; if (index >= rc_tab->len) { retval = -EINVAL; goto out; } } else { retval = input_scancode_to_scalar(ke, &scancode); if (retval) goto out; index = ir_establish_scancode(ir_dev, rc_tab, scancode, true); if (index >= rc_tab->len) { retval = -ENOMEM; goto out; } } *old_keycode = ir_update_mapping(dev, rc_tab, index, ke->keycode); out: spin_unlock_irqrestore(&rc_tab->lock, flags); return retval; } /** * ir_setkeytable() - sets several entries in the scancode->keycode table * @dev: the struct input_dev device descriptor * @to: the struct ir_scancode_table to copy entries to * @from: the struct ir_scancode_table to copy entries from * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero. * * This routine is used to handle table initialization. */ static int ir_setkeytable(struct ir_input_dev *ir_dev, const struct ir_scancode_table *from) { struct ir_scancode_table *rc_tab = &ir_dev->rc_tab; unsigned int i, index; int rc; rc = ir_create_table(&ir_dev->rc_tab, from->name, from->ir_type, from->size); if (rc) return rc; IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", rc_tab->size, rc_tab->alloc); for (i = 0; i < from->size; i++) { index = ir_establish_scancode(ir_dev, rc_tab, from->scan[i].scancode, false); if (index >= rc_tab->len) { rc = -ENOMEM; break; } ir_update_mapping(ir_dev->input_dev, rc_tab, index, from->scan[i].keycode); } if (rc) ir_free_table(rc_tab); return rc; } /** * ir_lookup_by_scancode() - locate mapping by scancode * @rc_tab: the &struct ir_scancode_table to search * @scancode: scancode to look for in the table * @return: index in the table, -1U if not found * * This routine performs binary search in RC keykeymap table for * given scancode. */ static unsigned int ir_lookup_by_scancode(const struct ir_scancode_table *rc_tab, unsigned int scancode) { unsigned int start = 0; unsigned int end = rc_tab->len - 1; unsigned int mid; while (start <= end) { mid = (start + end) / 2; if (rc_tab->scan[mid].scancode < scancode) start = mid + 1; else if (rc_tab->scan[mid].scancode > scancode) end = mid - 1; else return mid; } return -1U; } /** * ir_getkeycode() - get a keycode from the scancode->keycode table * @dev: the struct input_dev device descriptor * @scancode: the desired scancode * @keycode: used to return the keycode, if found, or KEY_RESERVED * @return: always returns zero. * * This routine is used to handle evdev EVIOCGKEY ioctl. */ static int ir_getkeycode(struct input_dev *dev, struct input_keymap_entry *ke) { struct ir_input_dev *ir_dev = input_get_drvdata(dev); struct ir_scancode_table *rc_tab = &ir_dev->rc_tab; struct ir_scancode *entry; unsigned long flags; unsigned int index; unsigned int scancode; int retval; spin_lock_irqsave(&rc_tab->lock, flags); if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; } else { retval = input_scancode_to_scalar(ke, &scancode); if (retval) goto out; index = ir_lookup_by_scancode(rc_tab, scancode); } if (index >= rc_tab->len) { if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) IR_dprintk(1, "unknown key for scancode 0x%04x\n", scancode); retval = -EINVAL; goto out; } entry = &rc_tab->scan[index]; ke->index = index; ke->keycode = entry->keycode; ke->len = sizeof(entry->scancode); memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); out: spin_unlock_irqrestore(&rc_tab->lock, flags); return retval; } /** * ir_g_keycode_from_table() - gets the keycode that corresponds to a scancode * @input_dev: the struct input_dev descriptor of the device * @scancode: the scancode that we're seeking * * This routine is used by the input routines when a key is pressed at the * IR. The scancode is received and needs to be converted into a keycode. * If the key is not found, it returns KEY_RESERVED. Otherwise, returns the * corresponding keycode from the table. */ u32 ir_g_keycode_from_table(struct input_dev *dev, u32 scancode) { struct ir_input_dev *ir_dev = input_get_drvdata(dev); struct ir_scancode_table *rc_tab = &ir_dev->rc_tab; unsigned int keycode; unsigned int index; unsigned long flags; spin_lock_irqsave(&rc_tab->lock, flags); index = ir_lookup_by_scancode(rc_tab, scancode); keycode = index < rc_tab->len ? rc_tab->scan[index].keycode : KEY_RESERVED; spin_unlock_irqrestore(&rc_tab->lock, flags); if (keycode != KEY_RESERVED) IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", dev->name, scancode, keycode); return keycode; } EXPORT_SYMBOL_GPL(ir_g_keycode_from_table); /** * ir_keyup() - generates input event to cleanup a key press * @ir: the struct ir_input_dev descriptor of the device * * This routine is used to signal that a key has been released on the * remote control. It reports a keyup input event via input_report_key(). */ static void ir_keyup(struct ir_input_dev *ir) { if (!ir->keypressed) return; IR_dprintk(1, "keyup key 0x%04x\n", ir->last_keycode); input_report_key(ir->input_dev, ir->last_keycode, 0); input_sync(ir->input_dev); ir->keypressed = false; } /** * ir_timer_keyup() - generates a keyup event after a timeout * @cookie: a pointer to struct ir_input_dev passed to setup_timer() * * This routine will generate a keyup event some time after a keydown event * is generated when no further activity has been detected. */ static void ir_timer_keyup(unsigned long cookie) { struct ir_input_dev *ir = (struct ir_input_dev *)cookie; unsigned long flags; /* * ir->keyup_jiffies is used to prevent a race condition if a * hardware interrupt occurs at this point and the keyup timer * event is moved further into the future as a result. * * The timer will then be reactivated and this function called * again in the future. We need to exit gracefully in that case * to allow the input subsystem to do its auto-repeat magic or * a keyup event might follow immediately after the keydown. */ spin_lock_irqsave(&ir->keylock, flags); if (time_is_after_eq_jiffies(ir->keyup_jiffies)) ir_keyup(ir); spin_unlock_irqrestore(&ir->keylock, flags); } /** * ir_repeat() - notifies the IR core that a key is still pressed * @dev: the struct input_dev descriptor of the device * * This routine is used by IR decoders when a repeat message which does * not include the necessary bits to reproduce the scancode has been * received. */ void ir_repeat(struct input_dev *dev) { unsigned long flags; struct ir_input_dev *ir = input_get_drvdata(dev); spin_lock_irqsave(&ir->keylock, flags); input_event(dev, EV_MSC, MSC_SCAN, ir->last_scancode); if (!ir->keypressed) goto out; ir->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); mod_timer(&ir->timer_keyup, ir->keyup_jiffies); out: spin_unlock_irqrestore(&ir->keylock, flags); } EXPORT_SYMBOL_GPL(ir_repeat); /** * ir_keydown() - generates input event for a key press * @dev: the struct input_dev descriptor of the device * @scancode: the scancode that we're seeking * @toggle: the toggle value (protocol dependent, if the protocol doesn't * support toggle values, this should be set to zero) * * This routine is used by the input routines when a key is pressed at the * IR. It gets the keycode for a scancode and reports an input event via * input_report_key(). */ void ir_keydown(struct input_dev *dev, int scancode, u8 toggle) { unsigned long flags; struct ir_input_dev *ir = input_get_drvdata(dev); u32 keycode = ir_g_keycode_from_table(dev, scancode); spin_lock_irqsave(&ir->keylock, flags); input_event(dev, EV_MSC, MSC_SCAN, scancode); /* Repeat event? */ if (ir->keypressed && ir->last_scancode == scancode && ir->last_toggle == toggle) goto set_timer; /* Release old keypress */ ir_keyup(ir); ir->last_scancode = scancode; ir->last_toggle = toggle; ir->last_keycode = keycode; if (keycode == KEY_RESERVED) goto out; /* Register a keypress */ ir->keypressed = true; IR_dprintk(1, "%s: key down event, key 0x%04x, scancode 0x%04x\n", dev->name, keycode, scancode); input_report_key(dev, ir->last_keycode, 1); input_sync(dev); set_timer: ir->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT); mod_timer(&ir->timer_keyup, ir->keyup_jiffies); out: spin_unlock_irqrestore(&ir->keylock, flags); } EXPORT_SYMBOL_GPL(ir_keydown); static int ir_open(struct input_dev *input_dev) { struct ir_input_dev *ir_dev = input_get_drvdata(input_dev); return ir_dev->props->open(ir_dev->props->priv); } static void ir_close(struct input_dev *input_dev) { struct ir_input_dev *ir_dev = input_get_drvdata(input_dev); ir_dev->props->close(ir_dev->props->priv); } /** * __ir_input_register() - sets the IR keycode table and add the handlers * for keymap table get/set * @input_dev: the struct input_dev descriptor of the device * @rc_tab: the struct ir_scancode_table table of scancode/keymap * * This routine is used to initialize the input infrastructure * to work with an IR. * It will register the input/evdev interface for the device and * register the syfs code for IR class */ int __ir_input_register(struct input_dev *input_dev, const struct ir_scancode_table *rc_tab, struct ir_dev_props *props, const char *driver_name) { struct ir_input_dev *ir_dev; int rc; if (rc_tab->scan == NULL || !rc_tab->size) return -EINVAL; ir_dev = kzalloc(sizeof(*ir_dev), GFP_KERNEL); if (!ir_dev) return -ENOMEM; ir_dev->driver_name = kasprintf(GFP_KERNEL, "%s", driver_name); if (!ir_dev->driver_name) { rc = -ENOMEM; goto out_dev; } input_dev->getkeycode_new = ir_getkeycode; input_dev->setkeycode_new = ir_setkeycode; input_set_drvdata(input_dev, ir_dev); ir_dev->input_dev = input_dev; spin_lock_init(&ir_dev->rc_tab.lock); spin_lock_init(&ir_dev->keylock); setup_timer(&ir_dev->timer_keyup, ir_timer_keyup, (unsigned long)ir_dev); if (props) { ir_dev->props = props; if (props->open) input_dev->open = ir_open; if (props->close) input_dev->close = ir_close; } set_bit(EV_KEY, input_dev->evbit); set_bit(EV_REP, input_dev->evbit); set_bit(EV_MSC, input_dev->evbit); set_bit(MSC_SCAN, input_dev->mscbit); rc = ir_setkeytable(ir_dev, rc_tab); if (rc) goto out_name; rc = ir_register_class(input_dev); if (rc < 0) goto out_table; if (ir_dev->props) if (ir_dev->props->driver_type == RC_DRIVER_IR_RAW) { rc = ir_raw_event_register(input_dev); if (rc < 0) goto out_event; } IR_dprintk(1, "Registered input device on %s for %s remote%s.\n", driver_name, rc_tab->name, (ir_dev->props && ir_dev->props->driver_type == RC_DRIVER_IR_RAW) ? " in raw mode" : ""); return 0; out_event: ir_unregister_class(input_dev); out_table: ir_free_table(&ir_dev->rc_tab); out_name: kfree(ir_dev->driver_name); out_dev: kfree(ir_dev); return rc; } EXPORT_SYMBOL_GPL(__ir_input_register); /** * ir_input_unregister() - unregisters IR and frees resources * @input_dev: the struct input_dev descriptor of the device * This routine is used to free memory and de-register interfaces. */ void ir_input_unregister(struct input_dev *input_dev) { struct ir_input_dev *ir_dev = input_get_drvdata(input_dev); if (!ir_dev) return; IR_dprintk(1, "Freed keycode table\n"); del_timer_sync(&ir_dev->timer_keyup); if (ir_dev->props) if (ir_dev->props->driver_type == RC_DRIVER_IR_RAW) ir_raw_event_unregister(input_dev); ir_free_table(&ir_dev->rc_tab); ir_unregister_class(input_dev); kfree(ir_dev->driver_name); kfree(ir_dev); } EXPORT_SYMBOL_GPL(ir_input_unregister); int ir_core_debug; /* ir_debug level (0,1,2) */ EXPORT_SYMBOL_GPL(ir_core_debug); module_param_named(debug, ir_core_debug, int, 0644); MODULE_AUTHOR("Mauro Carvalho Chehab "); MODULE_LICENSE("GPL");