x86.c 105.6 KB
Newer Older
1 2 3 4 5 6
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
B
Ben-Ami Yassour 已提交
7 8
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
9 10 11 12
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
B
Ben-Ami Yassour 已提交
13 14
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
15 16 17 18 19 20
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

21
#include <linux/kvm_host.h>
22
#include "irq.h"
23
#include "mmu.h"
S
Sheng Yang 已提交
24
#include "i8254.h"
25
#include "tss.h"
26
#include "kvm_cache_regs.h"
27
#include "x86.h"
28

29
#include <linux/clocksource.h>
B
Ben-Ami Yassour 已提交
30
#include <linux/interrupt.h>
31 32
#include <linux/kvm.h>
#include <linux/fs.h>
B
Ben-Ami Yassour 已提交
33
#include <linux/pci.h>
34
#include <linux/vmalloc.h>
35
#include <linux/module.h>
36
#include <linux/mman.h>
37
#include <linux/highmem.h>
38 39

#include <asm/uaccess.h>
40
#include <asm/msr.h>
41
#include <asm/desc.h>
42

43
#define MAX_IO_MSRS 256
44 45 46 47 48 49 50 51 52 53 54
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
55 56 57 58 59 60 61 62 63
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
64

65 66
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
67

68 69 70
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

71
struct kvm_x86_ops *kvm_x86_ops;
72
EXPORT_SYMBOL_GPL(kvm_x86_ops);
73

74
struct kvm_stats_debugfs_item debugfs_entries[] = {
75 76 77 78 79 80 81 82 83
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
84
	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
85 86
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
87
	{ "hypercalls", VCPU_STAT(hypercalls) },
88 89 90 91 92 93 94
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
95
	{ "irq_injections", VCPU_STAT(irq_injections) },
A
Avi Kivity 已提交
96 97 98 99 100 101
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
102
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
103
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
104
	{ "largepages", VM_STAT(lpages) },
105 106 107
	{ NULL }
};

108
static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
B
Ben-Ami Yassour 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
						      int assigned_dev_id)
{
	struct list_head *ptr;
	struct kvm_assigned_dev_kernel *match;

	list_for_each(ptr, head) {
		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
		if (match->assigned_dev_id == assigned_dev_id)
			return match;
	}
	return NULL;
}

static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
{
	struct kvm_assigned_dev_kernel *assigned_dev;

	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
				    interrupt_work);

	/* This is taken to safely inject irq inside the guest. When
	 * the interrupt injection (or the ioapic code) uses a
	 * finer-grained lock, update this
	 */
	mutex_lock(&assigned_dev->kvm->lock);
	kvm_set_irq(assigned_dev->kvm,
		    assigned_dev->guest_irq, 1);
	mutex_unlock(&assigned_dev->kvm->lock);
	kvm_put_kvm(assigned_dev->kvm);
}

/* FIXME: Implement the OR logic needed to make shared interrupts on
 * this line behave properly
 */
static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
{
	struct kvm_assigned_dev_kernel *assigned_dev =
		(struct kvm_assigned_dev_kernel *) dev_id;

	kvm_get_kvm(assigned_dev->kvm);
	schedule_work(&assigned_dev->interrupt_work);
	disable_irq_nosync(irq);
	return IRQ_HANDLED;
}

/* Ack the irq line for an assigned device */
static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
{
	struct kvm_assigned_dev_kernel *dev;

	if (kian->gsi == -1)
		return;

	dev = container_of(kian, struct kvm_assigned_dev_kernel,
			   ack_notifier);
	kvm_set_irq(dev->kvm, dev->guest_irq, 0);
	enable_irq(dev->host_irq);
}

static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
				   struct kvm_assigned_irq
				   *assigned_irq)
{
	int r = 0;
	struct kvm_assigned_dev_kernel *match;

	mutex_lock(&kvm->lock);

	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
				      assigned_irq->assigned_dev_id);
	if (!match) {
		mutex_unlock(&kvm->lock);
		return -EINVAL;
	}

	if (match->irq_requested) {
		match->guest_irq = assigned_irq->guest_irq;
		match->ack_notifier.gsi = assigned_irq->guest_irq;
		mutex_unlock(&kvm->lock);
		return 0;
	}

	INIT_WORK(&match->interrupt_work,
		  kvm_assigned_dev_interrupt_work_handler);

	if (irqchip_in_kernel(kvm)) {
195 196 197 198 199
		if (!capable(CAP_SYS_RAWIO)) {
			return -EPERM;
			goto out;
		}

B
Ben-Ami Yassour 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		if (assigned_irq->host_irq)
			match->host_irq = assigned_irq->host_irq;
		else
			match->host_irq = match->dev->irq;
		match->guest_irq = assigned_irq->guest_irq;
		match->ack_notifier.gsi = assigned_irq->guest_irq;
		match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
		kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);

		/* Even though this is PCI, we don't want to use shared
		 * interrupts. Sharing host devices with guest-assigned devices
		 * on the same interrupt line is not a happy situation: there
		 * are going to be long delays in accepting, acking, etc.
		 */
		if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
				"kvm_assigned_device", (void *)match)) {
			printk(KERN_INFO "%s: couldn't allocate irq for pv "
			       "device\n", __func__);
			r = -EIO;
			goto out;
		}
	}

	match->irq_requested = true;
out:
	mutex_unlock(&kvm->lock);
	return r;
}

static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
				      struct kvm_assigned_pci_dev *assigned_dev)
{
	int r = 0;
	struct kvm_assigned_dev_kernel *match;
	struct pci_dev *dev;

	mutex_lock(&kvm->lock);

	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
				      assigned_dev->assigned_dev_id);
	if (match) {
		/* device already assigned */
		r = -EINVAL;
		goto out;
	}

	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
	if (match == NULL) {
		printk(KERN_INFO "%s: Couldn't allocate memory\n",
		       __func__);
		r = -ENOMEM;
		goto out;
	}
	dev = pci_get_bus_and_slot(assigned_dev->busnr,
				   assigned_dev->devfn);
	if (!dev) {
		printk(KERN_INFO "%s: host device not found\n", __func__);
		r = -EINVAL;
		goto out_free;
	}
	if (pci_enable_device(dev)) {
		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
		r = -EBUSY;
		goto out_put;
	}
	r = pci_request_regions(dev, "kvm_assigned_device");
	if (r) {
		printk(KERN_INFO "%s: Could not get access to device regions\n",
		       __func__);
		goto out_disable;
	}
	match->assigned_dev_id = assigned_dev->assigned_dev_id;
	match->host_busnr = assigned_dev->busnr;
	match->host_devfn = assigned_dev->devfn;
	match->dev = dev;

	match->kvm = kvm;

	list_add(&match->list, &kvm->arch.assigned_dev_head);

out:
	mutex_unlock(&kvm->lock);
	return r;
out_disable:
	pci_disable_device(dev);
out_put:
	pci_dev_put(dev);
out_free:
	kfree(match);
	mutex_unlock(&kvm->lock);
	return r;
}

static void kvm_free_assigned_devices(struct kvm *kvm)
{
	struct list_head *ptr, *ptr2;
	struct kvm_assigned_dev_kernel *assigned_dev;

	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
		assigned_dev = list_entry(ptr,
					  struct kvm_assigned_dev_kernel,
					  list);

		if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested) {
			free_irq(assigned_dev->host_irq,
				 (void *)assigned_dev);

			kvm_unregister_irq_ack_notifier(kvm,
							&assigned_dev->
							ack_notifier);
		}

		if (cancel_work_sync(&assigned_dev->interrupt_work))
			/* We had pending work. That means we will have to take
			 * care of kvm_put_kvm.
			 */
			kvm_put_kvm(kvm);

		pci_release_regions(assigned_dev->dev);
		pci_disable_device(assigned_dev->dev);
		pci_dev_put(assigned_dev->dev);

		list_del(&assigned_dev->list);
		kfree(assigned_dev);
	}
}
326

327 328 329
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
330
	struct desc_struct *d;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
346 347 348
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
349
#ifdef CONFIG_X86_64
350 351
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
352 353 354 355 356
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

357 358 359
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
360
		return vcpu->arch.apic_base;
361
	else
362
		return vcpu->arch.apic_base;
363 364 365 366 367 368 369 370 371
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
372
		vcpu->arch.apic_base = data;
373 374 375
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

376 377
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
378 379 380 381
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
382 383 384
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

385 386 387 388
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
389 390 391 392 393 394 395 396 397 398
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
399 400
		return;
	}
401
	vcpu->arch.cr2 = addr;
402 403 404
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

405 406 407 408 409 410
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
	vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);

411 412
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
413 414 415 416 417
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
418 419 420 421 422
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
423 424 425
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
426 427
}

428 429 430 431 432 433 434 435 436
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
437
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

453
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
454 455 456 457
out:

	return ret;
}
458
EXPORT_SYMBOL_GPL(load_pdptrs);
459

460 461
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
462
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
463 464 465 466 467 468
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

469
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
470 471
	if (r < 0)
		goto out;
472
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
473 474 475 476 477
out:

	return changed;
}

478
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
479 480 481
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
482
		       cr0, vcpu->arch.cr0);
483
		kvm_inject_gp(vcpu, 0);
484 485 486 487 488
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
489
		kvm_inject_gp(vcpu, 0);
490 491 492 493 494 495
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
496
		kvm_inject_gp(vcpu, 0);
497 498 499 500 501
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
502
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
503 504 505 506 507
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
508
				kvm_inject_gp(vcpu, 0);
509 510 511 512 513 514
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
515
				kvm_inject_gp(vcpu, 0);
516 517 518 519 520
				return;

			}
		} else
#endif
521
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
522 523
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
524
			kvm_inject_gp(vcpu, 0);
525 526 527 528 529 530
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
531
	vcpu->arch.cr0 = cr0;
532 533 534 535

	kvm_mmu_reset_context(vcpu);
	return;
}
536
EXPORT_SYMBOL_GPL(kvm_set_cr0);
537

538
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
539
{
540
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
F
Feng (Eric) Liu 已提交
541 542 543
	KVMTRACE_1D(LMSW, vcpu,
		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
		    handler);
544
}
545
EXPORT_SYMBOL_GPL(kvm_lmsw);
546

547
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
548 549 550
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
551
		kvm_inject_gp(vcpu, 0);
552 553 554 555 556 557 558
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
559
			kvm_inject_gp(vcpu, 0);
560 561 562
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
563
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
564
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
565
		kvm_inject_gp(vcpu, 0);
566 567 568 569 570
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
571
		kvm_inject_gp(vcpu, 0);
572 573 574
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
575
	vcpu->arch.cr4 = cr4;
576 577
	kvm_mmu_reset_context(vcpu);
}
578
EXPORT_SYMBOL_GPL(kvm_set_cr4);
579

580
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
581
{
582
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
583 584 585 586
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

587 588 589
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
590
			kvm_inject_gp(vcpu, 0);
591 592 593 594 595 596 597
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
598
				kvm_inject_gp(vcpu, 0);
599 600 601 602 603
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
604
				kvm_inject_gp(vcpu, 0);
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
624
		kvm_inject_gp(vcpu, 0);
625
	else {
626 627
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
628 629
	}
}
630
EXPORT_SYMBOL_GPL(kvm_set_cr3);
631

632
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
633 634 635
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
636
		kvm_inject_gp(vcpu, 0);
637 638 639 640 641
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
642
		vcpu->arch.cr8 = cr8;
643
}
644
EXPORT_SYMBOL_GPL(kvm_set_cr8);
645

646
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
647 648 649 650
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
651
		return vcpu->arch.cr8;
652
}
653
EXPORT_SYMBOL_GPL(kvm_get_cr8);
654

655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
668
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
669
	MSR_IA32_PERF_STATUS,
670 671 672 673 674 675 676 677
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

678 679
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
680
	if (efer & efer_reserved_bits) {
681 682
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
683
		kvm_inject_gp(vcpu, 0);
684 685 686 687
		return;
	}

	if (is_paging(vcpu)
688
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
689
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
690
		kvm_inject_gp(vcpu, 0);
691 692 693 694 695 696
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
697
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
698

699
	vcpu->arch.shadow_efer = efer;
700 701
}

702 703 704 705 706 707 708
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


709 710 711 712 713 714 715 716 717 718
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

719 720 721 722 723 724 725 726
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

727 728 729
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
730 731
	struct pvclock_wall_clock wc;
	struct timespec now, sys, boot;
732 733 734 735 736 737 738 739

	if (!wall_clock)
		return;

	version++;

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

740 741 742 743 744 745 746 747 748 749 750 751 752
	/*
	 * The guest calculates current wall clock time by adding
	 * system time (updated by kvm_write_guest_time below) to the
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
	now = current_kernel_time();
	ktime_get_ts(&sys);
	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
753 754 755 756 757 758 759

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
	uint64_t nsecs = 1000000000LL;
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

	tps64 = tsc_khz * 1000LL;
	while (tps64 > nsecs*2) {
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
	while (tps32 <= (uint32_t)nsecs) {
		tps32 <<= 1;
		shift++;
	}

	hv_clock->tsc_shift = shift;
	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);

	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
		 hv_clock->tsc_to_system_mul);
}

799 800 801 802 803 804 805 806 807 808
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

809 810 811 812 813
	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
		vcpu->hv_clock_tsc_khz = tsc_khz;
	}

814 815 816 817 818 819 820 821 822 823 824 825 826 827
	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
828
	 * state, we just increase by 2 at the end.
829
	 */
830
	vcpu->hv_clock.version += 2;
831 832 833 834

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
835
	       sizeof(vcpu->hv_clock));
836 837 838 839 840 841

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

A
Avi Kivity 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	vcpu->arch.mtrr[msr - 0x200] = data;
	return 0;
}
874 875 876 877 878 879 880 881 882

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
883
		       __func__, data);
884 885 886
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
887
			__func__, data);
888
		break;
889 890
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
891
			__func__, data);
892
		break;
893 894 895 896 897 898 899 900 901 902 903 904
	case MSR_IA32_DEBUGCTLMSR:
		if (!data) {
			/* We support the non-activated case already */
			break;
		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
			/* Values other than LBR and BTF are vendor-specific,
			   thus reserved and should throw a #GP */
			return 1;
		}
		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
			__func__, data);
		break;
905 906 907
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
		break;
A
Avi Kivity 已提交
908 909
	case 0x200 ... 0x2ff:
		return set_msr_mtrr(vcpu, msr, data);
910 911 912 913
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
914
		vcpu->arch.ia32_misc_enable_msr = data;
915
		break;
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		down_read(&current->mm->mmap_sem);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
948
	default:
949
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

A
Avi Kivity 已提交
967 968 969 970 971 972 973 974 975
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	*pdata = vcpu->arch.mtrr[msr - 0x200];
	return 0;
}

976 977 978 979 980 981 982 983 984 985 986 987 988
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
989
	case MSR_IA32_MCG_CTL:
990 991 992 993 994
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
J
Joerg Roedel 已提交
995
	case MSR_IA32_MC0_MISC+20:
996 997
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
998 999 1000 1001 1002
	case MSR_IA32_DEBUGCTLMSR:
	case MSR_IA32_LASTBRANCHFROMIP:
	case MSR_IA32_LASTBRANCHTOIP:
	case MSR_IA32_LASTINTFROMIP:
	case MSR_IA32_LASTINTTOIP:
1003 1004
		data = 0;
		break;
A
Avi Kivity 已提交
1005 1006 1007 1008 1009
	case MSR_MTRRcap:
		data = 0x500 | KVM_NR_VAR_MTRR;
		break;
	case 0x200 ... 0x2ff:
		return get_msr_mtrr(vcpu, msr, pdata);
1010 1011 1012 1013 1014 1015 1016
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
1017
		data = vcpu->arch.ia32_misc_enable_msr;
1018
		break;
1019 1020 1021 1022 1023 1024
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
1025
	case MSR_EFER:
1026
		data = vcpu->arch.shadow_efer;
1027
		break;
1028 1029 1030 1031 1032 1033
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
1034 1035 1036 1037 1038 1039 1040 1041 1042
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

1057
	down_read(&vcpu->kvm->slots_lock);
1058 1059 1060
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
1061
	up_read(&vcpu->kvm->slots_lock);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
1127
	case KVM_CAP_EXT_CPUID:
1128
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
1129
	case KVM_CAP_PIT:
1130
	case KVM_CAP_NOP_IO_DELAY:
1131
	case KVM_CAP_MP_STATE:
1132
	case KVM_CAP_SYNC_MMU:
1133 1134
		r = 1;
		break;
1135 1136 1137
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
1138 1139 1140
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
1141 1142 1143
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
1144 1145 1146
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
1147 1148 1149
	case KVM_CAP_PV_MMU:
		r = !tdp_enabled;
		break;
1150 1151 1152 1153 1154 1155 1156 1157
	default:
		r = 0;
		break;
	}
	return r;

}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1210 1211 1212 1213 1214 1215 1216
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1217 1218 1219
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
1220
	kvm_write_guest_time(vcpu);
1221 1222 1223 1224 1225
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
1226
	kvm_put_guest_fpu(vcpu);
1227 1228
}

1229
static int is_efer_nx(void)
1230 1231 1232 1233
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
1234 1235 1236 1237 1238 1239 1240 1241
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

1242
	entry = NULL;
1243 1244
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
1245 1246 1247 1248 1249
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
1250
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1251 1252 1253 1254 1255
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

1256
/* when an old userspace process fills a new kernel module */
1257 1258 1259
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
1300 1301 1302 1303 1304 1305 1306
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
1307
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1308
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1309
		goto out;
1310
	vcpu->arch.cpuid_nent = cpuid->nent;
1311 1312 1313 1314 1315 1316
	return 0;

out:
	return r;
}

1317 1318 1319 1320 1321 1322 1323
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1324
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1325 1326
		goto out;
	r = -EFAULT;
1327 1328
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1329 1330 1331 1332
		goto out;
	return 0;

out:
1333
	cpuid->nent = vcpu->arch.cpuid_nent;
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1416
		int i, cache_type;
1417 1418 1419

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1420 1421
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1422 1423
			if (!cache_type)
				break;
1424 1425
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1426 1427 1428 1429 1430 1431
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1432
		int i, level_type;
1433 1434 1435

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1436 1437
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1438 1439
			if (!level_type)
				break;
1440 1441
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1458
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1499 1500 1501 1502
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1503
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1504 1505 1506 1507 1508 1509 1510 1511 1512
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1513
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1514 1515 1516 1517 1518 1519
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1520 1521 1522 1523 1524 1525 1526 1527 1528
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1529 1530
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1531 1532 1533 1534 1535 1536

	vcpu_put(vcpu);

	return 0;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1546 1547 1548 1549 1550 1551
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;
1552
	struct kvm_lapic_state *lapic = NULL;
1553 1554 1555

	switch (ioctl) {
	case KVM_GET_LAPIC: {
1556
		lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1557

1558 1559 1560 1561
		r = -ENOMEM;
		if (!lapic)
			goto out;
		r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1562 1563 1564
		if (r)
			goto out;
		r = -EFAULT;
1565
		if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1566 1567 1568 1569 1570
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
1571 1572 1573 1574
		lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
		r = -ENOMEM;
		if (!lapic)
			goto out;
1575
		r = -EFAULT;
1576
		if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1577
			goto out;
1578
		r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1579 1580 1581 1582 1583
		if (r)
			goto out;
		r = 0;
		break;
	}
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1638 1639 1640 1641 1642 1643
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1672 1673 1674 1675
	default:
		r = -EINVAL;
	}
out:
1676 1677
	if (lapic)
		kfree(lapic);
1678 1679 1680
	return r;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1697
	down_write(&kvm->slots_lock);
1698 1699

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1700
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1701

1702
	up_write(&kvm->slots_lock);
1703 1704 1705 1706 1707
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1708
	return kvm->arch.n_alloc_mmu_pages;
1709 1710
}

1711 1712 1713 1714 1715
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1716 1717
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1718 1719 1720 1721 1722 1723 1724
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1751
	down_write(&kvm->slots_lock);
1752
	spin_lock(&kvm->mmu_lock);
1753

1754
	p = &kvm->arch.aliases[alias->slot];
1755 1756 1757 1758 1759
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1760
		if (kvm->arch.aliases[n - 1].npages)
1761
			break;
1762
	kvm->arch.naliases = n;
1763

1764
	spin_unlock(&kvm->mmu_lock);
1765 1766
	kvm_mmu_zap_all(kvm);

1767
	up_write(&kvm->slots_lock);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1860
	down_write(&kvm->slots_lock);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1876
	up_write(&kvm->slots_lock);
1877 1878 1879
	return r;
}

1880 1881 1882 1883 1884 1885
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;
1886 1887 1888 1889 1890 1891 1892 1893 1894
	/*
	 * This union makes it completely explicit to gcc-3.x
	 * that these two variables' stack usage should be
	 * combined, not added together.
	 */
	union {
		struct kvm_pit_state ps;
		struct kvm_memory_alias alias;
	} u;
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
1926
	case KVM_SET_MEMORY_ALIAS:
1927
		r = -EFAULT;
1928
		if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1929
			goto out;
1930
		r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1931 1932 1933 1934 1935
		if (r)
			goto out;
		break;
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1936 1937
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1938 1939
			r = kvm_ioapic_init(kvm);
			if (r) {
1940 1941
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1942 1943 1944 1945 1946
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1947 1948 1949 1950 1951 1952
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1953 1954 1955 1956 1957 1958 1959 1960
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
1961
			kvm_set_irq(kvm, irq_event.irq, irq_event.level);
1962 1963 1964 1965 1966 1967 1968
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1969
		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1970

1971 1972
		r = -ENOMEM;
		if (!chip)
1973
			goto out;
1974 1975 1976
		r = -EFAULT;
		if (copy_from_user(chip, argp, sizeof *chip))
			goto get_irqchip_out;
1977 1978
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
1979 1980
			goto get_irqchip_out;
		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1981
		if (r)
1982
			goto get_irqchip_out;
1983
		r = -EFAULT;
1984 1985
		if (copy_to_user(argp, chip, sizeof *chip))
			goto get_irqchip_out;
1986
		r = 0;
1987 1988 1989 1990
	get_irqchip_out:
		kfree(chip);
		if (r)
			goto out;
1991 1992 1993 1994
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1995
		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1996

1997 1998
		r = -ENOMEM;
		if (!chip)
1999
			goto out;
2000 2001 2002
		r = -EFAULT;
		if (copy_from_user(chip, argp, sizeof *chip))
			goto set_irqchip_out;
2003 2004
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
2005 2006
			goto set_irqchip_out;
		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
2007
		if (r)
2008
			goto set_irqchip_out;
2009
		r = 0;
2010 2011 2012 2013
	set_irqchip_out:
		kfree(chip);
		if (r)
			goto out;
2014 2015
		break;
	}
B
Ben-Ami Yassour 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
	case KVM_ASSIGN_PCI_DEVICE: {
		struct kvm_assigned_pci_dev assigned_dev;

		r = -EFAULT;
		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
			goto out;
		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
		if (r)
			goto out;
		break;
	}
	case KVM_ASSIGN_IRQ: {
		struct kvm_assigned_irq assigned_irq;

		r = -EFAULT;
		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
			goto out;
		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
		if (r)
			goto out;
		break;
	}
2038 2039
	case KVM_GET_PIT: {
		r = -EFAULT;
2040
		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
2041 2042 2043 2044
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
2045
		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
2046 2047 2048
		if (r)
			goto out;
		r = -EFAULT;
2049
		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
2050 2051 2052 2053 2054 2055
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		r = -EFAULT;
2056
		if (copy_from_user(&u.ps, argp, sizeof u.ps))
2057 2058 2059 2060
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
2061
		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2062 2063 2064 2065 2066
		if (r)
			goto out;
		r = 0;
		break;
	}
2067 2068 2069 2070 2071 2072 2073
	default:
		;
	}
out:
	return r;
}

2074
static void kvm_init_msr_list(void)
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

2089 2090 2091 2092
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2093 2094
						gpa_t addr, int len,
						int is_write)
2095 2096 2097
{
	struct kvm_io_device *dev;

2098 2099
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
2100
		if (dev->in_range(dev, addr, len, is_write))
2101 2102 2103 2104 2105 2106 2107
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2108 2109
						gpa_t addr, int len,
						int is_write)
2110 2111 2112
{
	struct kvm_io_device *dev;

2113
	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2114
	if (dev == NULL)
2115 2116
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
					  is_write);
2117 2118 2119 2120 2121 2122 2123 2124 2125
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
2126
	int r = X86EMUL_CONTINUE;
2127 2128

	while (bytes) {
2129
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2130 2131 2132 2133
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

2134 2135 2136 2137
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
2138
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
2139 2140 2141 2142
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
2143 2144 2145 2146 2147

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
2148 2149
out:
	return r;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

2167
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
2183
	mutex_lock(&vcpu->kvm->lock);
2184
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2185 2186
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2187
		mutex_unlock(&vcpu->kvm->lock);
2188 2189
		return X86EMUL_CONTINUE;
	}
2190
	mutex_unlock(&vcpu->kvm->lock);
2191 2192 2193 2194 2195 2196 2197 2198 2199

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

2200
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2201
			  const void *val, int bytes)
2202 2203 2204 2205
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2206
	if (ret < 0)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
		return 0;
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
2218 2219 2220
	gpa_t                 gpa;

	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2221 2222

	if (gpa == UNMAPPED_GVA) {
2223
		kvm_inject_page_fault(vcpu, addr, 2);
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
2238
	mutex_lock(&vcpu->kvm->lock);
2239
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2240 2241
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2242
		mutex_unlock(&vcpu->kvm->lock);
2243 2244
		return X86EMUL_CONTINUE;
	}
2245
	mutex_unlock(&vcpu->kvm->lock);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
2289 2290 2291
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
2292
		gpa_t gpa;
2293
		struct page *page;
A
Andrew Morton 已提交
2294
		char *kaddr;
2295 2296
		u64 val;

2297 2298
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

2299 2300 2301 2302 2303 2304 2305 2306
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
2307 2308

		down_read(&current->mm->mmap_sem);
2309
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2310 2311
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
2312 2313 2314
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
2315 2316
		kvm_release_page_dirty(page);
	}
2317
emul_write:
2318 2319
#endif

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
J
Joerg Roedel 已提交
2335
	KVMTRACE_0D(CLTS, vcpu, handler);
2336
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
2349
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	u8 opcodes[4];
2370
	unsigned long rip = kvm_rip_read(vcpu);
2371 2372
	unsigned long rip_linear;

2373
	if (!printk_ratelimit())
2374 2375
		return;

2376 2377
	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

2378 2379 2380 2381 2382 2383 2384
	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2385
static struct x86_emulate_ops emulate_ops = {
2386 2387 2388 2389 2390 2391
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

2392 2393 2394 2395 2396 2397 2398 2399
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
	kvm_register_read(vcpu, VCPU_REGS_RAX);
	kvm_register_read(vcpu, VCPU_REGS_RSP);
	kvm_register_read(vcpu, VCPU_REGS_RIP);
	vcpu->arch.regs_dirty = ~0;
}

2400 2401 2402 2403
int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2404
			int emulation_type)
2405 2406
{
	int r;
2407
	struct decode_cache *c;
2408

2409
	kvm_clear_exception_queue(vcpu);
2410
	vcpu->arch.mmio_fault_cr2 = cr2;
2411 2412 2413 2414 2415 2416 2417
	/*
	 * TODO: fix x86_emulate.c to use guest_read/write_register
	 * instead of direct ->regs accesses, can save hundred cycles
	 * on Intel for instructions that don't read/change RSP, for
	 * for example.
	 */
	cache_all_regs(vcpu);
2418 2419

	vcpu->mmio_is_write = 0;
2420
	vcpu->arch.pio.string = 0;
2421

2422
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2423 2424 2425
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2426 2427 2428 2429
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2430 2431 2432 2433
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2434
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2445
		++vcpu->stat.insn_emulation;
2446
		if (r)  {
2447
			++vcpu->stat.insn_emulation_fail;
2448 2449 2450 2451 2452 2453
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2454
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2455

2456
	if (vcpu->arch.pio.string)
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

2477
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2488 2489 2490 2491
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2492 2493 2494 2495
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2496 2497 2498 2499 2500
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2501
	void *p = vcpu->arch.pio_data;
2502 2503
	void *q;
	unsigned bytes;
2504
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2505

2506
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2507 2508 2509 2510 2511
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2512 2513 2514
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2515 2516 2517
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2518
	q -= vcpu->arch.pio.guest_page_offset;
2519 2520 2521 2522 2523 2524 2525
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2526
	struct kvm_pio_request *io = &vcpu->arch.pio;
2527 2528
	long delta;
	int r;
2529
	unsigned long val;
2530 2531

	if (!io->string) {
2532 2533 2534 2535 2536
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
			memcpy(&val, vcpu->arch.pio_data, io->size);
			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
		}
2537 2538 2539
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
2540
			if (r)
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
				return r;
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2551 2552 2553
			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
			val -= delta;
			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2554 2555 2556 2557
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
2558 2559 2560 2561 2562 2563 2564 2565 2566
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
		} else {
			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
		}
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	}

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2582 2583 2584
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2585 2586
				  pd);
	else
2587 2588
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2589 2590 2591 2592 2593 2594 2595
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2596 2597
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2611 2612
					       gpa_t addr, int len,
					       int is_write)
2613
{
2614
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2615 2616 2617 2618 2619 2620
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;
2621
	unsigned long val;
2622 2623 2624

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2625
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2626
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2627 2628 2629 2630 2631 2632 2633
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2634

F
Feng (Eric) Liu 已提交
2635 2636 2637 2638 2639 2640 2641
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2642 2643
	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
	memcpy(vcpu->arch.pio_data, &val, 4);
2644 2645 2646

	kvm_x86_ops->skip_emulated_instruction(vcpu);

2647
	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2648
	if (pio_dev) {
2649
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2669
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2670
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2671 2672 2673 2674 2675 2676 2677
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2678

F
Feng (Eric) Liu 已提交
2679 2680 2681 2682 2683 2684 2685
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2710
		kvm_inject_gp(vcpu, 0);
2711 2712 2713
		return 1;
	}
	vcpu->run->io.count = now;
2714
	vcpu->arch.pio.cur_count = now;
2715

2716
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2717 2718 2719 2720
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2721
		vcpu->arch.pio.guest_pages[i] = page;
2722
		if (!page) {
2723
			kvm_inject_gp(vcpu, 0);
2724 2725 2726 2727 2728
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

2729 2730 2731
	pio_dev = vcpu_find_pio_dev(vcpu, port,
				    vcpu->arch.pio.cur_count,
				    !vcpu->arch.pio.in);
2732
	if (!vcpu->arch.pio.in) {
2733 2734 2735 2736 2737
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2738
			if (vcpu->arch.pio.count == 0)
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2750
int kvm_arch_init(void *opaque)
2751
{
2752
	int r;
2753 2754 2755 2756
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2757 2758
		r = -EEXIST;
		goto out;
2759 2760 2761 2762
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2763 2764
		r = -EOPNOTSUPP;
		goto out;
2765 2766 2767
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2768 2769
		r = -EOPNOTSUPP;
		goto out;
2770 2771
	}

2772 2773 2774 2775 2776 2777
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2778
	kvm_x86_ops = ops;
2779
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
S
Sheng Yang 已提交
2780 2781 2782
	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2783
	return 0;
2784 2785 2786

out:
	return r;
2787
}
2788

2789 2790 2791
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2792 2793
	kvm_mmu_module_exit();
}
2794

2795 2796 2797
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
F
Feng (Eric) Liu 已提交
2798
	KVMTRACE_0D(HLT, vcpu, handler);
2799
	if (irqchip_in_kernel(vcpu->kvm)) {
2800
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2801 2802 2803 2804 2805 2806 2807 2808
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

2809 2810 2811 2812 2813 2814 2815 2816 2817
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
			   unsigned long a1)
{
	if (is_long_mode(vcpu))
		return a0;
	else
		return a0 | ((gpa_t)a1 << 32);
}

2818 2819 2820
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
2821
	int r = 1;
2822

2823 2824 2825 2826 2827
	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2828

F
Feng (Eric) Liu 已提交
2829 2830
	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);

2831 2832 2833 2834 2835 2836 2837 2838 2839
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2840 2841 2842
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2843 2844 2845
	case KVM_HC_MMU_OP:
		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
		break;
2846 2847 2848 2849
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2850
	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
A
Amit Shah 已提交
2851
	++vcpu->stat.hypercalls;
2852
	return r;
2853 2854 2855 2856 2857 2858 2859
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;
2860
	unsigned long rip = kvm_rip_read(vcpu);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2871
	if (emulator_write_emulated(rip, instruction, 3, vcpu)
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2900
	kvm_lmsw(vcpu, msw);
2901 2902 2903 2904 2905
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
J
Joerg Roedel 已提交
2906 2907
	unsigned long value;

2908 2909 2910
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
J
Joerg Roedel 已提交
2911 2912
		value = vcpu->arch.cr0;
		break;
2913
	case 2:
J
Joerg Roedel 已提交
2914 2915
		value = vcpu->arch.cr2;
		break;
2916
	case 3:
J
Joerg Roedel 已提交
2917 2918
		value = vcpu->arch.cr3;
		break;
2919
	case 4:
J
Joerg Roedel 已提交
2920 2921
		value = vcpu->arch.cr4;
		break;
2922
	case 8:
J
Joerg Roedel 已提交
2923 2924
		value = kvm_get_cr8(vcpu);
		break;
2925
	default:
2926
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2927 2928
		return 0;
	}
J
Joerg Roedel 已提交
2929 2930 2931 2932
	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
		    (u32)((u64)value >> 32), handler);

	return value;
2933 2934 2935 2936 2937
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
J
Joerg Roedel 已提交
2938 2939 2940
	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
		    (u32)((u64)val >> 32), handler);

2941 2942
	switch (cr) {
	case 0:
2943
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2944 2945 2946
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2947
		vcpu->arch.cr2 = val;
2948 2949
		break;
	case 3:
2950
		kvm_set_cr3(vcpu, val);
2951 2952
		break;
	case 4:
2953
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2954
		break;
2955
	case 8:
2956
		kvm_set_cr8(vcpu, val & 0xfUL);
2957
		break;
2958
	default:
2959
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2960 2961 2962
	}
}

2963 2964
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2965 2966
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2967 2968 2969 2970

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2971
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2995 2996 2997
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2998 2999
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
3000

3001 3002 3003 3004 3005 3006
	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3007
	best = NULL;
3008 3009
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
3010 3011 3012
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
3024 3025 3026 3027
		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3028 3029
	}
	kvm_x86_ops->skip_emulated_instruction(vcpu);
F
Feng (Eric) Liu 已提交
3030
	KVMTRACE_5D(CPUID, vcpu, function,
3031 3032 3033 3034
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3035 3036
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
3047
	return (!vcpu->arch.irq_summary &&
3048
		kvm_run->request_interrupt_window &&
3049
		vcpu->arch.interrupt_window_open &&
3050 3051 3052 3053 3054 3055 3056
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3057
	kvm_run->cr8 = kvm_get_cr8(vcpu);
3058 3059 3060 3061 3062
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
3063 3064
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
3065 3066
}

A
Avi Kivity 已提交
3067 3068 3069 3070 3071 3072 3073 3074
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

3075
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
3076
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3077
	up_read(&current->mm->mmap_sem);
3078 3079

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

3089
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3090 3091
	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3092
	up_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3093 3094
}

3095
static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3096 3097 3098
{
	int r;

3099 3100 3101 3102
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

3103 3104 3105 3106
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

3107 3108
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
M
Marcelo Tosatti 已提交
3109
			__kvm_migrate_timers(vcpu);
3110 3111
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);
A
Avi Kivity 已提交
3112 3113 3114 3115 3116 3117
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
3118 3119 3120 3121 3122
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
3123
	}
A
Avi Kivity 已提交
3124

3125
	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3126 3127 3128 3129 3130 3131 3132 3133 3134
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

3135
	if (vcpu->requests || need_resched() || signal_pending(current)) {
3136 3137 3138 3139 3140 3141
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

3142 3143 3144
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

3145 3146 3147 3148 3149 3150 3151
	vcpu->guest_mode = 1;
	/*
	 * Make sure that guest_mode assignment won't happen after
	 * testing the pending IRQ vector bitmap.
	 */
	smp_wmb();

3152
	if (vcpu->arch.exception.pending)
3153 3154
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
3155
		kvm_x86_ops->inject_pending_irq(vcpu);
3156
	else
3157 3158
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
3159 3160
	kvm_lapic_sync_to_vapic(vcpu);

3161 3162
	up_read(&vcpu->kvm->slots_lock);

3163 3164 3165
	kvm_guest_enter();


F
Feng (Eric) Liu 已提交
3166
	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

3186 3187
	down_read(&vcpu->kvm->slots_lock);

3188 3189 3190 3191
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
3192 3193
		unsigned long rip = kvm_rip_read(vcpu);
		profile_hit(KVM_PROFILING, (void *)rip);
3194 3195
	}

3196 3197
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
3198

A
Avi Kivity 已提交
3199 3200
	kvm_lapic_sync_from_vapic(vcpu);

3201
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3202 3203 3204
out:
	return r;
}
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
		printk("vcpu %d received sipi with vector # %x\n",
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3218 3219
	}

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	down_read(&vcpu->kvm->slots_lock);
	vapic_enter(vcpu);

	r = 1;
	while (r > 0) {
		if (kvm_arch_vcpu_runnable(vcpu))
			r = vcpu_enter_guest(vcpu, kvm_run);
		else {
			up_read(&vcpu->kvm->slots_lock);
			kvm_vcpu_block(vcpu);
			down_read(&vcpu->kvm->slots_lock);
			if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
				if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
					vcpu->arch.mp_state =
							KVM_MP_STATE_RUNNABLE;
			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
				r = -EINTR;
		}

		if (r > 0) {
			if (dm_request_for_irq_injection(vcpu, kvm_run)) {
				r = -EINTR;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				++vcpu->stat.request_irq_exits;
			}
			if (signal_pending(current)) {
				r = -EINTR;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				++vcpu->stat.signal_exits;
			}
			if (need_resched()) {
				up_read(&vcpu->kvm->slots_lock);
				kvm_resched(vcpu);
				down_read(&vcpu->kvm->slots_lock);
			}
		}
3256 3257
	}

3258
	up_read(&vcpu->kvm->slots_lock);
3259 3260
	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
3261 3262
	vapic_exit(vcpu);

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

3273 3274 3275
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

3276
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3277
		kvm_vcpu_block(vcpu);
3278
		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3279 3280
		r = -EAGAIN;
		goto out;
3281 3282 3283 3284
	}

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
3285
		kvm_set_cr8(vcpu, kvm_run->cr8);
3286

3287
	if (vcpu->arch.pio.cur_count) {
3288 3289 3290 3291 3292 3293 3294 3295 3296
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
3297 3298

		down_read(&vcpu->kvm->slots_lock);
3299
		r = emulate_instruction(vcpu, kvm_run,
3300 3301
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
3302
		up_read(&vcpu->kvm->slots_lock);
3303 3304 3305 3306 3307 3308 3309 3310 3311
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
3312 3313 3314
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
		kvm_register_write(vcpu, VCPU_REGS_RAX,
				     kvm_run->hypercall.ret);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3330 3331 3332 3333 3334 3335 3336 3337
	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3338
#ifdef CONFIG_X86_64
3339 3340 3341 3342 3343 3344 3345 3346
	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3347 3348
#endif

3349
	regs->rip = kvm_rip_read(vcpu);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3367 3368 3369 3370 3371 3372 3373 3374
	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3375
#ifdef CONFIG_X86_64
3376 3377 3378 3379 3380 3381 3382 3383 3384
	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);

3385 3386
#endif

3387
	kvm_rip_write(vcpu, regs->rip);
3388 3389 3390
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);


3391 3392
	vcpu->arch.exception.pending = false;

3393 3394 3395 3396 3397
	vcpu_put(vcpu);

	return 0;
}

3398 3399
void kvm_get_segment(struct kvm_vcpu *vcpu,
		     struct kvm_segment *var, int seg)
3400
{
3401
	kvm_x86_ops->get_segment(vcpu, var, seg);
3402 3403 3404 3405 3406 3407
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

3408
	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

3422 3423 3424 3425 3426 3427
	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3428

3429 3430
	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3431 3432 3433 3434 3435 3436 3437 3438 3439

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3440 3441 3442 3443
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3444
	sregs->cr8 = kvm_get_cr8(vcpu);
3445
	sregs->efer = vcpu->arch.shadow_efer;
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3456
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3457 3458 3459 3460 3461 3462 3463
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	vcpu_put(vcpu);
	return 0;
}

3482
static void kvm_set_segment(struct kvm_vcpu *vcpu,
3483 3484
			struct kvm_segment *var, int seg)
{
3485
	kvm_x86_ops->set_segment(vcpu, var, seg);
3486 3487
}

3488 3489 3490 3491 3492 3493 3494 3495
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
				   struct kvm_segment *kvm_desct)
{
	kvm_desct->base = seg_desc->base0;
	kvm_desct->base |= seg_desc->base1 << 16;
	kvm_desct->base |= seg_desc->base2 << 24;
	kvm_desct->limit = seg_desc->limit0;
	kvm_desct->limit |= seg_desc->limit << 16;
3496 3497 3498 3499
	if (seg_desc->g) {
		kvm_desct->limit <<= 12;
		kvm_desct->limit |= 0xfff;
	}
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	kvm_desct->selector = selector;
	kvm_desct->type = seg_desc->type;
	kvm_desct->present = seg_desc->p;
	kvm_desct->dpl = seg_desc->dpl;
	kvm_desct->db = seg_desc->d;
	kvm_desct->s = seg_desc->s;
	kvm_desct->l = seg_desc->l;
	kvm_desct->g = seg_desc->g;
	kvm_desct->avl = seg_desc->avl;
	if (!selector)
		kvm_desct->unusable = 1;
	else
		kvm_desct->unusable = 0;
	kvm_desct->padding = 0;
}

static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
					   u16 selector,
					   struct descriptor_table *dtable)
{
	if (selector & 1 << 2) {
		struct kvm_segment kvm_seg;

3523
		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538

		if (kvm_seg.unusable)
			dtable->limit = 0;
		else
			dtable->limit = kvm_seg.limit;
		dtable->base = kvm_seg.base;
	}
	else
		kvm_x86_ops->get_gdt(vcpu, dtable);
}

/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3539
	gpa_t gpa;
3540 3541 3542 3543 3544 3545 3546 3547 3548
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7) {
		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
		return 1;
	}
3549 3550 3551
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3552 3553 3554 3555 3556 3557
}

/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3558
	gpa_t gpa;
3559 3560 3561 3562 3563 3564 3565
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7)
		return 1;
3566 3567 3568
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
}

static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
			     struct desc_struct *seg_desc)
{
	u32 base_addr;

	base_addr = seg_desc->base0;
	base_addr |= (seg_desc->base1 << 16);
	base_addr |= (seg_desc->base2 << 24);

3580
	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3581 3582 3583 3584 3585 3586
}

static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment kvm_seg;

3587
	kvm_get_segment(vcpu, &kvm_seg, seg);
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	return kvm_seg.selector;
}

static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
						u16 selector,
						struct kvm_segment *kvm_seg)
{
	struct desc_struct seg_desc;

	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
		return 1;
	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
	return 0;
}

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
{
	struct kvm_segment segvar = {
		.base = selector << 4,
		.limit = 0xffff,
		.selector = selector,
		.type = 3,
		.present = 1,
		.dpl = 3,
		.db = 0,
		.s = 1,
		.l = 0,
		.g = 0,
		.avl = 0,
		.unusable = 0,
	};
	kvm_x86_ops->set_segment(vcpu, &segvar, seg);
	return 0;
}

3623 3624
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
				int type_bits, int seg)
3625 3626 3627
{
	struct kvm_segment kvm_seg;

3628 3629
	if (!(vcpu->arch.cr0 & X86_CR0_PE))
		return kvm_load_realmode_segment(vcpu, selector, seg);
3630 3631 3632 3633 3634 3635 3636 3637 3638
	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
		return 1;
	kvm_seg.type |= type_bits;

	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
	    seg != VCPU_SREG_LDTR)
		if (!kvm_seg.s)
			kvm_seg.unusable = 1;

3639
	kvm_set_segment(vcpu, &kvm_seg, seg);
3640 3641 3642 3643 3644 3645 3646
	return 0;
}

static void save_state_to_tss32(struct kvm_vcpu *vcpu,
				struct tss_segment_32 *tss)
{
	tss->cr3 = vcpu->arch.cr3;
3647
	tss->eip = kvm_rip_read(vcpu);
3648
	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3649 3650 3651 3652 3653 3654 3655 3656
	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss32(struct kvm_vcpu *vcpu,
				  struct tss_segment_32 *tss)
{
	kvm_set_cr3(vcpu, tss->cr3);

3672
	kvm_rip_write(vcpu, tss->eip);
3673 3674
	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);

3675 3676 3677 3678 3679 3680 3681 3682
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3683

3684
	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3685 3686
		return 1;

3687
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3688 3689
		return 1;

3690
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3691 3692
		return 1;

3693
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3694 3695
		return 1;

3696
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3697 3698
		return 1;

3699
	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3700 3701
		return 1;

3702
	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3703 3704 3705 3706 3707 3708 3709
		return 1;
	return 0;
}

static void save_state_to_tss16(struct kvm_vcpu *vcpu,
				struct tss_segment_16 *tss)
{
3710
	tss->ip = kvm_rip_read(vcpu);
3711
	tss->flag = kvm_x86_ops->get_rflags(vcpu);
3712 3713 3714 3715 3716 3717 3718 3719
	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss16(struct kvm_vcpu *vcpu,
				 struct tss_segment_16 *tss)
{
3732
	kvm_rip_write(vcpu, tss->ip);
3733
	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3734 3735 3736 3737 3738 3739 3740 3741
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3742

3743
	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3744 3745
		return 1;

3746
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3747 3748
		return 1;

3749
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3750 3751
		return 1;

3752
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3753 3754
		return 1;

3755
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3756 3757 3758 3759
		return 1;
	return 0;
}

3760
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3761
		       u32 old_tss_base,
3762 3763 3764 3765 3766
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_16 tss_segment_16;
	int ret = 0;

3767 3768
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			   sizeof tss_segment_16))
3769 3770 3771 3772
		goto out;

	save_state_to_tss16(vcpu, &tss_segment_16);

3773 3774
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			    sizeof tss_segment_16))
3775
		goto out;
3776 3777 3778 3779 3780

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_16, sizeof tss_segment_16))
		goto out;

3781 3782 3783 3784 3785 3786 3787 3788
	if (load_state_from_tss16(vcpu, &tss_segment_16))
		goto out;

	ret = 1;
out:
	return ret;
}

3789
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3790
		       u32 old_tss_base,
3791 3792 3793 3794 3795
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_32 tss_segment_32;
	int ret = 0;

3796 3797
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			   sizeof tss_segment_32))
3798 3799 3800 3801
		goto out;

	save_state_to_tss32(vcpu, &tss_segment_32);

3802 3803 3804 3805 3806 3807
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			    sizeof tss_segment_32))
		goto out;

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_32, sizeof tss_segment_32))
3808
		goto out;
3809

3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
	if (load_state_from_tss32(vcpu, &tss_segment_32))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
	struct kvm_segment tr_seg;
	struct desc_struct cseg_desc;
	struct desc_struct nseg_desc;
	int ret = 0;
3824 3825
	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3826

3827
	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3828

3829 3830 3831
	/* FIXME: Handle errors. Failure to read either TSS or their
	 * descriptors should generate a pagefault.
	 */
3832 3833 3834
	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
		goto out;

3835
	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
		goto out;

	if (reason != TASK_SWITCH_IRET) {
		int cpl;

		cpl = kvm_x86_ops->get_cpl(vcpu);
		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
	}

	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
		return 1;
	}

	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3854
		cseg_desc.type &= ~(1 << 1); //clear the B flag
3855
		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	}

	if (reason == TASK_SWITCH_IRET) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
	}

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	if (nseg_desc.type & 8)
3866
		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3867 3868
					 &nseg_desc);
	else
3869
		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3870 3871 3872 3873 3874 3875 3876 3877
					 &nseg_desc);

	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
	}

	if (reason != TASK_SWITCH_IRET) {
3878
		nseg_desc.type |= (1 << 1);
3879 3880 3881 3882 3883 3884 3885
		save_guest_segment_descriptor(vcpu, tss_selector,
					      &nseg_desc);
	}

	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
	tr_seg.type = 11;
3886
	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3887 3888 3889 3890 3891
out:
	return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3908 3909 3910
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3911

3912
	kvm_set_cr8(vcpu, sregs->cr8);
3913

3914
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3915 3916 3917 3918 3919
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3920
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3921
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3922
	vcpu->arch.cr0 = sregs->cr0;
3923

3924
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3925 3926
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3927
		load_pdptrs(vcpu, vcpu->arch.cr3);
3928 3929 3930 3931 3932

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3933 3934 3935 3936 3937 3938
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

3952 3953 3954 3955 3956 3957
	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3958

3959 3960
	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3961

M
Marcelo Tosatti 已提交
3962 3963 3964 3965 3966 3967
	/* Older userspace won't unhalt the vcpu on reset. */
	if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
	    !(vcpu->arch.cr0 & X86_CR0_PE))
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
4018
	down_read(&vcpu->kvm->slots_lock);
4019
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4020
	up_read(&vcpu->kvm->slots_lock);
4021 4022 4023 4024 4025 4026 4027 4028 4029
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

4030 4031
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
4032
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
4052
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

4074 4075 4076 4077 4078 4079 4080
	/*
	 * Touch the fpu the first time in non atomic context as if
	 * this is the first fpu instruction the exception handler
	 * will fire before the instruction returns and it'll have to
	 * allocate ram with GFP_KERNEL.
	 */
	if (!used_math())
4081
		kvm_fx_save(&vcpu->arch.host_fx_image);
4082

4083 4084
	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
4085 4086 4087 4088
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_finit();
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
4089 4090
	preempt_enable();

4091
	vcpu->arch.cr0 |= X86_CR0_ET;
4092
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4093 4094
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
4105 4106
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_restore(&vcpu->arch.guest_fx_image);
4107 4108 4109 4110 4111 4112 4113 4114 4115
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
4116 4117
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
4118
	++vcpu->stat.fpu_reload;
4119 4120
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4121 4122 4123 4124 4125 4126 4127 4128 4129

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
4130 4131
	return kvm_x86_ops->vcpu_create(kvm, id);
}
4132

4133 4134 4135
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
4136 4137

	/* We do fxsave: this must be aligned. */
4138
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4139 4140 4141 4142 4143 4144 4145 4146 4147

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

4148
	return 0;
4149 4150
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
4151
	return r;
4152 4153
}

4154
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

4202
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4203
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4204
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4205
	else
4206
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4207 4208 4209 4210 4211 4212

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
4213
	vcpu->arch.pio_data = page_address(page);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
4230
	free_page((unsigned long)vcpu->arch.pio_data);
4231 4232 4233 4234 4235 4236 4237
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
4238
	down_read(&vcpu->kvm->slots_lock);
4239
	kvm_mmu_destroy(vcpu);
4240
	up_read(&vcpu->kvm->slots_lock);
4241
	free_page((unsigned long)vcpu->arch.pio_data);
4242
}
4243 4244 4245 4246 4247 4248 4249 4250

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

4251
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
B
Ben-Ami Yassour 已提交
4252
	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
B
Ben-Ami Yassour 已提交
4285
	kvm_free_assigned_devices(kvm);
S
Sheng Yang 已提交
4286
	kvm_free_pit(kvm);
4287 4288
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
4289 4290
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
4291 4292
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
4293 4294
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
4295 4296
	kfree(kvm);
}
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
4311 4312
			unsigned long userspace_addr;

4313
			down_write(&current->mm->mmap_sem);
4314 4315 4316
			userspace_addr = do_mmap(NULL, 0,
						 npages * PAGE_SIZE,
						 PROT_READ | PROT_WRITE,
4317
						 MAP_PRIVATE | MAP_ANONYMOUS,
4318
						 0);
4319
			up_write(&current->mm->mmap_sem);
4320

4321 4322 4323 4324 4325 4326 4327
			if (IS_ERR((void *)userspace_addr))
				return PTR_ERR((void *)userspace_addr);

			/* set userspace_addr atomically for kvm_hva_to_rmapp */
			spin_lock(&kvm->mmu_lock);
			memslot->userspace_addr = userspace_addr;
			spin_unlock(&kvm->mmu_lock);
4328 4329 4330 4331
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

4332
				down_write(&current->mm->mmap_sem);
4333 4334
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
4335
				up_write(&current->mm->mmap_sem);
4336 4337 4338 4339 4340 4341 4342 4343
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

4344
	if (!kvm->arch.n_requested_mmu_pages) {
4345 4346 4347 4348 4349 4350 4351 4352 4353
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
4354

4355 4356 4357 4358 4359
void kvm_arch_flush_shadow(struct kvm *kvm)
{
	kvm_mmu_zap_all(kvm);
}

4360 4361
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
4362 4363
	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4364
}
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;
4377
	int cpu = get_cpu();
4378 4379 4380 4381 4382

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
4383 4384 4385 4386 4387
	/*
	 * We may be called synchronously with irqs disabled in guest mode,
	 * So need not to call smp_call_function_single() in that case.
	 */
	if (vcpu->guest_mode && vcpu->cpu != cpu)
4388
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4389
	put_cpu();
4390
}