x86.c 103.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
B
Ben-Ami Yassour 已提交
7 8
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
9 10 11 12
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
B
Ben-Ami Yassour 已提交
13 14
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
15 16 17 18 19 20
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

21
#include <linux/kvm_host.h>
22
#include "irq.h"
23
#include "mmu.h"
S
Sheng Yang 已提交
24
#include "i8254.h"
25
#include "tss.h"
26
#include "kvm_cache_regs.h"
27
#include "x86.h"
28

29
#include <linux/clocksource.h>
B
Ben-Ami Yassour 已提交
30
#include <linux/interrupt.h>
31 32
#include <linux/kvm.h>
#include <linux/fs.h>
B
Ben-Ami Yassour 已提交
33
#include <linux/pci.h>
34
#include <linux/vmalloc.h>
35
#include <linux/module.h>
36
#include <linux/mman.h>
37
#include <linux/highmem.h>
38 39

#include <asm/uaccess.h>
40
#include <asm/msr.h>
41
#include <asm/desc.h>
42

43
#define MAX_IO_MSRS 256
44 45 46 47 48 49 50 51 52 53 54
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
55 56 57 58 59 60 61 62 63
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
64

65 66
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
67

68 69 70
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

71
struct kvm_x86_ops *kvm_x86_ops;
72
EXPORT_SYMBOL_GPL(kvm_x86_ops);
73

74
struct kvm_stats_debugfs_item debugfs_entries[] = {
75 76 77 78 79 80 81 82 83
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
84
	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
85 86
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
87
	{ "hypercalls", VCPU_STAT(hypercalls) },
88 89 90 91 92 93 94
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
95 96 97 98 99 100
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
101
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
102
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
103
	{ "largepages", VM_STAT(lpages) },
104 105 106
	{ NULL }
};

B
Ben-Ami Yassour 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
						      int assigned_dev_id)
{
	struct list_head *ptr;
	struct kvm_assigned_dev_kernel *match;

	list_for_each(ptr, head) {
		match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
		if (match->assigned_dev_id == assigned_dev_id)
			return match;
	}
	return NULL;
}

static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
{
	struct kvm_assigned_dev_kernel *assigned_dev;

	assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
				    interrupt_work);

	/* This is taken to safely inject irq inside the guest. When
	 * the interrupt injection (or the ioapic code) uses a
	 * finer-grained lock, update this
	 */
	mutex_lock(&assigned_dev->kvm->lock);
	kvm_set_irq(assigned_dev->kvm,
		    assigned_dev->guest_irq, 1);
	mutex_unlock(&assigned_dev->kvm->lock);
	kvm_put_kvm(assigned_dev->kvm);
}

/* FIXME: Implement the OR logic needed to make shared interrupts on
 * this line behave properly
 */
static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
{
	struct kvm_assigned_dev_kernel *assigned_dev =
		(struct kvm_assigned_dev_kernel *) dev_id;

	kvm_get_kvm(assigned_dev->kvm);
	schedule_work(&assigned_dev->interrupt_work);
	disable_irq_nosync(irq);
	return IRQ_HANDLED;
}

/* Ack the irq line for an assigned device */
static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
{
	struct kvm_assigned_dev_kernel *dev;

	if (kian->gsi == -1)
		return;

	dev = container_of(kian, struct kvm_assigned_dev_kernel,
			   ack_notifier);
	kvm_set_irq(dev->kvm, dev->guest_irq, 0);
	enable_irq(dev->host_irq);
}

static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
				   struct kvm_assigned_irq
				   *assigned_irq)
{
	int r = 0;
	struct kvm_assigned_dev_kernel *match;

	mutex_lock(&kvm->lock);

	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
				      assigned_irq->assigned_dev_id);
	if (!match) {
		mutex_unlock(&kvm->lock);
		return -EINVAL;
	}

	if (match->irq_requested) {
		match->guest_irq = assigned_irq->guest_irq;
		match->ack_notifier.gsi = assigned_irq->guest_irq;
		mutex_unlock(&kvm->lock);
		return 0;
	}

	INIT_WORK(&match->interrupt_work,
		  kvm_assigned_dev_interrupt_work_handler);

	if (irqchip_in_kernel(kvm)) {
		if (assigned_irq->host_irq)
			match->host_irq = assigned_irq->host_irq;
		else
			match->host_irq = match->dev->irq;
		match->guest_irq = assigned_irq->guest_irq;
		match->ack_notifier.gsi = assigned_irq->guest_irq;
		match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
		kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);

		/* Even though this is PCI, we don't want to use shared
		 * interrupts. Sharing host devices with guest-assigned devices
		 * on the same interrupt line is not a happy situation: there
		 * are going to be long delays in accepting, acking, etc.
		 */
		if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
				"kvm_assigned_device", (void *)match)) {
			printk(KERN_INFO "%s: couldn't allocate irq for pv "
			       "device\n", __func__);
			r = -EIO;
			goto out;
		}
	}

	match->irq_requested = true;
out:
	mutex_unlock(&kvm->lock);
	return r;
}

static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
				      struct kvm_assigned_pci_dev *assigned_dev)
{
	int r = 0;
	struct kvm_assigned_dev_kernel *match;
	struct pci_dev *dev;

	mutex_lock(&kvm->lock);

	match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
				      assigned_dev->assigned_dev_id);
	if (match) {
		/* device already assigned */
		r = -EINVAL;
		goto out;
	}

	match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
	if (match == NULL) {
		printk(KERN_INFO "%s: Couldn't allocate memory\n",
		       __func__);
		r = -ENOMEM;
		goto out;
	}
	dev = pci_get_bus_and_slot(assigned_dev->busnr,
				   assigned_dev->devfn);
	if (!dev) {
		printk(KERN_INFO "%s: host device not found\n", __func__);
		r = -EINVAL;
		goto out_free;
	}
	if (pci_enable_device(dev)) {
		printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
		r = -EBUSY;
		goto out_put;
	}
	r = pci_request_regions(dev, "kvm_assigned_device");
	if (r) {
		printk(KERN_INFO "%s: Could not get access to device regions\n",
		       __func__);
		goto out_disable;
	}
	match->assigned_dev_id = assigned_dev->assigned_dev_id;
	match->host_busnr = assigned_dev->busnr;
	match->host_devfn = assigned_dev->devfn;
	match->dev = dev;

	match->kvm = kvm;

	list_add(&match->list, &kvm->arch.assigned_dev_head);

out:
	mutex_unlock(&kvm->lock);
	return r;
out_disable:
	pci_disable_device(dev);
out_put:
	pci_dev_put(dev);
out_free:
	kfree(match);
	mutex_unlock(&kvm->lock);
	return r;
}

static void kvm_free_assigned_devices(struct kvm *kvm)
{
	struct list_head *ptr, *ptr2;
	struct kvm_assigned_dev_kernel *assigned_dev;

	list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
		assigned_dev = list_entry(ptr,
					  struct kvm_assigned_dev_kernel,
					  list);

		if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested) {
			free_irq(assigned_dev->host_irq,
				 (void *)assigned_dev);

			kvm_unregister_irq_ack_notifier(kvm,
							&assigned_dev->
							ack_notifier);
		}

		if (cancel_work_sync(&assigned_dev->interrupt_work))
			/* We had pending work. That means we will have to take
			 * care of kvm_put_kvm.
			 */
			kvm_put_kvm(kvm);

		pci_release_regions(assigned_dev->dev);
		pci_disable_device(assigned_dev->dev);
		pci_dev_put(assigned_dev->dev);

		list_del(&assigned_dev->list);
		kfree(assigned_dev);
	}
}
320

321 322 323
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
324
	struct desc_struct *d;
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
340 341 342
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
343
#ifdef CONFIG_X86_64
344 345
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
346 347 348 349 350
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

351 352 353
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
354
		return vcpu->arch.apic_base;
355
	else
356
		return vcpu->arch.apic_base;
357 358 359 360 361 362 363 364 365
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
366
		vcpu->arch.apic_base = data;
367 368 369
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

370 371
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
372 373 374 375
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
376 377 378
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

379 380 381 382
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
383 384 385 386 387 388 389 390 391 392
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
393 394
		return;
	}
395
	vcpu->arch.cr2 = addr;
396 397 398
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

399 400 401 402 403 404
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
	vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);

405 406
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
407 408 409 410 411
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
412 413 414 415 416
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
417 418 419
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
420 421
}

422 423 424 425 426 427 428 429 430
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
431
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

447
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
448 449 450 451
out:

	return ret;
}
452
EXPORT_SYMBOL_GPL(load_pdptrs);
453

454 455
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
456
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
457 458 459 460 461 462
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

463
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
464 465
	if (r < 0)
		goto out;
466
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
467 468 469 470 471
out:

	return changed;
}

472
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
473 474 475
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
476
		       cr0, vcpu->arch.cr0);
477
		kvm_inject_gp(vcpu, 0);
478 479 480 481 482
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
483
		kvm_inject_gp(vcpu, 0);
484 485 486 487 488 489
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
490
		kvm_inject_gp(vcpu, 0);
491 492 493 494 495
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
496
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
497 498 499 500 501
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
502
				kvm_inject_gp(vcpu, 0);
503 504 505 506 507 508
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
509
				kvm_inject_gp(vcpu, 0);
510 511 512 513 514
				return;

			}
		} else
#endif
515
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
516 517
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
518
			kvm_inject_gp(vcpu, 0);
519 520 521 522 523 524
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
525
	vcpu->arch.cr0 = cr0;
526 527 528 529

	kvm_mmu_reset_context(vcpu);
	return;
}
530
EXPORT_SYMBOL_GPL(kvm_set_cr0);
531

532
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
533
{
534
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
F
Feng (Eric) Liu 已提交
535 536 537
	KVMTRACE_1D(LMSW, vcpu,
		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
		    handler);
538
}
539
EXPORT_SYMBOL_GPL(kvm_lmsw);
540

541
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
542 543 544
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
545
		kvm_inject_gp(vcpu, 0);
546 547 548 549 550 551 552
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
553
			kvm_inject_gp(vcpu, 0);
554 555 556
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
557
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
558
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
559
		kvm_inject_gp(vcpu, 0);
560 561 562 563 564
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
565
		kvm_inject_gp(vcpu, 0);
566 567 568
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
569
	vcpu->arch.cr4 = cr4;
570 571
	kvm_mmu_reset_context(vcpu);
}
572
EXPORT_SYMBOL_GPL(kvm_set_cr4);
573

574
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
575
{
576
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
577 578 579 580
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

581 582 583
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
584
			kvm_inject_gp(vcpu, 0);
585 586 587 588 589 590 591
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
592
				kvm_inject_gp(vcpu, 0);
593 594 595 596 597
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
598
				kvm_inject_gp(vcpu, 0);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
618
		kvm_inject_gp(vcpu, 0);
619
	else {
620 621
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
622 623
	}
}
624
EXPORT_SYMBOL_GPL(kvm_set_cr3);
625

626
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
627 628 629
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
630
		kvm_inject_gp(vcpu, 0);
631 632 633 634 635
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
636
		vcpu->arch.cr8 = cr8;
637
}
638
EXPORT_SYMBOL_GPL(kvm_set_cr8);
639

640
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
641 642 643 644
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
645
		return vcpu->arch.cr8;
646
}
647
EXPORT_SYMBOL_GPL(kvm_get_cr8);
648

649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
662
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
663
	MSR_IA32_PERF_STATUS,
664 665 666 667 668 669 670 671
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

672 673
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
674
	if (efer & efer_reserved_bits) {
675 676
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
677
		kvm_inject_gp(vcpu, 0);
678 679 680 681
		return;
	}

	if (is_paging(vcpu)
682
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
683
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
684
		kvm_inject_gp(vcpu, 0);
685 686 687 688 689 690
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
691
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
692

693
	vcpu->arch.shadow_efer = efer;
694 695
}

696 697 698 699 700 701 702
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


703 704 705 706 707 708 709 710 711 712
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

713 714 715 716 717 718 719 720
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

721 722 723
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
724 725
	struct pvclock_wall_clock wc;
	struct timespec now, sys, boot;
726 727 728 729 730 731 732 733

	if (!wall_clock)
		return;

	version++;

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

734 735 736 737 738 739 740 741 742 743 744 745 746
	/*
	 * The guest calculates current wall clock time by adding
	 * system time (updated by kvm_write_guest_time below) to the
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
	now = current_kernel_time();
	ktime_get_ts(&sys);
	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
747 748 749 750 751 752 753

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
	uint64_t nsecs = 1000000000LL;
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

	tps64 = tsc_khz * 1000LL;
	while (tps64 > nsecs*2) {
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
	while (tps32 <= (uint32_t)nsecs) {
		tps32 <<= 1;
		shift++;
	}

	hv_clock->tsc_shift = shift;
	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);

	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
		 hv_clock->tsc_to_system_mul);
}

793 794 795 796 797 798 799 800 801 802
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

803 804 805 806 807
	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
		vcpu->hv_clock_tsc_khz = tsc_khz;
	}

808 809 810 811 812 813 814 815 816 817 818 819 820 821
	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
822
	 * state, we just increase by 2 at the end.
823
	 */
824
	vcpu->hv_clock.version += 2;
825 826 827 828

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
829
	       sizeof(vcpu->hv_clock));
830 831 832 833 834 835

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

A
Avi Kivity 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	vcpu->arch.mtrr[msr - 0x200] = data;
	return 0;
}
868 869 870 871 872 873 874 875 876

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
877
		       __func__, data);
878 879 880
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
881
			__func__, data);
882
		break;
883 884
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
885
			__func__, data);
886
		break;
887 888 889 890 891 892 893 894 895 896 897 898
	case MSR_IA32_DEBUGCTLMSR:
		if (!data) {
			/* We support the non-activated case already */
			break;
		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
			/* Values other than LBR and BTF are vendor-specific,
			   thus reserved and should throw a #GP */
			return 1;
		}
		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
			__func__, data);
		break;
899 900 901
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
		break;
A
Avi Kivity 已提交
902 903
	case 0x200 ... 0x2ff:
		return set_msr_mtrr(vcpu, msr, data);
904 905 906 907
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
908
		vcpu->arch.ia32_misc_enable_msr = data;
909
		break;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		down_read(&current->mm->mmap_sem);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
942
	default:
943
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

A
Avi Kivity 已提交
961 962 963 964 965 966 967 968 969
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	*pdata = vcpu->arch.mtrr[msr - 0x200];
	return 0;
}

970 971 972 973 974 975 976 977 978 979 980 981 982
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
983
	case MSR_IA32_MCG_CTL:
984 985 986 987 988 989 990
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
991 992 993 994 995
	case MSR_IA32_DEBUGCTLMSR:
	case MSR_IA32_LASTBRANCHFROMIP:
	case MSR_IA32_LASTBRANCHTOIP:
	case MSR_IA32_LASTINTFROMIP:
	case MSR_IA32_LASTINTTOIP:
996 997
		data = 0;
		break;
A
Avi Kivity 已提交
998 999 1000 1001 1002
	case MSR_MTRRcap:
		data = 0x500 | KVM_NR_VAR_MTRR;
		break;
	case 0x200 ... 0x2ff:
		return get_msr_mtrr(vcpu, msr, pdata);
1003 1004 1005 1006 1007 1008 1009
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
1010
		data = vcpu->arch.ia32_misc_enable_msr;
1011
		break;
1012 1013 1014 1015 1016 1017
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
1018
	case MSR_EFER:
1019
		data = vcpu->arch.shadow_efer;
1020
		break;
1021 1022 1023 1024 1025 1026
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
1027 1028 1029 1030 1031 1032 1033 1034 1035
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

1050
	down_read(&vcpu->kvm->slots_lock);
1051 1052 1053
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
1054
	up_read(&vcpu->kvm->slots_lock);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
1120
	case KVM_CAP_EXT_CPUID:
1121
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
1122
	case KVM_CAP_PIT:
1123
	case KVM_CAP_NOP_IO_DELAY:
1124
	case KVM_CAP_MP_STATE:
1125
	case KVM_CAP_SYNC_MMU:
1126 1127
		r = 1;
		break;
1128 1129 1130
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
1131 1132 1133
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
1134 1135 1136
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
1137 1138 1139
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
1140 1141 1142
	case KVM_CAP_PV_MMU:
		r = !tdp_enabled;
		break;
1143 1144 1145 1146 1147 1148 1149 1150
	default:
		r = 0;
		break;
	}
	return r;

}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1203 1204 1205 1206 1207 1208 1209
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1210 1211 1212
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
1213
	kvm_write_guest_time(vcpu);
1214 1215 1216 1217 1218
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
1219
	kvm_put_guest_fpu(vcpu);
1220 1221
}

1222
static int is_efer_nx(void)
1223 1224 1225 1226
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
1227 1228 1229 1230 1231 1232 1233 1234
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

1235
	entry = NULL;
1236 1237
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
1238 1239 1240 1241 1242
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
1243
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1244 1245 1246 1247 1248
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

1249
/* when an old userspace process fills a new kernel module */
1250 1251 1252
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
1293 1294 1295 1296 1297 1298 1299
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
1300
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1301
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1302
		goto out;
1303
	vcpu->arch.cpuid_nent = cpuid->nent;
1304 1305 1306 1307 1308 1309
	return 0;

out:
	return r;
}

1310 1311 1312 1313 1314 1315 1316
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1317
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1318 1319
		goto out;
	r = -EFAULT;
1320 1321
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1322 1323 1324 1325
		goto out;
	return 0;

out:
1326
	cpuid->nent = vcpu->arch.cpuid_nent;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1409
		int i, cache_type;
1410 1411 1412

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1413 1414
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1415 1416
			if (!cache_type)
				break;
1417 1418
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1419 1420 1421 1422 1423 1424
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1425
		int i, level_type;
1426 1427 1428

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1429 1430
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1431 1432
			if (!level_type)
				break;
1433 1434
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1451
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1492 1493 1494 1495
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1496
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1497 1498 1499 1500 1501 1502 1503 1504 1505
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1506
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1507 1508 1509 1510 1511 1512
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1522 1523
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1524 1525 1526 1527 1528 1529

	vcpu_put(vcpu);

	return 0;
}

1530 1531 1532 1533 1534 1535 1536 1537 1538
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1626 1627 1628 1629 1630 1631
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1660 1661 1662 1663 1664 1665 1666
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1683
	down_write(&kvm->slots_lock);
1684 1685

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1686
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1687

1688
	up_write(&kvm->slots_lock);
1689 1690 1691 1692 1693
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1694
	return kvm->arch.n_alloc_mmu_pages;
1695 1696
}

1697 1698 1699 1700 1701
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1702 1703
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1704 1705 1706 1707 1708 1709 1710
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1737
	down_write(&kvm->slots_lock);
1738
	spin_lock(&kvm->mmu_lock);
1739

1740
	p = &kvm->arch.aliases[alias->slot];
1741 1742 1743 1744 1745
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1746
		if (kvm->arch.aliases[n - 1].npages)
1747
			break;
1748
	kvm->arch.naliases = n;
1749

1750
	spin_unlock(&kvm->mmu_lock);
1751 1752
	kvm_mmu_zap_all(kvm);

1753
	up_write(&kvm->slots_lock);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1846
	down_write(&kvm->slots_lock);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1862
	up_write(&kvm->slots_lock);
1863 1864 1865
	return r;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1916 1917
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1918 1919
			r = kvm_ioapic_init(kvm);
			if (r) {
1920 1921
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1922 1923 1924 1925 1926
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1927 1928 1929 1930 1931 1932
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1945
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
B
Ben-Ami Yassour 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	case KVM_ASSIGN_PCI_DEVICE: {
		struct kvm_assigned_pci_dev assigned_dev;

		r = -EFAULT;
		if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
			goto out;
		r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
		if (r)
			goto out;
		break;
	}
	case KVM_ASSIGN_IRQ: {
		struct kvm_assigned_irq assigned_irq;

		r = -EFAULT;
		if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
			goto out;
		r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
		if (r)
			goto out;
		break;
	}
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	case KVM_GET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_get_pit(kvm, &ps);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &ps, sizeof ps))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_set_pit(kvm, &ps);
		if (r)
			goto out;
		r = 0;
		break;
	}
2041 2042 2043 2044 2045 2046 2047
	default:
		;
	}
out:
	return r;
}

2048
static void kvm_init_msr_list(void)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

2063 2064 2065 2066
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2067 2068
						gpa_t addr, int len,
						int is_write)
2069 2070 2071
{
	struct kvm_io_device *dev;

2072 2073
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
2074
		if (dev->in_range(dev, addr, len, is_write))
2075 2076 2077 2078 2079 2080 2081
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2082 2083
						gpa_t addr, int len,
						int is_write)
2084 2085 2086
{
	struct kvm_io_device *dev;

2087
	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2088
	if (dev == NULL)
2089 2090
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
					  is_write);
2091 2092 2093 2094 2095 2096 2097 2098 2099
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
2100
	int r = X86EMUL_CONTINUE;
2101 2102

	while (bytes) {
2103
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2104 2105 2106 2107
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

2108 2109 2110 2111
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
2112
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
2113 2114 2115 2116
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
2117 2118 2119 2120 2121

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
2122 2123
out:
	return r;
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

2141
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
2157
	mutex_lock(&vcpu->kvm->lock);
2158
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2159 2160
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2161
		mutex_unlock(&vcpu->kvm->lock);
2162 2163
		return X86EMUL_CONTINUE;
	}
2164
	mutex_unlock(&vcpu->kvm->lock);
2165 2166 2167 2168 2169 2170 2171 2172 2173

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

2174
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2175
			  const void *val, int bytes)
2176 2177 2178 2179
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2180
	if (ret < 0)
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		return 0;
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
2192 2193 2194
	gpa_t                 gpa;

	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2195 2196

	if (gpa == UNMAPPED_GVA) {
2197
		kvm_inject_page_fault(vcpu, addr, 2);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
2212
	mutex_lock(&vcpu->kvm->lock);
2213
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2214 2215
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2216
		mutex_unlock(&vcpu->kvm->lock);
2217 2218
		return X86EMUL_CONTINUE;
	}
2219
	mutex_unlock(&vcpu->kvm->lock);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
2263 2264 2265
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
2266
		gpa_t gpa;
2267
		struct page *page;
A
Andrew Morton 已提交
2268
		char *kaddr;
2269 2270
		u64 val;

2271 2272
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

2273 2274 2275 2276 2277 2278 2279 2280
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
2281 2282

		down_read(&current->mm->mmap_sem);
2283
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2284 2285
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
2286 2287 2288
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
2289 2290
		kvm_release_page_dirty(page);
	}
2291
emul_write:
2292 2293
#endif

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
J
Joerg Roedel 已提交
2309
	KVMTRACE_0D(CLTS, vcpu, handler);
2310
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
2323
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	u8 opcodes[4];
2344
	unsigned long rip = kvm_rip_read(vcpu);
2345 2346
	unsigned long rip_linear;

2347
	if (!printk_ratelimit())
2348 2349
		return;

2350 2351
	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

2352 2353 2354 2355 2356 2357 2358
	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2359
static struct x86_emulate_ops emulate_ops = {
2360 2361 2362 2363 2364 2365
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

2366 2367 2368 2369 2370 2371 2372 2373
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
	kvm_register_read(vcpu, VCPU_REGS_RAX);
	kvm_register_read(vcpu, VCPU_REGS_RSP);
	kvm_register_read(vcpu, VCPU_REGS_RIP);
	vcpu->arch.regs_dirty = ~0;
}

2374 2375 2376 2377
int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2378
			int emulation_type)
2379 2380
{
	int r;
2381
	struct decode_cache *c;
2382

2383
	kvm_clear_exception_queue(vcpu);
2384
	vcpu->arch.mmio_fault_cr2 = cr2;
2385 2386 2387 2388 2389 2390 2391
	/*
	 * TODO: fix x86_emulate.c to use guest_read/write_register
	 * instead of direct ->regs accesses, can save hundred cycles
	 * on Intel for instructions that don't read/change RSP, for
	 * for example.
	 */
	cache_all_regs(vcpu);
2392 2393

	vcpu->mmio_is_write = 0;
2394
	vcpu->arch.pio.string = 0;
2395

2396
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2397 2398 2399
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2400 2401 2402 2403
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2404 2405 2406 2407
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2408
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2419
		++vcpu->stat.insn_emulation;
2420
		if (r)  {
2421
			++vcpu->stat.insn_emulation_fail;
2422 2423 2424 2425 2426 2427
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2428
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2429

2430
	if (vcpu->arch.pio.string)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

2451
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2462 2463 2464 2465
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2466 2467 2468 2469
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2470 2471 2472 2473 2474
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2475
	void *p = vcpu->arch.pio_data;
2476 2477
	void *q;
	unsigned bytes;
2478
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2479

2480
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2481 2482 2483 2484 2485
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2486 2487 2488
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2489 2490 2491
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2492
	q -= vcpu->arch.pio.guest_page_offset;
2493 2494 2495 2496 2497 2498 2499
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2500
	struct kvm_pio_request *io = &vcpu->arch.pio;
2501 2502
	long delta;
	int r;
2503
	unsigned long val;
2504 2505

	if (!io->string) {
2506 2507 2508 2509 2510
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
			memcpy(&val, vcpu->arch.pio_data, io->size);
			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
		}
2511 2512 2513
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
2514
			if (r)
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
				return r;
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2525 2526 2527
			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
			val -= delta;
			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2528 2529 2530 2531
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
2532 2533 2534 2535 2536 2537 2538 2539 2540
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
		} else {
			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
		}
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	}

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2556 2557 2558
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2559 2560
				  pd);
	else
2561 2562
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2563 2564 2565 2566 2567 2568 2569
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2570 2571
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2585 2586
					       gpa_t addr, int len,
					       int is_write)
2587
{
2588
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2589 2590 2591 2592 2593 2594
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;
2595
	unsigned long val;
2596 2597 2598

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2599
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2600
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2601 2602 2603 2604 2605 2606 2607
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2608

F
Feng (Eric) Liu 已提交
2609 2610 2611 2612 2613 2614 2615
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2616 2617
	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
	memcpy(vcpu->arch.pio_data, &val, 4);
2618 2619 2620

	kvm_x86_ops->skip_emulated_instruction(vcpu);

2621
	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2622
	if (pio_dev) {
2623
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2643
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2644
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2645 2646 2647 2648 2649 2650 2651
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2652

F
Feng (Eric) Liu 已提交
2653 2654 2655 2656 2657 2658 2659
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2684
		kvm_inject_gp(vcpu, 0);
2685 2686 2687
		return 1;
	}
	vcpu->run->io.count = now;
2688
	vcpu->arch.pio.cur_count = now;
2689

2690
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2691 2692 2693 2694
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2695
		vcpu->arch.pio.guest_pages[i] = page;
2696
		if (!page) {
2697
			kvm_inject_gp(vcpu, 0);
2698 2699 2700 2701 2702
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

2703 2704 2705
	pio_dev = vcpu_find_pio_dev(vcpu, port,
				    vcpu->arch.pio.cur_count,
				    !vcpu->arch.pio.in);
2706
	if (!vcpu->arch.pio.in) {
2707 2708 2709 2710 2711
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2712
			if (vcpu->arch.pio.count == 0)
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2724
int kvm_arch_init(void *opaque)
2725
{
2726
	int r;
2727 2728 2729 2730
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2731 2732
		r = -EEXIST;
		goto out;
2733 2734 2735 2736
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2737 2738
		r = -EOPNOTSUPP;
		goto out;
2739 2740 2741
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2742 2743
		r = -EOPNOTSUPP;
		goto out;
2744 2745
	}

2746 2747 2748 2749 2750 2751
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2752
	kvm_x86_ops = ops;
2753
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
S
Sheng Yang 已提交
2754 2755 2756
	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2757
	return 0;
2758 2759 2760

out:
	return r;
2761
}
2762

2763 2764 2765
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2766 2767
	kvm_mmu_module_exit();
}
2768

2769 2770 2771
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
F
Feng (Eric) Liu 已提交
2772
	KVMTRACE_0D(HLT, vcpu, handler);
2773
	if (irqchip_in_kernel(vcpu->kvm)) {
2774
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2775
		up_read(&vcpu->kvm->slots_lock);
2776
		kvm_vcpu_block(vcpu);
2777
		down_read(&vcpu->kvm->slots_lock);
2778
		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2779 2780 2781 2782 2783 2784 2785 2786 2787
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

2788 2789 2790 2791 2792 2793 2794 2795 2796
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
			   unsigned long a1)
{
	if (is_long_mode(vcpu))
		return a0;
	else
		return a0 | ((gpa_t)a1 << 32);
}

2797 2798 2799
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
2800
	int r = 1;
2801

2802 2803 2804 2805 2806
	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2807

F
Feng (Eric) Liu 已提交
2808 2809
	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);

2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2819 2820 2821
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2822 2823 2824
	case KVM_HC_MMU_OP:
		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
		break;
2825 2826 2827 2828
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2829
	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
A
Amit Shah 已提交
2830
	++vcpu->stat.hypercalls;
2831
	return r;
2832 2833 2834 2835 2836 2837 2838
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;
2839
	unsigned long rip = kvm_rip_read(vcpu);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2850
	if (emulator_write_emulated(rip, instruction, 3, vcpu)
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2879
	kvm_lmsw(vcpu, msw);
2880 2881 2882 2883 2884
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
J
Joerg Roedel 已提交
2885 2886
	unsigned long value;

2887 2888 2889
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
J
Joerg Roedel 已提交
2890 2891
		value = vcpu->arch.cr0;
		break;
2892
	case 2:
J
Joerg Roedel 已提交
2893 2894
		value = vcpu->arch.cr2;
		break;
2895
	case 3:
J
Joerg Roedel 已提交
2896 2897
		value = vcpu->arch.cr3;
		break;
2898
	case 4:
J
Joerg Roedel 已提交
2899 2900
		value = vcpu->arch.cr4;
		break;
2901
	case 8:
J
Joerg Roedel 已提交
2902 2903
		value = kvm_get_cr8(vcpu);
		break;
2904
	default:
2905
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2906 2907
		return 0;
	}
J
Joerg Roedel 已提交
2908 2909 2910 2911
	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
		    (u32)((u64)value >> 32), handler);

	return value;
2912 2913 2914 2915 2916
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
J
Joerg Roedel 已提交
2917 2918 2919
	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
		    (u32)((u64)val >> 32), handler);

2920 2921
	switch (cr) {
	case 0:
2922
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2923 2924 2925
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2926
		vcpu->arch.cr2 = val;
2927 2928
		break;
	case 3:
2929
		kvm_set_cr3(vcpu, val);
2930 2931
		break;
	case 4:
2932
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2933
		break;
2934
	case 8:
2935
		kvm_set_cr8(vcpu, val & 0xfUL);
2936
		break;
2937
	default:
2938
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2939 2940 2941
	}
}

2942 2943
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2944 2945
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2946 2947 2948 2949

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2950
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2974 2975 2976
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2977 2978
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2979

2980 2981 2982 2983 2984 2985
	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2986
	best = NULL;
2987 2988
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2989 2990 2991
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
3003 3004 3005 3006
		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3007 3008
	}
	kvm_x86_ops->skip_emulated_instruction(vcpu);
F
Feng (Eric) Liu 已提交
3009
	KVMTRACE_5D(CPUID, vcpu, function,
3010 3011 3012 3013
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3014 3015
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
3026
	return (!vcpu->arch.irq_summary &&
3027
		kvm_run->request_interrupt_window &&
3028
		vcpu->arch.interrupt_window_open &&
3029 3030 3031 3032 3033 3034 3035
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3036
	kvm_run->cr8 = kvm_get_cr8(vcpu);
3037 3038 3039 3040 3041
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
3042 3043
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
3044 3045
}

A
Avi Kivity 已提交
3046 3047 3048 3049 3050 3051 3052 3053
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

3054
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
3055
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3056
	up_read(&current->mm->mmap_sem);
3057 3058

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
3059 3060 3061 3062 3063 3064 3065 3066 3067
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

3068
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3069 3070
	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3071
	up_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3072 3073
}

3074 3075 3076 3077
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

3078
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3079
		pr_debug("vcpu %d received sipi with vector # %x\n",
3080
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
3081 3082 3083 3084
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
3085
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3086 3087
	}

3088
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
3089 3090
	vapic_enter(vcpu);

3091 3092 3093 3094 3095
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
3096 3097 3098 3099
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

3100 3101 3102 3103
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

3104 3105
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
M
Marcelo Tosatti 已提交
3106
			__kvm_migrate_timers(vcpu);
3107 3108
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);
A
Avi Kivity 已提交
3109 3110 3111 3112 3113 3114
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
3115 3116 3117 3118 3119
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
3120
	}
A
Avi Kivity 已提交
3121

3122
	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3123 3124 3125 3126 3127 3128 3129 3130 3131
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

3132
	if (vcpu->requests || need_resched()) {
3133 3134 3135 3136 3137 3138
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

3139 3140 3141 3142 3143 3144 3145 3146 3147
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

3148 3149 3150 3151 3152 3153 3154
	vcpu->guest_mode = 1;
	/*
	 * Make sure that guest_mode assignment won't happen after
	 * testing the pending IRQ vector bitmap.
	 */
	smp_wmb();

3155
	if (vcpu->arch.exception.pending)
3156 3157
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
3158
		kvm_x86_ops->inject_pending_irq(vcpu);
3159
	else
3160 3161
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
3162 3163
	kvm_lapic_sync_to_vapic(vcpu);

3164 3165
	up_read(&vcpu->kvm->slots_lock);

3166 3167 3168
	kvm_guest_enter();


F
Feng (Eric) Liu 已提交
3169
	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

3189 3190
	down_read(&vcpu->kvm->slots_lock);

3191 3192 3193 3194
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
3195 3196
		unsigned long rip = kvm_rip_read(vcpu);
		profile_hit(KVM_PROFILING, (void *)rip);
3197 3198
	}

3199 3200
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
3201

A
Avi Kivity 已提交
3202 3203
	kvm_lapic_sync_from_vapic(vcpu);

3204 3205 3206 3207 3208 3209 3210 3211 3212
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
3213
		if (!need_resched())
3214 3215 3216 3217
			goto again;
	}

out:
3218
	up_read(&vcpu->kvm->slots_lock);
3219 3220
	if (r > 0) {
		kvm_resched(vcpu);
3221
		down_read(&vcpu->kvm->slots_lock);
3222 3223 3224 3225 3226
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
3227 3228
	vapic_exit(vcpu);

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

3239 3240 3241
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

3242
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3243
		kvm_vcpu_block(vcpu);
3244 3245
		r = -EAGAIN;
		goto out;
3246 3247 3248 3249
	}

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
3250
		kvm_set_cr8(vcpu, kvm_run->cr8);
3251

3252
	if (vcpu->arch.pio.cur_count) {
3253 3254 3255 3256 3257 3258 3259 3260 3261
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
3262 3263

		down_read(&vcpu->kvm->slots_lock);
3264
		r = emulate_instruction(vcpu, kvm_run,
3265 3266
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
3267
		up_read(&vcpu->kvm->slots_lock);
3268 3269 3270 3271 3272 3273 3274 3275 3276
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
3277 3278 3279
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
		kvm_register_write(vcpu, VCPU_REGS_RAX,
				     kvm_run->hypercall.ret);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3295 3296 3297 3298 3299 3300 3301 3302
	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3303
#ifdef CONFIG_X86_64
3304 3305 3306 3307 3308 3309 3310 3311
	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3312 3313
#endif

3314
	regs->rip = kvm_rip_read(vcpu);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3332 3333 3334 3335 3336 3337 3338 3339
	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3340
#ifdef CONFIG_X86_64
3341 3342 3343 3344 3345 3346 3347 3348 3349
	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);

3350 3351
#endif

3352
	kvm_rip_write(vcpu, regs->rip);
3353 3354 3355
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);


3356 3357
	vcpu->arch.exception.pending = false;

3358 3359 3360 3361 3362
	vcpu_put(vcpu);

	return 0;
}

3363 3364
void kvm_get_segment(struct kvm_vcpu *vcpu,
		     struct kvm_segment *var, int seg)
3365
{
3366
	kvm_x86_ops->get_segment(vcpu, var, seg);
3367 3368 3369 3370 3371 3372
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

3373
	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

3387 3388 3389 3390 3391 3392
	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3393

3394 3395
	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3396 3397 3398 3399 3400 3401 3402 3403 3404

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3405 3406 3407 3408
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3409
	sregs->cr8 = kvm_get_cr8(vcpu);
3410
	sregs->efer = vcpu->arch.shadow_efer;
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3421
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3422 3423 3424 3425 3426 3427 3428
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	vcpu_put(vcpu);
	return 0;
}

3447
static void kvm_set_segment(struct kvm_vcpu *vcpu,
3448 3449
			struct kvm_segment *var, int seg)
{
3450
	kvm_x86_ops->set_segment(vcpu, var, seg);
3451 3452
}

3453 3454 3455 3456 3457 3458 3459 3460
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
				   struct kvm_segment *kvm_desct)
{
	kvm_desct->base = seg_desc->base0;
	kvm_desct->base |= seg_desc->base1 << 16;
	kvm_desct->base |= seg_desc->base2 << 24;
	kvm_desct->limit = seg_desc->limit0;
	kvm_desct->limit |= seg_desc->limit << 16;
3461 3462 3463 3464
	if (seg_desc->g) {
		kvm_desct->limit <<= 12;
		kvm_desct->limit |= 0xfff;
	}
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	kvm_desct->selector = selector;
	kvm_desct->type = seg_desc->type;
	kvm_desct->present = seg_desc->p;
	kvm_desct->dpl = seg_desc->dpl;
	kvm_desct->db = seg_desc->d;
	kvm_desct->s = seg_desc->s;
	kvm_desct->l = seg_desc->l;
	kvm_desct->g = seg_desc->g;
	kvm_desct->avl = seg_desc->avl;
	if (!selector)
		kvm_desct->unusable = 1;
	else
		kvm_desct->unusable = 0;
	kvm_desct->padding = 0;
}

static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
					   u16 selector,
					   struct descriptor_table *dtable)
{
	if (selector & 1 << 2) {
		struct kvm_segment kvm_seg;

3488
		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

		if (kvm_seg.unusable)
			dtable->limit = 0;
		else
			dtable->limit = kvm_seg.limit;
		dtable->base = kvm_seg.base;
	}
	else
		kvm_x86_ops->get_gdt(vcpu, dtable);
}

/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3504
	gpa_t gpa;
3505 3506 3507 3508 3509 3510 3511 3512 3513
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7) {
		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
		return 1;
	}
3514 3515 3516
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3517 3518 3519 3520 3521 3522
}

/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3523
	gpa_t gpa;
3524 3525 3526 3527 3528 3529 3530
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7)
		return 1;
3531 3532 3533
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
}

static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
			     struct desc_struct *seg_desc)
{
	u32 base_addr;

	base_addr = seg_desc->base0;
	base_addr |= (seg_desc->base1 << 16);
	base_addr |= (seg_desc->base2 << 24);

3545
	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3546 3547 3548 3549 3550 3551
}

static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment kvm_seg;

3552
	kvm_get_segment(vcpu, &kvm_seg, seg);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
	return kvm_seg.selector;
}

static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
						u16 selector,
						struct kvm_segment *kvm_seg)
{
	struct desc_struct seg_desc;

	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
		return 1;
	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
	return 0;
}

3568 3569
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
				int type_bits, int seg)
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
{
	struct kvm_segment kvm_seg;

	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
		return 1;
	kvm_seg.type |= type_bits;

	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
	    seg != VCPU_SREG_LDTR)
		if (!kvm_seg.s)
			kvm_seg.unusable = 1;

3582
	kvm_set_segment(vcpu, &kvm_seg, seg);
3583 3584 3585 3586 3587 3588 3589
	return 0;
}

static void save_state_to_tss32(struct kvm_vcpu *vcpu,
				struct tss_segment_32 *tss)
{
	tss->cr3 = vcpu->arch.cr3;
3590
	tss->eip = kvm_rip_read(vcpu);
3591
	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3592 3593 3594 3595 3596 3597 3598 3599
	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss32(struct kvm_vcpu *vcpu,
				  struct tss_segment_32 *tss)
{
	kvm_set_cr3(vcpu, tss->cr3);

3615
	kvm_rip_write(vcpu, tss->eip);
3616 3617
	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);

3618 3619 3620 3621 3622 3623 3624 3625
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3626

3627
	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3628 3629
		return 1;

3630
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3631 3632
		return 1;

3633
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3634 3635
		return 1;

3636
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3637 3638
		return 1;

3639
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3640 3641
		return 1;

3642
	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3643 3644
		return 1;

3645
	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3646 3647 3648 3649 3650 3651 3652
		return 1;
	return 0;
}

static void save_state_to_tss16(struct kvm_vcpu *vcpu,
				struct tss_segment_16 *tss)
{
3653
	tss->ip = kvm_rip_read(vcpu);
3654
	tss->flag = kvm_x86_ops->get_rflags(vcpu);
3655 3656 3657 3658 3659 3660 3661 3662
	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss16(struct kvm_vcpu *vcpu,
				 struct tss_segment_16 *tss)
{
3675
	kvm_rip_write(vcpu, tss->ip);
3676
	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3677 3678 3679 3680 3681 3682 3683 3684
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3685

3686
	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3687 3688
		return 1;

3689
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3690 3691
		return 1;

3692
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3693 3694
		return 1;

3695
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3696 3697
		return 1;

3698
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3699 3700 3701 3702
		return 1;
	return 0;
}

3703
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3704
		       u32 old_tss_base,
3705 3706 3707 3708 3709
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_16 tss_segment_16;
	int ret = 0;

3710 3711
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			   sizeof tss_segment_16))
3712 3713 3714 3715
		goto out;

	save_state_to_tss16(vcpu, &tss_segment_16);

3716 3717
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			    sizeof tss_segment_16))
3718
		goto out;
3719 3720 3721 3722 3723

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_16, sizeof tss_segment_16))
		goto out;

3724 3725 3726 3727 3728 3729 3730 3731
	if (load_state_from_tss16(vcpu, &tss_segment_16))
		goto out;

	ret = 1;
out:
	return ret;
}

3732
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3733
		       u32 old_tss_base,
3734 3735 3736 3737 3738
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_32 tss_segment_32;
	int ret = 0;

3739 3740
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			   sizeof tss_segment_32))
3741 3742 3743 3744
		goto out;

	save_state_to_tss32(vcpu, &tss_segment_32);

3745 3746 3747 3748 3749 3750
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			    sizeof tss_segment_32))
		goto out;

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_32, sizeof tss_segment_32))
3751
		goto out;
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
	if (load_state_from_tss32(vcpu, &tss_segment_32))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
	struct kvm_segment tr_seg;
	struct desc_struct cseg_desc;
	struct desc_struct nseg_desc;
	int ret = 0;
3767 3768
	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3769

3770
	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3771

3772 3773 3774
	/* FIXME: Handle errors. Failure to read either TSS or their
	 * descriptors should generate a pagefault.
	 */
3775 3776 3777
	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
		goto out;

3778
	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
		goto out;

	if (reason != TASK_SWITCH_IRET) {
		int cpl;

		cpl = kvm_x86_ops->get_cpl(vcpu);
		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
	}

	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
		return 1;
	}

	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3797
		cseg_desc.type &= ~(1 << 1); //clear the B flag
3798
		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	}

	if (reason == TASK_SWITCH_IRET) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
	}

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	if (nseg_desc.type & 8)
3809
		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3810 3811
					 &nseg_desc);
	else
3812
		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3813 3814 3815 3816 3817 3818 3819 3820
					 &nseg_desc);

	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
	}

	if (reason != TASK_SWITCH_IRET) {
3821
		nseg_desc.type |= (1 << 1);
3822 3823 3824 3825 3826 3827 3828
		save_guest_segment_descriptor(vcpu, tss_selector,
					      &nseg_desc);
	}

	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
	tr_seg.type = 11;
3829
	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3830 3831 3832 3833 3834
out:
	return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3851 3852 3853
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3854

3855
	kvm_set_cr8(vcpu, sregs->cr8);
3856

3857
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3858 3859 3860 3861 3862
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3863
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3864
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3865
	vcpu->arch.cr0 = sregs->cr0;
3866

3867
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3868 3869
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3870
		load_pdptrs(vcpu, vcpu->arch.cr3);
3871 3872 3873 3874 3875

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3876 3877 3878 3879 3880 3881
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

3895 3896 3897 3898 3899 3900
	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3901

3902 3903
	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3955
	down_read(&vcpu->kvm->slots_lock);
3956
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3957
	up_read(&vcpu->kvm->slots_lock);
3958 3959 3960 3961 3962 3963 3964 3965 3966
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3967 3968
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3969
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3989
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

4011 4012 4013 4014 4015 4016 4017
	/*
	 * Touch the fpu the first time in non atomic context as if
	 * this is the first fpu instruction the exception handler
	 * will fire before the instruction returns and it'll have to
	 * allocate ram with GFP_KERNEL.
	 */
	if (!used_math())
4018
		kvm_fx_save(&vcpu->arch.host_fx_image);
4019

4020 4021
	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
4022 4023 4024 4025
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_finit();
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
4026 4027
	preempt_enable();

4028
	vcpu->arch.cr0 |= X86_CR0_ET;
4029
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4030 4031
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
4042 4043
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_restore(&vcpu->arch.guest_fx_image);
4044 4045 4046 4047 4048 4049 4050 4051 4052
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
4053 4054
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
4055
	++vcpu->stat.fpu_reload;
4056 4057
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4058 4059 4060 4061 4062 4063 4064 4065 4066

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
4067 4068
	return kvm_x86_ops->vcpu_create(kvm, id);
}
4069

4070 4071 4072
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
4073 4074

	/* We do fxsave: this must be aligned. */
4075
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4076 4077 4078 4079 4080 4081 4082 4083 4084

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

4085
	return 0;
4086 4087
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
4088
	return r;
4089 4090
}

4091
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

4139
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4140
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4141
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4142
	else
4143
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4144 4145 4146 4147 4148 4149

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
4150
	vcpu->arch.pio_data = page_address(page);
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
4167
	free_page((unsigned long)vcpu->arch.pio_data);
4168 4169 4170 4171 4172 4173 4174
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
4175
	down_read(&vcpu->kvm->slots_lock);
4176
	kvm_mmu_destroy(vcpu);
4177
	up_read(&vcpu->kvm->slots_lock);
4178
	free_page((unsigned long)vcpu->arch.pio_data);
4179
}
4180 4181 4182 4183 4184 4185 4186 4187

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

4188
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
B
Ben-Ami Yassour 已提交
4189
	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
B
Ben-Ami Yassour 已提交
4222
	kvm_free_assigned_devices(kvm);
S
Sheng Yang 已提交
4223
	kvm_free_pit(kvm);
4224 4225
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
4226 4227
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
4228 4229
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
4230 4231
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
4232 4233
	kfree(kvm);
}
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
4248 4249
			unsigned long userspace_addr;

4250
			down_write(&current->mm->mmap_sem);
4251 4252 4253 4254 4255
			userspace_addr = do_mmap(NULL, 0,
						 npages * PAGE_SIZE,
						 PROT_READ | PROT_WRITE,
						 MAP_SHARED | MAP_ANONYMOUS,
						 0);
4256
			up_write(&current->mm->mmap_sem);
4257

4258 4259 4260 4261 4262 4263 4264
			if (IS_ERR((void *)userspace_addr))
				return PTR_ERR((void *)userspace_addr);

			/* set userspace_addr atomically for kvm_hva_to_rmapp */
			spin_lock(&kvm->mmu_lock);
			memslot->userspace_addr = userspace_addr;
			spin_unlock(&kvm->mmu_lock);
4265 4266 4267 4268
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

4269
				down_write(&current->mm->mmap_sem);
4270 4271
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
4272
				up_write(&current->mm->mmap_sem);
4273 4274 4275 4276 4277 4278 4279 4280
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

4281
	if (!kvm->arch.n_requested_mmu_pages) {
4282 4283 4284 4285 4286 4287 4288 4289 4290
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
4291

4292 4293 4294 4295 4296
void kvm_arch_flush_shadow(struct kvm *kvm)
{
	kvm_mmu_zap_all(kvm);
}

4297 4298
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
4299 4300
	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4301
}
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;
4314
	int cpu = get_cpu();
4315 4316 4317 4318 4319

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
4320 4321 4322 4323 4324
	/*
	 * We may be called synchronously with irqs disabled in guest mode,
	 * So need not to call smp_call_function_single() in that case.
	 */
	if (vcpu->guest_mode && vcpu->cpu != cpu)
4325
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4326
	put_cpu();
4327
}