x86.c 97.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

17
#include <linux/kvm_host.h>
18
#include "irq.h"
19
#include "mmu.h"
S
Sheng Yang 已提交
20
#include "i8254.h"
21
#include "tss.h"
22
#include "kvm_cache_regs.h"
23

24
#include <linux/clocksource.h>
25 26 27
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
28
#include <linux/module.h>
29
#include <linux/mman.h>
30
#include <linux/highmem.h>
31 32

#include <asm/uaccess.h>
33
#include <asm/msr.h>
34
#include <asm/desc.h>
35

36
#define MAX_IO_MSRS 256
37 38 39 40 41 42 43 44 45 46 47
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
48 49 50 51 52 53 54 55 56
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
57

58 59
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60

61 62 63
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

64
struct kvm_x86_ops *kvm_x86_ops;
65
EXPORT_SYMBOL_GPL(kvm_x86_ops);
66

67
struct kvm_stats_debugfs_item debugfs_entries[] = {
68 69 70 71 72 73 74 75 76
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
77
	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
78 79
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
80
	{ "hypercalls", VCPU_STAT(hypercalls) },
81 82 83 84 85 86 87
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
88 89 90 91 92 93
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
94
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
95
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
96
	{ "largepages", VM_STAT(lpages) },
97 98 99 100
	{ NULL }
};


101 102 103
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
104
	struct desc_struct *d;
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
120 121 122
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
123
#ifdef CONFIG_X86_64
124 125
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
126 127 128 129 130
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

131 132 133
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
134
		return vcpu->arch.apic_base;
135
	else
136
		return vcpu->arch.apic_base;
137 138 139 140 141 142 143 144 145
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
146
		vcpu->arch.apic_base = data;
147 148 149
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

150 151
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
152 153 154 155
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
156 157 158
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

159 160 161 162
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
163 164 165 166 167 168 169 170 171 172
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
173 174
		return;
	}
175
	vcpu->arch.cr2 = addr;
176 177 178
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

179 180 181 182 183 184
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
{
	vcpu->arch.nmi_pending = 1;
}
EXPORT_SYMBOL_GPL(kvm_inject_nmi);

185 186
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
187 188 189 190 191
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
192 193 194 195 196
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
197 198 199
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
200 201
}

202 203 204 205 206 207 208 209 210
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
211
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

227
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
228 229 230 231
out:

	return ret;
}
232
EXPORT_SYMBOL_GPL(load_pdptrs);
233

234 235
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
236
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
237 238 239 240 241 242
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

243
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
244 245
	if (r < 0)
		goto out;
246
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
247 248 249 250 251
out:

	return changed;
}

252
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
253 254 255
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
256
		       cr0, vcpu->arch.cr0);
257
		kvm_inject_gp(vcpu, 0);
258 259 260 261 262
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
263
		kvm_inject_gp(vcpu, 0);
264 265 266 267 268 269
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
270
		kvm_inject_gp(vcpu, 0);
271 272 273 274 275
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
276
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
277 278 279 280 281
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
282
				kvm_inject_gp(vcpu, 0);
283 284 285 286 287 288
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
289
				kvm_inject_gp(vcpu, 0);
290 291 292 293 294
				return;

			}
		} else
#endif
295
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
296 297
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
298
			kvm_inject_gp(vcpu, 0);
299 300 301 302 303 304
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
305
	vcpu->arch.cr0 = cr0;
306 307 308 309

	kvm_mmu_reset_context(vcpu);
	return;
}
310
EXPORT_SYMBOL_GPL(kvm_set_cr0);
311

312
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
313
{
314
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
F
Feng (Eric) Liu 已提交
315 316 317
	KVMTRACE_1D(LMSW, vcpu,
		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
		    handler);
318
}
319
EXPORT_SYMBOL_GPL(kvm_lmsw);
320

321
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
322 323 324
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
325
		kvm_inject_gp(vcpu, 0);
326 327 328 329 330 331 332
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
333
			kvm_inject_gp(vcpu, 0);
334 335 336
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
337
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
338
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
339
		kvm_inject_gp(vcpu, 0);
340 341 342 343 344
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
345
		kvm_inject_gp(vcpu, 0);
346 347 348
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
349
	vcpu->arch.cr4 = cr4;
350 351
	kvm_mmu_reset_context(vcpu);
}
352
EXPORT_SYMBOL_GPL(kvm_set_cr4);
353

354
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
355
{
356
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
357 358 359 360
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

361 362 363
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
364
			kvm_inject_gp(vcpu, 0);
365 366 367 368 369 370 371
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
372
				kvm_inject_gp(vcpu, 0);
373 374 375 376 377
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
378
				kvm_inject_gp(vcpu, 0);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
398
		kvm_inject_gp(vcpu, 0);
399
	else {
400 401
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
402 403
	}
}
404
EXPORT_SYMBOL_GPL(kvm_set_cr3);
405

406
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
407 408 409
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
410
		kvm_inject_gp(vcpu, 0);
411 412 413 414 415
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
416
		vcpu->arch.cr8 = cr8;
417
}
418
EXPORT_SYMBOL_GPL(kvm_set_cr8);
419

420
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
421 422 423 424
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
425
		return vcpu->arch.cr8;
426
}
427
EXPORT_SYMBOL_GPL(kvm_get_cr8);
428

429 430 431 432 433 434 435 436 437 438 439 440 441
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
442
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
443
	MSR_IA32_PERF_STATUS,
444 445 446 447 448 449 450 451
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

452 453
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
454
	if (efer & efer_reserved_bits) {
455 456
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
457
		kvm_inject_gp(vcpu, 0);
458 459 460 461
		return;
	}

	if (is_paging(vcpu)
462
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
463
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
464
		kvm_inject_gp(vcpu, 0);
465 466 467 468 469 470
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
471
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
472

473
	vcpu->arch.shadow_efer = efer;
474 475
}

476 477 478 479 480 481 482
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


483 484 485 486 487 488 489 490 491 492
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

493 494 495 496 497 498 499 500
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

501 502 503
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
504 505
	struct pvclock_wall_clock wc;
	struct timespec now, sys, boot;
506 507 508 509 510 511 512 513

	if (!wall_clock)
		return;

	version++;

	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

514 515 516 517 518 519 520 521 522 523 524 525 526
	/*
	 * The guest calculates current wall clock time by adding
	 * system time (updated by kvm_write_guest_time below) to the
	 * wall clock specified here.  guest system time equals host
	 * system time for us, thus we must fill in host boot time here.
	 */
	now = current_kernel_time();
	ktime_get_ts(&sys);
	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));

	wc.sec = boot.tv_sec;
	wc.nsec = boot.tv_nsec;
	wc.version = version;
527 528 529 530 531 532 533

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
{
	uint32_t quotient, remainder;

	/* Don't try to replace with do_div(), this one calculates
	 * "(dividend << 32) / divisor" */
	__asm__ ( "divl %4"
		  : "=a" (quotient), "=d" (remainder)
		  : "0" (0), "1" (dividend), "r" (divisor) );
	return quotient;
}

static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
{
	uint64_t nsecs = 1000000000LL;
	int32_t  shift = 0;
	uint64_t tps64;
	uint32_t tps32;

	tps64 = tsc_khz * 1000LL;
	while (tps64 > nsecs*2) {
		tps64 >>= 1;
		shift--;
	}

	tps32 = (uint32_t)tps64;
	while (tps32 <= (uint32_t)nsecs) {
		tps32 <<= 1;
		shift++;
	}

	hv_clock->tsc_shift = shift;
	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);

	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
		 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
		 hv_clock->tsc_to_system_mul);
}

573 574 575 576 577 578 579 580 581 582
static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

583 584 585 586 587
	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
		vcpu->hv_clock_tsc_khz = tsc_khz;
	}

588 589 590 591 592 593 594 595 596 597 598 599 600 601
	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
602
	 * state, we just increase by 2 at the end.
603
	 */
604
	vcpu->hv_clock.version += 2;
605 606 607 608

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
609
	       sizeof(vcpu->hv_clock));
610 611 612 613 614 615

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

A
Avi Kivity 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static bool msr_mtrr_valid(unsigned msr)
{
	switch (msr) {
	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
	case MSR_MTRRfix64K_00000:
	case MSR_MTRRfix16K_80000:
	case MSR_MTRRfix16K_A0000:
	case MSR_MTRRfix4K_C0000:
	case MSR_MTRRfix4K_C8000:
	case MSR_MTRRfix4K_D0000:
	case MSR_MTRRfix4K_D8000:
	case MSR_MTRRfix4K_E0000:
	case MSR_MTRRfix4K_E8000:
	case MSR_MTRRfix4K_F0000:
	case MSR_MTRRfix4K_F8000:
	case MSR_MTRRdefType:
	case MSR_IA32_CR_PAT:
		return true;
	case 0x2f8:
		return true;
	}
	return false;
}

static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	vcpu->arch.mtrr[msr - 0x200] = data;
	return 0;
}
648 649 650 651 652 653 654 655 656

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
657
		       __func__, data);
658 659 660
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
661
			__func__, data);
662
		break;
663 664
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
665
			__func__, data);
666
		break;
667 668 669
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
		break;
A
Avi Kivity 已提交
670 671
	case 0x200 ... 0x2ff:
		return set_msr_mtrr(vcpu, msr, data);
672 673 674 675
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
676
		vcpu->arch.ia32_misc_enable_msr = data;
677
		break;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		down_read(&current->mm->mmap_sem);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
710
	default:
711
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

A
Avi Kivity 已提交
729 730 731 732 733 734 735 736 737
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	if (!msr_mtrr_valid(msr))
		return 1;

	*pdata = vcpu->arch.mtrr[msr - 0x200];
	return 0;
}

738 739 740 741 742 743 744 745 746 747 748 749 750
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
751
	case MSR_IA32_MCG_CTL:
752 753 754 755 756 757 758 759 760
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
		data = 0;
		break;
A
Avi Kivity 已提交
761 762 763 764 765
	case MSR_MTRRcap:
		data = 0x500 | KVM_NR_VAR_MTRR;
		break;
	case 0x200 ... 0x2ff:
		return get_msr_mtrr(vcpu, msr, pdata);
766 767 768 769 770 771 772
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
773
		data = vcpu->arch.ia32_misc_enable_msr;
774
		break;
775 776 777 778 779 780
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
781
	case MSR_EFER:
782
		data = vcpu->arch.shadow_efer;
783
		break;
784 785 786 787 788 789
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
790 791 792 793 794 795 796 797 798
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

813
	down_read(&vcpu->kvm->slots_lock);
814 815 816
	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;
817
	up_read(&vcpu->kvm->slots_lock);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

873 874 875 876 877 878 879 880 881 882
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
883
	case KVM_CAP_EXT_CPUID:
884
	case KVM_CAP_CLOCKSOURCE:
S
Sheng Yang 已提交
885
	case KVM_CAP_PIT:
886
	case KVM_CAP_NOP_IO_DELAY:
887
	case KVM_CAP_MP_STATE:
888
	case KVM_CAP_SYNC_MMU:
889 890
		r = 1;
		break;
891 892 893
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
894 895 896
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
897 898 899
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
900 901 902
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
903 904 905
	case KVM_CAP_PV_MMU:
		r = !tdp_enabled;
		break;
906 907 908 909 910 911 912 913
	default:
		r = 0;
		break;
	}
	return r;

}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
966 967 968 969 970 971 972
	default:
		r = -EINVAL;
	}
out:
	return r;
}

973 974 975
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
976
	kvm_write_guest_time(vcpu);
977 978 979 980 981
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
982
	kvm_put_guest_fpu(vcpu);
983 984
}

985
static int is_efer_nx(void)
986 987 988 989
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
990 991 992 993 994 995 996 997
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

998
	entry = NULL;
999 1000
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
1001 1002 1003 1004 1005
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
1006
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1007 1008 1009 1010 1011
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

1012
/* when an old userspace process fills a new kernel module */
1013 1014 1015
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
1056 1057 1058 1059 1060 1061 1062
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
1063
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1064
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1065
		goto out;
1066
	vcpu->arch.cpuid_nent = cpuid->nent;
1067 1068 1069 1070 1071 1072
	return 0;

out:
	return r;
}

1073 1074 1075 1076 1077 1078 1079
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1080
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1081 1082
		goto out;
	r = -EFAULT;
1083 1084
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1085 1086 1087 1088
		goto out;
	return 0;

out:
1089
	cpuid->nent = vcpu->arch.cpuid_nent;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1172
		int i, cache_type;
1173 1174 1175

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1176 1177
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1178 1179
			if (!cache_type)
				break;
1180 1181
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1182 1183 1184 1185 1186 1187
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1188
		int i, level_type;
1189 1190 1191

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1192 1193
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1194 1195
			if (!level_type)
				break;
1196 1197
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1214
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1255 1256 1257 1258
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1259
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1260 1261 1262 1263 1264 1265 1266 1267 1268
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1269
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1270 1271 1272 1273 1274 1275
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1285 1286
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1287 1288 1289 1290 1291 1292

	vcpu_put(vcpu);

	return 0;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1389 1390 1391 1392 1393 1394
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1423 1424 1425 1426 1427 1428 1429
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1446
	down_write(&kvm->slots_lock);
1447 1448

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1449
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1450

1451
	up_write(&kvm->slots_lock);
1452 1453 1454 1455 1456
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1457
	return kvm->arch.n_alloc_mmu_pages;
1458 1459
}

1460 1461 1462 1463 1464
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1465 1466
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1467 1468 1469 1470 1471 1472 1473
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1500
	down_write(&kvm->slots_lock);
1501
	spin_lock(&kvm->mmu_lock);
1502

1503
	p = &kvm->arch.aliases[alias->slot];
1504 1505 1506 1507 1508
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1509
		if (kvm->arch.aliases[n - 1].npages)
1510
			break;
1511
	kvm->arch.naliases = n;
1512

1513
	spin_unlock(&kvm->mmu_lock);
1514 1515
	kvm_mmu_zap_all(kvm);

1516
	up_write(&kvm->slots_lock);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
	return r;
}

static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
{
	int r = 0;

	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
	return r;
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1609
	down_write(&kvm->slots_lock);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1625
	up_write(&kvm->slots_lock);
1626 1627 1628
	return r;
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1679 1680
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1681 1682
			r = kvm_ioapic_init(kvm);
			if (r) {
1683 1684
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1685 1686 1687 1688 1689
				goto out;
			}
		} else
			goto out;
		break;
S
Sheng Yang 已提交
1690 1691 1692 1693 1694 1695
	case KVM_CREATE_PIT:
		r = -ENOMEM;
		kvm->arch.vpit = kvm_create_pit(kvm);
		if (kvm->arch.vpit)
			r = 0;
		break;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1708
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	case KVM_GET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_get_pit(kvm, &ps);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &ps, sizeof ps))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_PIT: {
		struct kvm_pit_state ps;
		r = -EFAULT;
		if (copy_from_user(&ps, argp, sizeof ps))
			goto out;
		r = -ENXIO;
		if (!kvm->arch.vpit)
			goto out;
		r = kvm_vm_ioctl_set_pit(kvm, &ps);
		if (r)
			goto out;
		r = 0;
		break;
	}
1782 1783 1784 1785 1786 1787 1788
	default:
		;
	}
out:
	return r;
}

1789
static void kvm_init_msr_list(void)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

1804 1805 1806 1807
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1808 1809
						gpa_t addr, int len,
						int is_write)
1810 1811 1812
{
	struct kvm_io_device *dev;

1813 1814
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
1815
		if (dev->in_range(dev, addr, len, is_write))
1816 1817 1818 1819 1820 1821 1822
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1823 1824
						gpa_t addr, int len,
						int is_write)
1825 1826 1827
{
	struct kvm_io_device *dev;

1828
	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1829
	if (dev == NULL)
1830 1831
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
					  is_write);
1832 1833 1834 1835 1836 1837 1838 1839 1840
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
1841
	int r = X86EMUL_CONTINUE;
1842 1843

	while (bytes) {
1844
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1845 1846 1847 1848
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

1849 1850 1851 1852
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
1853
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1854 1855 1856 1857
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
1858 1859 1860 1861 1862

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
1863 1864
out:
	return r;
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

1882
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1898
	mutex_lock(&vcpu->kvm->lock);
1899
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1900 1901
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1902
		mutex_unlock(&vcpu->kvm->lock);
1903 1904
		return X86EMUL_CONTINUE;
	}
1905
	mutex_unlock(&vcpu->kvm->lock);
1906 1907 1908 1909 1910 1911 1912 1913 1914

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

1915
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1916
			  const void *val, int bytes)
1917 1918 1919 1920
{
	int ret;

	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1921
	if (ret < 0)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		return 0;
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
1933 1934 1935
	gpa_t                 gpa;

	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1936 1937

	if (gpa == UNMAPPED_GVA) {
1938
		kvm_inject_page_fault(vcpu, addr, 2);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1953
	mutex_lock(&vcpu->kvm->lock);
1954
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1955 1956
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1957
		mutex_unlock(&vcpu->kvm->lock);
1958 1959
		return X86EMUL_CONTINUE;
	}
1960
	mutex_unlock(&vcpu->kvm->lock);
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
2004 2005 2006
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
2007
		gpa_t gpa;
2008
		struct page *page;
A
Andrew Morton 已提交
2009
		char *kaddr;
2010 2011
		u64 val;

2012 2013
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

2014 2015 2016 2017 2018 2019 2020 2021
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
2022 2023

		down_read(&current->mm->mmap_sem);
2024
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2025 2026
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
2027 2028 2029
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
2030 2031
		kvm_release_page_dirty(page);
	}
2032
emul_write:
2033 2034
#endif

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
J
Joerg Roedel 已提交
2050
	KVMTRACE_0D(CLTS, vcpu, handler);
2051
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
2064
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	u8 opcodes[4];
2085
	unsigned long rip = kvm_rip_read(vcpu);
2086 2087
	unsigned long rip_linear;

2088
	if (!printk_ratelimit())
2089 2090
		return;

2091 2092
	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

2093 2094 2095 2096 2097 2098 2099
	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

2100
static struct x86_emulate_ops emulate_ops = {
2101 2102 2103 2104 2105 2106
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

2107 2108 2109 2110 2111 2112 2113 2114
static void cache_all_regs(struct kvm_vcpu *vcpu)
{
	kvm_register_read(vcpu, VCPU_REGS_RAX);
	kvm_register_read(vcpu, VCPU_REGS_RSP);
	kvm_register_read(vcpu, VCPU_REGS_RIP);
	vcpu->arch.regs_dirty = ~0;
}

2115 2116 2117 2118
int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
2119
			int emulation_type)
2120 2121
{
	int r;
2122
	struct decode_cache *c;
2123

2124
	vcpu->arch.mmio_fault_cr2 = cr2;
2125 2126 2127 2128 2129 2130 2131
	/*
	 * TODO: fix x86_emulate.c to use guest_read/write_register
	 * instead of direct ->regs accesses, can save hundred cycles
	 * on Intel for instructions that don't read/change RSP, for
	 * for example.
	 */
	cache_all_regs(vcpu);
2132 2133

	vcpu->mmio_is_write = 0;
2134
	vcpu->arch.pio.string = 0;
2135

2136
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2137 2138 2139
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2140 2141 2142 2143
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2144 2145 2146 2147
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2148
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2159
		++vcpu->stat.insn_emulation;
2160
		if (r)  {
2161
			++vcpu->stat.insn_emulation_fail;
2162 2163 2164 2165 2166 2167
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2168
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2169

2170
	if (vcpu->arch.pio.string)
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

2191
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2202 2203 2204 2205
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2206 2207 2208 2209
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2210 2211 2212 2213 2214
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2215
	void *p = vcpu->arch.pio_data;
2216 2217
	void *q;
	unsigned bytes;
2218
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2219

2220
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2221 2222 2223 2224 2225
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2226 2227 2228
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2229 2230 2231
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2232
	q -= vcpu->arch.pio.guest_page_offset;
2233 2234 2235 2236 2237 2238 2239
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2240
	struct kvm_pio_request *io = &vcpu->arch.pio;
2241 2242
	long delta;
	int r;
2243
	unsigned long val;
2244 2245

	if (!io->string) {
2246 2247 2248 2249 2250
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
			memcpy(&val, vcpu->arch.pio_data, io->size);
			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
		}
2251 2252 2253
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
2254
			if (r)
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
				return r;
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2265 2266 2267
			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
			val -= delta;
			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2268 2269 2270 2271
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
2272 2273 2274 2275 2276 2277 2278 2279 2280
		if (io->in) {
			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
		} else {
			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
			val += delta;
			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
		}
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	}

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2296 2297 2298
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2299 2300
				  pd);
	else
2301 2302
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2303 2304 2305 2306 2307 2308 2309
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2310 2311
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2325 2326
					       gpa_t addr, int len,
					       int is_write)
2327
{
2328
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2329 2330 2331 2332 2333 2334
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;
2335
	unsigned long val;
2336 2337 2338

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2339
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2340
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2341 2342 2343 2344 2345 2346 2347
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2348

F
Feng (Eric) Liu 已提交
2349 2350 2351 2352 2353 2354 2355
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2356 2357
	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
	memcpy(vcpu->arch.pio_data, &val, 4);
2358 2359 2360

	kvm_x86_ops->skip_emulated_instruction(vcpu);

2361
	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2362
	if (pio_dev) {
2363
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2383
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2384
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2385 2386 2387 2388 2389 2390 2391
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2392

F
Feng (Eric) Liu 已提交
2393 2394 2395 2396 2397 2398 2399
	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
			    handler);
	else
		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
			    handler);

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2424
		kvm_inject_gp(vcpu, 0);
2425 2426 2427
		return 1;
	}
	vcpu->run->io.count = now;
2428
	vcpu->arch.pio.cur_count = now;
2429

2430
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2431 2432 2433 2434
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2435
		vcpu->arch.pio.guest_pages[i] = page;
2436
		if (!page) {
2437
			kvm_inject_gp(vcpu, 0);
2438 2439 2440 2441 2442
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

2443 2444 2445
	pio_dev = vcpu_find_pio_dev(vcpu, port,
				    vcpu->arch.pio.cur_count,
				    !vcpu->arch.pio.in);
2446
	if (!vcpu->arch.pio.in) {
2447 2448 2449 2450 2451
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2452
			if (vcpu->arch.pio.count == 0)
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2464
int kvm_arch_init(void *opaque)
2465
{
2466
	int r;
2467 2468 2469 2470
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2471 2472
		r = -EEXIST;
		goto out;
2473 2474 2475 2476
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2477 2478
		r = -EOPNOTSUPP;
		goto out;
2479 2480 2481
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2482 2483
		r = -EOPNOTSUPP;
		goto out;
2484 2485
	}

2486 2487 2488 2489 2490 2491
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2492
	kvm_x86_ops = ops;
2493
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
S
Sheng Yang 已提交
2494 2495 2496
	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
			PT_DIRTY_MASK, PT64_NX_MASK, 0);
2497
	return 0;
2498 2499 2500

out:
	return r;
2501
}
2502

2503 2504 2505
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2506 2507
	kvm_mmu_module_exit();
}
2508

2509 2510 2511
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
F
Feng (Eric) Liu 已提交
2512
	KVMTRACE_0D(HLT, vcpu, handler);
2513
	if (irqchip_in_kernel(vcpu->kvm)) {
2514
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2515
		up_read(&vcpu->kvm->slots_lock);
2516
		kvm_vcpu_block(vcpu);
2517
		down_read(&vcpu->kvm->slots_lock);
2518
		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2519 2520 2521 2522 2523 2524 2525 2526 2527
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

2528 2529 2530 2531 2532 2533 2534 2535 2536
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
			   unsigned long a1)
{
	if (is_long_mode(vcpu))
		return a0;
	else
		return a0 | ((gpa_t)a1 << 32);
}

2537 2538 2539
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;
2540
	int r = 1;
2541

2542 2543 2544 2545 2546
	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2547

F
Feng (Eric) Liu 已提交
2548 2549
	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);

2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2559 2560 2561
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2562 2563 2564
	case KVM_HC_MMU_OP:
		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
		break;
2565 2566 2567 2568
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2569
	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
A
Amit Shah 已提交
2570
	++vcpu->stat.hypercalls;
2571
	return r;
2572 2573 2574 2575 2576 2577 2578
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;
2579
	unsigned long rip = kvm_rip_read(vcpu);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2590
	if (emulator_write_emulated(rip, instruction, 3, vcpu)
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2619
	kvm_lmsw(vcpu, msw);
2620 2621 2622 2623 2624
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
J
Joerg Roedel 已提交
2625 2626
	unsigned long value;

2627 2628 2629
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
J
Joerg Roedel 已提交
2630 2631
		value = vcpu->arch.cr0;
		break;
2632
	case 2:
J
Joerg Roedel 已提交
2633 2634
		value = vcpu->arch.cr2;
		break;
2635
	case 3:
J
Joerg Roedel 已提交
2636 2637
		value = vcpu->arch.cr3;
		break;
2638
	case 4:
J
Joerg Roedel 已提交
2639 2640
		value = vcpu->arch.cr4;
		break;
2641
	case 8:
J
Joerg Roedel 已提交
2642 2643
		value = kvm_get_cr8(vcpu);
		break;
2644
	default:
2645
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2646 2647
		return 0;
	}
J
Joerg Roedel 已提交
2648 2649 2650 2651
	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
		    (u32)((u64)value >> 32), handler);

	return value;
2652 2653 2654 2655 2656
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
J
Joerg Roedel 已提交
2657 2658 2659
	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
		    (u32)((u64)val >> 32), handler);

2660 2661
	switch (cr) {
	case 0:
2662
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2663 2664 2665
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2666
		vcpu->arch.cr2 = val;
2667 2668
		break;
	case 3:
2669
		kvm_set_cr3(vcpu, val);
2670 2671
		break;
	case 4:
2672
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2673
		break;
2674
	case 8:
2675
		kvm_set_cr8(vcpu, val & 0xfUL);
2676
		break;
2677
	default:
2678
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2679 2680 2681
	}
}

2682 2683
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2684 2685
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2686 2687 2688 2689

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2690
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2714 2715 2716
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2717 2718
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2719

2720 2721 2722 2723 2724 2725
	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2726
	best = NULL;
2727 2728
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2729 2730 2731
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
2743 2744 2745 2746
		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2747 2748
	}
	kvm_x86_ops->skip_emulated_instruction(vcpu);
F
Feng (Eric) Liu 已提交
2749
	KVMTRACE_5D(CPUID, vcpu, function,
2750 2751 2752 2753
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
		    (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2754 2755
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2756

2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
2766
	return (!vcpu->arch.irq_summary &&
2767
		kvm_run->request_interrupt_window &&
2768
		vcpu->arch.interrupt_window_open &&
2769 2770 2771 2772 2773 2774 2775
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2776
	kvm_run->cr8 = kvm_get_cr8(vcpu);
2777 2778 2779 2780 2781
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
2782 2783
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
2784 2785
}

A
Avi Kivity 已提交
2786 2787 2788 2789 2790 2791 2792 2793
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

2794
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
2795
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2796
	up_read(&current->mm->mmap_sem);
2797 2798

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

2808
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2809 2810
	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2811
	up_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2812 2813
}

2814 2815 2816 2817
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

2818
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2819
		pr_debug("vcpu %d received sipi with vector # %x\n",
2820
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2821 2822 2823 2824
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
2825
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2826 2827
	}

2828
	down_read(&vcpu->kvm->slots_lock);
A
Avi Kivity 已提交
2829 2830
	vapic_enter(vcpu);

2831 2832 2833 2834 2835
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
2836 2837 2838 2839
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

2840 2841 2842 2843
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

2844 2845
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
M
Marcelo Tosatti 已提交
2846
			__kvm_migrate_timers(vcpu);
2847 2848
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);
A
Avi Kivity 已提交
2849 2850 2851 2852 2853 2854
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
2855 2856 2857 2858 2859
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
2860
	}
A
Avi Kivity 已提交
2861

2862
	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2863 2864 2865 2866 2867 2868 2869 2870 2871
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

2872
	if (vcpu->requests || need_resched()) {
2873 2874 2875 2876 2877 2878
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

2879 2880 2881 2882 2883 2884 2885 2886 2887
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

2888 2889 2890 2891 2892 2893 2894
	vcpu->guest_mode = 1;
	/*
	 * Make sure that guest_mode assignment won't happen after
	 * testing the pending IRQ vector bitmap.
	 */
	smp_wmb();

2895
	if (vcpu->arch.exception.pending)
2896 2897
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
2898
		kvm_x86_ops->inject_pending_irq(vcpu);
2899
	else
2900 2901
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
2902 2903
	kvm_lapic_sync_to_vapic(vcpu);

2904 2905
	up_read(&vcpu->kvm->slots_lock);

2906 2907 2908
	kvm_guest_enter();


F
Feng (Eric) Liu 已提交
2909
	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

2929 2930
	down_read(&vcpu->kvm->slots_lock);

2931 2932 2933 2934
	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
2935 2936
		unsigned long rip = kvm_rip_read(vcpu);
		profile_hit(KVM_PROFILING, (void *)rip);
2937 2938
	}

2939 2940
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
2941

A
Avi Kivity 已提交
2942 2943
	kvm_lapic_sync_from_vapic(vcpu);

2944 2945 2946 2947 2948 2949 2950 2951 2952
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
2953
		if (!need_resched())
2954 2955 2956 2957
			goto again;
	}

out:
2958
	up_read(&vcpu->kvm->slots_lock);
2959 2960
	if (r > 0) {
		kvm_resched(vcpu);
2961
		down_read(&vcpu->kvm->slots_lock);
2962 2963 2964 2965 2966
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
2967 2968
	vapic_exit(vcpu);

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

2979 2980 2981
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2982
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2983
		kvm_vcpu_block(vcpu);
2984 2985
		r = -EAGAIN;
		goto out;
2986 2987 2988 2989
	}

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
2990
		kvm_set_cr8(vcpu, kvm_run->cr8);
2991

2992
	if (vcpu->arch.pio.cur_count) {
2993 2994 2995 2996 2997 2998 2999 3000 3001
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
3002 3003

		down_read(&vcpu->kvm->slots_lock);
3004
		r = emulate_instruction(vcpu, kvm_run,
3005 3006
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
3007
		up_read(&vcpu->kvm->slots_lock);
3008 3009 3010 3011 3012 3013 3014 3015 3016
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
3017 3018 3019
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
		kvm_register_write(vcpu, VCPU_REGS_RAX,
				     kvm_run->hypercall.ret);
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3035 3036 3037 3038 3039 3040 3041 3042
	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3043
#ifdef CONFIG_X86_64
3044 3045 3046 3047 3048 3049 3050 3051
	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3052 3053
#endif

3054
	regs->rip = kvm_rip_read(vcpu);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

3072 3073 3074 3075 3076 3077 3078 3079
	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3080
#ifdef CONFIG_X86_64
3081 3082 3083 3084 3085 3086 3087 3088 3089
	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);

3090 3091
#endif

3092
	kvm_rip_write(vcpu, regs->rip);
3093 3094 3095
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);


3096 3097
	vcpu->arch.exception.pending = false;

3098 3099 3100 3101 3102
	vcpu_put(vcpu);

	return 0;
}

3103 3104
void kvm_get_segment(struct kvm_vcpu *vcpu,
		     struct kvm_segment *var, int seg)
3105
{
3106
	kvm_x86_ops->get_segment(vcpu, var, seg);
3107 3108 3109 3110 3111 3112
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

3113
	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

3127 3128 3129 3130 3131 3132
	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3133

3134 3135
	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3136 3137 3138 3139 3140 3141 3142 3143 3144

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3145 3146 3147 3148
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
3149
	sregs->cr8 = kvm_get_cr8(vcpu);
3150
	sregs->efer = vcpu->arch.shadow_efer;
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
3161
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3162 3163 3164 3165 3166 3167 3168
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	vcpu_put(vcpu);
	return 0;
}

3187
static void kvm_set_segment(struct kvm_vcpu *vcpu,
3188 3189
			struct kvm_segment *var, int seg)
{
3190
	kvm_x86_ops->set_segment(vcpu, var, seg);
3191 3192
}

3193 3194 3195 3196 3197 3198 3199 3200
static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
				   struct kvm_segment *kvm_desct)
{
	kvm_desct->base = seg_desc->base0;
	kvm_desct->base |= seg_desc->base1 << 16;
	kvm_desct->base |= seg_desc->base2 << 24;
	kvm_desct->limit = seg_desc->limit0;
	kvm_desct->limit |= seg_desc->limit << 16;
3201 3202 3203 3204
	if (seg_desc->g) {
		kvm_desct->limit <<= 12;
		kvm_desct->limit |= 0xfff;
	}
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	kvm_desct->selector = selector;
	kvm_desct->type = seg_desc->type;
	kvm_desct->present = seg_desc->p;
	kvm_desct->dpl = seg_desc->dpl;
	kvm_desct->db = seg_desc->d;
	kvm_desct->s = seg_desc->s;
	kvm_desct->l = seg_desc->l;
	kvm_desct->g = seg_desc->g;
	kvm_desct->avl = seg_desc->avl;
	if (!selector)
		kvm_desct->unusable = 1;
	else
		kvm_desct->unusable = 0;
	kvm_desct->padding = 0;
}

static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
					   u16 selector,
					   struct descriptor_table *dtable)
{
	if (selector & 1 << 2) {
		struct kvm_segment kvm_seg;

3228
		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

		if (kvm_seg.unusable)
			dtable->limit = 0;
		else
			dtable->limit = kvm_seg.limit;
		dtable->base = kvm_seg.base;
	}
	else
		kvm_x86_ops->get_gdt(vcpu, dtable);
}

/* allowed just for 8 bytes segments */
static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3244
	gpa_t gpa;
3245 3246 3247 3248 3249 3250 3251 3252 3253
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7) {
		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
		return 1;
	}
3254 3255 3256
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3257 3258 3259 3260 3261 3262
}

/* allowed just for 8 bytes segments */
static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
					 struct desc_struct *seg_desc)
{
3263
	gpa_t gpa;
3264 3265 3266 3267 3268 3269 3270
	struct descriptor_table dtable;
	u16 index = selector >> 3;

	get_segment_descritptor_dtable(vcpu, selector, &dtable);

	if (dtable.limit < index * 8 + 7)
		return 1;
3271 3272 3273
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
	gpa += index * 8;
	return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
}

static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
			     struct desc_struct *seg_desc)
{
	u32 base_addr;

	base_addr = seg_desc->base0;
	base_addr |= (seg_desc->base1 << 16);
	base_addr |= (seg_desc->base2 << 24);

3285
	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3286 3287 3288 3289 3290 3291
}

static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
{
	struct kvm_segment kvm_seg;

3292
	kvm_get_segment(vcpu, &kvm_seg, seg);
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
	return kvm_seg.selector;
}

static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
						u16 selector,
						struct kvm_segment *kvm_seg)
{
	struct desc_struct seg_desc;

	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
		return 1;
	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
	return 0;
}

3308 3309
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
				int type_bits, int seg)
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
{
	struct kvm_segment kvm_seg;

	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
		return 1;
	kvm_seg.type |= type_bits;

	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
	    seg != VCPU_SREG_LDTR)
		if (!kvm_seg.s)
			kvm_seg.unusable = 1;

3322
	kvm_set_segment(vcpu, &kvm_seg, seg);
3323 3324 3325 3326 3327 3328 3329
	return 0;
}

static void save_state_to_tss32(struct kvm_vcpu *vcpu,
				struct tss_segment_32 *tss)
{
	tss->cr3 = vcpu->arch.cr3;
3330
	tss->eip = kvm_rip_read(vcpu);
3331
	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3332 3333 3334 3335 3336 3337 3338 3339
	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss32(struct kvm_vcpu *vcpu,
				  struct tss_segment_32 *tss)
{
	kvm_set_cr3(vcpu, tss->cr3);

3355
	kvm_rip_write(vcpu, tss->eip);
3356 3357
	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);

3358 3359 3360 3361 3362 3363 3364 3365
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3366

3367
	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3368 3369
		return 1;

3370
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3371 3372
		return 1;

3373
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3374 3375
		return 1;

3376
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3377 3378
		return 1;

3379
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3380 3381
		return 1;

3382
	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3383 3384
		return 1;

3385
	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3386 3387 3388 3389 3390 3391 3392
		return 1;
	return 0;
}

static void save_state_to_tss16(struct kvm_vcpu *vcpu,
				struct tss_segment_16 *tss)
{
3393
	tss->ip = kvm_rip_read(vcpu);
3394
	tss->flag = kvm_x86_ops->get_rflags(vcpu);
3395 3396 3397 3398 3399 3400 3401 3402
	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
}

static int load_state_from_tss16(struct kvm_vcpu *vcpu,
				 struct tss_segment_16 *tss)
{
3415
	kvm_rip_write(vcpu, tss->ip);
3416
	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3417 3418 3419 3420 3421 3422 3423 3424
	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3425

3426
	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3427 3428
		return 1;

3429
	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3430 3431
		return 1;

3432
	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3433 3434
		return 1;

3435
	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3436 3437
		return 1;

3438
	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3439 3440 3441 3442
		return 1;
	return 0;
}

3443
static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3444
		       u32 old_tss_base,
3445 3446 3447 3448 3449
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_16 tss_segment_16;
	int ret = 0;

3450 3451
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			   sizeof tss_segment_16))
3452 3453 3454 3455
		goto out;

	save_state_to_tss16(vcpu, &tss_segment_16);

3456 3457
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
			    sizeof tss_segment_16))
3458
		goto out;
3459 3460 3461 3462 3463

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_16, sizeof tss_segment_16))
		goto out;

3464 3465 3466 3467 3468 3469 3470 3471
	if (load_state_from_tss16(vcpu, &tss_segment_16))
		goto out;

	ret = 1;
out:
	return ret;
}

3472
static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3473
		       u32 old_tss_base,
3474 3475 3476 3477 3478
		       struct desc_struct *nseg_desc)
{
	struct tss_segment_32 tss_segment_32;
	int ret = 0;

3479 3480
	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			   sizeof tss_segment_32))
3481 3482 3483 3484
		goto out;

	save_state_to_tss32(vcpu, &tss_segment_32);

3485 3486 3487 3488 3489 3490
	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
			    sizeof tss_segment_32))
		goto out;

	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
			   &tss_segment_32, sizeof tss_segment_32))
3491
		goto out;
3492

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	if (load_state_from_tss32(vcpu, &tss_segment_32))
		goto out;

	ret = 1;
out:
	return ret;
}

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
{
	struct kvm_segment tr_seg;
	struct desc_struct cseg_desc;
	struct desc_struct nseg_desc;
	int ret = 0;
3507 3508
	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3509

3510
	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3511

3512 3513 3514
	/* FIXME: Handle errors. Failure to read either TSS or their
	 * descriptors should generate a pagefault.
	 */
3515 3516 3517
	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
		goto out;

3518
	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		goto out;

	if (reason != TASK_SWITCH_IRET) {
		int cpl;

		cpl = kvm_x86_ops->get_cpl(vcpu);
		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
			return 1;
		}
	}

	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
		return 1;
	}

	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3537
		cseg_desc.type &= ~(1 << 1); //clear the B flag
3538
		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	}

	if (reason == TASK_SWITCH_IRET) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
	}

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	if (nseg_desc.type & 8)
3549
		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3550 3551
					 &nseg_desc);
	else
3552
		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3553 3554 3555 3556 3557 3558 3559 3560
					 &nseg_desc);

	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
	}

	if (reason != TASK_SWITCH_IRET) {
3561
		nseg_desc.type |= (1 << 1);
3562 3563 3564 3565 3566 3567 3568
		save_guest_segment_descriptor(vcpu, tss_selector,
					      &nseg_desc);
	}

	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
	tr_seg.type = 11;
3569
	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3570 3571 3572 3573 3574
out:
	return ret;
}
EXPORT_SYMBOL_GPL(kvm_task_switch);

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3591 3592 3593
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3594

3595
	kvm_set_cr8(vcpu, sregs->cr8);
3596

3597
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3598 3599 3600 3601 3602
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3603
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3604
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3605
	vcpu->arch.cr0 = sregs->cr0;
3606

3607
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3608 3609
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3610
		load_pdptrs(vcpu, vcpu->arch.cr3);
3611 3612 3613 3614 3615

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3616 3617 3618 3619 3620 3621
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

3635 3636 3637 3638 3639 3640
	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3641

3642 3643
	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3695
	down_read(&vcpu->kvm->slots_lock);
3696
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3697
	up_read(&vcpu->kvm->slots_lock);
3698 3699 3700 3701 3702 3703 3704 3705 3706
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3707 3708
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3709
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3729
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

3751 3752 3753 3754 3755 3756 3757
	/*
	 * Touch the fpu the first time in non atomic context as if
	 * this is the first fpu instruction the exception handler
	 * will fire before the instruction returns and it'll have to
	 * allocate ram with GFP_KERNEL.
	 */
	if (!used_math())
3758
		kvm_fx_save(&vcpu->arch.host_fx_image);
3759

3760 3761
	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
3762 3763 3764 3765
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_finit();
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
3766 3767
	preempt_enable();

3768
	vcpu->arch.cr0 |= X86_CR0_ET;
3769
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3770 3771
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
3782 3783
	kvm_fx_save(&vcpu->arch.host_fx_image);
	kvm_fx_restore(&vcpu->arch.guest_fx_image);
3784 3785 3786 3787 3788 3789 3790 3791 3792
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
3793 3794
	kvm_fx_save(&vcpu->arch.guest_fx_image);
	kvm_fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
3795
	++vcpu->stat.fpu_reload;
3796 3797
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3798 3799 3800 3801 3802 3803 3804 3805 3806

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
3807 3808
	return kvm_x86_ops->vcpu_create(kvm, id);
}
3809

3810 3811 3812
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
3813 3814

	/* We do fxsave: this must be aligned. */
3815
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3816 3817 3818 3819 3820 3821 3822 3823 3824

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

3825
	return 0;
3826 3827
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
3828
	return r;
3829 3830
}

3831
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

3879
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3880
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3881
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3882
	else
3883
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3884 3885 3886 3887 3888 3889

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
3890
	vcpu->arch.pio_data = page_address(page);
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
3907
	free_page((unsigned long)vcpu->arch.pio_data);
3908 3909 3910 3911 3912 3913 3914
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
3915
	down_read(&vcpu->kvm->slots_lock);
3916
	kvm_mmu_destroy(vcpu);
3917
	up_read(&vcpu->kvm->slots_lock);
3918
	free_page((unsigned long)vcpu->arch.pio_data);
3919
}
3920 3921 3922 3923 3924 3925 3926 3927

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

3928
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
S
Sheng Yang 已提交
3961
	kvm_free_pit(kvm);
3962 3963
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
3964 3965
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
3966 3967
	if (kvm->arch.apic_access_page)
		put_page(kvm->arch.apic_access_page);
3968 3969
	if (kvm->arch.ept_identity_pagetable)
		put_page(kvm->arch.ept_identity_pagetable);
3970 3971
	kfree(kvm);
}
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
3986 3987
			unsigned long userspace_addr;

3988
			down_write(&current->mm->mmap_sem);
3989 3990 3991 3992 3993
			userspace_addr = do_mmap(NULL, 0,
						 npages * PAGE_SIZE,
						 PROT_READ | PROT_WRITE,
						 MAP_SHARED | MAP_ANONYMOUS,
						 0);
3994
			up_write(&current->mm->mmap_sem);
3995

3996 3997 3998 3999 4000 4001 4002
			if (IS_ERR((void *)userspace_addr))
				return PTR_ERR((void *)userspace_addr);

			/* set userspace_addr atomically for kvm_hva_to_rmapp */
			spin_lock(&kvm->mmu_lock);
			memslot->userspace_addr = userspace_addr;
			spin_unlock(&kvm->mmu_lock);
4003 4004 4005 4006
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

4007
				down_write(&current->mm->mmap_sem);
4008 4009
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
4010
				up_write(&current->mm->mmap_sem);
4011 4012 4013 4014 4015 4016 4017 4018
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

4019
	if (!kvm->arch.n_requested_mmu_pages) {
4020 4021 4022 4023 4024 4025 4026 4027 4028
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
4029

4030 4031 4032 4033 4034
void kvm_arch_flush_shadow(struct kvm *kvm)
{
	kvm_mmu_zap_all(kvm);
}

4035 4036
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
4037 4038
	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4039
}
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;
4052
	int cpu = get_cpu();
4053 4054 4055 4056 4057

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
4058 4059 4060 4061 4062
	/*
	 * We may be called synchronously with irqs disabled in guest mode,
	 * So need not to call smp_call_function_single() in that case.
	 */
	if (vcpu->guest_mode && vcpu->cpu != cpu)
4063
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4064
	put_cpu();
4065
}