x86.c 80.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * derived from drivers/kvm/kvm_main.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

17
#include <linux/kvm_host.h>
18
#include "irq.h"
19
#include "mmu.h"
20

21
#include <linux/clocksource.h>
22 23 24
#include <linux/kvm.h>
#include <linux/fs.h>
#include <linux/vmalloc.h>
25
#include <linux/module.h>
26
#include <linux/mman.h>
27
#include <linux/highmem.h>
28 29

#include <asm/uaccess.h>
30
#include <asm/msr.h>
31
#include <asm/desc.h>
32

33
#define MAX_IO_MSRS 256
34 35 36 37 38 39 40 41 42 43 44
#define CR0_RESERVED_BITS						\
	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS						\
	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
45 46 47 48 49 50 51 52 53
/* EFER defaults:
 * - enable syscall per default because its emulated by KVM
 * - enable LME and LMA per default on 64 bit KVM
 */
#ifdef CONFIG_X86_64
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
#else
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
#endif
54

55 56
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
57

58 59 60
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries);

61 62
struct kvm_x86_ops *kvm_x86_ops;

63
struct kvm_stats_debugfs_item debugfs_entries[] = {
64 65 66 67 68 69 70 71 72 73 74
	{ "pf_fixed", VCPU_STAT(pf_fixed) },
	{ "pf_guest", VCPU_STAT(pf_guest) },
	{ "tlb_flush", VCPU_STAT(tlb_flush) },
	{ "invlpg", VCPU_STAT(invlpg) },
	{ "exits", VCPU_STAT(exits) },
	{ "io_exits", VCPU_STAT(io_exits) },
	{ "mmio_exits", VCPU_STAT(mmio_exits) },
	{ "signal_exits", VCPU_STAT(signal_exits) },
	{ "irq_window", VCPU_STAT(irq_window_exits) },
	{ "halt_exits", VCPU_STAT(halt_exits) },
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
A
Amit Shah 已提交
75
	{ "hypercalls", VCPU_STAT(hypercalls) },
76 77 78 79 80 81 82
	{ "request_irq", VCPU_STAT(request_irq_exits) },
	{ "irq_exits", VCPU_STAT(irq_exits) },
	{ "host_state_reload", VCPU_STAT(host_state_reload) },
	{ "efer_reload", VCPU_STAT(efer_reload) },
	{ "fpu_reload", VCPU_STAT(fpu_reload) },
	{ "insn_emulation", VCPU_STAT(insn_emulation) },
	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
A
Avi Kivity 已提交
83 84 85 86 87 88
	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
	{ "mmu_flooded", VM_STAT(mmu_flooded) },
	{ "mmu_recycled", VM_STAT(mmu_recycled) },
A
Avi Kivity 已提交
89
	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
90
	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
M
Marcelo Tosatti 已提交
91
	{ "largepages", VM_STAT(lpages) },
92 93 94 95
	{ NULL }
};


96 97 98
unsigned long segment_base(u16 selector)
{
	struct descriptor_table gdt;
99
	struct desc_struct *d;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	unsigned long table_base;
	unsigned long v;

	if (selector == 0)
		return 0;

	asm("sgdt %0" : "=m"(gdt));
	table_base = gdt.base;

	if (selector & 4) {           /* from ldt */
		u16 ldt_selector;

		asm("sldt %0" : "=g"(ldt_selector));
		table_base = segment_base(ldt_selector);
	}
115 116 117
	d = (struct desc_struct *)(table_base + (selector & ~7));
	v = d->base0 | ((unsigned long)d->base1 << 16) |
		((unsigned long)d->base2 << 24);
118
#ifdef CONFIG_X86_64
119 120
	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
121 122 123 124 125
#endif
	return v;
}
EXPORT_SYMBOL_GPL(segment_base);

126 127 128
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
{
	if (irqchip_in_kernel(vcpu->kvm))
129
		return vcpu->arch.apic_base;
130
	else
131
		return vcpu->arch.apic_base;
132 133 134 135 136 137 138 139 140
}
EXPORT_SYMBOL_GPL(kvm_get_apic_base);

void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
{
	/* TODO: reserve bits check */
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_base(vcpu, data);
	else
141
		vcpu->arch.apic_base = data;
142 143 144
}
EXPORT_SYMBOL_GPL(kvm_set_apic_base);

145 146
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
147 148 149 150
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = false;
	vcpu->arch.exception.nr = nr;
151 152 153
}
EXPORT_SYMBOL_GPL(kvm_queue_exception);

154 155 156 157
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
			   u32 error_code)
{
	++vcpu->stat.pf_guest;
J
Joerg Roedel 已提交
158 159 160 161 162 163 164 165 166 167
	if (vcpu->arch.exception.pending) {
		if (vcpu->arch.exception.nr == PF_VECTOR) {
			printk(KERN_DEBUG "kvm: inject_page_fault:"
					" double fault 0x%lx\n", addr);
			vcpu->arch.exception.nr = DF_VECTOR;
			vcpu->arch.exception.error_code = 0;
		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
			/* triple fault -> shutdown */
			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
		}
168 169
		return;
	}
170
	vcpu->arch.cr2 = addr;
171 172 173
	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
}

174 175
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
{
176 177 178 179 180
	WARN_ON(vcpu->arch.exception.pending);
	vcpu->arch.exception.pending = true;
	vcpu->arch.exception.has_error_code = true;
	vcpu->arch.exception.nr = nr;
	vcpu->arch.exception.error_code = error_code;
181 182 183 184 185
}
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);

static void __queue_exception(struct kvm_vcpu *vcpu)
{
186 187 188
	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
				     vcpu->arch.exception.has_error_code,
				     vcpu->arch.exception.error_code);
189 190
}

191 192 193 194 195 196 197 198 199
/*
 * Load the pae pdptrs.  Return true is they are all valid.
 */
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
	int i;
	int ret;
200
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
201

202
	down_read(&vcpu->kvm->slots_lock);
203 204 205 206 207 208 209 210 211 212 213 214 215 216
	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
				  offset * sizeof(u64), sizeof(pdpte));
	if (ret < 0) {
		ret = 0;
		goto out;
	}
	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
			ret = 0;
			goto out;
		}
	}
	ret = 1;

217
	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
218
out:
219
	up_read(&vcpu->kvm->slots_lock);
220 221 222

	return ret;
}
223
EXPORT_SYMBOL_GPL(load_pdptrs);
224

225 226
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
{
227
	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
228 229 230 231 232 233
	bool changed = true;
	int r;

	if (is_long_mode(vcpu) || !is_pae(vcpu))
		return false;

234
	down_read(&vcpu->kvm->slots_lock);
235
	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
236 237
	if (r < 0)
		goto out;
238
	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
239
out:
240
	up_read(&vcpu->kvm->slots_lock);
241 242 243 244

	return changed;
}

245
void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
246 247 248
{
	if (cr0 & CR0_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
249
		       cr0, vcpu->arch.cr0);
250
		kvm_inject_gp(vcpu, 0);
251 252 253 254 255
		return;
	}

	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
256
		kvm_inject_gp(vcpu, 0);
257 258 259 260 261 262
		return;
	}

	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
		       "and a clear PE flag\n");
263
		kvm_inject_gp(vcpu, 0);
264 265 266 267 268
		return;
	}

	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
#ifdef CONFIG_X86_64
269
		if ((vcpu->arch.shadow_efer & EFER_LME)) {
270 271 272 273 274
			int cs_db, cs_l;

			if (!is_pae(vcpu)) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while PAE is disabled\n");
275
				kvm_inject_gp(vcpu, 0);
276 277 278 279 280 281
				return;
			}
			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
			if (cs_l) {
				printk(KERN_DEBUG "set_cr0: #GP, start paging "
				       "in long mode while CS.L == 1\n");
282
				kvm_inject_gp(vcpu, 0);
283 284 285 286 287
				return;

			}
		} else
#endif
288
		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
289 290
			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
			       "reserved bits\n");
291
			kvm_inject_gp(vcpu, 0);
292 293 294 295 296 297
			return;
		}

	}

	kvm_x86_ops->set_cr0(vcpu, cr0);
298
	vcpu->arch.cr0 = cr0;
299 300 301 302

	kvm_mmu_reset_context(vcpu);
	return;
}
303
EXPORT_SYMBOL_GPL(kvm_set_cr0);
304

305
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
306
{
307
	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
308
}
309
EXPORT_SYMBOL_GPL(kvm_lmsw);
310

311
void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
312 313 314
{
	if (cr4 & CR4_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
315
		kvm_inject_gp(vcpu, 0);
316 317 318 319 320 321 322
		return;
	}

	if (is_long_mode(vcpu)) {
		if (!(cr4 & X86_CR4_PAE)) {
			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
			       "in long mode\n");
323
			kvm_inject_gp(vcpu, 0);
324 325 326
			return;
		}
	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
327
		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
328
		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
329
		kvm_inject_gp(vcpu, 0);
330 331 332 333 334
		return;
	}

	if (cr4 & X86_CR4_VMXE) {
		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
335
		kvm_inject_gp(vcpu, 0);
336 337 338
		return;
	}
	kvm_x86_ops->set_cr4(vcpu, cr4);
339
	vcpu->arch.cr4 = cr4;
340 341
	kvm_mmu_reset_context(vcpu);
}
342
EXPORT_SYMBOL_GPL(kvm_set_cr4);
343

344
void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
345
{
346
	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
347 348 349 350
		kvm_mmu_flush_tlb(vcpu);
		return;
	}

351 352 353
	if (is_long_mode(vcpu)) {
		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
354
			kvm_inject_gp(vcpu, 0);
355 356 357 358 359 360 361
			return;
		}
	} else {
		if (is_pae(vcpu)) {
			if (cr3 & CR3_PAE_RESERVED_BITS) {
				printk(KERN_DEBUG
				       "set_cr3: #GP, reserved bits\n");
362
				kvm_inject_gp(vcpu, 0);
363 364 365 366 367
				return;
			}
			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
				       "reserved bits\n");
368
				kvm_inject_gp(vcpu, 0);
369 370 371 372 373 374 375 376 377
				return;
			}
		}
		/*
		 * We don't check reserved bits in nonpae mode, because
		 * this isn't enforced, and VMware depends on this.
		 */
	}

378
	down_read(&vcpu->kvm->slots_lock);
379 380 381 382 383 384 385 386 387 388
	/*
	 * Does the new cr3 value map to physical memory? (Note, we
	 * catch an invalid cr3 even in real-mode, because it would
	 * cause trouble later on when we turn on paging anyway.)
	 *
	 * A real CPU would silently accept an invalid cr3 and would
	 * attempt to use it - with largely undefined (and often hard
	 * to debug) behavior on the guest side.
	 */
	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
389
		kvm_inject_gp(vcpu, 0);
390
	else {
391 392
		vcpu->arch.cr3 = cr3;
		vcpu->arch.mmu.new_cr3(vcpu);
393
	}
394
	up_read(&vcpu->kvm->slots_lock);
395
}
396
EXPORT_SYMBOL_GPL(kvm_set_cr3);
397

398
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
399 400 401
{
	if (cr8 & CR8_RESERVED_BITS) {
		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
402
		kvm_inject_gp(vcpu, 0);
403 404 405 406 407
		return;
	}
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_lapic_set_tpr(vcpu, cr8);
	else
408
		vcpu->arch.cr8 = cr8;
409
}
410
EXPORT_SYMBOL_GPL(kvm_set_cr8);
411

412
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
413 414 415 416
{
	if (irqchip_in_kernel(vcpu->kvm))
		return kvm_lapic_get_cr8(vcpu);
	else
417
		return vcpu->arch.cr8;
418
}
419
EXPORT_SYMBOL_GPL(kvm_get_cr8);
420

421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 *
 * This list is modified at module load time to reflect the
 * capabilities of the host cpu.
 */
static u32 msrs_to_save[] = {
	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
	MSR_K6_STAR,
#ifdef CONFIG_X86_64
	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
434
	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
435
	MSR_IA32_PERF_STATUS,
436 437 438 439 440 441 442 443
};

static unsigned num_msrs_to_save;

static u32 emulated_msrs[] = {
	MSR_IA32_MISC_ENABLE,
};

444 445
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
446
	if (efer & efer_reserved_bits) {
447 448
		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
		       efer);
449
		kvm_inject_gp(vcpu, 0);
450 451 452 453
		return;
	}

	if (is_paging(vcpu)
454
	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
455
		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
456
		kvm_inject_gp(vcpu, 0);
457 458 459 460 461 462
		return;
	}

	kvm_x86_ops->set_efer(vcpu, efer);

	efer &= ~EFER_LMA;
463
	efer |= vcpu->arch.shadow_efer & EFER_LMA;
464

465
	vcpu->arch.shadow_efer = efer;
466 467
}

468 469 470 471 472 473 474
void kvm_enable_efer_bits(u64 mask)
{
       efer_reserved_bits &= ~mask;
}
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);


475 476 477 478 479 480 481 482 483 484
/*
 * Writes msr value into into the appropriate "register".
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
}

485 486 487 488 489 490 491 492
/*
 * Adapt set_msr() to msr_io()'s calling convention
 */
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
	return kvm_set_msr(vcpu, index, *data);
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
{
	static int version;
	struct kvm_wall_clock wc;
	struct timespec wc_ts;

	if (!wall_clock)
		return;

	version++;

	down_read(&kvm->slots_lock);
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));

	wc_ts = current_kernel_time();
	wc.wc_sec = wc_ts.tv_sec;
	wc.wc_nsec = wc_ts.tv_nsec;
	wc.wc_version = version;

	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));

	version++;
	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
	up_read(&kvm->slots_lock);
}

static void kvm_write_guest_time(struct kvm_vcpu *v)
{
	struct timespec ts;
	unsigned long flags;
	struct kvm_vcpu_arch *vcpu = &v->arch;
	void *shared_kaddr;

	if ((!vcpu->time_page))
		return;

	/* Keep irq disabled to prevent changes to the clock */
	local_irq_save(flags);
	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
			  &vcpu->hv_clock.tsc_timestamp);
	ktime_get_ts(&ts);
	local_irq_restore(flags);

	/* With all the info we got, fill in the values */

	vcpu->hv_clock.system_time = ts.tv_nsec +
				     (NSEC_PER_SEC * (u64)ts.tv_sec);
	/*
	 * The interface expects us to write an even number signaling that the
	 * update is finished. Since the guest won't see the intermediate
	 * state, we just write "2" at the end
	 */
	vcpu->hv_clock.version = 2;

	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);

	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
		sizeof(vcpu->hv_clock));

	kunmap_atomic(shared_kaddr, KM_USER0);

	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
}

557 558 559 560 561 562 563 564 565

int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
	switch (msr) {
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
	case MSR_IA32_MC0_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
566
		       __func__, data);
567 568 569
		break;
	case MSR_IA32_MCG_STATUS:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
570
			__func__, data);
571
		break;
572 573
	case MSR_IA32_MCG_CTL:
		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
574
			__func__, data);
575
		break;
576 577 578 579 580 581 582 583
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
	case 0x200 ... 0x2ff: /* MTRRs */
		break;
	case MSR_IA32_APICBASE:
		kvm_set_apic_base(vcpu, data);
		break;
	case MSR_IA32_MISC_ENABLE:
584
		vcpu->arch.ia32_misc_enable_msr = data;
585
		break;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	case MSR_KVM_WALL_CLOCK:
		vcpu->kvm->arch.wall_clock = data;
		kvm_write_wall_clock(vcpu->kvm, data);
		break;
	case MSR_KVM_SYSTEM_TIME: {
		if (vcpu->arch.time_page) {
			kvm_release_page_dirty(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		vcpu->arch.time = data;

		/* we verify if the enable bit is set... */
		if (!(data & 1))
			break;

		/* ...but clean it before doing the actual write */
		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);

		vcpu->arch.hv_clock.tsc_to_system_mul =
					clocksource_khz2mult(tsc_khz, 22);
		vcpu->arch.hv_clock.tsc_shift = 22;

		down_read(&current->mm->mmap_sem);
		down_read(&vcpu->kvm->slots_lock);
		vcpu->arch.time_page =
				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
		up_read(&vcpu->kvm->slots_lock);
		up_read(&current->mm->mmap_sem);

		if (is_error_page(vcpu->arch.time_page)) {
			kvm_release_page_clean(vcpu->arch.time_page);
			vcpu->arch.time_page = NULL;
		}

		kvm_write_guest_time(vcpu);
		break;
	}
624
	default:
625
		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);


/*
 * Reads an msr value (of 'msr_index') into 'pdata'.
 * Returns 0 on success, non-0 otherwise.
 * Assumes vcpu_load() was already called.
 */
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
}

int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
	u64 data;

	switch (msr) {
	case 0xc0010010: /* SYSCFG */
	case 0xc0010015: /* HWCR */
	case MSR_IA32_PLATFORM_ID:
	case MSR_IA32_P5_MC_ADDR:
	case MSR_IA32_P5_MC_TYPE:
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
656
	case MSR_IA32_MCG_CTL:
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_EBL_CR_POWERON:
		/* MTRR registers */
	case 0xfe:
	case 0x200 ... 0x2ff:
		data = 0;
		break;
	case 0xcd: /* fsb frequency */
		data = 3;
		break;
	case MSR_IA32_APICBASE:
		data = kvm_get_apic_base(vcpu);
		break;
	case MSR_IA32_MISC_ENABLE:
676
		data = vcpu->arch.ia32_misc_enable_msr;
677
		break;
678 679 680 681 682 683
	case MSR_IA32_PERF_STATUS:
		/* TSC increment by tick */
		data = 1000ULL;
		/* CPU multiplier */
		data |= (((uint64_t)4ULL) << 40);
		break;
684
	case MSR_EFER:
685
		data = vcpu->arch.shadow_efer;
686
		break;
687 688 689 690 691 692
	case MSR_KVM_WALL_CLOCK:
		data = vcpu->kvm->arch.wall_clock;
		break;
	case MSR_KVM_SYSTEM_TIME:
		data = vcpu->arch.time;
		break;
693 694 695 696 697 698 699 700 701
	default:
		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
		return 1;
	}
	*pdata = data;
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/*
 * Read or write a bunch of msrs. All parameters are kernel addresses.
 *
 * @return number of msrs set successfully.
 */
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
		    struct kvm_msr_entry *entries,
		    int (*do_msr)(struct kvm_vcpu *vcpu,
				  unsigned index, u64 *data))
{
	int i;

	vcpu_load(vcpu);

	for (i = 0; i < msrs->nmsrs; ++i)
		if (do_msr(vcpu, entries[i].index, &entries[i].data))
			break;

	vcpu_put(vcpu);

	return i;
}

/*
 * Read or write a bunch of msrs. Parameters are user addresses.
 *
 * @return number of msrs set successfully.
 */
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
		  int (*do_msr)(struct kvm_vcpu *vcpu,
				unsigned index, u64 *data),
		  int writeback)
{
	struct kvm_msrs msrs;
	struct kvm_msr_entry *entries;
	int r, n;
	unsigned size;

	r = -EFAULT;
	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
		goto out;

	r = -E2BIG;
	if (msrs.nmsrs >= MAX_IO_MSRS)
		goto out;

	r = -ENOMEM;
	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
	entries = vmalloc(size);
	if (!entries)
		goto out;

	r = -EFAULT;
	if (copy_from_user(entries, user_msrs->entries, size))
		goto out_free;

	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
	if (r < 0)
		goto out_free;

	r = -EFAULT;
	if (writeback && copy_to_user(user_msrs->entries, entries, size))
		goto out_free;

	r = n;

out_free:
	vfree(entries);
out:
	return r;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/*
 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
 * cached on it.
 */
void decache_vcpus_on_cpu(int cpu)
{
	struct kvm *vm;
	struct kvm_vcpu *vcpu;
	int i;

	spin_lock(&kvm_lock);
	list_for_each_entry(vm, &vm_list, vm_list)
		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
			vcpu = vm->vcpus[i];
			if (!vcpu)
				continue;
			/*
			 * If the vcpu is locked, then it is running on some
			 * other cpu and therefore it is not cached on the
			 * cpu in question.
			 *
			 * If it's not locked, check the last cpu it executed
			 * on.
			 */
			if (mutex_trylock(&vcpu->mutex)) {
				if (vcpu->cpu == cpu) {
					kvm_x86_ops->vcpu_decache(vcpu);
					vcpu->cpu = -1;
				}
				mutex_unlock(&vcpu->mutex);
			}
		}
	spin_unlock(&kvm_lock);
}

809 810 811 812 813 814 815 816 817 818
int kvm_dev_ioctl_check_extension(long ext)
{
	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
	case KVM_CAP_HLT:
	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SET_TSS_ADDR:
819
	case KVM_CAP_EXT_CPUID:
820
	case KVM_CAP_CLOCKSOURCE:
821 822
		r = 1;
		break;
823 824 825
	case KVM_CAP_VAPIC:
		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
		break;
826 827 828
	case KVM_CAP_NR_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
829 830 831
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_MEMORY_SLOTS;
		break;
832 833 834 835 836 837 838 839
	default:
		r = 0;
		break;
	}
	return r;

}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
	case KVM_GET_MSR_INDEX_LIST: {
		struct kvm_msr_list __user *user_msr_list = argp;
		struct kvm_msr_list msr_list;
		unsigned n;

		r = -EFAULT;
		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
			goto out;
		n = msr_list.nmsrs;
		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
			goto out;
		r = -E2BIG;
		if (n < num_msrs_to_save)
			goto out;
		r = -EFAULT;
		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
				 num_msrs_to_save * sizeof(u32)))
			goto out;
		if (copy_to_user(user_msr_list->indices
				 + num_msrs_to_save * sizeof(u32),
				 &emulated_msrs,
				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
			goto out;
		r = 0;
		break;
	}
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	case KVM_GET_SUPPORTED_CPUID: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
			cpuid_arg->entries);
		if (r)
			goto out;

		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
892 893 894 895 896 897 898
	default:
		r = -EINVAL;
	}
out:
	return r;
}

899 900 901
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	kvm_x86_ops->vcpu_load(vcpu, cpu);
902
	kvm_write_guest_time(vcpu);
903 904 905 906 907
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_put(vcpu);
908
	kvm_put_guest_fpu(vcpu);
909 910
}

911
static int is_efer_nx(void)
912 913 914 915
{
	u64 efer;

	rdmsrl(MSR_EFER, efer);
916 917 918 919 920 921 922 923
	return efer & EFER_NX;
}

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_cpuid_entry2 *e, *entry;

924
	entry = NULL;
925 926
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
927 928 929 930 931
		if (e->function == 0x80000001) {
			entry = e;
			break;
		}
	}
932
	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
933 934 935 936 937
		entry->edx &= ~(1 << 20);
		printk(KERN_INFO "kvm: guest NX capability removed\n");
	}
}

938
/* when an old userspace process fills a new kernel module */
939 940 941
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid *cpuid,
				    struct kvm_cpuid_entry __user *entries)
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
{
	int r, i;
	struct kvm_cpuid_entry *cpuid_entries;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
	if (!cpuid_entries)
		goto out;
	r = -EFAULT;
	if (copy_from_user(cpuid_entries, entries,
			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
		goto out_free;
	for (i = 0; i < cpuid->nent; i++) {
958 959 960 961 962 963 964 965 966 967 968 969
		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
		vcpu->arch.cpuid_entries[i].index = 0;
		vcpu->arch.cpuid_entries[i].flags = 0;
		vcpu->arch.cpuid_entries[i].padding[0] = 0;
		vcpu->arch.cpuid_entries[i].padding[1] = 0;
		vcpu->arch.cpuid_entries[i].padding[2] = 0;
	}
	vcpu->arch.cpuid_nent = cpuid->nent;
970 971 972 973 974 975 976 977 978 979 980 981
	cpuid_fix_nx_cap(vcpu);
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
982 983 984 985 986 987 988
{
	int r;

	r = -E2BIG;
	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
		goto out;
	r = -EFAULT;
989
	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
990
			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
991
		goto out;
992
	vcpu->arch.cpuid_nent = cpuid->nent;
993 994 995 996 997 998
	return 0;

out:
	return r;
}

999 1000 1001 1002 1003 1004 1005
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
				    struct kvm_cpuid2 *cpuid,
				    struct kvm_cpuid_entry2 __user *entries)
{
	int r;

	r = -E2BIG;
1006
	if (cpuid->nent < vcpu->arch.cpuid_nent)
1007 1008
		goto out;
	r = -EFAULT;
1009 1010
	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1011 1012 1013 1014
		goto out;
	return 0;

out:
1015
	cpuid->nent = vcpu->arch.cpuid_nent;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	return r;
}

static inline u32 bit(int bitno)
{
	return 1 << (bitno & 31);
}

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			  u32 index)
{
	entry->function = function;
	entry->index = index;
	cpuid_count(entry->function, entry->index,
		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
	entry->flags = 0;
}

static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
			 u32 index, int *nent, int maxnent)
{
	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
		bit(X86_FEATURE_PGE) |
		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
		bit(X86_FEATURE_SYSCALL) |
		(bit(X86_FEATURE_NX) && is_efer_nx()) |
#ifdef CONFIG_X86_64
		bit(X86_FEATURE_LM) |
#endif
		bit(X86_FEATURE_MMXEXT) |
		bit(X86_FEATURE_3DNOWEXT) |
		bit(X86_FEATURE_3DNOW);
	const u32 kvm_supported_word3_x86_features =
		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
	const u32 kvm_supported_word6_x86_features =
		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);

	/* all func 2 cpuid_count() should be called on the same cpu */
	get_cpu();
	do_cpuid_1_ent(entry, function, index);
	++*nent;

	switch (function) {
	case 0:
		entry->eax = min(entry->eax, (u32)0xb);
		break;
	case 1:
		entry->edx &= kvm_supported_word0_x86_features;
		entry->ecx &= kvm_supported_word3_x86_features;
		break;
	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
	 * may return different values. This forces us to get_cpu() before
	 * issuing the first command, and also to emulate this annoying behavior
	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
	case 2: {
		int t, times = entry->eax & 0xff;

		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
		for (t = 1; t < times && *nent < maxnent; ++t) {
			do_cpuid_1_ent(&entry[t], function, 0);
			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
			++*nent;
		}
		break;
	}
	/* function 4 and 0xb have additional index. */
	case 4: {
1098
		int i, cache_type;
1099 1100 1101

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until cache_type is zero */
1102 1103
		for (i = 1; *nent < maxnent; ++i) {
			cache_type = entry[i - 1].eax & 0x1f;
1104 1105
			if (!cache_type)
				break;
1106 1107
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1108 1109 1110 1111 1112 1113
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0xb: {
1114
		int i, level_type;
1115 1116 1117

		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
		/* read more entries until level_type is zero */
1118 1119
		for (i = 1; *nent < maxnent; ++i) {
			level_type = entry[i - 1].ecx & 0xff;
1120 1121
			if (!level_type)
				break;
1122 1123
			do_cpuid_1_ent(&entry[i], function, i);
			entry[i].flags |=
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
			++*nent;
		}
		break;
	}
	case 0x80000000:
		entry->eax = min(entry->eax, 0x8000001a);
		break;
	case 0x80000001:
		entry->edx &= kvm_supported_word1_x86_features;
		entry->ecx &= kvm_supported_word6_x86_features;
		break;
	}
	put_cpu();
}

1140
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
				    struct kvm_cpuid_entry2 __user *entries)
{
	struct kvm_cpuid_entry2 *cpuid_entries;
	int limit, nent = 0, r = -E2BIG;
	u32 func;

	if (cpuid->nent < 1)
		goto out;
	r = -ENOMEM;
	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
	if (!cpuid_entries)
		goto out;

	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
	limit = cpuid_entries[0].eax;
	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
				&nent, cpuid->nent);
	r = -E2BIG;
	if (nent >= cpuid->nent)
		goto out_free;

	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
	limit = cpuid_entries[nent - 1].eax;
	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
		do_cpuid_ent(&cpuid_entries[nent], func, 0,
			       &nent, cpuid->nent);
	r = -EFAULT;
	if (copy_to_user(entries, cpuid_entries,
			nent * sizeof(struct kvm_cpuid_entry2)))
		goto out_free;
	cpuid->nent = nent;
	r = 0;

out_free:
	vfree(cpuid_entries);
out:
	return r;
}

1181 1182 1183 1184
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1185
	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1186 1187 1188 1189 1190 1191 1192 1193 1194
	vcpu_put(vcpu);

	return 0;
}

static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
				    struct kvm_lapic_state *s)
{
	vcpu_load(vcpu);
1195
	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1196 1197 1198 1199 1200 1201
	kvm_apic_post_state_restore(vcpu);
	vcpu_put(vcpu);

	return 0;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
				    struct kvm_interrupt *irq)
{
	if (irq->irq < 0 || irq->irq >= 256)
		return -EINVAL;
	if (irqchip_in_kernel(vcpu->kvm))
		return -ENXIO;
	vcpu_load(vcpu);

1211 1212
	set_bit(irq->irq, vcpu->arch.irq_pending);
	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1213 1214 1215 1216 1217 1218

	vcpu_put(vcpu);

	return 0;
}

1219 1220 1221 1222 1223 1224 1225 1226 1227
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
					   struct kvm_tpr_access_ctl *tac)
{
	if (tac->flags)
		return -EINVAL;
	vcpu->arch.tpr_access_reporting = !!tac->enabled;
	return 0;
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r;

	switch (ioctl) {
	case KVM_GET_LAPIC: {
		struct kvm_lapic_state lapic;

		memset(&lapic, 0, sizeof lapic);
		r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &lapic, sizeof lapic))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_LAPIC: {
		struct kvm_lapic_state lapic;

		r = -EFAULT;
		if (copy_from_user(&lapic, argp, sizeof lapic))
			goto out;
		r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
		if (r)
			goto out;
		r = 0;
		break;
	}
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	case KVM_INTERRUPT: {
		struct kvm_interrupt irq;

		r = -EFAULT;
		if (copy_from_user(&irq, argp, sizeof irq))
			goto out;
		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
		if (r)
			goto out;
		r = 0;
		break;
	}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	case KVM_SET_CPUID: {
		struct kvm_cpuid __user *cpuid_arg = argp;
		struct kvm_cpuid cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	case KVM_SET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		break;
	}
	case KVM_GET_CPUID2: {
		struct kvm_cpuid2 __user *cpuid_arg = argp;
		struct kvm_cpuid2 cpuid;

		r = -EFAULT;
		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
			goto out;
		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
				cpuid_arg->entries);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
			goto out;
		r = 0;
		break;
	}
1315 1316 1317 1318 1319 1320
	case KVM_GET_MSRS:
		r = msr_io(vcpu, argp, kvm_get_msr, 1);
		break;
	case KVM_SET_MSRS:
		r = msr_io(vcpu, argp, do_set_msr, 0);
		break;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	case KVM_TPR_ACCESS_REPORTING: {
		struct kvm_tpr_access_ctl tac;

		r = -EFAULT;
		if (copy_from_user(&tac, argp, sizeof tac))
			goto out;
		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &tac, sizeof tac))
			goto out;
		r = 0;
		break;
	};
A
Avi Kivity 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	case KVM_SET_VAPIC_ADDR: {
		struct kvm_vapic_addr va;

		r = -EINVAL;
		if (!irqchip_in_kernel(vcpu->kvm))
			goto out;
		r = -EFAULT;
		if (copy_from_user(&va, argp, sizeof va))
			goto out;
		r = 0;
		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
		break;
	}
1349 1350 1351 1352 1353 1354 1355
	default:
		r = -EINVAL;
	}
out:
	return r;
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
{
	int ret;

	if (addr > (unsigned int)(-3 * PAGE_SIZE))
		return -1;
	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
	return ret;
}

static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
					  u32 kvm_nr_mmu_pages)
{
	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
		return -EINVAL;

1372
	down_write(&kvm->slots_lock);
1373 1374

	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1375
	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1376

1377
	up_write(&kvm->slots_lock);
1378 1379 1380 1381 1382
	return 0;
}

static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
{
1383
	return kvm->arch.n_alloc_mmu_pages;
1384 1385
}

1386 1387 1388 1389 1390
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	int i;
	struct kvm_mem_alias *alias;

1391 1392
	for (i = 0; i < kvm->arch.naliases; ++i) {
		alias = &kvm->arch.aliases[i];
1393 1394 1395 1396 1397 1398 1399
		if (gfn >= alias->base_gfn
		    && gfn < alias->base_gfn + alias->npages)
			return alias->target_gfn + gfn - alias->base_gfn;
	}
	return gfn;
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * Set a new alias region.  Aliases map a portion of physical memory into
 * another portion.  This is useful for memory windows, for example the PC
 * VGA region.
 */
static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
					 struct kvm_memory_alias *alias)
{
	int r, n;
	struct kvm_mem_alias *p;

	r = -EINVAL;
	/* General sanity checks */
	if (alias->memory_size & (PAGE_SIZE - 1))
		goto out;
	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
		goto out;
	if (alias->slot >= KVM_ALIAS_SLOTS)
		goto out;
	if (alias->guest_phys_addr + alias->memory_size
	    < alias->guest_phys_addr)
		goto out;
	if (alias->target_phys_addr + alias->memory_size
	    < alias->target_phys_addr)
		goto out;

1426
	down_write(&kvm->slots_lock);
1427

1428
	p = &kvm->arch.aliases[alias->slot];
1429 1430 1431 1432 1433
	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
	p->npages = alias->memory_size >> PAGE_SHIFT;
	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;

	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1434
		if (kvm->arch.aliases[n - 1].npages)
1435
			break;
1436
	kvm->arch.naliases = n;
1437 1438 1439

	kvm_mmu_zap_all(kvm);

1440
	up_write(&kvm->slots_lock);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	return 0;

out:
	return r;
}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[0],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&chip->chip.pic,
			&pic_irqchip(kvm)->pics[1],
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(&chip->chip.ioapic,
			ioapic_irqchip(kvm),
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_PIC_MASTER:
		memcpy(&pic_irqchip(kvm)->pics[0],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_PIC_SLAVE:
		memcpy(&pic_irqchip(kvm)->pics[1],
			&chip->chip.pic,
			sizeof(struct kvm_pic_state));
		break;
	case KVM_IRQCHIP_IOAPIC:
		memcpy(ioapic_irqchip(kvm),
			&chip->chip.ioapic,
			sizeof(struct kvm_ioapic_state));
		break;
	default:
		r = -EINVAL;
		break;
	}
	kvm_pic_update_irq(pic_irqchip(kvm));
	return r;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
				      struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1516
	down_write(&kvm->slots_lock);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_mmu_slot_remove_write_access(kvm, log->slot);
		kvm_flush_remote_tlbs(kvm);
		memslot = &kvm->memslots[log->slot];
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1532
	up_write(&kvm->slots_lock);
1533 1534 1535
	return r;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
	int r = -EINVAL;

	switch (ioctl) {
	case KVM_SET_TSS_ADDR:
		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
		if (r < 0)
			goto out;
		break;
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
	}
	case KVM_SET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
		if (r)
			goto out;
		break;
	case KVM_GET_NR_MMU_PAGES:
		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
		break;
	case KVM_SET_MEMORY_ALIAS: {
		struct kvm_memory_alias alias;

		r = -EFAULT;
		if (copy_from_user(&alias, argp, sizeof alias))
			goto out;
		r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
		if (r)
			goto out;
		break;
	}
	case KVM_CREATE_IRQCHIP:
		r = -ENOMEM;
1586 1587
		kvm->arch.vpic = kvm_create_pic(kvm);
		if (kvm->arch.vpic) {
1588 1589
			r = kvm_ioapic_init(kvm);
			if (r) {
1590 1591
				kfree(kvm->arch.vpic);
				kvm->arch.vpic = NULL;
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
				goto out;
			}
		} else
			goto out;
		break;
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
			mutex_lock(&kvm->lock);
			if (irq_event.irq < 16)
				kvm_pic_set_irq(pic_irqchip(kvm),
					irq_event.irq,
					irq_event.level);
1609
			kvm_ioapic_set_irq(kvm->arch.vioapic,
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
					irq_event.irq,
					irq_event.level);
			mutex_unlock(&kvm->lock);
			r = 0;
		}
		break;
	}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
			goto out;
		r = 0;
		break;
	}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
			goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
	}
	default:
		;
	}
out:
	return r;
}

1659
static void kvm_init_msr_list(void)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	u32 dummy[2];
	unsigned i, j;

	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
			continue;
		if (j < i)
			msrs_to_save[j] = msrs_to_save[i];
		j++;
	}
	num_msrs_to_save = j;
}

1674 1675 1676 1677 1678 1679 1680 1681
/*
 * Only apic need an MMIO device hook, so shortcut now..
 */
static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

1682 1683
	if (vcpu->arch.apic) {
		dev = &vcpu->arch.apic->dev;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		if (dev->in_range(dev, addr))
			return dev;
	}
	return NULL;
}


static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
						gpa_t addr)
{
	struct kvm_io_device *dev;

	dev = vcpu_find_pervcpu_dev(vcpu, addr);
	if (dev == NULL)
		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
	return dev;
}

int emulator_read_std(unsigned long addr,
			     void *val,
			     unsigned int bytes,
			     struct kvm_vcpu *vcpu)
{
	void *data = val;
1708
	int r = X86EMUL_CONTINUE;
1709

1710
	down_read(&vcpu->kvm->slots_lock);
1711
	while (bytes) {
1712
		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1713 1714 1715 1716
		unsigned offset = addr & (PAGE_SIZE-1);
		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
		int ret;

1717 1718 1719 1720
		if (gpa == UNMAPPED_GVA) {
			r = X86EMUL_PROPAGATE_FAULT;
			goto out;
		}
1721
		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1722 1723 1724 1725
		if (ret < 0) {
			r = X86EMUL_UNHANDLEABLE;
			goto out;
		}
1726 1727 1728 1729 1730

		bytes -= tocopy;
		data += tocopy;
		addr += tocopy;
	}
1731
out:
1732
	up_read(&vcpu->kvm->slots_lock);
1733
	return r;
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
}
EXPORT_SYMBOL_GPL(emulator_read_std);

static int emulator_read_emulated(unsigned long addr,
				  void *val,
				  unsigned int bytes,
				  struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
	gpa_t                 gpa;

	if (vcpu->mmio_read_completed) {
		memcpy(val, vcpu->mmio_data, bytes);
		vcpu->mmio_read_completed = 0;
		return X86EMUL_CONTINUE;
	}

1751
	down_read(&vcpu->kvm->slots_lock);
1752
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1753
	up_read(&vcpu->kvm->slots_lock);
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_read_std(addr, val, bytes, vcpu)
			== X86EMUL_CONTINUE)
		return X86EMUL_CONTINUE;
	if (gpa == UNMAPPED_GVA)
		return X86EMUL_PROPAGATE_FAULT;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1769
	mutex_lock(&vcpu->kvm->lock);
1770 1771 1772
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1773
		mutex_unlock(&vcpu->kvm->lock);
1774 1775
		return X86EMUL_CONTINUE;
	}
1776
	mutex_unlock(&vcpu->kvm->lock);
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 0;

	return X86EMUL_UNHANDLEABLE;
}

static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
			       const void *val, int bytes)
{
	int ret;

1791
	down_read(&vcpu->kvm->slots_lock);
1792
	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1793
	if (ret < 0) {
1794
		up_read(&vcpu->kvm->slots_lock);
1795
		return 0;
1796
	}
1797
	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1798
	up_read(&vcpu->kvm->slots_lock);
1799 1800 1801 1802 1803 1804 1805 1806 1807
	return 1;
}

static int emulator_write_emulated_onepage(unsigned long addr,
					   const void *val,
					   unsigned int bytes,
					   struct kvm_vcpu *vcpu)
{
	struct kvm_io_device *mmio_dev;
1808 1809
	gpa_t                 gpa;

1810
	down_read(&vcpu->kvm->slots_lock);
1811
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1812
	up_read(&vcpu->kvm->slots_lock);
1813 1814

	if (gpa == UNMAPPED_GVA) {
1815
		kvm_inject_page_fault(vcpu, addr, 2);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		return X86EMUL_PROPAGATE_FAULT;
	}

	/* For APIC access vmexit */
	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
		goto mmio;

	if (emulator_write_phys(vcpu, gpa, val, bytes))
		return X86EMUL_CONTINUE;

mmio:
	/*
	 * Is this MMIO handled locally?
	 */
1830
	mutex_lock(&vcpu->kvm->lock);
1831 1832 1833
	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
	if (mmio_dev) {
		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1834
		mutex_unlock(&vcpu->kvm->lock);
1835 1836
		return X86EMUL_CONTINUE;
	}
1837
	mutex_unlock(&vcpu->kvm->lock);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = gpa;
	vcpu->mmio_size = bytes;
	vcpu->mmio_is_write = 1;
	memcpy(vcpu->mmio_data, val, bytes);

	return X86EMUL_CONTINUE;
}

int emulator_write_emulated(unsigned long addr,
				   const void *val,
				   unsigned int bytes,
				   struct kvm_vcpu *vcpu)
{
	/* Crossing a page boundary? */
	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
		int rc, now;

		now = -addr & ~PAGE_MASK;
		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
		if (rc != X86EMUL_CONTINUE)
			return rc;
		addr += now;
		val += now;
		bytes -= now;
	}
	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
}
EXPORT_SYMBOL_GPL(emulator_write_emulated);

static int emulator_cmpxchg_emulated(unsigned long addr,
				     const void *old,
				     const void *new,
				     unsigned int bytes,
				     struct kvm_vcpu *vcpu)
{
	static int reported;

	if (!reported) {
		reported = 1;
		printk(KERN_WARNING "kvm: emulating exchange as write\n");
	}
1881 1882 1883
#ifndef CONFIG_X86_64
	/* guests cmpxchg8b have to be emulated atomically */
	if (bytes == 8) {
1884
		gpa_t gpa;
1885
		struct page *page;
A
Andrew Morton 已提交
1886
		char *kaddr;
1887 1888
		u64 val;

1889
		down_read(&vcpu->kvm->slots_lock);
1890 1891
		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);

1892 1893 1894 1895 1896 1897 1898 1899
		if (gpa == UNMAPPED_GVA ||
		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
			goto emul_write;

		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
			goto emul_write;

		val = *(u64 *)new;
1900 1901

		down_read(&current->mm->mmap_sem);
1902
		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1903 1904
		up_read(&current->mm->mmap_sem);

A
Andrew Morton 已提交
1905 1906 1907
		kaddr = kmap_atomic(page, KM_USER0);
		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
		kunmap_atomic(kaddr, KM_USER0);
1908
		kvm_release_page_dirty(page);
1909
	emul_write:
1910
		up_read(&vcpu->kvm->slots_lock);
1911 1912 1913
	}
#endif

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	return emulator_write_emulated(addr, new, bytes, vcpu);
}

static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	return kvm_x86_ops->get_segment_base(vcpu, seg);
}

int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	return X86EMUL_CONTINUE;
}

int emulate_clts(struct kvm_vcpu *vcpu)
{
1929
	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	return X86EMUL_CONTINUE;
}

int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
{
	struct kvm_vcpu *vcpu = ctxt->vcpu;

	switch (dr) {
	case 0 ... 3:
		*dest = kvm_x86_ops->get_dr(vcpu, dr);
		return X86EMUL_CONTINUE;
	default:
1942
		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		return X86EMUL_UNHANDLEABLE;
	}
}

int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
	int exception;

	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
	if (exception) {
		/* FIXME: better handling */
		return X86EMUL_UNHANDLEABLE;
	}
	return X86EMUL_CONTINUE;
}

void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
{
	static int reported;
	u8 opcodes[4];
1964
	unsigned long rip = vcpu->arch.rip;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	unsigned long rip_linear;

	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);

	if (reported)
		return;

	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);

	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
	reported = 1;
}
EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);

1980
static struct x86_emulate_ops emulate_ops = {
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	.read_std            = emulator_read_std,
	.read_emulated       = emulator_read_emulated,
	.write_emulated      = emulator_write_emulated,
	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
};

int emulate_instruction(struct kvm_vcpu *vcpu,
			struct kvm_run *run,
			unsigned long cr2,
			u16 error_code,
1991
			int emulation_type)
1992 1993
{
	int r;
1994
	struct decode_cache *c;
1995

1996
	vcpu->arch.mmio_fault_cr2 = cr2;
1997 1998 1999
	kvm_x86_ops->cache_regs(vcpu);

	vcpu->mmio_is_write = 0;
2000
	vcpu->arch.pio.string = 0;
2001

2002
	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2003 2004 2005
		int cs_db, cs_l;
		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);

2006 2007 2008 2009
		vcpu->arch.emulate_ctxt.vcpu = vcpu;
		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
		vcpu->arch.emulate_ctxt.mode =
			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2010 2011 2012 2013
			? X86EMUL_MODE_REAL : cs_l
			? X86EMUL_MODE_PROT64 :	cs_db
			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;

2014 2015 2016 2017 2018
		if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
			vcpu->arch.emulate_ctxt.cs_base = 0;
			vcpu->arch.emulate_ctxt.ds_base = 0;
			vcpu->arch.emulate_ctxt.es_base = 0;
			vcpu->arch.emulate_ctxt.ss_base = 0;
2019
		} else {
2020
			vcpu->arch.emulate_ctxt.cs_base =
2021
					get_segment_base(vcpu, VCPU_SREG_CS);
2022
			vcpu->arch.emulate_ctxt.ds_base =
2023
					get_segment_base(vcpu, VCPU_SREG_DS);
2024
			vcpu->arch.emulate_ctxt.es_base =
2025
					get_segment_base(vcpu, VCPU_SREG_ES);
2026
			vcpu->arch.emulate_ctxt.ss_base =
2027 2028 2029
					get_segment_base(vcpu, VCPU_SREG_SS);
		}

2030
		vcpu->arch.emulate_ctxt.gs_base =
2031
					get_segment_base(vcpu, VCPU_SREG_GS);
2032
		vcpu->arch.emulate_ctxt.fs_base =
2033 2034
					get_segment_base(vcpu, VCPU_SREG_FS);

2035
		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

		/* Reject the instructions other than VMCALL/VMMCALL when
		 * try to emulate invalid opcode */
		c = &vcpu->arch.emulate_ctxt.decode;
		if ((emulation_type & EMULTYPE_TRAP_UD) &&
		    (!(c->twobyte && c->b == 0x01 &&
		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
		       c->modrm_mod == 3 && c->modrm_rm == 1)))
			return EMULATE_FAIL;

2046
		++vcpu->stat.insn_emulation;
2047
		if (r)  {
2048
			++vcpu->stat.insn_emulation_fail;
2049 2050 2051 2052 2053 2054
			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
				return EMULATE_DONE;
			return EMULATE_FAIL;
		}
	}

2055
	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2056

2057
	if (vcpu->arch.pio.string)
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		return EMULATE_DO_MMIO;

	if ((r || vcpu->mmio_is_write) && run) {
		run->exit_reason = KVM_EXIT_MMIO;
		run->mmio.phys_addr = vcpu->mmio_phys_addr;
		memcpy(run->mmio.data, vcpu->mmio_data, 8);
		run->mmio.len = vcpu->mmio_size;
		run->mmio.is_write = vcpu->mmio_is_write;
	}

	if (r) {
		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
			return EMULATE_DONE;
		if (!vcpu->mmio_needed) {
			kvm_report_emulation_failure(vcpu, "mmio");
			return EMULATE_FAIL;
		}
		return EMULATE_DO_MMIO;
	}

	kvm_x86_ops->decache_regs(vcpu);
2079
	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

	if (vcpu->mmio_is_write) {
		vcpu->mmio_needed = 0;
		return EMULATE_DO_MMIO;
	}

	return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);

2090 2091 2092 2093
static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
{
	int i;

2094 2095 2096 2097
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
		if (vcpu->arch.pio.guest_pages[i]) {
			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
			vcpu->arch.pio.guest_pages[i] = NULL;
2098 2099 2100 2101 2102
		}
}

static int pio_copy_data(struct kvm_vcpu *vcpu)
{
2103
	void *p = vcpu->arch.pio_data;
2104 2105
	void *q;
	unsigned bytes;
2106
	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2107

2108
	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2109 2110 2111 2112 2113
		 PAGE_KERNEL);
	if (!q) {
		free_pio_guest_pages(vcpu);
		return -ENOMEM;
	}
2114 2115 2116
	q += vcpu->arch.pio.guest_page_offset;
	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
	if (vcpu->arch.pio.in)
2117 2118 2119
		memcpy(q, p, bytes);
	else
		memcpy(p, q, bytes);
2120
	q -= vcpu->arch.pio.guest_page_offset;
2121 2122 2123 2124 2125 2126 2127
	vunmap(q);
	free_pio_guest_pages(vcpu);
	return 0;
}

int complete_pio(struct kvm_vcpu *vcpu)
{
2128
	struct kvm_pio_request *io = &vcpu->arch.pio;
2129 2130 2131 2132 2133 2134 2135
	long delta;
	int r;

	kvm_x86_ops->cache_regs(vcpu);

	if (!io->string) {
		if (io->in)
2136
			memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
			       io->size);
	} else {
		if (io->in) {
			r = pio_copy_data(vcpu);
			if (r) {
				kvm_x86_ops->cache_regs(vcpu);
				return r;
			}
		}

		delta = 1;
		if (io->rep) {
			delta *= io->cur_count;
			/*
			 * The size of the register should really depend on
			 * current address size.
			 */
2154
			vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2155 2156 2157 2158 2159
		}
		if (io->down)
			delta = -delta;
		delta *= io->size;
		if (io->in)
2160
			vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2161
		else
2162
			vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	}

	kvm_x86_ops->decache_regs(vcpu);

	io->count -= io->cur_count;
	io->cur_count = 0;

	return 0;
}

static void kernel_pio(struct kvm_io_device *pio_dev,
		       struct kvm_vcpu *vcpu,
		       void *pd)
{
	/* TODO: String I/O for in kernel device */

	mutex_lock(&vcpu->kvm->lock);
2180 2181 2182
	if (vcpu->arch.pio.in)
		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
				  vcpu->arch.pio.size,
2183 2184
				  pd);
	else
2185 2186
		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
				   vcpu->arch.pio.size,
2187 2188 2189 2190 2191 2192 2193
				   pd);
	mutex_unlock(&vcpu->kvm->lock);
}

static void pio_string_write(struct kvm_io_device *pio_dev,
			     struct kvm_vcpu *vcpu)
{
2194 2195
	struct kvm_pio_request *io = &vcpu->arch.pio;
	void *pd = vcpu->arch.pio_data;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
	int i;

	mutex_lock(&vcpu->kvm->lock);
	for (i = 0; i < io->cur_count; i++) {
		kvm_iodevice_write(pio_dev, io->port,
				   io->size,
				   pd);
		pd += io->size;
	}
	mutex_unlock(&vcpu->kvm->lock);
}

static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
					       gpa_t addr)
{
	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
}

int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned port)
{
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2221
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2222
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2223 2224 2225 2226 2227 2228 2229
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 0;
	vcpu->arch.pio.down = 0;
	vcpu->arch.pio.guest_page_offset = 0;
	vcpu->arch.pio.rep = 0;
2230 2231

	kvm_x86_ops->cache_regs(vcpu);
2232
	memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2233 2234 2235 2236 2237 2238
	kvm_x86_ops->decache_regs(vcpu);

	kvm_x86_ops->skip_emulated_instruction(vcpu);

	pio_dev = vcpu_find_pio_dev(vcpu, port);
	if (pio_dev) {
2239
		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		complete_pio(vcpu);
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio);

int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
		  int size, unsigned long count, int down,
		  gva_t address, int rep, unsigned port)
{
	unsigned now, in_page;
	int i, ret = 0;
	int nr_pages = 1;
	struct page *page;
	struct kvm_io_device *pio_dev;

	vcpu->run->exit_reason = KVM_EXIT_IO;
	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2259
	vcpu->run->io.size = vcpu->arch.pio.size = size;
2260
	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2261 2262 2263 2264 2265 2266 2267
	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
	vcpu->run->io.port = vcpu->arch.pio.port = port;
	vcpu->arch.pio.in = in;
	vcpu->arch.pio.string = 1;
	vcpu->arch.pio.down = down;
	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
	vcpu->arch.pio.rep = rep;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

	if (!count) {
		kvm_x86_ops->skip_emulated_instruction(vcpu);
		return 1;
	}

	if (!down)
		in_page = PAGE_SIZE - offset_in_page(address);
	else
		in_page = offset_in_page(address) + size;
	now = min(count, (unsigned long)in_page / size);
	if (!now) {
		/*
		 * String I/O straddles page boundary.  Pin two guest pages
		 * so that we satisfy atomicity constraints.  Do just one
		 * transaction to avoid complexity.
		 */
		nr_pages = 2;
		now = 1;
	}
	if (down) {
		/*
		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
		 */
		pr_unimpl(vcpu, "guest string pio down\n");
2293
		kvm_inject_gp(vcpu, 0);
2294 2295 2296
		return 1;
	}
	vcpu->run->io.count = now;
2297
	vcpu->arch.pio.cur_count = now;
2298

2299
	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2300 2301 2302
		kvm_x86_ops->skip_emulated_instruction(vcpu);

	for (i = 0; i < nr_pages; ++i) {
2303
		down_read(&vcpu->kvm->slots_lock);
2304
		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2305
		vcpu->arch.pio.guest_pages[i] = page;
2306
		up_read(&vcpu->kvm->slots_lock);
2307
		if (!page) {
2308
			kvm_inject_gp(vcpu, 0);
2309 2310 2311 2312 2313 2314
			free_pio_guest_pages(vcpu);
			return 1;
		}
	}

	pio_dev = vcpu_find_pio_dev(vcpu, port);
2315
	if (!vcpu->arch.pio.in) {
2316 2317 2318 2319 2320
		/* string PIO write */
		ret = pio_copy_data(vcpu);
		if (ret >= 0 && pio_dev) {
			pio_string_write(pio_dev, vcpu);
			complete_pio(vcpu);
2321
			if (vcpu->arch.pio.count == 0)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
				ret = 1;
		}
	} else if (pio_dev)
		pr_unimpl(vcpu, "no string pio read support yet, "
		       "port %x size %d count %ld\n",
			port, size, count);

	return ret;
}
EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);

2333
int kvm_arch_init(void *opaque)
2334
{
2335
	int r;
2336 2337 2338 2339
	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;

	if (kvm_x86_ops) {
		printk(KERN_ERR "kvm: already loaded the other module\n");
2340 2341
		r = -EEXIST;
		goto out;
2342 2343 2344 2345
	}

	if (!ops->cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: no hardware support\n");
2346 2347
		r = -EOPNOTSUPP;
		goto out;
2348 2349 2350
	}
	if (ops->disabled_by_bios()) {
		printk(KERN_ERR "kvm: disabled by bios\n");
2351 2352
		r = -EOPNOTSUPP;
		goto out;
2353 2354
	}

2355 2356 2357 2358 2359 2360
	r = kvm_mmu_module_init();
	if (r)
		goto out;

	kvm_init_msr_list();

2361
	kvm_x86_ops = ops;
2362
	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2363
	return 0;
2364 2365 2366

out:
	return r;
2367
}
2368

2369 2370 2371
void kvm_arch_exit(void)
{
	kvm_x86_ops = NULL;
2372 2373
	kvm_mmu_module_exit();
}
2374

2375 2376 2377 2378
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{
	++vcpu->stat.halt_exits;
	if (irqchip_in_kernel(vcpu->kvm)) {
2379
		vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
2380
		kvm_vcpu_block(vcpu);
2381
		if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
			return -EINTR;
		return 1;
	} else {
		vcpu->run->exit_reason = KVM_EXIT_HLT;
		return 0;
	}
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);

int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
{
	unsigned long nr, a0, a1, a2, a3, ret;

	kvm_x86_ops->cache_regs(vcpu);

2397 2398 2399 2400 2401
	nr = vcpu->arch.regs[VCPU_REGS_RAX];
	a0 = vcpu->arch.regs[VCPU_REGS_RBX];
	a1 = vcpu->arch.regs[VCPU_REGS_RCX];
	a2 = vcpu->arch.regs[VCPU_REGS_RDX];
	a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

	if (!is_long_mode(vcpu)) {
		nr &= 0xFFFFFFFF;
		a0 &= 0xFFFFFFFF;
		a1 &= 0xFFFFFFFF;
		a2 &= 0xFFFFFFFF;
		a3 &= 0xFFFFFFFF;
	}

	switch (nr) {
A
Avi Kivity 已提交
2412 2413 2414
	case KVM_HC_VAPIC_POLL_IRQ:
		ret = 0;
		break;
2415 2416 2417 2418
	default:
		ret = -KVM_ENOSYS;
		break;
	}
2419
	vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2420
	kvm_x86_ops->decache_regs(vcpu);
A
Amit Shah 已提交
2421
	++vcpu->stat.hypercalls;
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	return 0;
}
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);

int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
{
	char instruction[3];
	int ret = 0;


	/*
	 * Blow out the MMU to ensure that no other VCPU has an active mapping
	 * to ensure that the updated hypercall appears atomically across all
	 * VCPUs.
	 */
	kvm_mmu_zap_all(vcpu->kvm);

	kvm_x86_ops->cache_regs(vcpu);
	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2441
	if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	    != X86EMUL_CONTINUE)
		ret = -EFAULT;

	return ret;
}

static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}

void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_gdt(vcpu, &dt);
}

void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
	struct descriptor_table dt = { limit, base };

	kvm_x86_ops->set_idt(vcpu, &dt);
}

void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
		   unsigned long *rflags)
{
2470
	kvm_lmsw(vcpu, msw);
2471 2472 2473 2474 2475 2476 2477 2478
	*rflags = kvm_x86_ops->get_rflags(vcpu);
}

unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
	switch (cr) {
	case 0:
2479
		return vcpu->arch.cr0;
2480
	case 2:
2481
		return vcpu->arch.cr2;
2482
	case 3:
2483
		return vcpu->arch.cr3;
2484
	case 4:
2485
		return vcpu->arch.cr4;
2486
	case 8:
2487
		return kvm_get_cr8(vcpu);
2488
	default:
2489
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2490 2491 2492 2493 2494 2495 2496 2497 2498
		return 0;
	}
}

void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
		     unsigned long *rflags)
{
	switch (cr) {
	case 0:
2499
		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2500 2501 2502
		*rflags = kvm_x86_ops->get_rflags(vcpu);
		break;
	case 2:
2503
		vcpu->arch.cr2 = val;
2504 2505
		break;
	case 3:
2506
		kvm_set_cr3(vcpu, val);
2507 2508
		break;
	case 4:
2509
		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2510
		break;
2511
	case 8:
2512
		kvm_set_cr8(vcpu, val & 0xfUL);
2513
		break;
2514
	default:
2515
		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2516 2517 2518
	}
}

2519 2520
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
{
2521 2522
	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
	int j, nent = vcpu->arch.cpuid_nent;
2523 2524 2525 2526

	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
	/* when no next entry is found, the current entry[i] is reselected */
	for (j = i + 1; j == i; j = (j + 1) % nent) {
2527
		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
		if (ej->function == e->function) {
			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
			return j;
		}
	}
	return 0; /* silence gcc, even though control never reaches here */
}

/* find an entry with matching function, matching index (if needed), and that
 * should be read next (if it's stateful) */
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
	u32 function, u32 index)
{
	if (e->function != function)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
		return 0;
	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
		return 0;
	return 1;
}

2551 2552 2553
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
{
	int i;
2554 2555
	u32 function, index;
	struct kvm_cpuid_entry2 *e, *best;
2556 2557

	kvm_x86_ops->cache_regs(vcpu);
2558 2559 2560 2561 2562 2563
	function = vcpu->arch.regs[VCPU_REGS_RAX];
	index = vcpu->arch.regs[VCPU_REGS_RCX];
	vcpu->arch.regs[VCPU_REGS_RAX] = 0;
	vcpu->arch.regs[VCPU_REGS_RBX] = 0;
	vcpu->arch.regs[VCPU_REGS_RCX] = 0;
	vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2564
	best = NULL;
2565 2566
	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
		e = &vcpu->arch.cpuid_entries[i];
2567 2568 2569
		if (is_matching_cpuid_entry(e, function, index)) {
			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
				move_to_next_stateful_cpuid_entry(vcpu, i);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
			best = e;
			break;
		}
		/*
		 * Both basic or both extended?
		 */
		if (((e->function ^ function) & 0x80000000) == 0)
			if (!best || e->function > best->function)
				best = e;
	}
	if (best) {
2581 2582 2583 2584
		vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
		vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
		vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
		vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2585 2586 2587 2588 2589
	}
	kvm_x86_ops->decache_regs(vcpu);
	kvm_x86_ops->skip_emulated_instruction(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2590

2591 2592 2593 2594 2595 2596 2597 2598 2599
/*
 * Check if userspace requested an interrupt window, and that the
 * interrupt window is open.
 *
 * No need to exit to userspace if we already have an interrupt queued.
 */
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
					  struct kvm_run *kvm_run)
{
2600
	return (!vcpu->arch.irq_summary &&
2601
		kvm_run->request_interrupt_window &&
2602
		vcpu->arch.interrupt_window_open &&
2603 2604 2605 2606 2607 2608 2609
		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
}

static void post_kvm_run_save(struct kvm_vcpu *vcpu,
			      struct kvm_run *kvm_run)
{
	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2610
	kvm_run->cr8 = kvm_get_cr8(vcpu);
2611 2612 2613 2614 2615
	kvm_run->apic_base = kvm_get_apic_base(vcpu);
	if (irqchip_in_kernel(vcpu->kvm))
		kvm_run->ready_for_interrupt_injection = 1;
	else
		kvm_run->ready_for_interrupt_injection =
2616 2617
					(vcpu->arch.interrupt_window_open &&
					 vcpu->arch.irq_summary == 0);
2618 2619
}

A
Avi Kivity 已提交
2620 2621 2622 2623 2624 2625 2626 2627
static void vapic_enter(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;
	struct page *page;

	if (!apic || !apic->vapic_addr)
		return;

2628
	down_read(&current->mm->mmap_sem);
A
Avi Kivity 已提交
2629
	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2630
	up_read(&current->mm->mmap_sem);
2631 2632

	vcpu->arch.apic->vapic_page = page;
A
Avi Kivity 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
}

static void vapic_exit(struct kvm_vcpu *vcpu)
{
	struct kvm_lapic *apic = vcpu->arch.apic;

	if (!apic || !apic->vapic_addr)
		return;

	kvm_release_page_dirty(apic->vapic_page);
	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
}

2646 2647 2648 2649
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;

2650
	if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2651
		pr_debug("vcpu %d received sipi with vector # %x\n",
2652
		       vcpu->vcpu_id, vcpu->arch.sipi_vector);
2653 2654 2655 2656
		kvm_lapic_reset(vcpu);
		r = kvm_x86_ops->vcpu_reset(vcpu);
		if (r)
			return r;
2657
		vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
2658 2659
	}

A
Avi Kivity 已提交
2660 2661
	vapic_enter(vcpu);

2662 2663 2664 2665 2666
preempted:
	if (vcpu->guest_debug.enabled)
		kvm_x86_ops->guest_debug_pre(vcpu);

again:
2667 2668 2669 2670
	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
			kvm_mmu_unload(vcpu);

2671 2672 2673 2674
	r = kvm_mmu_reload(vcpu);
	if (unlikely(r))
		goto out;

2675 2676 2677
	if (vcpu->requests) {
		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
			__kvm_migrate_apic_timer(vcpu);
A
Avi Kivity 已提交
2678 2679 2680 2681 2682 2683
		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
				       &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
			r = 0;
			goto out;
		}
J
Joerg Roedel 已提交
2684 2685 2686 2687 2688
		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
			r = 0;
			goto out;
		}
2689
	}
A
Avi Kivity 已提交
2690

2691 2692 2693 2694 2695 2696 2697 2698 2699
	kvm_inject_pending_timer_irqs(vcpu);

	preempt_disable();

	kvm_x86_ops->prepare_guest_switch(vcpu);
	kvm_load_guest_fpu(vcpu);

	local_irq_disable();

2700 2701 2702 2703 2704 2705 2706
	if (need_resched()) {
		local_irq_enable();
		preempt_enable();
		r = 1;
		goto out;
	}

2707 2708 2709 2710 2711 2712 2713 2714
	if (vcpu->requests)
		if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
			local_irq_enable();
			preempt_enable();
			r = 1;
			goto out;
		}

2715 2716 2717 2718 2719 2720 2721 2722 2723
	if (signal_pending(current)) {
		local_irq_enable();
		preempt_enable();
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		++vcpu->stat.signal_exits;
		goto out;
	}

2724
	if (vcpu->arch.exception.pending)
2725 2726
		__queue_exception(vcpu);
	else if (irqchip_in_kernel(vcpu->kvm))
2727
		kvm_x86_ops->inject_pending_irq(vcpu);
2728
	else
2729 2730
		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);

A
Avi Kivity 已提交
2731 2732
	kvm_lapic_sync_to_vapic(vcpu);

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	vcpu->guest_mode = 1;
	kvm_guest_enter();

	if (vcpu->requests)
		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
			kvm_x86_ops->tlb_flush(vcpu);

	kvm_x86_ops->run(vcpu, kvm_run);

	vcpu->guest_mode = 0;
	local_irq_enable();

	++vcpu->stat.exits;

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();

	kvm_guest_exit();

	preempt_enable();

	/*
	 * Profile KVM exit RIPs:
	 */
	if (unlikely(prof_on == KVM_PROFILING)) {
		kvm_x86_ops->cache_regs(vcpu);
2764
		profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2765 2766
	}

2767 2768
	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
		vcpu->arch.exception.pending = false;
2769

A
Avi Kivity 已提交
2770 2771
	kvm_lapic_sync_from_vapic(vcpu);

2772 2773 2774 2775 2776 2777 2778 2779 2780
	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
			r = -EINTR;
			kvm_run->exit_reason = KVM_EXIT_INTR;
			++vcpu->stat.request_irq_exits;
			goto out;
		}
2781
		if (!need_resched())
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
			goto again;
	}

out:
	if (r > 0) {
		kvm_resched(vcpu);
		goto preempted;
	}

	post_kvm_run_save(vcpu, kvm_run);

A
Avi Kivity 已提交
2793 2794
	vapic_exit(vcpu);

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
	return r;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

2805
	if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		kvm_vcpu_block(vcpu);
		vcpu_put(vcpu);
		return -EAGAIN;
	}

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	/* re-sync apic's tpr */
	if (!irqchip_in_kernel(vcpu->kvm))
2816
		kvm_set_cr8(vcpu, kvm_run->cr8);
2817

2818
	if (vcpu->arch.pio.cur_count) {
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		r = complete_pio(vcpu);
		if (r)
			goto out;
	}
#if CONFIG_HAS_IOMEM
	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
		r = emulate_instruction(vcpu, kvm_run,
2829 2830
					vcpu->arch.mmio_fault_cr2, 0,
					EMULTYPE_NO_DECODE);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
		if (r == EMULATE_DO_MMIO) {
			/*
			 * Read-modify-write.  Back to userspace.
			 */
			r = 0;
			goto out;
		}
	}
#endif
	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
		kvm_x86_ops->cache_regs(vcpu);
2842
		vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
		kvm_x86_ops->decache_regs(vcpu);
	}

	r = __vcpu_run(vcpu, kvm_run);

out:
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

	kvm_x86_ops->cache_regs(vcpu);

2862 2863 2864 2865 2866 2867 2868 2869
	regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
	regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
	regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
	regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
	regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
	regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
	regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
	regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
2870
#ifdef CONFIG_X86_64
2871 2872 2873 2874 2875 2876 2877 2878
	regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
	regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
	regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
	regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
	regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
	regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
	regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
	regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
2879 2880
#endif

2881
	regs->rip = vcpu->arch.rip;
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	regs->rflags = kvm_x86_ops->get_rflags(vcpu);

	/*
	 * Don't leak debug flags in case they were set for guest debugging
	 */
	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	vcpu_load(vcpu);

2899 2900 2901 2902 2903 2904 2905 2906
	vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
	vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
	vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
	vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
	vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
	vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
	vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
	vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
2907
#ifdef CONFIG_X86_64
2908 2909 2910 2911 2912 2913 2914 2915
	vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
	vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
	vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
	vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
	vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
	vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
	vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
	vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
2916 2917
#endif

2918
	vcpu->arch.rip = regs->rip;
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	kvm_x86_ops->set_rflags(vcpu, regs->rflags);

	kvm_x86_ops->decache_regs(vcpu);

	vcpu_put(vcpu);

	return 0;
}

static void get_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
2931
	kvm_x86_ops->get_segment(vcpu, var, seg);
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
}

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct kvm_segment cs;

	get_segment(vcpu, &cs, VCPU_SREG_CS);
	*db = cs.db;
	*l = cs.l;
}
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	struct descriptor_table dt;
	int pending_vec;

	vcpu_load(vcpu);

	get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	kvm_x86_ops->get_idt(vcpu, &dt);
	sregs->idt.limit = dt.limit;
	sregs->idt.base = dt.base;
	kvm_x86_ops->get_gdt(vcpu, &dt);
	sregs->gdt.limit = dt.limit;
	sregs->gdt.base = dt.base;

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2970 2971 2972 2973
	sregs->cr0 = vcpu->arch.cr0;
	sregs->cr2 = vcpu->arch.cr2;
	sregs->cr3 = vcpu->arch.cr3;
	sregs->cr4 = vcpu->arch.cr4;
2974
	sregs->cr8 = kvm_get_cr8(vcpu);
2975
	sregs->efer = vcpu->arch.shadow_efer;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	sregs->apic_base = kvm_get_apic_base(vcpu);

	if (irqchip_in_kernel(vcpu->kvm)) {
		memset(sregs->interrupt_bitmap, 0,
		       sizeof sregs->interrupt_bitmap);
		pending_vec = kvm_x86_ops->get_irq(vcpu);
		if (pending_vec >= 0)
			set_bit(pending_vec,
				(unsigned long *)sregs->interrupt_bitmap);
	} else
2986
		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		       sizeof sregs->interrupt_bitmap);

	vcpu_put(vcpu);

	return 0;
}

static void set_segment(struct kvm_vcpu *vcpu,
			struct kvm_segment *var, int seg)
{
2997
	kvm_x86_ops->set_segment(vcpu, var, seg);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
	int mmu_reset_needed = 0;
	int i, pending_vec, max_bits;
	struct descriptor_table dt;

	vcpu_load(vcpu);

	dt.limit = sregs->idt.limit;
	dt.base = sregs->idt.base;
	kvm_x86_ops->set_idt(vcpu, &dt);
	dt.limit = sregs->gdt.limit;
	dt.base = sregs->gdt.base;
	kvm_x86_ops->set_gdt(vcpu, &dt);

3016 3017 3018
	vcpu->arch.cr2 = sregs->cr2;
	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
	vcpu->arch.cr3 = sregs->cr3;
3019

3020
	kvm_set_cr8(vcpu, sregs->cr8);
3021

3022
	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3023 3024 3025 3026 3027
	kvm_x86_ops->set_efer(vcpu, sregs->efer);
	kvm_set_apic_base(vcpu, sregs->apic_base);

	kvm_x86_ops->decache_cr4_guest_bits(vcpu);

3028
	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3029
	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3030
	vcpu->arch.cr0 = sregs->cr0;
3031

3032
	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3033 3034
	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
	if (!is_long_mode(vcpu) && is_pae(vcpu))
3035
		load_pdptrs(vcpu, vcpu->arch.cr3);
3036 3037 3038 3039 3040

	if (mmu_reset_needed)
		kvm_mmu_reset_context(vcpu);

	if (!irqchip_in_kernel(vcpu->kvm)) {
3041 3042 3043 3044 3045 3046
		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
		       sizeof vcpu->arch.irq_pending);
		vcpu->arch.irq_summary = 0;
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
			if (vcpu->arch.irq_pending[i])
				__set_bit(i, &vcpu->arch.irq_summary);
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	} else {
		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
		pending_vec = find_first_bit(
			(const unsigned long *)sregs->interrupt_bitmap,
			max_bits);
		/* Only pending external irq is handled here */
		if (pending_vec < max_bits) {
			kvm_x86_ops->set_irq(vcpu, pending_vec);
			pr_debug("Set back pending irq %d\n",
				 pending_vec);
		}
	}

	set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
	set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
	set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
	set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
	set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
	set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);

	set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
	set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
				    struct kvm_debug_guest *dbg)
{
	int r;

	vcpu_load(vcpu);

	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);

	vcpu_put(vcpu);

	return r;
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/*
 * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 * we have asm/x86/processor.h
 */
struct fxsave {
	u16	cwd;
	u16	swd;
	u16	twd;
	u16	fop;
	u64	rip;
	u64	rdp;
	u32	mxcsr;
	u32	mxcsr_mask;
	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
#ifdef CONFIG_X86_64
	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
#else
	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
#endif
};

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
/*
 * Translate a guest virtual address to a guest physical address.
 */
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				    struct kvm_translation *tr)
{
	unsigned long vaddr = tr->linear_address;
	gpa_t gpa;

	vcpu_load(vcpu);
3120
	down_read(&vcpu->kvm->slots_lock);
3121
	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3122
	up_read(&vcpu->kvm->slots_lock);
3123 3124 3125 3126 3127 3128 3129 3130 3131
	tr->physical_address = gpa;
	tr->valid = gpa != UNMAPPED_GVA;
	tr->writeable = 1;
	tr->usermode = 0;
	vcpu_put(vcpu);

	return 0;
}

3132 3133
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3134
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

	vcpu_load(vcpu);

	memcpy(fpu->fpr, fxsave->st_space, 128);
	fpu->fcw = fxsave->cwd;
	fpu->fsw = fxsave->swd;
	fpu->ftwx = fxsave->twd;
	fpu->last_opcode = fxsave->fop;
	fpu->last_ip = fxsave->rip;
	fpu->last_dp = fxsave->rdp;
	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
3154
	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

	vcpu_load(vcpu);

	memcpy(fxsave->st_space, fpu->fpr, 128);
	fxsave->cwd = fpu->fcw;
	fxsave->swd = fpu->fsw;
	fxsave->twd = fpu->ftwx;
	fxsave->fop = fpu->last_opcode;
	fxsave->rip = fpu->last_ip;
	fxsave->rdp = fpu->last_dp;
	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);

	vcpu_put(vcpu);

	return 0;
}

void fx_init(struct kvm_vcpu *vcpu)
{
	unsigned after_mxcsr_mask;

	/* Initialize guest FPU by resetting ours and saving into guest's */
	preempt_disable();
3178
	fx_save(&vcpu->arch.host_fx_image);
3179
	fpu_init();
3180 3181
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
3182 3183
	preempt_enable();

3184
	vcpu->arch.cr0 |= X86_CR0_ET;
3185
	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3186 3187
	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
}
EXPORT_SYMBOL_GPL(fx_init);

void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 1;
3198 3199
	fx_save(&vcpu->arch.host_fx_image);
	fx_restore(&vcpu->arch.guest_fx_image);
3200 3201 3202 3203 3204 3205 3206 3207 3208
}
EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);

void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->guest_fpu_loaded)
		return;

	vcpu->guest_fpu_loaded = 0;
3209 3210
	fx_save(&vcpu->arch.guest_fx_image);
	fx_restore(&vcpu->arch.host_fx_image);
A
Avi Kivity 已提交
3211
	++vcpu->stat.fpu_reload;
3212 3213
}
EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3214 3215 3216 3217 3218 3219 3220 3221 3222

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	kvm_x86_ops->vcpu_free(vcpu);
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
						unsigned int id)
{
3223 3224
	return kvm_x86_ops->vcpu_create(kvm, id);
}
3225

3226 3227 3228
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	int r;
3229 3230

	/* We do fxsave: this must be aligned. */
3231
	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3232 3233 3234 3235 3236 3237 3238 3239 3240

	vcpu_load(vcpu);
	r = kvm_arch_vcpu_reset(vcpu);
	if (r == 0)
		r = kvm_mmu_setup(vcpu);
	vcpu_put(vcpu);
	if (r < 0)
		goto free_vcpu;

3241
	return 0;
3242 3243
free_vcpu:
	kvm_x86_ops->vcpu_free(vcpu);
3244
	return r;
3245 3246
}

3247
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);

	kvm_x86_ops->vcpu_free(vcpu);
}

int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
{
	return kvm_x86_ops->vcpu_reset(vcpu);
}

void kvm_arch_hardware_enable(void *garbage)
{
	kvm_x86_ops->hardware_enable(garbage);
}

void kvm_arch_hardware_disable(void *garbage)
{
	kvm_x86_ops->hardware_disable(garbage);
}

int kvm_arch_hardware_setup(void)
{
	return kvm_x86_ops->hardware_setup();
}

void kvm_arch_hardware_unsetup(void)
{
	kvm_x86_ops->hardware_unsetup();
}

void kvm_arch_check_processor_compat(void *rtn)
{
	kvm_x86_ops->check_processor_compatibility(rtn);
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct page *page;
	struct kvm *kvm;
	int r;

	BUG_ON(vcpu->kvm == NULL);
	kvm = vcpu->kvm;

3295
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3296
	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3297
		vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
3298
	else
3299
		vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
3300 3301 3302 3303 3304 3305

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page) {
		r = -ENOMEM;
		goto fail;
	}
3306
	vcpu->arch.pio_data = page_address(page);
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322

	r = kvm_mmu_create(vcpu);
	if (r < 0)
		goto fail_free_pio_data;

	if (irqchip_in_kernel(kvm)) {
		r = kvm_create_lapic(vcpu);
		if (r < 0)
			goto fail_mmu_destroy;
	}

	return 0;

fail_mmu_destroy:
	kvm_mmu_destroy(vcpu);
fail_free_pio_data:
3323
	free_page((unsigned long)vcpu->arch.pio_data);
3324 3325 3326 3327 3328 3329 3330 3331
fail:
	return r;
}

void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	kvm_free_lapic(vcpu);
	kvm_mmu_destroy(vcpu);
3332
	free_page((unsigned long)vcpu->arch.pio_data);
3333
}
3334 3335 3336 3337 3338 3339 3340 3341

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);

	if (!kvm)
		return ERR_PTR(-ENOMEM);

3342
	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

	return kvm;
}

static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
{
	vcpu_load(vcpu);
	kvm_mmu_unload(vcpu);
	vcpu_put(vcpu);
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;

	/*
	 * Unpin any mmu pages first.
	 */
	for (i = 0; i < KVM_MAX_VCPUS; ++i)
		if (kvm->vcpus[i])
			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}

}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
3375 3376
	kfree(kvm->arch.vpic);
	kfree(kvm->arch.vioapic);
3377 3378 3379 3380
	kvm_free_vcpus(kvm);
	kvm_free_physmem(kvm);
	kfree(kvm);
}
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394

int kvm_arch_set_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				struct kvm_memory_slot old,
				int user_alloc)
{
	int npages = mem->memory_size >> PAGE_SHIFT;
	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];

	/*To keep backward compatibility with older userspace,
	 *x86 needs to hanlde !user_alloc case.
	 */
	if (!user_alloc) {
		if (npages && !old.rmap) {
3395
			down_write(&current->mm->mmap_sem);
3396 3397 3398 3399 3400
			memslot->userspace_addr = do_mmap(NULL, 0,
						     npages * PAGE_SIZE,
						     PROT_READ | PROT_WRITE,
						     MAP_SHARED | MAP_ANONYMOUS,
						     0);
3401
			up_write(&current->mm->mmap_sem);
3402 3403 3404 3405 3406 3407 3408

			if (IS_ERR((void *)memslot->userspace_addr))
				return PTR_ERR((void *)memslot->userspace_addr);
		} else {
			if (!old.user_alloc && old.rmap) {
				int ret;

3409
				down_write(&current->mm->mmap_sem);
3410 3411
				ret = do_munmap(current->mm, old.userspace_addr,
						old.npages * PAGE_SIZE);
3412
				up_write(&current->mm->mmap_sem);
3413 3414 3415 3416 3417 3418 3419 3420
				if (ret < 0)
					printk(KERN_WARNING
				       "kvm_vm_ioctl_set_memory_region: "
				       "failed to munmap memory\n");
			}
		}
	}

3421
	if (!kvm->arch.n_requested_mmu_pages) {
3422 3423 3424 3425 3426 3427 3428 3429 3430
		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
	}

	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
	kvm_flush_remote_tlbs(kvm);

	return 0;
}
3431 3432 3433 3434 3435 3436

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
	       || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
}
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

static void vcpu_kick_intr(void *info)
{
#ifdef DEBUG
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
#endif
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
	int ipi_pcpu = vcpu->cpu;

	if (waitqueue_active(&vcpu->wq)) {
		wake_up_interruptible(&vcpu->wq);
		++vcpu->stat.halt_wakeup;
	}
	if (vcpu->guest_mode)
		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
}