vmbus_drv.c 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 * Authors:
 *   Haiyang Zhang <haiyangz@microsoft.com>
 *   Hank Janssen  <hjanssen@microsoft.com>
20
 *   K. Y. Srinivasan <kys@microsoft.com>
21
 *
22
 */
23 24
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

25 26 27 28 29
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/sysctl.h>
30
#include <linux/slab.h>
31
#include <linux/acpi.h>
32
#include <linux/completion.h>
33
#include <linux/hyperv.h>
34
#include <linux/kernel_stat.h>
35
#include <linux/clockchips.h>
36
#include <linux/cpu.h>
37 38
#include <linux/sched/task_stack.h>

39
#include <asm/hyperv.h>
40
#include <asm/hypervisor.h>
41
#include <asm/mshyperv.h>
42 43
#include <linux/notifier.h>
#include <linux/ptrace.h>
44
#include <linux/screen_info.h>
45
#include <linux/kdebug.h>
46
#include <linux/efi.h>
47
#include <linux/random.h>
48
#include "hyperv_vmbus.h"
49

50 51 52 53 54
struct vmbus_dynid {
	struct list_head node;
	struct hv_vmbus_device_id id;
};

55
static struct acpi_device  *hv_acpi_dev;
56

57
static struct completion probe_event;
58

59
static int hyperv_cpuhp_online;
60

61 62 63 64 65 66 67
static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
			      void *args)
{
	struct pt_regs *regs;

	regs = current_pt_regs();

68
	hyperv_report_panic(regs, val);
69 70 71
	return NOTIFY_DONE;
}

72 73 74 75 76 77
static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
			    void *args)
{
	struct die_args *die = (struct die_args *)args;
	struct pt_regs *regs = die->regs;

78
	hyperv_report_panic(regs, val);
79 80 81 82 83 84
	return NOTIFY_DONE;
}

static struct notifier_block hyperv_die_block = {
	.notifier_call = hyperv_die_event,
};
85 86 87 88
static struct notifier_block hyperv_panic_block = {
	.notifier_call = hyperv_panic_event,
};

89 90
static const char *fb_mmio_name = "fb_range";
static struct resource *fb_mmio;
91 92
static struct resource *hyperv_mmio;
static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93

94 95 96 97 98 99 100 101
static int vmbus_exists(void)
{
	if (hv_acpi_dev == NULL)
		return -ENODEV;

	return 0;
}

102 103 104 105 106 107 108 109
#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
{
	int i;
	for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
		sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
}

110
static u8 channel_monitor_group(const struct vmbus_channel *channel)
111 112 113 114
{
	return (u8)channel->offermsg.monitorid / 32;
}

115
static u8 channel_monitor_offset(const struct vmbus_channel *channel)
116 117 118 119
{
	return (u8)channel->offermsg.monitorid % 32;
}

120 121
static u32 channel_pending(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
122 123
{
	u8 monitor_group = channel_monitor_group(channel);
124

125 126 127
	return monitor_page->trigger_group[monitor_group].pending;
}

128 129
static u32 channel_latency(const struct vmbus_channel *channel,
			   const struct hv_monitor_page *monitor_page)
130 131 132
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
133

134 135 136
	return monitor_page->latency[monitor_group][monitor_offset];
}

137 138 139 140 141 142 143 144
static u32 channel_conn_id(struct vmbus_channel *channel,
			   struct hv_monitor_page *monitor_page)
{
	u8 monitor_group = channel_monitor_group(channel);
	u8 monitor_offset = channel_monitor_offset(channel);
	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
}

145 146 147 148 149 150 151 152 153 154 155
static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
		       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
}
static DEVICE_ATTR_RO(id);

156 157 158 159 160 161 162 163 164 165 166
static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
			  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->state);
}
static DEVICE_ATTR_RO(state);

167 168 169 170 171 172 173 174 175 176 177
static ssize_t monitor_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
}
static DEVICE_ATTR_RO(monitor_id);

178 179 180 181 182 183 184 185 186 187 188 189
static ssize_t class_id_show(struct device *dev,
			       struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_type.b);
}
static DEVICE_ATTR_RO(class_id);

190 191 192 193 194 195 196 197 198 199 200 201
static ssize_t device_id_show(struct device *dev,
			      struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "{%pUl}\n",
		       hv_dev->channel->offermsg.offer.if_instance.b);
}
static DEVICE_ATTR_RO(device_id);

202 203 204 205 206 207 208 209 210 211 212
static ssize_t modalias_show(struct device *dev,
			     struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	char alias_name[VMBUS_ALIAS_LEN + 1];

	print_alias_name(hv_dev, alias_name);
	return sprintf(buf, "vmbus:%s\n", alias_name);
}
static DEVICE_ATTR_RO(modalias);

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static ssize_t server_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(server_monitor_pending);

static ssize_t client_monitor_pending_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_pending(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_pending);
240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static ssize_t server_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_latency);

static ssize_t client_monitor_latency_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_latency(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_latency);

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static ssize_t server_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[0]));
}
static DEVICE_ATTR_RO(server_monitor_conn_id);

static ssize_t client_monitor_conn_id_show(struct device *dev,
					   struct device_attribute *dev_attr,
					   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);

	if (!hv_dev->channel)
		return -ENODEV;
	return sprintf(buf, "%d\n",
		       channel_conn_id(hv_dev->channel,
				       vmbus_connection.monitor_pages[1]));
}
static DEVICE_ATTR_RO(client_monitor_conn_id);

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static ssize_t out_intr_mask_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(out_intr_mask);

static ssize_t out_read_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_read_index);
}
static DEVICE_ATTR_RO(out_read_index);

static ssize_t out_write_index_show(struct device *dev,
				    struct device_attribute *dev_attr,
				    char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.current_write_index);
}
static DEVICE_ATTR_RO(out_write_index);

static ssize_t out_read_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(out_read_bytes_avail);

static ssize_t out_write_bytes_avail_show(struct device *dev,
					  struct device_attribute *dev_attr,
					  char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info outbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound, &outbound);
	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(out_write_bytes_avail);

static ssize_t in_intr_mask_show(struct device *dev,
				 struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
}
static DEVICE_ATTR_RO(in_intr_mask);

static ssize_t in_read_index_show(struct device *dev,
				  struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_read_index);
}
static DEVICE_ATTR_RO(in_read_index);

static ssize_t in_write_index_show(struct device *dev,
				   struct device_attribute *dev_attr, char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.current_write_index);
}
static DEVICE_ATTR_RO(in_write_index);

static ssize_t in_read_bytes_avail_show(struct device *dev,
					struct device_attribute *dev_attr,
					char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
}
static DEVICE_ATTR_RO(in_read_bytes_avail);

static ssize_t in_write_bytes_avail_show(struct device *dev,
					 struct device_attribute *dev_attr,
					 char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct hv_ring_buffer_debug_info inbound;

	if (!hv_dev->channel)
		return -ENODEV;
	hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
}
static DEVICE_ATTR_RO(in_write_bytes_avail);

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static ssize_t channel_vp_mapping_show(struct device *dev,
				       struct device_attribute *dev_attr,
				       char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
	unsigned long flags;
	int buf_size = PAGE_SIZE, n_written, tot_written;
	struct list_head *cur;

	if (!channel)
		return -ENODEV;

	tot_written = snprintf(buf, buf_size, "%u:%u\n",
		channel->offermsg.child_relid, channel->target_cpu);

	spin_lock_irqsave(&channel->lock, flags);

	list_for_each(cur, &channel->sc_list) {
		if (tot_written >= buf_size - 1)
			break;

		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
		n_written = scnprintf(buf + tot_written,
				     buf_size - tot_written,
				     "%u:%u\n",
				     cur_sc->offermsg.child_relid,
				     cur_sc->target_cpu);
		tot_written += n_written;
	}

	spin_unlock_irqrestore(&channel->lock, flags);

	return tot_written;
}
static DEVICE_ATTR_RO(channel_vp_mapping);

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static ssize_t vendor_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
}
static DEVICE_ATTR_RO(vendor);

static ssize_t device_show(struct device *dev,
			   struct device_attribute *dev_attr,
			   char *buf)
{
	struct hv_device *hv_dev = device_to_hv_device(dev);
	return sprintf(buf, "0x%x\n", hv_dev->device_id);
}
static DEVICE_ATTR_RO(device);

487
/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
488
static struct attribute *vmbus_dev_attrs[] = {
489
	&dev_attr_id.attr,
490
	&dev_attr_state.attr,
491
	&dev_attr_monitor_id.attr,
492
	&dev_attr_class_id.attr,
493
	&dev_attr_device_id.attr,
494
	&dev_attr_modalias.attr,
495 496
	&dev_attr_server_monitor_pending.attr,
	&dev_attr_client_monitor_pending.attr,
497 498
	&dev_attr_server_monitor_latency.attr,
	&dev_attr_client_monitor_latency.attr,
499 500
	&dev_attr_server_monitor_conn_id.attr,
	&dev_attr_client_monitor_conn_id.attr,
501 502 503 504 505 506 507 508 509 510
	&dev_attr_out_intr_mask.attr,
	&dev_attr_out_read_index.attr,
	&dev_attr_out_write_index.attr,
	&dev_attr_out_read_bytes_avail.attr,
	&dev_attr_out_write_bytes_avail.attr,
	&dev_attr_in_intr_mask.attr,
	&dev_attr_in_read_index.attr,
	&dev_attr_in_write_index.attr,
	&dev_attr_in_read_bytes_avail.attr,
	&dev_attr_in_write_bytes_avail.attr,
511
	&dev_attr_channel_vp_mapping.attr,
512 513
	&dev_attr_vendor.attr,
	&dev_attr_device.attr,
514 515
	NULL,
};
516
ATTRIBUTE_GROUPS(vmbus_dev);
517

518 519 520 521 522 523
/*
 * vmbus_uevent - add uevent for our device
 *
 * This routine is invoked when a device is added or removed on the vmbus to
 * generate a uevent to udev in the userspace. The udev will then look at its
 * rule and the uevent generated here to load the appropriate driver
524 525 526 527
 *
 * The alias string will be of the form vmbus:guid where guid is the string
 * representation of the device guid (each byte of the guid will be
 * represented with two hex characters.
528 529 530 531
 */
static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
{
	struct hv_device *dev = device_to_hv_device(device);
532 533
	int ret;
	char alias_name[VMBUS_ALIAS_LEN + 1];
534

535
	print_alias_name(dev, alias_name);
536 537
	ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
	return ret;
538 539
}

S
stephen hemminger 已提交
540
static const uuid_le null_guid;
541

542
static inline bool is_null_guid(const uuid_le *guid)
543
{
544
	if (uuid_le_cmp(*guid, null_guid))
545 546 547 548
		return false;
	return true;
}

549 550 551 552
/*
 * Return a matching hv_vmbus_device_id pointer.
 * If there is no match, return NULL.
 */
553
static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
554
					const uuid_le *guid)
555
{
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	const struct hv_vmbus_device_id *id = NULL;
	struct vmbus_dynid *dynid;

	/* Look at the dynamic ids first, before the static ones */
	spin_lock(&drv->dynids.lock);
	list_for_each_entry(dynid, &drv->dynids.list, node) {
		if (!uuid_le_cmp(dynid->id.guid, *guid)) {
			id = &dynid->id;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	if (id)
		return id;

	id = drv->id_table;
	if (id == NULL)
		return NULL; /* empty device table */

576
	for (; !is_null_guid(&id->guid); id++)
577
		if (!uuid_le_cmp(id->guid, *guid))
578 579 580 581 582
			return id;

	return NULL;
}

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
{
	struct vmbus_dynid *dynid;

	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
	if (!dynid)
		return -ENOMEM;

	dynid->id.guid = *guid;

	spin_lock(&drv->dynids.lock);
	list_add_tail(&dynid->node, &drv->dynids.list);
	spin_unlock(&drv->dynids.lock);

	return driver_attach(&drv->driver);
}

static void vmbus_free_dynids(struct hv_driver *drv)
{
	struct vmbus_dynid *dynid, *n;

	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		list_del(&dynid->node);
		kfree(dynid);
	}
	spin_unlock(&drv->dynids.lock);
}

/*
 * store_new_id - sysfs frontend to vmbus_add_dynid()
 *
 * Allow GUIDs to be added to an existing driver via sysfs.
 */
static ssize_t new_id_store(struct device_driver *driver, const char *buf,
			    size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
622
	uuid_le guid;
623 624
	ssize_t retval;

625 626 627
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

	if (hv_vmbus_get_id(drv, &guid))
		return -EEXIST;

	retval = vmbus_add_dynid(drv, &guid);
	if (retval)
		return retval;
	return count;
}
static DRIVER_ATTR_WO(new_id);

/*
 * store_remove_id - remove a PCI device ID from this driver
 *
 * Removes a dynamic pci device ID to this driver.
 */
static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
			       size_t count)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
	struct vmbus_dynid *dynid, *n;
649 650
	uuid_le guid;
	ssize_t retval;
651

652 653 654
	retval = uuid_le_to_bin(buf, &guid);
	if (retval)
		return retval;
655

656
	retval = -ENODEV;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	spin_lock(&drv->dynids.lock);
	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
		struct hv_vmbus_device_id *id = &dynid->id;

		if (!uuid_le_cmp(id->guid, guid)) {
			list_del(&dynid->node);
			kfree(dynid);
			retval = count;
			break;
		}
	}
	spin_unlock(&drv->dynids.lock);

	return retval;
}
static DRIVER_ATTR_WO(remove_id);

static struct attribute *vmbus_drv_attrs[] = {
	&driver_attr_new_id.attr,
	&driver_attr_remove_id.attr,
	NULL,
};
ATTRIBUTE_GROUPS(vmbus_drv);
680

681 682 683 684 685 686 687

/*
 * vmbus_match - Attempt to match the specified device to the specified driver
 */
static int vmbus_match(struct device *device, struct device_driver *driver)
{
	struct hv_driver *drv = drv_to_hv_drv(driver);
688
	struct hv_device *hv_dev = device_to_hv_device(device);
689

690 691 692 693
	/* The hv_sock driver handles all hv_sock offers. */
	if (is_hvsock_channel(hv_dev->channel))
		return drv->hvsock;

694
	if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
695
		return 1;
696

697
	return 0;
698 699
}

700 701 702 703 704 705 706 707
/*
 * vmbus_probe - Add the new vmbus's child device
 */
static int vmbus_probe(struct device *child_device)
{
	int ret = 0;
	struct hv_driver *drv =
			drv_to_hv_drv(child_device->driver);
708
	struct hv_device *dev = device_to_hv_device(child_device);
709
	const struct hv_vmbus_device_id *dev_id;
710

711
	dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
712
	if (drv->probe) {
713
		ret = drv->probe(dev, dev_id);
714
		if (ret != 0)
715 716
			pr_err("probe failed for device %s (%d)\n",
			       dev_name(child_device), ret);
717 718

	} else {
719 720
		pr_err("probe not set for driver %s\n",
		       dev_name(child_device));
721
		ret = -ENODEV;
722 723 724 725
	}
	return ret;
}

726 727 728 729 730
/*
 * vmbus_remove - Remove a vmbus device
 */
static int vmbus_remove(struct device *child_device)
{
731
	struct hv_driver *drv;
732
	struct hv_device *dev = device_to_hv_device(child_device);
733

734 735 736 737 738
	if (child_device->driver) {
		drv = drv_to_hv_drv(child_device->driver);
		if (drv->remove)
			drv->remove(dev);
	}
739 740 741 742

	return 0;
}

743 744 745 746 747 748 749

/*
 * vmbus_shutdown - Shutdown a vmbus device
 */
static void vmbus_shutdown(struct device *child_device)
{
	struct hv_driver *drv;
750
	struct hv_device *dev = device_to_hv_device(child_device);
751 752 753 754 755 756 757 758


	/* The device may not be attached yet */
	if (!child_device->driver)
		return;

	drv = drv_to_hv_drv(child_device->driver);

759 760
	if (drv->shutdown)
		drv->shutdown(dev);
761 762
}

763 764 765 766 767 768

/*
 * vmbus_device_release - Final callback release of the vmbus child device
 */
static void vmbus_device_release(struct device *device)
{
769
	struct hv_device *hv_dev = device_to_hv_device(device);
770
	struct vmbus_channel *channel = hv_dev->channel;
771

772
	mutex_lock(&vmbus_connection.channel_mutex);
773
	hv_process_channel_removal(channel->offermsg.child_relid);
774
	mutex_unlock(&vmbus_connection.channel_mutex);
775
	kfree(hv_dev);
776 777 778

}

779
/* The one and only one */
780 781 782 783 784 785 786
static struct bus_type  hv_bus = {
	.name =		"vmbus",
	.match =		vmbus_match,
	.shutdown =		vmbus_shutdown,
	.remove =		vmbus_remove,
	.probe =		vmbus_probe,
	.uevent =		vmbus_uevent,
787 788
	.dev_groups =		vmbus_dev_groups,
	.drv_groups =		vmbus_drv_groups,
789 790
};

791 792 793 794 795 796 797 798 799
struct onmessage_work_context {
	struct work_struct work;
	struct hv_message msg;
};

static void vmbus_onmessage_work(struct work_struct *work)
{
	struct onmessage_work_context *ctx;

800 801 802 803
	/* Do not process messages if we're in DISCONNECTED state */
	if (vmbus_connection.conn_state == DISCONNECTED)
		return;

804 805 806 807 808 809
	ctx = container_of(work, struct onmessage_work_context,
			   work);
	vmbus_onmessage(&ctx->msg);
	kfree(ctx);
}

810 811
static void hv_process_timer_expiration(struct hv_message *msg,
					struct hv_per_cpu_context *hv_cpu)
812
{
813
	struct clock_event_device *dev = hv_cpu->clk_evt;
814 815 816 817

	if (dev->event_handler)
		dev->event_handler(dev);

818
	vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
819 820
}

821
void vmbus_on_msg_dpc(unsigned long data)
G
Greg Kroah-Hartman 已提交
822
{
823 824
	struct hv_per_cpu_context *hv_cpu = (void *)data;
	void *page_addr = hv_cpu->synic_message_page;
G
Greg Kroah-Hartman 已提交
825 826
	struct hv_message *msg = (struct hv_message *)page_addr +
				  VMBUS_MESSAGE_SINT;
827
	struct vmbus_channel_message_header *hdr;
828
	const struct vmbus_channel_message_table_entry *entry;
829
	struct onmessage_work_context *ctx;
830
	u32 message_type = msg->header.message_type;
G
Greg Kroah-Hartman 已提交
831

832
	if (message_type == HVMSG_NONE)
833 834
		/* no msg */
		return;
835

836
	hdr = (struct vmbus_channel_message_header *)msg->u.payload;
837

838 839
	trace_vmbus_on_msg_dpc(hdr);

840 841 842 843
	if (hdr->msgtype >= CHANNELMSG_COUNT) {
		WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
		goto msg_handled;
	}
844

845 846 847 848 849
	entry = &channel_message_table[hdr->msgtype];
	if (entry->handler_type	== VMHT_BLOCKING) {
		ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
		if (ctx == NULL)
			return;
850

851 852
		INIT_WORK(&ctx->work, vmbus_onmessage_work);
		memcpy(&ctx->msg, msg, sizeof(*msg));
853

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		/*
		 * The host can generate a rescind message while we
		 * may still be handling the original offer. We deal with
		 * this condition by ensuring the processing is done on the
		 * same CPU.
		 */
		switch (hdr->msgtype) {
		case CHANNELMSG_RESCIND_CHANNELOFFER:
			/*
			 * If we are handling the rescind message;
			 * schedule the work on the global work queue.
			 */
			schedule_work_on(vmbus_connection.connect_cpu,
					 &ctx->work);
			break;

		case CHANNELMSG_OFFERCHANNEL:
			atomic_inc(&vmbus_connection.offer_in_progress);
			queue_work_on(vmbus_connection.connect_cpu,
				      vmbus_connection.work_queue,
				      &ctx->work);
			break;

		default:
			queue_work(vmbus_connection.work_queue, &ctx->work);
		}
880 881
	} else
		entry->message_handler(hdr);
G
Greg Kroah-Hartman 已提交
882

883
msg_handled:
884
	vmbus_signal_eom(msg, message_type);
G
Greg Kroah-Hartman 已提交
885 886
}

887

888 889 890 891 892 893 894 895 896 897 898 899
/*
 * Direct callback for channels using other deferred processing
 */
static void vmbus_channel_isr(struct vmbus_channel *channel)
{
	void (*callback_fn)(void *);

	callback_fn = READ_ONCE(channel->onchannel_callback);
	if (likely(callback_fn != NULL))
		(*callback_fn)(channel->channel_callback_context);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/*
 * Schedule all channels with events pending
 */
static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
{
	unsigned long *recv_int_page;
	u32 maxbits, relid;

	if (vmbus_proto_version < VERSION_WIN8) {
		maxbits = MAX_NUM_CHANNELS_SUPPORTED;
		recv_int_page = vmbus_connection.recv_int_page;
	} else {
		/*
		 * When the host is win8 and beyond, the event page
		 * can be directly checked to get the id of the channel
		 * that has the interrupt pending.
		 */
		void *page_addr = hv_cpu->synic_event_page;
		union hv_synic_event_flags *event
			= (union hv_synic_event_flags *)page_addr +
						 VMBUS_MESSAGE_SINT;

		maxbits = HV_EVENT_FLAGS_COUNT;
		recv_int_page = event->flags;
	}

	if (unlikely(!recv_int_page))
		return;

	for_each_set_bit(relid, recv_int_page, maxbits) {
		struct vmbus_channel *channel;

		if (!sync_test_and_clear_bit(relid, recv_int_page))
			continue;

		/* Special case - vmbus channel protocol msg */
		if (relid == 0)
			continue;

939 940
		rcu_read_lock();

941
		/* Find channel based on relid */
942
		list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
943 944 945
			if (channel->offermsg.child_relid != relid)
				continue;

946 947 948
			if (channel->rescind)
				continue;

V
Vitaly Kuznetsov 已提交
949 950
			trace_vmbus_chan_sched(channel);

951 952
			++channel->interrupts;

953 954 955
			switch (channel->callback_mode) {
			case HV_CALL_ISR:
				vmbus_channel_isr(channel);
956
				break;
957 958 959 960 961 962

			case HV_CALL_BATCHED:
				hv_begin_read(&channel->inbound);
				/* fallthrough */
			case HV_CALL_DIRECT:
				tasklet_schedule(&channel->callback_event);
963 964
			}
		}
965 966

		rcu_read_unlock();
967 968 969
	}
}

970
static void vmbus_isr(void)
G
Greg Kroah-Hartman 已提交
971
{
972 973 974
	struct hv_per_cpu_context *hv_cpu
		= this_cpu_ptr(hv_context.cpu_context);
	void *page_addr = hv_cpu->synic_event_page;
G
Greg Kroah-Hartman 已提交
975 976
	struct hv_message *msg;
	union hv_synic_event_flags *event;
977
	bool handled = false;
G
Greg Kroah-Hartman 已提交
978

979
	if (unlikely(page_addr == NULL))
980
		return;
981 982 983

	event = (union hv_synic_event_flags *)page_addr +
					 VMBUS_MESSAGE_SINT;
984 985 986 987 988
	/*
	 * Check for events before checking for messages. This is the order
	 * in which events and messages are checked in Windows guests on
	 * Hyper-V, and the Windows team suggested we do the same.
	 */
G
Greg Kroah-Hartman 已提交
989

990 991
	if ((vmbus_proto_version == VERSION_WS2008) ||
		(vmbus_proto_version == VERSION_WIN7)) {
G
Greg Kroah-Hartman 已提交
992

993
		/* Since we are a child, we only need to check bit 0 */
994
		if (sync_test_and_clear_bit(0, event->flags))
995 996 997 998 999 1000 1001 1002
			handled = true;
	} else {
		/*
		 * Our host is win8 or above. The signaling mechanism
		 * has changed and we can directly look at the event page.
		 * If bit n is set then we have an interrup on the channel
		 * whose id is n.
		 */
1003 1004
		handled = true;
	}
1005

1006
	if (handled)
1007
		vmbus_chan_sched(hv_cpu);
1008

1009
	page_addr = hv_cpu->synic_message_page;
1010 1011 1012
	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;

	/* Check if there are actual msgs to be processed */
1013 1014
	if (msg->header.message_type != HVMSG_NONE) {
		if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1015
			hv_process_timer_expiration(msg, hv_cpu);
1016
		else
1017
			tasklet_schedule(&hv_cpu->msg_dpc);
1018
	}
1019 1020

	add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1021 1022
}

1023

1024
/*
1025 1026 1027
 * vmbus_bus_init -Main vmbus driver initialization routine.
 *
 * Here, we
1028 1029 1030
 *	- initialize the vmbus driver context
 *	- invoke the vmbus hv main init routine
 *	- retrieve the channel offers
1031
 */
1032
static int vmbus_bus_init(void)
1033
{
1034
	int ret;
1035

1036 1037
	/* Hypervisor initialization...setup hypercall page..etc */
	ret = hv_init();
1038
	if (ret != 0) {
1039
		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1040
		return ret;
1041 1042
	}

1043
	ret = bus_register(&hv_bus);
1044
	if (ret)
1045
		return ret;
1046

1047
	hv_setup_vmbus_irq(vmbus_isr);
1048

1049 1050 1051
	ret = hv_synic_alloc();
	if (ret)
		goto err_alloc;
1052
	/*
1053
	 * Initialize the per-cpu interrupt state and
1054 1055
	 * connect to the host.
	 */
1056 1057 1058 1059 1060 1061
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
				hv_synic_init, hv_synic_cleanup);
	if (ret < 0)
		goto err_alloc;
	hyperv_cpuhp_online = ret;

1062
	ret = vmbus_connect();
1063
	if (ret)
1064
		goto err_connect;
1065

1066 1067 1068
	/*
	 * Only register if the crash MSRs are available
	 */
1069
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1070
		register_die_notifier(&hyperv_die_block);
1071 1072 1073 1074
		atomic_notifier_chain_register(&panic_notifier_list,
					       &hyperv_panic_block);
	}

1075
	vmbus_request_offers();
1076

1077
	return 0;
1078

1079
err_connect:
1080
	cpuhp_remove_state(hyperv_cpuhp_online);
1081 1082
err_alloc:
	hv_synic_free();
1083
	hv_remove_vmbus_irq();
1084 1085 1086 1087

	bus_unregister(&hv_bus);

	return ret;
1088 1089
}

1090
/**
1091 1092
 * __vmbus_child_driver_register() - Register a vmbus's driver
 * @hv_driver: Pointer to driver structure you want to register
1093 1094
 * @owner: owner module of the drv
 * @mod_name: module name string
1095 1096
 *
 * Registers the given driver with Linux through the 'driver_register()' call
1097
 * and sets up the hyper-v vmbus handling for this driver.
1098 1099
 * It will return the state of the 'driver_register()' call.
 *
1100
 */
1101
int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1102
{
1103
	int ret;
1104

1105
	pr_info("registering driver %s\n", hv_driver->name);
1106

1107 1108 1109 1110
	ret = vmbus_exists();
	if (ret < 0)
		return ret;

1111 1112 1113 1114
	hv_driver->driver.name = hv_driver->name;
	hv_driver->driver.owner = owner;
	hv_driver->driver.mod_name = mod_name;
	hv_driver->driver.bus = &hv_bus;
1115

1116 1117 1118
	spin_lock_init(&hv_driver->dynids.lock);
	INIT_LIST_HEAD(&hv_driver->dynids.list);

1119
	ret = driver_register(&hv_driver->driver);
1120

1121
	return ret;
1122
}
1123
EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1124

1125
/**
1126
 * vmbus_driver_unregister() - Unregister a vmbus's driver
1127 1128
 * @hv_driver: Pointer to driver structure you want to
 *             un-register
1129
 *
1130 1131
 * Un-register the given driver that was previous registered with a call to
 * vmbus_driver_register()
1132
 */
1133
void vmbus_driver_unregister(struct hv_driver *hv_driver)
1134
{
1135
	pr_info("unregistering driver %s\n", hv_driver->name);
1136

1137
	if (!vmbus_exists()) {
1138
		driver_unregister(&hv_driver->driver);
1139 1140
		vmbus_free_dynids(hv_driver);
	}
1141
}
1142
EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

/*
 * Called when last reference to channel is gone.
 */
static void vmbus_chan_release(struct kobject *kobj)
{
	struct vmbus_channel *channel
		= container_of(kobj, struct vmbus_channel, kobj);

	kfree_rcu(channel, rcu);
}

struct vmbus_chan_attribute {
	struct attribute attr;
	ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
	ssize_t (*store)(struct vmbus_channel *chan,
			 const char *buf, size_t count);
};
#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
	struct vmbus_chan_attribute chan_attr_##_name \
		= __ATTR(_name, _mode, _show, _store)
#define VMBUS_CHAN_ATTR_RW(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
#define VMBUS_CHAN_ATTR_RO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
#define VMBUS_CHAN_ATTR_WO(_name) \
	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)

static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
				    struct attribute *attr, char *buf)
{
	const struct vmbus_chan_attribute *attribute
		= container_of(attr, struct vmbus_chan_attribute, attr);
	const struct vmbus_channel *chan
		= container_of(kobj, struct vmbus_channel, kobj);

	if (!attribute->show)
		return -EIO;

	return attribute->show(chan, buf);
}

static const struct sysfs_ops vmbus_chan_sysfs_ops = {
	.show = vmbus_chan_attr_show,
};

static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
VMBUS_CHAN_ATTR_RO(out_mask);

static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
}
VMBUS_CHAN_ATTR_RO(in_mask);

static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->inbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
}
VMBUS_CHAN_ATTR_RO(read_avail);

static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
{
	const struct hv_ring_buffer_info *rbi = &channel->outbound;

	return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
}
VMBUS_CHAN_ATTR_RO(write_avail);

static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%u\n", channel->target_cpu);
}
VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);

static ssize_t channel_pending_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_pending(channel,
				       vmbus_connection.monitor_pages[1]));
}
VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);

static ssize_t channel_latency_show(const struct vmbus_channel *channel,
				    char *buf)
{
	return sprintf(buf, "%d\n",
		       channel_latency(channel,
				       vmbus_connection.monitor_pages[1]));
}
VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->interrupts);
}
VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);

static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
{
	return sprintf(buf, "%llu\n", channel->sig_events);
}
VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);

1258 1259 1260 1261 1262 1263 1264 1265
static struct attribute *vmbus_chan_attrs[] = {
	&chan_attr_out_mask.attr,
	&chan_attr_in_mask.attr,
	&chan_attr_read_avail.attr,
	&chan_attr_write_avail.attr,
	&chan_attr_cpu.attr,
	&chan_attr_pending.attr,
	&chan_attr_latency.attr,
1266 1267
	&chan_attr_interrupts.attr,
	&chan_attr_events.attr,
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	NULL
};

static struct kobj_type vmbus_chan_ktype = {
	.sysfs_ops = &vmbus_chan_sysfs_ops,
	.release = vmbus_chan_release,
	.default_attrs = vmbus_chan_attrs,
};

/*
 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
 */
int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
{
	struct kobject *kobj = &channel->kobj;
	u32 relid = channel->offermsg.child_relid;
	int ret;

	kobj->kset = dev->channels_kset;
	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
				   "%u", relid);
	if (ret)
		return ret;

	kobject_uevent(kobj, KOBJ_ADD);

	return 0;
}

1297
/*
1298
 * vmbus_device_create - Creates and registers a new child device
1299
 * on the vmbus.
1300
 */
S
stephen hemminger 已提交
1301 1302 1303
struct hv_device *vmbus_device_create(const uuid_le *type,
				      const uuid_le *instance,
				      struct vmbus_channel *channel)
1304
{
1305
	struct hv_device *child_device_obj;
1306

1307 1308
	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
	if (!child_device_obj) {
1309
		pr_err("Unable to allocate device object for child device\n");
1310 1311 1312
		return NULL;
	}

1313
	child_device_obj->channel = channel;
1314
	memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1315
	memcpy(&child_device_obj->dev_instance, instance,
1316
	       sizeof(uuid_le));
1317
	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1318 1319 1320 1321 1322


	return child_device_obj;
}

1323
/*
1324
 * vmbus_device_register - Register the child device
1325
 */
1326
int vmbus_device_register(struct hv_device *child_device_obj)
1327
{
1328 1329
	struct kobject *kobj = &child_device_obj->device.kobj;
	int ret;
1330

1331
	dev_set_name(&child_device_obj->device, "%pUl",
1332
		     child_device_obj->channel->offermsg.offer.if_instance.b);
1333

1334
	child_device_obj->device.bus = &hv_bus;
1335
	child_device_obj->device.parent = &hv_acpi_dev->dev;
1336
	child_device_obj->device.release = vmbus_device_release;
1337

1338 1339 1340 1341
	/*
	 * Register with the LDM. This will kick off the driver/device
	 * binding...which will eventually call vmbus_match() and vmbus_probe()
	 */
1342
	ret = device_register(&child_device_obj->device);
1343
	if (ret) {
1344
		pr_err("Unable to register child device\n");
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
		return ret;
	}

	child_device_obj->channels_kset = kset_create_and_add("channels",
							      NULL, kobj);
	if (!child_device_obj->channels_kset) {
		ret = -ENOMEM;
		goto err_dev_unregister;
	}

	ret = vmbus_add_channel_kobj(child_device_obj,
				     child_device_obj->channel);
	if (ret) {
		pr_err("Unable to register primary channeln");
		goto err_kset_unregister;
	}

	return 0;

err_kset_unregister:
	kset_unregister(child_device_obj->channels_kset);
1366

1367 1368
err_dev_unregister:
	device_unregister(&child_device_obj->device);
1369 1370 1371
	return ret;
}

1372
/*
1373
 * vmbus_device_unregister - Remove the specified child device
1374
 * from the vmbus.
1375
 */
1376
void vmbus_device_unregister(struct hv_device *device_obj)
1377
{
1378 1379 1380
	pr_debug("child device %s unregistered\n",
		dev_name(&device_obj->device));

1381 1382 1383 1384
	/*
	 * Kick off the process of unregistering the device.
	 * This will call vmbus_remove() and eventually vmbus_device_release()
	 */
1385
	device_unregister(&device_obj->device);
1386 1387 1388
}


1389
/*
1390
 * VMBUS is an acpi enumerated device. Get the information we
1391
 * need from DSDT.
1392
 */
1393
#define VTPM_BASE_ADDRESS 0xfed40000
1394
static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1395
{
1396 1397 1398 1399 1400 1401
	resource_size_t start = 0;
	resource_size_t end = 0;
	struct resource *new_res;
	struct resource **old_res = &hyperv_mmio;
	struct resource **prev_res = NULL;

1402
	switch (res->type) {
1403 1404 1405 1406 1407 1408 1409 1410 1411

	/*
	 * "Address" descriptors are for bus windows. Ignore
	 * "memory" descriptors, which are for registers on
	 * devices.
	 */
	case ACPI_RESOURCE_TYPE_ADDRESS32:
		start = res->data.address32.address.minimum;
		end = res->data.address32.address.maximum;
G
Gerd Hoffmann 已提交
1412
		break;
1413

1414
	case ACPI_RESOURCE_TYPE_ADDRESS64:
1415 1416
		start = res->data.address64.address.minimum;
		end = res->data.address64.address.maximum;
G
Gerd Hoffmann 已提交
1417
		break;
1418 1419 1420 1421 1422

	default:
		/* Unused resource type */
		return AE_OK;

1423
	}
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * Ignore ranges that are below 1MB, as they're not
	 * necessary or useful here.
	 */
	if (end < 0x100000)
		return AE_OK;

	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
	if (!new_res)
		return AE_NO_MEMORY;

	/* If this range overlaps the virtual TPM, truncate it. */
	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
		end = VTPM_BASE_ADDRESS;

	new_res->name = "hyperv mmio";
	new_res->flags = IORESOURCE_MEM;
	new_res->start = start;
	new_res->end = end;

1444 1445 1446
	/*
	 * If two ranges are adjacent, merge them.
	 */
1447 1448 1449 1450 1451 1452
	do {
		if (!*old_res) {
			*old_res = new_res;
			break;
		}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		if (((*old_res)->end + 1) == new_res->start) {
			(*old_res)->end = new_res->end;
			kfree(new_res);
			break;
		}

		if ((*old_res)->start == new_res->end + 1) {
			(*old_res)->start = new_res->start;
			kfree(new_res);
			break;
		}

1465
		if ((*old_res)->start > new_res->end) {
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
			new_res->sibling = *old_res;
			if (prev_res)
				(*prev_res)->sibling = new_res;
			*old_res = new_res;
			break;
		}

		prev_res = old_res;
		old_res = &(*old_res)->sibling;

	} while (1);
1477 1478 1479 1480

	return AE_OK;
}

1481 1482 1483 1484 1485 1486
static int vmbus_acpi_remove(struct acpi_device *device)
{
	struct resource *cur_res;
	struct resource *next_res;

	if (hyperv_mmio) {
1487 1488 1489 1490 1491 1492
		if (fb_mmio) {
			__release_region(hyperv_mmio, fb_mmio->start,
					 resource_size(fb_mmio));
			fb_mmio = NULL;
		}

1493 1494 1495 1496 1497 1498 1499 1500 1501
		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
			next_res = cur_res->sibling;
			kfree(cur_res);
		}
	}

	return 0;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
static void vmbus_reserve_fb(void)
{
	int size;
	/*
	 * Make a claim for the frame buffer in the resource tree under the
	 * first node, which will be the one below 4GB.  The length seems to
	 * be underreported, particularly in a Generation 1 VM.  So start out
	 * reserving a larger area and make it smaller until it succeeds.
	 */

	if (screen_info.lfb_base) {
		if (efi_enabled(EFI_BOOT))
			size = max_t(__u32, screen_info.lfb_size, 0x800000);
		else
			size = max_t(__u32, screen_info.lfb_size, 0x4000000);

		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
			fb_mmio = __request_region(hyperv_mmio,
						   screen_info.lfb_base, size,
						   fb_mmio_name, 0);
		}
	}
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/**
 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
 * @new:		If successful, supplied a pointer to the
 *			allocated MMIO space.
 * @device_obj:		Identifies the caller
 * @min:		Minimum guest physical address of the
 *			allocation
 * @max:		Maximum guest physical address
 * @size:		Size of the range to be allocated
 * @align:		Alignment of the range to be allocated
 * @fb_overlap_ok:	Whether this allocation can be allowed
 *			to overlap the video frame buffer.
 *
 * This function walks the resources granted to VMBus by the
 * _CRS object in the ACPI namespace underneath the parent
 * "bridge" whether that's a root PCI bus in the Generation 1
 * case or a Module Device in the Generation 2 case.  It then
 * attempts to allocate from the global MMIO pool in a way that
 * matches the constraints supplied in these parameters and by
 * that _CRS.
 *
 * Return: 0 on success, -errno on failure
 */
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
			resource_size_t min, resource_size_t max,
			resource_size_t size, resource_size_t align,
			bool fb_overlap_ok)
{
1554
	struct resource *iter, *shadow;
1555
	resource_size_t range_min, range_max, start;
1556
	const char *dev_n = dev_name(&device_obj->device);
1557
	int retval;
1558 1559 1560

	retval = -ENXIO;
	down(&hyperv_mmio_lock);
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	/*
	 * If overlaps with frame buffers are allowed, then first attempt to
	 * make the allocation from within the reserved region.  Because it
	 * is already reserved, no shadow allocation is necessary.
	 */
	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
	    !(max < fb_mmio->start)) {

		range_min = fb_mmio->start;
		range_max = fb_mmio->end;
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				retval = 0;
				goto exit;
			}
		}
	}

1582 1583 1584 1585 1586 1587
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= max) || (iter->end <= min))
			continue;

		range_min = iter->start;
		range_max = iter->end;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		start = (range_min + align - 1) & ~(align - 1);
		for (; start + size - 1 <= range_max; start += align) {
			shadow = __request_region(iter, start, size, NULL,
						  IORESOURCE_BUSY);
			if (!shadow)
				continue;

			*new = request_mem_region_exclusive(start, size, dev_n);
			if (*new) {
				shadow->name = (char *)*new;
				retval = 0;
				goto exit;
1600 1601
			}

1602
			__release_region(iter, start, size);
1603 1604 1605
		}
	}

1606 1607 1608
exit:
	up(&hyperv_mmio_lock);
	return retval;
1609 1610 1611
}
EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
/**
 * vmbus_free_mmio() - Free a memory-mapped I/O range.
 * @start:		Base address of region to release.
 * @size:		Size of the range to be allocated
 *
 * This function releases anything requested by
 * vmbus_mmio_allocate().
 */
void vmbus_free_mmio(resource_size_t start, resource_size_t size)
{
1622 1623 1624 1625 1626 1627 1628 1629 1630
	struct resource *iter;

	down(&hyperv_mmio_lock);
	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
		if ((iter->start >= start + size) || (iter->end <= start))
			continue;

		__release_region(iter, start, size);
	}
1631
	release_mem_region(start, size);
1632
	up(&hyperv_mmio_lock);
1633 1634 1635 1636

}
EXPORT_SYMBOL_GPL(vmbus_free_mmio);

1637 1638 1639
static int vmbus_acpi_add(struct acpi_device *device)
{
	acpi_status result;
1640
	int ret_val = -ENODEV;
1641
	struct acpi_device *ancestor;
1642

1643 1644
	hv_acpi_dev = device;

1645
	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1646
					vmbus_walk_resources, NULL);
1647

1648 1649 1650
	if (ACPI_FAILURE(result))
		goto acpi_walk_err;
	/*
1651 1652
	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
	 * firmware) is the VMOD that has the mmio ranges. Get that.
1653
	 */
1654 1655 1656
	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
					     vmbus_walk_resources, NULL);
1657 1658

		if (ACPI_FAILURE(result))
1659
			continue;
1660 1661
		if (hyperv_mmio) {
			vmbus_reserve_fb();
1662
			break;
1663
		}
1664
	}
1665 1666 1667
	ret_val = 0;

acpi_walk_err:
1668
	complete(&probe_event);
1669 1670
	if (ret_val)
		vmbus_acpi_remove(device);
1671
	return ret_val;
1672 1673 1674 1675
}

static const struct acpi_device_id vmbus_acpi_device_ids[] = {
	{"VMBUS", 0},
1676
	{"VMBus", 0},
1677 1678 1679 1680 1681 1682 1683 1684 1685
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);

static struct acpi_driver vmbus_acpi_driver = {
	.name = "vmbus",
	.ids = vmbus_acpi_device_ids,
	.ops = {
		.add = vmbus_acpi_add,
1686
		.remove = vmbus_acpi_remove,
1687 1688 1689
	},
};

1690 1691 1692
static void hv_kexec_handler(void)
{
	hv_synic_clockevents_cleanup();
1693
	vmbus_initiate_unload(false);
1694 1695 1696
	vmbus_connection.conn_state = DISCONNECTED;
	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
	mb();
1697
	cpuhp_remove_state(hyperv_cpuhp_online);
1698
	hyperv_cleanup();
1699 1700
};

1701 1702
static void hv_crash_handler(struct pt_regs *regs)
{
1703
	vmbus_initiate_unload(true);
1704 1705 1706 1707 1708
	/*
	 * In crash handler we can't schedule synic cleanup for all CPUs,
	 * doing the cleanup for current CPU only. This should be sufficient
	 * for kdump.
	 */
1709
	vmbus_connection.conn_state = DISCONNECTED;
1710
	hv_synic_cleanup(smp_processor_id());
1711
	hyperv_cleanup();
1712 1713
};

1714
static int __init hv_acpi_init(void)
1715
{
1716
	int ret, t;
1717

1718
	if (x86_hyper != &x86_hyper_ms_hyperv)
1719 1720
		return -ENODEV;

1721 1722 1723
	init_completion(&probe_event);

	/*
1724
	 * Get ACPI resources first.
1725
	 */
1726 1727
	ret = acpi_bus_register_driver(&vmbus_acpi_driver);

1728 1729 1730
	if (ret)
		return ret;

1731 1732 1733 1734 1735
	t = wait_for_completion_timeout(&probe_event, 5*HZ);
	if (t == 0) {
		ret = -ETIMEDOUT;
		goto cleanup;
	}
1736

1737
	ret = vmbus_bus_init();
1738
	if (ret)
1739 1740
		goto cleanup;

1741
	hv_setup_kexec_handler(hv_kexec_handler);
1742
	hv_setup_crash_handler(hv_crash_handler);
1743

1744 1745 1746 1747
	return 0;

cleanup:
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
1748
	hv_acpi_dev = NULL;
1749
	return ret;
1750 1751
}

1752 1753
static void __exit vmbus_exit(void)
{
1754 1755
	int cpu;

1756
	hv_remove_kexec_handler();
1757
	hv_remove_crash_handler();
1758
	vmbus_connection.conn_state = DISCONNECTED;
1759
	hv_synic_clockevents_cleanup();
1760
	vmbus_disconnect();
1761
	hv_remove_vmbus_irq();
1762 1763 1764 1765 1766 1767
	for_each_online_cpu(cpu) {
		struct hv_per_cpu_context *hv_cpu
			= per_cpu_ptr(hv_context.cpu_context, cpu);

		tasklet_kill(&hv_cpu->msg_dpc);
	}
1768
	vmbus_free_channels();
1769

1770
	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1771
		unregister_die_notifier(&hyperv_die_block);
1772 1773 1774
		atomic_notifier_chain_unregister(&panic_notifier_list,
						 &hyperv_panic_block);
	}
1775
	bus_unregister(&hv_bus);
1776

1777
	cpuhp_remove_state(hyperv_cpuhp_online);
1778
	hv_synic_free();
1779 1780 1781
	acpi_bus_unregister_driver(&vmbus_acpi_driver);
}

1782

1783
MODULE_LICENSE("GPL");
1784

1785
subsys_initcall(hv_acpi_init);
1786
module_exit(vmbus_exit);