intel_gt.c 29.8 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

A
Andi Shyti 已提交
6 7
#include <drm/drm_managed.h>

8
#include "gem/i915_gem_internal.h"
9
#include "gem/i915_gem_lmem.h"
10 11
#include "pxp/intel_pxp.h"

12
#include "i915_drv.h"
13
#include "intel_context.h"
14
#include "intel_engine_regs.h"
15
#include "intel_gt.h"
16
#include "intel_gt_buffer_pool.h"
17
#include "intel_gt_clock_utils.h"
18
#include "intel_gt_debugfs.h"
19
#include "intel_gt_gmch.h"
20
#include "intel_gt_pm.h"
21
#include "intel_gt_regs.h"
22
#include "intel_gt_requests.h"
23
#include "intel_migrate.h"
24
#include "intel_mocs.h"
25
#include "intel_pm.h"
26
#include "intel_rc6.h"
27
#include "intel_renderstate.h"
28
#include "intel_rps.h"
29
#include "intel_gt_sysfs.h"
30
#include "intel_uncore.h"
31
#include "shmem_utils.h"
32

33
static void __intel_gt_init_early(struct intel_gt *gt)
34
{
35 36
	spin_lock_init(&gt->irq_lock);

37 38
	mutex_init(&gt->tlb_invalidate_lock);

39
	INIT_LIST_HEAD(&gt->closed_vma);
40
	spin_lock_init(&gt->closed_lock);
41

42 43 44
	init_llist_head(&gt->watchdog.list);
	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);

45
	intel_gt_init_buffer_pool(gt);
46
	intel_gt_init_reset(gt);
47
	intel_gt_init_requests(gt);
48
	intel_gt_init_timelines(gt);
49
	intel_gt_pm_init_early(gt);
50

51
	intel_uc_init_early(&gt->uc);
52
	intel_rps_init_early(&gt->rps);
53
}
54

55 56
/* Preliminary initialization of Tile 0 */
void intel_root_gt_init_early(struct drm_i915_private *i915)
57
{
58 59
	struct intel_gt *gt = to_gt(i915);

60 61
	gt->i915 = i915;
	gt->uncore = &i915->uncore;
62 63

	__intel_gt_init_early(gt);
64 65
}

66
static int intel_gt_probe_lmem(struct intel_gt *gt)
67 68
{
	struct drm_i915_private *i915 = gt->i915;
69 70
	unsigned int instance = gt->info.id;
	int id = INTEL_REGION_LMEM_0 + instance;
71 72 73
	struct intel_memory_region *mem;
	int err;

M
Matthew Auld 已提交
74
	mem = intel_gt_setup_lmem(gt);
75 76 77 78 79 80 81 82 83 84 85 86
	if (IS_ERR(mem)) {
		err = PTR_ERR(mem);
		if (err == -ENODEV)
			return 0;

		drm_err(&i915->drm,
			"Failed to setup region(%d) type=%d\n",
			err, INTEL_MEMORY_LOCAL);
		return err;
	}

	mem->id = id;
87
	mem->instance = instance;
88

89 90
	intel_memory_region_set_name(mem, "local%u", mem->instance);

91 92 93 94 95 96 97
	GEM_BUG_ON(!HAS_REGION(i915, id));
	GEM_BUG_ON(i915->mm.regions[id]);
	i915->mm.regions[id] = mem;

	return 0;
}

A
Andi Shyti 已提交
98
int intel_gt_assign_ggtt(struct intel_gt *gt)
99
{
A
Andi Shyti 已提交
100 101 102
	gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);

	return gt->ggtt ? 0 : -ENOMEM;
103 104
}

105 106 107 108 109 110
static const char * const intel_steering_types[] = {
	"L3BANK",
	"MSLICE",
	"LNCF",
};

111 112 113 114 115
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
	{ 0x00B100, 0x00B3FF },
	{},
};

116 117 118 119 120 121 122 123 124 125 126 127 128 129
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
	{ 0x004000, 0x004AFF },
	{ 0x00C800, 0x00CFFF },
	{ 0x00DD00, 0x00DDFF },
	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
	{},
};

static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
	{ 0x00B000, 0x00B0FF },
	{ 0x00D800, 0x00D8FF },
	{},
};

130 131 132 133 134 135
static const struct intel_mmio_range dg2_lncf_steering_table[] = {
	{ 0x00B000, 0x00B0FF },
	{ 0x00D880, 0x00D8FF },
	{},
};

136 137 138 139 140 141 142
static u16 slicemask(struct intel_gt *gt, int count)
{
	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);

	return intel_slicemask_from_dssmask(dss_mask, count);
}

143 144
int intel_gt_init_mmio(struct intel_gt *gt)
{
145 146
	struct drm_i915_private *i915 = gt->i915;

147 148
	intel_gt_init_clock_frequency(gt);

149
	intel_uc_init_mmio(&gt->uc);
150
	intel_sseu_info_init(gt);
151

152 153 154 155 156 157 158 159 160 161
	/*
	 * An mslice is unavailable only if both the meml3 for the slice is
	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
	 */
	if (HAS_MSLICES(i915))
		gt->info.mslice_mask =
			slicemask(gt, GEN_DSS_PER_MSLICE) |
			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
			 GEN12_MEML3_EN_MASK);

162 163 164 165
	if (IS_DG2(i915)) {
		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
		gt->steering_table[LNCF] = dg2_lncf_steering_table;
	} else if (IS_XEHPSDV(i915)) {
166 167 168
		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
	} else if (GRAPHICS_VER(i915) >= 11 &&
169
		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
170 171 172 173
		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
		gt->info.l3bank_mask =
			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
			GEN10_L3BANK_MASK;
174 175
	} else if (HAS_MSLICES(i915)) {
		MISSING_CASE(INTEL_INFO(i915)->platform);
176 177
	}

178 179 180
	return intel_engines_init_mmio(gt);
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
}

static void init_unused_rings(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
201
	} else if (GRAPHICS_VER(i915) == 2) {
202 203
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
204
	} else if (GRAPHICS_VER(i915) == 3) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
	}
}

int intel_gt_init_hw(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	int ret;

	gt->last_init_time = ktime_get();

	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

221
	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
222 223 224 225
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));

	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
226
				   HSW_MI_PREDICATE_RESULT_2,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);

	/* Apply the GT workarounds... */
	intel_gt_apply_workarounds(gt);
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(gt, "init");

	intel_gt_init_swizzling(gt);

	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(gt);

	ret = i915_ppgtt_init_hw(gt);
	if (ret) {
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
		goto out;
	}

	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(&gt->uc);
	if (ret) {
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
		goto out;
	}

	intel_mocs_init(gt);

out:
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	return ret;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
	intel_uncore_rmw(uncore, reg, 0, set);
}

static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
	intel_uncore_rmw(uncore, reg, clr, 0);
}

static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
	intel_uncore_rmw(uncore, reg, 0, 0);
}

280
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
281 282 283 284 285 286 287 288 289 290 291 292 293
{
	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
	GEN6_RING_FAULT_REG_POSTING_READ(engine);
}

void
intel_gt_clear_error_registers(struct intel_gt *gt,
			       intel_engine_mask_t engine_mask)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	u32 eir;

294
	if (GRAPHICS_VER(i915) != 2)
295 296
		clear_register(uncore, PGTBL_ER);

297
	if (GRAPHICS_VER(i915) < 4)
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
		clear_register(uncore, IPEIR(RENDER_RING_BASE));
	else
		clear_register(uncore, IPEIR_I965);

	clear_register(uncore, EIR);
	eir = intel_uncore_read(uncore, EIR);
	if (eir) {
		/*
		 * some errors might have become stuck,
		 * mask them.
		 */
		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
		rmw_set(uncore, EMR, eir);
		intel_uncore_write(uncore, GEN2_IIR,
				   I915_MASTER_ERROR_INTERRUPT);
	}

315
	if (GRAPHICS_VER(i915) >= 12) {
316 317
		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
318
	} else if (GRAPHICS_VER(i915) >= 8) {
319 320
		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
321
	} else if (GRAPHICS_VER(i915) >= 6) {
322 323 324
		struct intel_engine_cs *engine;
		enum intel_engine_id id;

325
		for_each_engine_masked(engine, gt, engine_mask, id)
326
			gen6_clear_engine_error_register(engine);
327 328 329 330 331 332 333 334 335
	}
}

static void gen6_check_faults(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 fault;

336
	for_each_engine(engine, gt, id) {
337 338
		fault = GEN6_RING_FAULT_REG_READ(engine);
		if (fault & RING_FAULT_VALID) {
339 340 341 342 343 344 345 346 347 348
			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
				"\tAddr: 0x%08lx\n"
				"\tAddress space: %s\n"
				"\tSource ID: %d\n"
				"\tType: %d\n",
				fault & PAGE_MASK,
				fault & RING_FAULT_GTTSEL_MASK ?
				"GGTT" : "PPGTT",
				RING_FAULT_SRCID(fault),
				RING_FAULT_FAULT_TYPE(fault));
349 350 351 352 353 354 355
		}
	}
}

static void gen8_check_faults(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
356 357 358
	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
	u32 fault;

359
	if (GRAPHICS_VER(gt->i915) >= 12) {
360 361 362 363 364 365 366 367
		fault_reg = GEN12_RING_FAULT_REG;
		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
	} else {
		fault_reg = GEN8_RING_FAULT_REG;
		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
	}
368

369
	fault = intel_uncore_read(uncore, fault_reg);
370 371 372 373
	if (fault & RING_FAULT_VALID) {
		u32 fault_data0, fault_data1;
		u64 fault_addr;

374 375 376
		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);

377 378 379
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

380 381 382 383 384 385 386 387 388 389 390
		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
			"\tAddr: 0x%08x_%08x\n"
			"\tAddress space: %s\n"
			"\tEngine ID: %d\n"
			"\tSource ID: %d\n"
			"\tType: %d\n",
			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
			GEN8_RING_FAULT_ENGINE_ID(fault),
			RING_FAULT_SRCID(fault),
			RING_FAULT_FAULT_TYPE(fault));
391 392 393 394 395 396 397 398
	}
}

void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
399
	if (GRAPHICS_VER(i915) >= 8)
400
		gen8_check_faults(gt);
401
	else if (GRAPHICS_VER(i915) >= 6)
402 403 404 405 406 407
		gen6_check_faults(gt);
	else
		return;

	intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
408 409 410

void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
411
	struct intel_uncore *uncore = gt->uncore;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	intel_wakeref_t wakeref;

	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
	 */

	wmb();

435
	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
436 437
		return;

438
	intel_gt_chipset_flush(gt);
439

440
	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
441
		unsigned long flags;
442

443
		spin_lock_irqsave(&uncore->lock, flags);
444 445
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
446
		spin_unlock_irqrestore(&uncore->lock, flags);
447 448
	}
}
449 450 451 452

void intel_gt_chipset_flush(struct intel_gt *gt)
{
	wmb();
453
	if (GRAPHICS_VER(gt->i915) < 6)
454
		intel_gt_gmch_gen5_chipset_flush(gt);
455
}
456

457 458
void intel_gt_driver_register(struct intel_gt *gt)
{
459 460
	intel_gsc_init(&gt->gsc, gt->i915);

461
	intel_rps_driver_register(&gt->rps);
462

463
	intel_gt_debugfs_register(gt);
464
	intel_gt_sysfs_register(gt);
465 466 467
}

static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
468 469 470 471 472 473
{
	struct drm_i915_private *i915 = gt->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

474 475 476
	obj = i915_gem_object_create_lmem(i915, size,
					  I915_BO_ALLOC_VOLATILE |
					  I915_BO_ALLOC_GPU_ONLY);
477 478
	if (IS_ERR(obj))
		obj = i915_gem_object_create_stolen(i915, size);
479
	if (IS_ERR(obj))
480 481
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
482
		drm_err(&i915->drm, "Failed to allocate scratch page\n");
483 484 485 486 487 488 489 490 491
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

492
	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
493 494 495
	if (ret)
		goto err_unref;

496 497
	gt->scratch = i915_vma_make_unshrinkable(vma);

498 499 500 501 502 503 504
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

505
static void intel_gt_fini_scratch(struct intel_gt *gt)
506 507 508
{
	i915_vma_unpin_and_release(&gt->scratch, 0);
}
509

510 511 512
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
513
		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
514 515 516 517
	else
		return i915_vm_get(&gt->ggtt->vm);
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static int __engines_record_defaults(struct intel_gt *gt)
{
	struct i915_request *requests[I915_NUM_ENGINES] = {};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, gt, id) {
		struct intel_renderstate so;
		struct intel_context *ce;
		struct i915_request *rq;

539 540 541
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);

542 543 544 545 546 547
		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

548 549 550 551 552
		err = intel_renderstate_init(&so, ce);
		if (err)
			goto err;

		rq = i915_request_create(ce);
553 554
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
555
			goto err_fini;
556 557 558 559 560 561 562 563 564 565 566 567 568
		}

		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		err = intel_renderstate_emit(&so, rq);
		if (err)
			goto err_rq;

err_rq:
		requests[id] = i915_request_get(rq);
		i915_request_add(rq);
569 570 571 572 573
err_fini:
		intel_renderstate_fini(&so, ce);
err:
		if (err) {
			intel_context_put(ce);
574
			goto out;
575
		}
576 577 578 579 580 581 582 583 584 585
	}

	/* Flush the default context image to memory, and enable powersaving. */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
		err = -EIO;
		goto out;
	}

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
586
		struct file *state;
587 588 589 590 591

		rq = requests[id];
		if (!rq)
			continue;

592 593 594 595 596
		if (rq->fence.error) {
			err = -EIO;
			goto out;
		}

597
		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
598
		if (!rq->context->state)
599 600
			continue;

601 602 603 604
		/* Keep a copy of the state's backing pages; free the obj */
		state = shmem_create_from_object(rq->context->state->obj);
		if (IS_ERR(state)) {
			err = PTR_ERR(state);
605 606
			goto out;
		}
607
		rq->engine->default_state = state;
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	}

out:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
	 */
	if (err)
		intel_gt_set_wedged(gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
}

static int __engines_verify_workarounds(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, gt, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

648 649 650 651
	/* Flush and restore the kernel context for safety */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
		err = -EIO;

652 653 654 655 656
	return err;
}

static void __intel_gt_disable(struct intel_gt *gt)
{
657
	intel_gt_set_wedged_on_fini(gt);
658 659 660 661 662 663 664

	intel_gt_suspend_prepare(gt);
	intel_gt_suspend_late(gt);

	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
{
	long remaining_timeout;

	/* If the device is asleep, we have no requests outstanding */
	if (!intel_gt_pm_is_awake(gt))
		return 0;

	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
							   &remaining_timeout)) > 0) {
		cond_resched();
		if (signal_pending(current))
			return -EINTR;
	}

	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
							  remaining_timeout);
}

684 685 686 687
int intel_gt_init(struct intel_gt *gt)
{
	int err;

688
	err = i915_inject_probe_error(gt->i915, -ENODEV);
689 690 691
	if (err)
		return err;

692 693
	intel_gt_init_workarounds(gt);

694 695 696 697 698 699 700 701 702
	/*
	 * This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);

703 704
	err = intel_gt_init_scratch(gt,
				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
705 706 707
	if (err)
		goto out_fw;

708 709
	intel_gt_pm_init(gt);

710 711 712
	gt->vm = kernel_vm(gt);
	if (!gt->vm) {
		err = -ENOMEM;
713
		goto err_pm;
714 715
	}

716
	intel_set_mocs_index(gt);
717

718 719 720 721
	err = intel_engines_init(gt);
	if (err)
		goto err_engines;

722 723 724
	err = intel_uc_init(&gt->uc);
	if (err)
		goto err_engines;
725 726 727

	err = intel_gt_resume(gt);
	if (err)
728
		goto err_uc_init;
729

730 731 732 733 734
	err = intel_gt_init_hwconfig(gt);
	if (err)
		drm_err(&gt->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
			ERR_PTR(err));

735 736 737 738 739 740 741 742
	err = __engines_record_defaults(gt);
	if (err)
		goto err_gt;

	err = __engines_verify_workarounds(gt);
	if (err)
		goto err_gt;

743 744
	intel_uc_init_late(&gt->uc);

745 746 747 748
	err = i915_inject_probe_error(gt->i915, -EIO);
	if (err)
		goto err_gt;

749 750
	intel_migrate_init(&gt->migrate, gt);

751 752
	intel_pxp_init(&gt->pxp);

753 754 755 756 757 758 759 760 761 762 763
	goto out_fw;
err_gt:
	__intel_gt_disable(gt);
	intel_uc_fini_hw(&gt->uc);
err_uc_init:
	intel_uc_fini(&gt->uc);
err_engines:
	intel_engines_release(gt);
	i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
	intel_gt_pm_fini(gt);
764
	intel_gt_fini_scratch(gt);
765 766 767 768
out_fw:
	if (err)
		intel_gt_set_wedged_on_init(gt);
	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
769
	return err;
770 771 772 773
}

void intel_gt_driver_remove(struct intel_gt *gt)
{
774 775
	__intel_gt_disable(gt);

776
	intel_migrate_fini(&gt->migrate);
777
	intel_uc_driver_remove(&gt->uc);
778 779

	intel_engines_release(gt);
780 781

	intel_gt_flush_buffer_pool(gt);
782 783 784 785
}

void intel_gt_driver_unregister(struct intel_gt *gt)
{
786 787
	intel_wakeref_t wakeref;

788
	intel_rps_driver_unregister(&gt->rps);
789
	intel_gsc_fini(&gt->gsc);
790

791 792
	intel_pxp_fini(&gt->pxp);

793 794 795 796 797
	/*
	 * Upon unregistering the device to prevent any new users, cancel
	 * all in-flight requests so that we can quickly unbind the active
	 * resources.
	 */
798
	intel_gt_set_wedged_on_fini(gt);
799 800 801 802

	/* Scrub all HW state upon release */
	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		__intel_gt_reset(gt, ALL_ENGINES);
803 804 805 806
}

void intel_gt_driver_release(struct intel_gt *gt)
{
807 808 809 810 811 812
	struct i915_address_space *vm;

	vm = fetch_and_zero(&gt->vm);
	if (vm) /* FIXME being called twice on error paths :( */
		i915_vm_put(vm);

813
	intel_wa_list_free(&gt->wa_list);
814
	intel_gt_pm_fini(gt);
815
	intel_gt_fini_scratch(gt);
816
	intel_gt_fini_buffer_pool(gt);
817
	intel_gt_fini_hwconfig(gt);
818 819
}

820
void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
821
{
822 823 824
	struct intel_gt *gt;
	unsigned int id;

825 826 827
	/* We need to wait for inflight RCU frees to release their grip */
	rcu_barrier();

828 829 830 831 832 833 834
	for_each_gt(gt, i915, id) {
		intel_uc_driver_late_release(&gt->uc);
		intel_gt_fini_requests(gt);
		intel_gt_fini_reset(gt);
		intel_gt_fini_timelines(gt);
		intel_engines_free(gt);
	}
835
}
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/**
 * intel_gt_reg_needs_read_steering - determine whether a register read
 *     requires explicit steering
 * @gt: GT structure
 * @reg: the register to check steering requirements for
 * @type: type of multicast steering to check
 *
 * Determines whether @reg needs explicit steering of a specific type for
 * reads.
 *
 * Returns false if @reg does not belong to a register range of the given
 * steering type, or if the default (subslice-based) steering IDs are suitable
 * for @type steering too.
 */
static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
					     i915_reg_t reg,
					     enum intel_steering_type type)
{
	const u32 offset = i915_mmio_reg_offset(reg);
	const struct intel_mmio_range *entry;

	if (likely(!intel_gt_needs_read_steering(gt, type)))
		return false;

	for (entry = gt->steering_table[type]; entry->end; entry++) {
		if (offset >= entry->start && offset <= entry->end)
			return true;
	}

	return false;
}

/**
 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
 * @gt: GT structure
 * @type: multicast register type
 * @sliceid: Slice ID returned
 * @subsliceid: Subslice ID returned
 *
 * Determines sliceid and subsliceid values that will steer reads
 * of a specific multicast register class to a valid value.
 */
static void intel_gt_get_valid_steering(struct intel_gt *gt,
					enum intel_steering_type type,
					u8 *sliceid, u8 *subsliceid)
{
	switch (type) {
884 885 886 887 888 889
	case L3BANK:
		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */

		*sliceid = 0;		/* unused */
		*subsliceid = __ffs(gt->info.l3bank_mask);
		break;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	case MSLICE:
		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */

		*sliceid = __ffs(gt->info.mslice_mask);
		*subsliceid = 0;	/* unused */
		break;
	case LNCF:
		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */

		/*
		 * An LNCF is always present if its mslice is present, so we
		 * can safely just steer to LNCF 0 in all cases.
		 */
		*sliceid = __ffs(gt->info.mslice_mask) << 1;
		*subsliceid = 0;	/* unused */
		break;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	default:
		MISSING_CASE(type);
		*sliceid = 0;
		*subsliceid = 0;
	}
}

/**
 * intel_gt_read_register_fw - reads a GT register with support for multicast
 * @gt: GT structure
 * @reg: register to read
 *
 * This function will read a GT register.  If the register is a multicast
 * register, the read will be steered to a valid instance (i.e., one that
 * isn't fused off or powered down by power gating).
 *
 * Returns the value from a valid instance of @reg.
 */
u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
{
	int type;
	u8 sliceid, subsliceid;

	for (type = 0; type < NUM_STEERING_TYPES; type++) {
		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
			intel_gt_get_valid_steering(gt, type, &sliceid,
						    &subsliceid);
			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
								      reg,
								      sliceid,
								      subsliceid);
		}
	}

	return intel_uncore_read_fw(gt->uncore, reg);
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/**
 * intel_gt_get_valid_steering_for_reg - get a valid steering for a register
 * @gt: GT structure
 * @reg: register for which the steering is required
 * @sliceid: return variable for slice steering
 * @subsliceid: return variable for subslice steering
 *
 * This function returns a slice/subslice pair that is guaranteed to work for
 * read steering of the given register. Note that a value will be returned even
 * if the register is not replicated and therefore does not actually require
 * steering.
 */
void intel_gt_get_valid_steering_for_reg(struct intel_gt *gt, i915_reg_t reg,
					 u8 *sliceid, u8 *subsliceid)
{
	int type;

	for (type = 0; type < NUM_STEERING_TYPES; type++) {
		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
			intel_gt_get_valid_steering(gt, type, sliceid,
						    subsliceid);
			return;
		}
	}

	*sliceid = gt->default_steering.groupid;
	*subsliceid = gt->default_steering.instanceid;
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg)
{
	int type;
	u8 sliceid, subsliceid;

	for (type = 0; type < NUM_STEERING_TYPES; type++) {
		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
			intel_gt_get_valid_steering(gt, type, &sliceid,
						    &subsliceid);
			return intel_uncore_read_with_mcr_steering(gt->uncore,
								   reg,
								   sliceid,
								   subsliceid);
		}
	}

	return intel_uncore_read(gt->uncore, reg);
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static void report_steering_type(struct drm_printer *p,
				 struct intel_gt *gt,
				 enum intel_steering_type type,
				 bool dump_table)
{
	const struct intel_mmio_range *entry;
	u8 slice, subslice;

	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);

	if (!gt->steering_table[type]) {
		drm_printf(p, "%s steering: uses default steering\n",
			   intel_steering_types[type]);
		return;
	}

	intel_gt_get_valid_steering(gt, type, &slice, &subslice);
	drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n",
		   intel_steering_types[type], slice, subslice);

	if (!dump_table)
		return;

	for (entry = gt->steering_table[type]; entry->end; entry++)
		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
}

void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt,
			      bool dump_table)
{
	drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n",
		   gt->default_steering.groupid,
		   gt->default_steering.instanceid);

	if (HAS_MSLICES(gt->i915)) {
		report_steering_type(p, gt, MSLICE, dump_table);
		report_steering_type(p, gt, LNCF, dump_table);
	}
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
{
	int ret;

	if (!gt_is_root(gt)) {
		struct intel_uncore_mmio_debug *mmio_debug;
		struct intel_uncore *uncore;

		uncore = kzalloc(sizeof(*uncore), GFP_KERNEL);
		if (!uncore)
			return -ENOMEM;

		mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL);
		if (!mmio_debug) {
			kfree(uncore);
			return -ENOMEM;
		}

		gt->uncore = uncore;
		gt->uncore->debug = mmio_debug;

		__intel_gt_init_early(gt);
	}

	intel_uncore_init_early(gt->uncore, gt);

	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
	if (ret)
		return ret;

	gt->phys_addr = phys_addr;

	return 0;
}

static void
intel_gt_tile_cleanup(struct intel_gt *gt)
{
	intel_uncore_cleanup_mmio(gt->uncore);

	if (!gt_is_root(gt)) {
		kfree(gt->uncore->debug);
		kfree(gt->uncore);
		kfree(gt);
	}
}

int intel_gt_probe_all(struct drm_i915_private *i915)
{
	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
	struct intel_gt *gt = &i915->gt0;
	phys_addr_t phys_addr;
	unsigned int mmio_bar;
	int ret;

	mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0;
	phys_addr = pci_resource_start(pdev, mmio_bar);

	/*
	 * We always have at least one primary GT on any device
	 * and it has been already initialized early during probe
	 * in i915_driver_probe()
	 */
	ret = intel_gt_tile_setup(gt, phys_addr);
	if (ret)
		return ret;

	i915->gt[0] = gt;

	/* TODO: add more tiles */
	return 0;
}

int intel_gt_tiles_init(struct drm_i915_private *i915)
{
	struct intel_gt *gt;
	unsigned int id;
	int ret;

	for_each_gt(gt, i915, id) {
		ret = intel_gt_probe_lmem(gt);
		if (ret)
			return ret;
	}

	return 0;
}

void intel_gt_release_all(struct drm_i915_private *i915)
{
	struct intel_gt *gt;
	unsigned int id;

	for_each_gt(gt, i915, id) {
		intel_gt_tile_cleanup(gt);
		i915->gt[id] = NULL;
	}
}

1130 1131 1132 1133
void intel_gt_info_print(const struct intel_gt_info *info,
			 struct drm_printer *p)
{
	drm_printf(p, "available engines: %x\n", info->engine_mask);
1134 1135

	intel_sseu_dump(&info->sseu, p);
1136
}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

struct reg_and_bit {
	i915_reg_t reg;
	u32 bit;
};

static struct reg_and_bit
get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
		const i915_reg_t *regs, const unsigned int num)
{
	const unsigned int class = engine->class;
	struct reg_and_bit rb = { };

	if (drm_WARN_ON_ONCE(&engine->i915->drm,
			     class >= num || !regs[class].reg))
		return rb;

	rb.reg = regs[class];
	if (gen8 && class == VIDEO_DECODE_CLASS)
		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
	else
		rb.bit = engine->instance;

	rb.bit = BIT(rb.bit);

	return rb;
}

void intel_gt_invalidate_tlbs(struct intel_gt *gt)
{
	static const i915_reg_t gen8_regs[] = {
		[RENDER_CLASS]			= GEN8_RTCR,
		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
	};
	static const i915_reg_t gen12_regs[] = {
		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
	};
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	const i915_reg_t *regs;
	unsigned int num = 0;

	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
		return;

	if (GRAPHICS_VER(i915) == 12) {
		regs = gen12_regs;
		num = ARRAY_SIZE(gen12_regs);
	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
		regs = gen8_regs;
		num = ARRAY_SIZE(gen8_regs);
	} else if (GRAPHICS_VER(i915) < 8) {
		return;
	}

	if (drm_WARN_ONCE(&i915->drm, !num,
			  "Platform does not implement TLB invalidation!"))
		return;

	GEM_TRACE("\n");

	assert_rpm_wakelock_held(&i915->runtime_pm);

	mutex_lock(&gt->tlb_invalidate_lock);
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

	for_each_engine(engine, gt, id) {
		/*
		 * HW architecture suggest typical invalidation time at 40us,
		 * with pessimistic cases up to 100us and a recommendation to
		 * cap at 1ms. We go a bit higher just in case.
		 */
		const unsigned int timeout_us = 100;
		const unsigned int timeout_ms = 4;
		struct reg_and_bit rb;

		rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
		if (!i915_mmio_reg_offset(rb.reg))
			continue;

		intel_uncore_write_fw(uncore, rb.reg, rb.bit);
		if (__intel_wait_for_register_fw(uncore,
						 rb.reg, rb.bit, 0,
						 timeout_us, timeout_ms,
						 NULL))
			drm_err_ratelimited(&gt->i915->drm,
					    "%s TLB invalidation did not complete in %ums!\n",
					    engine->name, timeout_ms);
	}

	/*
	 * Use delayed put since a) we mostly expect a flurry of TLB
	 * invalidations so it is good to avoid paying the forcewake cost and
	 * b) it works around a bug in Icelake which cannot cope with too rapid
	 * transitions.
	 */
	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
	mutex_unlock(&gt->tlb_invalidate_lock);
}