intel_gt.c 21.3 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

6
#include "debugfs_gt.h"
7 8

#include "gem/i915_gem_lmem.h"
9
#include "i915_drv.h"
10
#include "intel_context.h"
11
#include "intel_gt.h"
12
#include "intel_gt_buffer_pool.h"
13
#include "intel_gt_clock_utils.h"
14
#include "intel_gt_pm.h"
15
#include "intel_gt_requests.h"
16
#include "intel_migrate.h"
17
#include "intel_mocs.h"
18
#include "intel_rc6.h"
19
#include "intel_renderstate.h"
20
#include "intel_rps.h"
21
#include "intel_uncore.h"
22
#include "intel_pm.h"
23
#include "shmem_utils.h"
24

25
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
26
{
27 28 29
	gt->i915 = i915;
	gt->uncore = &i915->uncore;

30 31 32
	spin_lock_init(&gt->irq_lock);

	INIT_LIST_HEAD(&gt->closed_vma);
33
	spin_lock_init(&gt->closed_lock);
34

35 36 37
	init_llist_head(&gt->watchdog.list);
	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);

38
	intel_gt_init_buffer_pool(gt);
39
	intel_gt_init_reset(gt);
40
	intel_gt_init_requests(gt);
41
	intel_gt_init_timelines(gt);
42
	intel_gt_pm_init_early(gt);
43

44
	intel_uc_init_early(&gt->uc);
45
	intel_rps_init_early(&gt->rps);
46
}
47

48 49 50 51 52 53 54
int intel_gt_probe_lmem(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_memory_region *mem;
	int id;
	int err;

M
Matthew Auld 已提交
55 56 57
	mem = intel_gt_setup_lmem(gt);
	if (mem == ERR_PTR(-ENODEV))
		mem = intel_gt_setup_fake_lmem(gt);
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
	if (IS_ERR(mem)) {
		err = PTR_ERR(mem);
		if (err == -ENODEV)
			return 0;

		drm_err(&i915->drm,
			"Failed to setup region(%d) type=%d\n",
			err, INTEL_MEMORY_LOCAL);
		return err;
	}

	id = INTEL_REGION_LMEM;

	mem->id = id;

73 74
	intel_memory_region_set_name(mem, "local%u", mem->instance);

75 76 77 78 79 80 81
	GEM_BUG_ON(!HAS_REGION(i915, id));
	GEM_BUG_ON(i915->mm.regions[id]);
	i915->mm.regions[id] = mem;

	return 0;
}

82
void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
83
{
84
	gt->ggtt = ggtt;
85 86
}

87 88 89 90 91
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
	{ 0x00B100, 0x00B3FF },
	{},
};

92 93 94 95 96 97 98 99 100 101 102 103 104 105
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
	{ 0x004000, 0x004AFF },
	{ 0x00C800, 0x00CFFF },
	{ 0x00DD00, 0x00DDFF },
	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
	{},
};

static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
	{ 0x00B000, 0x00B0FF },
	{ 0x00D800, 0x00D8FF },
	{},
};

106 107 108 109 110 111 112
static u16 slicemask(struct intel_gt *gt, int count)
{
	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);

	return intel_slicemask_from_dssmask(dss_mask, count);
}

113 114
int intel_gt_init_mmio(struct intel_gt *gt)
{
115 116
	struct drm_i915_private *i915 = gt->i915;

117 118
	intel_gt_init_clock_frequency(gt);

119
	intel_uc_init_mmio(&gt->uc);
120
	intel_sseu_info_init(gt);
121

122 123 124 125 126 127 128 129 130 131
	/*
	 * An mslice is unavailable only if both the meml3 for the slice is
	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
	 */
	if (HAS_MSLICES(i915))
		gt->info.mslice_mask =
			slicemask(gt, GEN_DSS_PER_MSLICE) |
			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
			 GEN12_MEML3_EN_MASK);

132 133 134 135
	if (IS_XEHPSDV(i915)) {
		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
	} else if (GRAPHICS_VER(i915) >= 11 &&
136
		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
137 138 139 140
		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
		gt->info.l3bank_mask =
			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
			GEN10_L3BANK_MASK;
141 142
	} else if (HAS_MSLICES(i915)) {
		MISSING_CASE(INTEL_INFO(i915)->platform);
143 144
	}

145 146 147
	return intel_engines_init_mmio(gt);
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
}

static void init_unused_rings(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
168
	} else if (GRAPHICS_VER(i915) == 2) {
169 170
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
171
	} else if (GRAPHICS_VER(i915) == 3) {
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
	}
}

int intel_gt_init_hw(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	int ret;

	gt->last_init_time = ktime_get();

	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

188
	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));

	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);

	/* Apply the GT workarounds... */
	intel_gt_apply_workarounds(gt);
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(gt, "init");

	intel_gt_init_swizzling(gt);

	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(gt);

	ret = i915_ppgtt_init_hw(gt);
	if (ret) {
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
		goto out;
	}

	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(&gt->uc);
	if (ret) {
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
		goto out;
	}

	intel_mocs_init(gt);

out:
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	return ret;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
	intel_uncore_rmw(uncore, reg, 0, set);
}

static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
	intel_uncore_rmw(uncore, reg, clr, 0);
}

static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
	intel_uncore_rmw(uncore, reg, 0, 0);
}

247
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
248 249 250 251 252 253 254 255 256 257 258 259 260
{
	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
	GEN6_RING_FAULT_REG_POSTING_READ(engine);
}

void
intel_gt_clear_error_registers(struct intel_gt *gt,
			       intel_engine_mask_t engine_mask)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	u32 eir;

261
	if (GRAPHICS_VER(i915) != 2)
262 263
		clear_register(uncore, PGTBL_ER);

264
	if (GRAPHICS_VER(i915) < 4)
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
		clear_register(uncore, IPEIR(RENDER_RING_BASE));
	else
		clear_register(uncore, IPEIR_I965);

	clear_register(uncore, EIR);
	eir = intel_uncore_read(uncore, EIR);
	if (eir) {
		/*
		 * some errors might have become stuck,
		 * mask them.
		 */
		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
		rmw_set(uncore, EMR, eir);
		intel_uncore_write(uncore, GEN2_IIR,
				   I915_MASTER_ERROR_INTERRUPT);
	}

282
	if (GRAPHICS_VER(i915) >= 12) {
283 284
		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
285
	} else if (GRAPHICS_VER(i915) >= 8) {
286 287
		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
288
	} else if (GRAPHICS_VER(i915) >= 6) {
289 290 291
		struct intel_engine_cs *engine;
		enum intel_engine_id id;

292
		for_each_engine_masked(engine, gt, engine_mask, id)
293
			gen6_clear_engine_error_register(engine);
294 295 296 297 298 299 300 301 302
	}
}

static void gen6_check_faults(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 fault;

303
	for_each_engine(engine, gt, id) {
304 305
		fault = GEN6_RING_FAULT_REG_READ(engine);
		if (fault & RING_FAULT_VALID) {
306 307 308 309 310 311 312 313 314 315
			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
				"\tAddr: 0x%08lx\n"
				"\tAddress space: %s\n"
				"\tSource ID: %d\n"
				"\tType: %d\n",
				fault & PAGE_MASK,
				fault & RING_FAULT_GTTSEL_MASK ?
				"GGTT" : "PPGTT",
				RING_FAULT_SRCID(fault),
				RING_FAULT_FAULT_TYPE(fault));
316 317 318 319 320 321 322
		}
	}
}

static void gen8_check_faults(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
323 324 325
	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
	u32 fault;

326
	if (GRAPHICS_VER(gt->i915) >= 12) {
327 328 329 330 331 332 333 334
		fault_reg = GEN12_RING_FAULT_REG;
		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
	} else {
		fault_reg = GEN8_RING_FAULT_REG;
		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
	}
335

336
	fault = intel_uncore_read(uncore, fault_reg);
337 338 339 340
	if (fault & RING_FAULT_VALID) {
		u32 fault_data0, fault_data1;
		u64 fault_addr;

341 342 343
		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);

344 345 346
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

347 348 349 350 351 352 353 354 355 356 357
		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
			"\tAddr: 0x%08x_%08x\n"
			"\tAddress space: %s\n"
			"\tEngine ID: %d\n"
			"\tSource ID: %d\n"
			"\tType: %d\n",
			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
			GEN8_RING_FAULT_ENGINE_ID(fault),
			RING_FAULT_SRCID(fault),
			RING_FAULT_FAULT_TYPE(fault));
358 359 360 361 362 363 364 365
	}
}

void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
366
	if (GRAPHICS_VER(i915) >= 8)
367
		gen8_check_faults(gt);
368
	else if (GRAPHICS_VER(i915) >= 6)
369 370 371 372 373 374
		gen6_check_faults(gt);
	else
		return;

	intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
375 376 377

void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
378
	struct intel_uncore *uncore = gt->uncore;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	intel_wakeref_t wakeref;

	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
	 */

	wmb();

402
	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
403 404
		return;

405
	intel_gt_chipset_flush(gt);
406

407
	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
408
		unsigned long flags;
409

410
		spin_lock_irqsave(&uncore->lock, flags);
411 412
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
413
		spin_unlock_irqrestore(&uncore->lock, flags);
414 415
	}
}
416 417 418 419

void intel_gt_chipset_flush(struct intel_gt *gt)
{
	wmb();
420
	if (GRAPHICS_VER(gt->i915) < 6)
421 422
		intel_gtt_chipset_flush();
}
423

424 425
void intel_gt_driver_register(struct intel_gt *gt)
{
426
	intel_rps_driver_register(&gt->rps);
427 428

	debugfs_gt_register(gt);
429 430 431
}

static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
432 433 434 435 436 437
{
	struct drm_i915_private *i915 = gt->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

438 439 440
	obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
	if (IS_ERR(obj))
		obj = i915_gem_object_create_stolen(i915, size);
441
	if (IS_ERR(obj))
442 443
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
444
		drm_err(&i915->drm, "Failed to allocate scratch page\n");
445 446 447 448 449 450 451 452 453
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

454
	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
455 456 457
	if (ret)
		goto err_unref;

458 459
	gt->scratch = i915_vma_make_unshrinkable(vma);

460 461 462 463 464 465 466
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

467
static void intel_gt_fini_scratch(struct intel_gt *gt)
468 469 470
{
	i915_vma_unpin_and_release(&gt->scratch, 0);
}
471

472 473 474
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
475
		return &i915_ppgtt_create(gt)->vm;
476 477 478 479
	else
		return i915_vm_get(&gt->ggtt->vm);
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static int __engines_record_defaults(struct intel_gt *gt)
{
	struct i915_request *requests[I915_NUM_ENGINES] = {};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, gt, id) {
		struct intel_renderstate so;
		struct intel_context *ce;
		struct i915_request *rq;

501 502 503
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);

504 505 506 507 508 509
		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

510 511 512 513 514
		err = intel_renderstate_init(&so, ce);
		if (err)
			goto err;

		rq = i915_request_create(ce);
515 516
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
517
			goto err_fini;
518 519 520 521 522 523 524 525 526 527 528 529 530
		}

		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		err = intel_renderstate_emit(&so, rq);
		if (err)
			goto err_rq;

err_rq:
		requests[id] = i915_request_get(rq);
		i915_request_add(rq);
531 532 533 534 535
err_fini:
		intel_renderstate_fini(&so, ce);
err:
		if (err) {
			intel_context_put(ce);
536
			goto out;
537
		}
538 539 540 541 542 543 544 545 546 547
	}

	/* Flush the default context image to memory, and enable powersaving. */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
		err = -EIO;
		goto out;
	}

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
548
		struct file *state;
549 550 551 552 553

		rq = requests[id];
		if (!rq)
			continue;

554 555 556 557 558
		if (rq->fence.error) {
			err = -EIO;
			goto out;
		}

559
		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
560
		if (!rq->context->state)
561 562
			continue;

563 564 565 566
		/* Keep a copy of the state's backing pages; free the obj */
		state = shmem_create_from_object(rq->context->state->obj);
		if (IS_ERR(state)) {
			err = PTR_ERR(state);
567 568
			goto out;
		}
569
		rq->engine->default_state = state;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	}

out:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
	 */
	if (err)
		intel_gt_set_wedged(gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
}

static int __engines_verify_workarounds(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, gt, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

610 611 612 613
	/* Flush and restore the kernel context for safety */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
		err = -EIO;

614 615 616 617 618
	return err;
}

static void __intel_gt_disable(struct intel_gt *gt)
{
619
	intel_gt_set_wedged_on_fini(gt);
620 621 622 623 624 625 626

	intel_gt_suspend_prepare(gt);
	intel_gt_suspend_late(gt);

	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
{
	long remaining_timeout;

	/* If the device is asleep, we have no requests outstanding */
	if (!intel_gt_pm_is_awake(gt))
		return 0;

	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
							   &remaining_timeout)) > 0) {
		cond_resched();
		if (signal_pending(current))
			return -EINTR;
	}

	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
							  remaining_timeout);
}

646 647 648 649
int intel_gt_init(struct intel_gt *gt)
{
	int err;

650
	err = i915_inject_probe_error(gt->i915, -ENODEV);
651 652 653
	if (err)
		return err;

654 655 656 657 658 659 660 661 662
	/*
	 * This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);

663 664
	err = intel_gt_init_scratch(gt,
				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
665 666 667
	if (err)
		goto out_fw;

668 669
	intel_gt_pm_init(gt);

670 671 672
	gt->vm = kernel_vm(gt);
	if (!gt->vm) {
		err = -ENOMEM;
673
		goto err_pm;
674 675
	}

676 677 678 679
	err = intel_engines_init(gt);
	if (err)
		goto err_engines;

680 681 682
	err = intel_uc_init(&gt->uc);
	if (err)
		goto err_engines;
683 684 685

	err = intel_gt_resume(gt);
	if (err)
686
		goto err_uc_init;
687 688 689 690 691 692 693 694 695

	err = __engines_record_defaults(gt);
	if (err)
		goto err_gt;

	err = __engines_verify_workarounds(gt);
	if (err)
		goto err_gt;

696 697
	intel_uc_init_late(&gt->uc);

698 699 700 701
	err = i915_inject_probe_error(gt->i915, -EIO);
	if (err)
		goto err_gt;

702 703
	intel_migrate_init(&gt->migrate, gt);

704 705 706 707 708 709 710 711 712 713 714
	goto out_fw;
err_gt:
	__intel_gt_disable(gt);
	intel_uc_fini_hw(&gt->uc);
err_uc_init:
	intel_uc_fini(&gt->uc);
err_engines:
	intel_engines_release(gt);
	i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
	intel_gt_pm_fini(gt);
715
	intel_gt_fini_scratch(gt);
716 717 718 719
out_fw:
	if (err)
		intel_gt_set_wedged_on_init(gt);
	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
720
	return err;
721 722 723 724
}

void intel_gt_driver_remove(struct intel_gt *gt)
{
725 726
	__intel_gt_disable(gt);

727
	intel_migrate_fini(&gt->migrate);
728
	intel_uc_driver_remove(&gt->uc);
729 730

	intel_engines_release(gt);
731 732 733 734
}

void intel_gt_driver_unregister(struct intel_gt *gt)
{
735 736
	intel_wakeref_t wakeref;

737
	intel_rps_driver_unregister(&gt->rps);
738 739 740 741 742 743 744

	/*
	 * Upon unregistering the device to prevent any new users, cancel
	 * all in-flight requests so that we can quickly unbind the active
	 * resources.
	 */
	intel_gt_set_wedged(gt);
745 746 747 748

	/* Scrub all HW state upon release */
	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		__intel_gt_reset(gt, ALL_ENGINES);
749 750 751 752
}

void intel_gt_driver_release(struct intel_gt *gt)
{
753 754 755 756 757 758
	struct i915_address_space *vm;

	vm = fetch_and_zero(&gt->vm);
	if (vm) /* FIXME being called twice on error paths :( */
		i915_vm_put(vm);

759
	intel_gt_pm_fini(gt);
760
	intel_gt_fini_scratch(gt);
761
	intel_gt_fini_buffer_pool(gt);
762 763
}

764
void intel_gt_driver_late_release(struct intel_gt *gt)
765
{
766 767 768
	/* We need to wait for inflight RCU frees to release their grip */
	rcu_barrier();

769
	intel_uc_driver_late_release(&gt->uc);
770
	intel_gt_fini_requests(gt);
771
	intel_gt_fini_reset(gt);
772
	intel_gt_fini_timelines(gt);
773
	intel_engines_free(gt);
774
}
775

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/**
 * intel_gt_reg_needs_read_steering - determine whether a register read
 *     requires explicit steering
 * @gt: GT structure
 * @reg: the register to check steering requirements for
 * @type: type of multicast steering to check
 *
 * Determines whether @reg needs explicit steering of a specific type for
 * reads.
 *
 * Returns false if @reg does not belong to a register range of the given
 * steering type, or if the default (subslice-based) steering IDs are suitable
 * for @type steering too.
 */
static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
					     i915_reg_t reg,
					     enum intel_steering_type type)
{
	const u32 offset = i915_mmio_reg_offset(reg);
	const struct intel_mmio_range *entry;

	if (likely(!intel_gt_needs_read_steering(gt, type)))
		return false;

	for (entry = gt->steering_table[type]; entry->end; entry++) {
		if (offset >= entry->start && offset <= entry->end)
			return true;
	}

	return false;
}

/**
 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
 * @gt: GT structure
 * @type: multicast register type
 * @sliceid: Slice ID returned
 * @subsliceid: Subslice ID returned
 *
 * Determines sliceid and subsliceid values that will steer reads
 * of a specific multicast register class to a valid value.
 */
static void intel_gt_get_valid_steering(struct intel_gt *gt,
					enum intel_steering_type type,
					u8 *sliceid, u8 *subsliceid)
{
	switch (type) {
823 824 825 826 827 828
	case L3BANK:
		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */

		*sliceid = 0;		/* unused */
		*subsliceid = __ffs(gt->info.l3bank_mask);
		break;
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	case MSLICE:
		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */

		*sliceid = __ffs(gt->info.mslice_mask);
		*subsliceid = 0;	/* unused */
		break;
	case LNCF:
		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */

		/*
		 * An LNCF is always present if its mslice is present, so we
		 * can safely just steer to LNCF 0 in all cases.
		 */
		*sliceid = __ffs(gt->info.mslice_mask) << 1;
		*subsliceid = 0;	/* unused */
		break;
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	default:
		MISSING_CASE(type);
		*sliceid = 0;
		*subsliceid = 0;
	}
}

/**
 * intel_gt_read_register_fw - reads a GT register with support for multicast
 * @gt: GT structure
 * @reg: register to read
 *
 * This function will read a GT register.  If the register is a multicast
 * register, the read will be steered to a valid instance (i.e., one that
 * isn't fused off or powered down by power gating).
 *
 * Returns the value from a valid instance of @reg.
 */
u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
{
	int type;
	u8 sliceid, subsliceid;

	for (type = 0; type < NUM_STEERING_TYPES; type++) {
		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
			intel_gt_get_valid_steering(gt, type, &sliceid,
						    &subsliceid);
			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
								      reg,
								      sliceid,
								      subsliceid);
		}
	}

	return intel_uncore_read_fw(gt->uncore, reg);
}

882 883 884 885
void intel_gt_info_print(const struct intel_gt_info *info,
			 struct drm_printer *p)
{
	drm_printf(p, "available engines: %x\n", info->engine_mask);
886 887

	intel_sseu_dump(&info->sseu, p);
888
}