intel_gt.c 26.6 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

A
Andi Shyti 已提交
6
#include <drm/drm_managed.h>
7
#include <drm/intel-gtt.h>
A
Andi Shyti 已提交
8

9
#include "gem/i915_gem_internal.h"
10
#include "gem/i915_gem_lmem.h"
11 12
#include "pxp/intel_pxp.h"

13
#include "i915_drv.h"
14
#include "intel_context.h"
15
#include "intel_engine_regs.h"
16
#include "intel_gt.h"
17
#include "intel_gt_buffer_pool.h"
18
#include "intel_gt_clock_utils.h"
19
#include "intel_gt_debugfs.h"
20
#include "intel_gt_pm.h"
21
#include "intel_gt_regs.h"
22
#include "intel_gt_requests.h"
23
#include "intel_migrate.h"
24
#include "intel_mocs.h"
25
#include "intel_pm.h"
26
#include "intel_rc6.h"
27
#include "intel_renderstate.h"
28
#include "intel_rps.h"
29
#include "intel_uncore.h"
30
#include "shmem_utils.h"
31

32
void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
33
{
34 35
	spin_lock_init(&gt->irq_lock);

36 37
	mutex_init(&gt->tlb_invalidate_lock);

38
	INIT_LIST_HEAD(&gt->closed_vma);
39
	spin_lock_init(&gt->closed_lock);
40

41 42 43
	init_llist_head(&gt->watchdog.list);
	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);

44
	intel_gt_init_buffer_pool(gt);
45
	intel_gt_init_reset(gt);
46
	intel_gt_init_requests(gt);
47
	intel_gt_init_timelines(gt);
48
	intel_gt_pm_init_early(gt);
49

50
	intel_uc_init_early(&gt->uc);
51
	intel_rps_init_early(&gt->rps);
52
}
53

54 55 56 57 58 59
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
{
	gt->i915 = i915;
	gt->uncore = &i915->uncore;
}

60 61 62 63 64 65 66
int intel_gt_probe_lmem(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_memory_region *mem;
	int id;
	int err;

M
Matthew Auld 已提交
67
	mem = intel_gt_setup_lmem(gt);
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	if (IS_ERR(mem)) {
		err = PTR_ERR(mem);
		if (err == -ENODEV)
			return 0;

		drm_err(&i915->drm,
			"Failed to setup region(%d) type=%d\n",
			err, INTEL_MEMORY_LOCAL);
		return err;
	}

	id = INTEL_REGION_LMEM;

	mem->id = id;

83 84
	intel_memory_region_set_name(mem, "local%u", mem->instance);

85 86 87 88 89 90 91
	GEM_BUG_ON(!HAS_REGION(i915, id));
	GEM_BUG_ON(i915->mm.regions[id]);
	i915->mm.regions[id] = mem;

	return 0;
}

A
Andi Shyti 已提交
92
int intel_gt_assign_ggtt(struct intel_gt *gt)
93
{
A
Andi Shyti 已提交
94 95 96
	gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);

	return gt->ggtt ? 0 : -ENOMEM;
97 98
}

99 100 101 102 103 104
static const char * const intel_steering_types[] = {
	"L3BANK",
	"MSLICE",
	"LNCF",
};

105 106 107 108 109
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
	{ 0x00B100, 0x00B3FF },
	{},
};

110 111 112 113 114 115 116 117 118 119 120 121 122 123
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
	{ 0x004000, 0x004AFF },
	{ 0x00C800, 0x00CFFF },
	{ 0x00DD00, 0x00DDFF },
	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
	{},
};

static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
	{ 0x00B000, 0x00B0FF },
	{ 0x00D800, 0x00D8FF },
	{},
};

124 125 126 127 128 129
static const struct intel_mmio_range dg2_lncf_steering_table[] = {
	{ 0x00B000, 0x00B0FF },
	{ 0x00D880, 0x00D8FF },
	{},
};

130 131 132 133 134 135 136
static u16 slicemask(struct intel_gt *gt, int count)
{
	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);

	return intel_slicemask_from_dssmask(dss_mask, count);
}

137 138
int intel_gt_init_mmio(struct intel_gt *gt)
{
139 140
	struct drm_i915_private *i915 = gt->i915;

141 142
	intel_gt_init_clock_frequency(gt);

143
	intel_uc_init_mmio(&gt->uc);
144
	intel_sseu_info_init(gt);
145

146 147 148 149 150 151 152 153 154 155
	/*
	 * An mslice is unavailable only if both the meml3 for the slice is
	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
	 */
	if (HAS_MSLICES(i915))
		gt->info.mslice_mask =
			slicemask(gt, GEN_DSS_PER_MSLICE) |
			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
			 GEN12_MEML3_EN_MASK);

156 157 158 159
	if (IS_DG2(i915)) {
		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
		gt->steering_table[LNCF] = dg2_lncf_steering_table;
	} else if (IS_XEHPSDV(i915)) {
160 161 162
		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
	} else if (GRAPHICS_VER(i915) >= 11 &&
163
		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
164 165 166 167
		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
		gt->info.l3bank_mask =
			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
			GEN10_L3BANK_MASK;
168 169
	} else if (HAS_MSLICES(i915)) {
		MISSING_CASE(INTEL_INFO(i915)->platform);
170 171
	}

172 173 174
	return intel_engines_init_mmio(gt);
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
}

static void init_unused_rings(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
195
	} else if (GRAPHICS_VER(i915) == 2) {
196 197
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
198
	} else if (GRAPHICS_VER(i915) == 3) {
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
	}
}

int intel_gt_init_hw(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	int ret;

	gt->last_init_time = ktime_get();

	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

215
	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
216 217 218 219
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));

	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
220
				   HSW_MI_PREDICATE_RESULT_2,
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);

	/* Apply the GT workarounds... */
	intel_gt_apply_workarounds(gt);
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(gt, "init");

	intel_gt_init_swizzling(gt);

	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(gt);

	ret = i915_ppgtt_init_hw(gt);
	if (ret) {
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
		goto out;
	}

	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(&gt->uc);
	if (ret) {
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
		goto out;
	}

	intel_mocs_init(gt);

out:
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	return ret;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
	intel_uncore_rmw(uncore, reg, 0, set);
}

static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
	intel_uncore_rmw(uncore, reg, clr, 0);
}

static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
	intel_uncore_rmw(uncore, reg, 0, 0);
}

274
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
275 276 277 278 279 280 281 282 283 284 285 286 287
{
	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
	GEN6_RING_FAULT_REG_POSTING_READ(engine);
}

void
intel_gt_clear_error_registers(struct intel_gt *gt,
			       intel_engine_mask_t engine_mask)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	u32 eir;

288
	if (GRAPHICS_VER(i915) != 2)
289 290
		clear_register(uncore, PGTBL_ER);

291
	if (GRAPHICS_VER(i915) < 4)
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
		clear_register(uncore, IPEIR(RENDER_RING_BASE));
	else
		clear_register(uncore, IPEIR_I965);

	clear_register(uncore, EIR);
	eir = intel_uncore_read(uncore, EIR);
	if (eir) {
		/*
		 * some errors might have become stuck,
		 * mask them.
		 */
		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
		rmw_set(uncore, EMR, eir);
		intel_uncore_write(uncore, GEN2_IIR,
				   I915_MASTER_ERROR_INTERRUPT);
	}

309
	if (GRAPHICS_VER(i915) >= 12) {
310 311
		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
312
	} else if (GRAPHICS_VER(i915) >= 8) {
313 314
		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
315
	} else if (GRAPHICS_VER(i915) >= 6) {
316 317 318
		struct intel_engine_cs *engine;
		enum intel_engine_id id;

319
		for_each_engine_masked(engine, gt, engine_mask, id)
320
			gen6_clear_engine_error_register(engine);
321 322 323 324 325 326 327 328 329
	}
}

static void gen6_check_faults(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 fault;

330
	for_each_engine(engine, gt, id) {
331 332
		fault = GEN6_RING_FAULT_REG_READ(engine);
		if (fault & RING_FAULT_VALID) {
333 334 335 336 337 338 339 340 341 342
			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
				"\tAddr: 0x%08lx\n"
				"\tAddress space: %s\n"
				"\tSource ID: %d\n"
				"\tType: %d\n",
				fault & PAGE_MASK,
				fault & RING_FAULT_GTTSEL_MASK ?
				"GGTT" : "PPGTT",
				RING_FAULT_SRCID(fault),
				RING_FAULT_FAULT_TYPE(fault));
343 344 345 346 347 348 349
		}
	}
}

static void gen8_check_faults(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
350 351 352
	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
	u32 fault;

353
	if (GRAPHICS_VER(gt->i915) >= 12) {
354 355 356 357 358 359 360 361
		fault_reg = GEN12_RING_FAULT_REG;
		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
	} else {
		fault_reg = GEN8_RING_FAULT_REG;
		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
	}
362

363
	fault = intel_uncore_read(uncore, fault_reg);
364 365 366 367
	if (fault & RING_FAULT_VALID) {
		u32 fault_data0, fault_data1;
		u64 fault_addr;

368 369 370
		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);

371 372 373
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

374 375 376 377 378 379 380 381 382 383 384
		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
			"\tAddr: 0x%08x_%08x\n"
			"\tAddress space: %s\n"
			"\tEngine ID: %d\n"
			"\tSource ID: %d\n"
			"\tType: %d\n",
			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
			GEN8_RING_FAULT_ENGINE_ID(fault),
			RING_FAULT_SRCID(fault),
			RING_FAULT_FAULT_TYPE(fault));
385 386 387 388 389 390 391 392
	}
}

void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
393
	if (GRAPHICS_VER(i915) >= 8)
394
		gen8_check_faults(gt);
395
	else if (GRAPHICS_VER(i915) >= 6)
396 397 398 399 400 401
		gen6_check_faults(gt);
	else
		return;

	intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
402 403 404

void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
405
	struct intel_uncore *uncore = gt->uncore;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	intel_wakeref_t wakeref;

	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
	 */

	wmb();

429
	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
430 431
		return;

432
	intel_gt_chipset_flush(gt);
433

434
	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
435
		unsigned long flags;
436

437
		spin_lock_irqsave(&uncore->lock, flags);
438 439
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
440
		spin_unlock_irqrestore(&uncore->lock, flags);
441 442
	}
}
443 444 445 446

void intel_gt_chipset_flush(struct intel_gt *gt)
{
	wmb();
447
	if (GRAPHICS_VER(gt->i915) < 6)
448 449
		intel_gtt_chipset_flush();
}
450

451 452
void intel_gt_driver_register(struct intel_gt *gt)
{
453
	intel_rps_driver_register(&gt->rps);
454

455
	intel_gt_debugfs_register(gt);
456 457 458
}

static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
459 460 461 462 463 464
{
	struct drm_i915_private *i915 = gt->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

465 466 467
	obj = i915_gem_object_create_lmem(i915, size,
					  I915_BO_ALLOC_VOLATILE |
					  I915_BO_ALLOC_GPU_ONLY);
468 469
	if (IS_ERR(obj))
		obj = i915_gem_object_create_stolen(i915, size);
470
	if (IS_ERR(obj))
471 472
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
473
		drm_err(&i915->drm, "Failed to allocate scratch page\n");
474 475 476 477 478 479 480 481 482
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

483
	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
484 485 486
	if (ret)
		goto err_unref;

487 488
	gt->scratch = i915_vma_make_unshrinkable(vma);

489 490 491 492 493 494 495
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

496
static void intel_gt_fini_scratch(struct intel_gt *gt)
497 498 499
{
	i915_vma_unpin_and_release(&gt->scratch, 0);
}
500

501 502 503
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
504
		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
505 506 507 508
	else
		return i915_vm_get(&gt->ggtt->vm);
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static int __engines_record_defaults(struct intel_gt *gt)
{
	struct i915_request *requests[I915_NUM_ENGINES] = {};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, gt, id) {
		struct intel_renderstate so;
		struct intel_context *ce;
		struct i915_request *rq;

530 531 532
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);

533 534 535 536 537 538
		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

539 540 541 542 543
		err = intel_renderstate_init(&so, ce);
		if (err)
			goto err;

		rq = i915_request_create(ce);
544 545
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
546
			goto err_fini;
547 548 549 550 551 552 553 554 555 556 557 558 559
		}

		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		err = intel_renderstate_emit(&so, rq);
		if (err)
			goto err_rq;

err_rq:
		requests[id] = i915_request_get(rq);
		i915_request_add(rq);
560 561 562 563 564
err_fini:
		intel_renderstate_fini(&so, ce);
err:
		if (err) {
			intel_context_put(ce);
565
			goto out;
566
		}
567 568 569 570 571 572 573 574 575 576
	}

	/* Flush the default context image to memory, and enable powersaving. */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
		err = -EIO;
		goto out;
	}

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
577
		struct file *state;
578 579 580 581 582

		rq = requests[id];
		if (!rq)
			continue;

583 584 585 586 587
		if (rq->fence.error) {
			err = -EIO;
			goto out;
		}

588
		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
589
		if (!rq->context->state)
590 591
			continue;

592 593 594 595
		/* Keep a copy of the state's backing pages; free the obj */
		state = shmem_create_from_object(rq->context->state->obj);
		if (IS_ERR(state)) {
			err = PTR_ERR(state);
596 597
			goto out;
		}
598
		rq->engine->default_state = state;
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	}

out:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
	 */
	if (err)
		intel_gt_set_wedged(gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
}

static int __engines_verify_workarounds(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, gt, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

639 640 641 642
	/* Flush and restore the kernel context for safety */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
		err = -EIO;

643 644 645 646 647
	return err;
}

static void __intel_gt_disable(struct intel_gt *gt)
{
648
	intel_gt_set_wedged_on_fini(gt);
649 650 651 652 653 654 655

	intel_gt_suspend_prepare(gt);
	intel_gt_suspend_late(gt);

	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
{
	long remaining_timeout;

	/* If the device is asleep, we have no requests outstanding */
	if (!intel_gt_pm_is_awake(gt))
		return 0;

	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
							   &remaining_timeout)) > 0) {
		cond_resched();
		if (signal_pending(current))
			return -EINTR;
	}

	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
							  remaining_timeout);
}

675 676 677 678
int intel_gt_init(struct intel_gt *gt)
{
	int err;

679
	err = i915_inject_probe_error(gt->i915, -ENODEV);
680 681 682
	if (err)
		return err;

683 684
	intel_gt_init_workarounds(gt);

685 686 687 688 689 690 691 692 693
	/*
	 * This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);

694 695
	err = intel_gt_init_scratch(gt,
				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
696 697 698
	if (err)
		goto out_fw;

699 700
	intel_gt_pm_init(gt);

701 702 703
	gt->vm = kernel_vm(gt);
	if (!gt->vm) {
		err = -ENOMEM;
704
		goto err_pm;
705 706
	}

707
	intel_set_mocs_index(gt);
708

709 710 711 712
	err = intel_engines_init(gt);
	if (err)
		goto err_engines;

713 714 715
	err = intel_uc_init(&gt->uc);
	if (err)
		goto err_engines;
716 717 718

	err = intel_gt_resume(gt);
	if (err)
719
		goto err_uc_init;
720 721 722 723 724 725 726 727 728

	err = __engines_record_defaults(gt);
	if (err)
		goto err_gt;

	err = __engines_verify_workarounds(gt);
	if (err)
		goto err_gt;

729 730
	intel_uc_init_late(&gt->uc);

731 732 733 734
	err = i915_inject_probe_error(gt->i915, -EIO);
	if (err)
		goto err_gt;

735 736
	intel_migrate_init(&gt->migrate, gt);

737 738
	intel_pxp_init(&gt->pxp);

739 740 741 742 743 744 745 746 747 748 749
	goto out_fw;
err_gt:
	__intel_gt_disable(gt);
	intel_uc_fini_hw(&gt->uc);
err_uc_init:
	intel_uc_fini(&gt->uc);
err_engines:
	intel_engines_release(gt);
	i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
	intel_gt_pm_fini(gt);
750
	intel_gt_fini_scratch(gt);
751 752 753 754
out_fw:
	if (err)
		intel_gt_set_wedged_on_init(gt);
	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
755
	return err;
756 757 758 759
}

void intel_gt_driver_remove(struct intel_gt *gt)
{
760 761
	__intel_gt_disable(gt);

762
	intel_migrate_fini(&gt->migrate);
763
	intel_uc_driver_remove(&gt->uc);
764 765

	intel_engines_release(gt);
766 767

	intel_gt_flush_buffer_pool(gt);
768 769 770 771
}

void intel_gt_driver_unregister(struct intel_gt *gt)
{
772 773
	intel_wakeref_t wakeref;

774
	intel_rps_driver_unregister(&gt->rps);
775

776 777
	intel_pxp_fini(&gt->pxp);

778 779 780 781 782
	/*
	 * Upon unregistering the device to prevent any new users, cancel
	 * all in-flight requests so that we can quickly unbind the active
	 * resources.
	 */
783
	intel_gt_set_wedged_on_fini(gt);
784 785 786 787

	/* Scrub all HW state upon release */
	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		__intel_gt_reset(gt, ALL_ENGINES);
788 789 790 791
}

void intel_gt_driver_release(struct intel_gt *gt)
{
792 793 794 795 796 797
	struct i915_address_space *vm;

	vm = fetch_and_zero(&gt->vm);
	if (vm) /* FIXME being called twice on error paths :( */
		i915_vm_put(vm);

798
	intel_wa_list_free(&gt->wa_list);
799
	intel_gt_pm_fini(gt);
800
	intel_gt_fini_scratch(gt);
801
	intel_gt_fini_buffer_pool(gt);
802 803
}

804
void intel_gt_driver_late_release(struct intel_gt *gt)
805
{
806 807 808
	/* We need to wait for inflight RCU frees to release their grip */
	rcu_barrier();

809
	intel_uc_driver_late_release(&gt->uc);
810
	intel_gt_fini_requests(gt);
811
	intel_gt_fini_reset(gt);
812
	intel_gt_fini_timelines(gt);
813
	intel_engines_free(gt);
814
}
815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 * intel_gt_reg_needs_read_steering - determine whether a register read
 *     requires explicit steering
 * @gt: GT structure
 * @reg: the register to check steering requirements for
 * @type: type of multicast steering to check
 *
 * Determines whether @reg needs explicit steering of a specific type for
 * reads.
 *
 * Returns false if @reg does not belong to a register range of the given
 * steering type, or if the default (subslice-based) steering IDs are suitable
 * for @type steering too.
 */
static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
					     i915_reg_t reg,
					     enum intel_steering_type type)
{
	const u32 offset = i915_mmio_reg_offset(reg);
	const struct intel_mmio_range *entry;

	if (likely(!intel_gt_needs_read_steering(gt, type)))
		return false;

	for (entry = gt->steering_table[type]; entry->end; entry++) {
		if (offset >= entry->start && offset <= entry->end)
			return true;
	}

	return false;
}

/**
 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
 * @gt: GT structure
 * @type: multicast register type
 * @sliceid: Slice ID returned
 * @subsliceid: Subslice ID returned
 *
 * Determines sliceid and subsliceid values that will steer reads
 * of a specific multicast register class to a valid value.
 */
static void intel_gt_get_valid_steering(struct intel_gt *gt,
					enum intel_steering_type type,
					u8 *sliceid, u8 *subsliceid)
{
	switch (type) {
863 864 865 866 867 868
	case L3BANK:
		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */

		*sliceid = 0;		/* unused */
		*subsliceid = __ffs(gt->info.l3bank_mask);
		break;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	case MSLICE:
		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */

		*sliceid = __ffs(gt->info.mslice_mask);
		*subsliceid = 0;	/* unused */
		break;
	case LNCF:
		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */

		/*
		 * An LNCF is always present if its mslice is present, so we
		 * can safely just steer to LNCF 0 in all cases.
		 */
		*sliceid = __ffs(gt->info.mslice_mask) << 1;
		*subsliceid = 0;	/* unused */
		break;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	default:
		MISSING_CASE(type);
		*sliceid = 0;
		*subsliceid = 0;
	}
}

/**
 * intel_gt_read_register_fw - reads a GT register with support for multicast
 * @gt: GT structure
 * @reg: register to read
 *
 * This function will read a GT register.  If the register is a multicast
 * register, the read will be steered to a valid instance (i.e., one that
 * isn't fused off or powered down by power gating).
 *
 * Returns the value from a valid instance of @reg.
 */
u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
{
	int type;
	u8 sliceid, subsliceid;

	for (type = 0; type < NUM_STEERING_TYPES; type++) {
		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
			intel_gt_get_valid_steering(gt, type, &sliceid,
						    &subsliceid);
			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
								      reg,
								      sliceid,
								      subsliceid);
		}
	}

	return intel_uncore_read_fw(gt->uncore, reg);
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg)
{
	int type;
	u8 sliceid, subsliceid;

	for (type = 0; type < NUM_STEERING_TYPES; type++) {
		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
			intel_gt_get_valid_steering(gt, type, &sliceid,
						    &subsliceid);
			return intel_uncore_read_with_mcr_steering(gt->uncore,
								   reg,
								   sliceid,
								   subsliceid);
		}
	}

	return intel_uncore_read(gt->uncore, reg);
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static void report_steering_type(struct drm_printer *p,
				 struct intel_gt *gt,
				 enum intel_steering_type type,
				 bool dump_table)
{
	const struct intel_mmio_range *entry;
	u8 slice, subslice;

	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);

	if (!gt->steering_table[type]) {
		drm_printf(p, "%s steering: uses default steering\n",
			   intel_steering_types[type]);
		return;
	}

	intel_gt_get_valid_steering(gt, type, &slice, &subslice);
	drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n",
		   intel_steering_types[type], slice, subslice);

	if (!dump_table)
		return;

	for (entry = gt->steering_table[type]; entry->end; entry++)
		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
}

void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt,
			      bool dump_table)
{
	drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n",
		   gt->default_steering.groupid,
		   gt->default_steering.instanceid);

	if (HAS_MSLICES(gt->i915)) {
		report_steering_type(p, gt, MSLICE, dump_table);
		report_steering_type(p, gt, LNCF, dump_table);
	}
}

981 982 983 984
void intel_gt_info_print(const struct intel_gt_info *info,
			 struct drm_printer *p)
{
	drm_printf(p, "available engines: %x\n", info->engine_mask);
985 986

	intel_sseu_dump(&info->sseu, p);
987
}
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

struct reg_and_bit {
	i915_reg_t reg;
	u32 bit;
};

static struct reg_and_bit
get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
		const i915_reg_t *regs, const unsigned int num)
{
	const unsigned int class = engine->class;
	struct reg_and_bit rb = { };

	if (drm_WARN_ON_ONCE(&engine->i915->drm,
			     class >= num || !regs[class].reg))
		return rb;

	rb.reg = regs[class];
	if (gen8 && class == VIDEO_DECODE_CLASS)
		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
	else
		rb.bit = engine->instance;

	rb.bit = BIT(rb.bit);

	return rb;
}

void intel_gt_invalidate_tlbs(struct intel_gt *gt)
{
	static const i915_reg_t gen8_regs[] = {
		[RENDER_CLASS]			= GEN8_RTCR,
		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
	};
	static const i915_reg_t gen12_regs[] = {
		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
	};
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	const i915_reg_t *regs;
	unsigned int num = 0;

	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
		return;

	if (GRAPHICS_VER(i915) == 12) {
		regs = gen12_regs;
		num = ARRAY_SIZE(gen12_regs);
	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
		regs = gen8_regs;
		num = ARRAY_SIZE(gen8_regs);
	} else if (GRAPHICS_VER(i915) < 8) {
		return;
	}

	if (drm_WARN_ONCE(&i915->drm, !num,
			  "Platform does not implement TLB invalidation!"))
		return;

	GEM_TRACE("\n");

	assert_rpm_wakelock_held(&i915->runtime_pm);

	mutex_lock(&gt->tlb_invalidate_lock);
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

	for_each_engine(engine, gt, id) {
		/*
		 * HW architecture suggest typical invalidation time at 40us,
		 * with pessimistic cases up to 100us and a recommendation to
		 * cap at 1ms. We go a bit higher just in case.
		 */
		const unsigned int timeout_us = 100;
		const unsigned int timeout_ms = 4;
		struct reg_and_bit rb;

		rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
		if (!i915_mmio_reg_offset(rb.reg))
			continue;

		intel_uncore_write_fw(uncore, rb.reg, rb.bit);
		if (__intel_wait_for_register_fw(uncore,
						 rb.reg, rb.bit, 0,
						 timeout_us, timeout_ms,
						 NULL))
			drm_err_ratelimited(&gt->i915->drm,
					    "%s TLB invalidation did not complete in %ums!\n",
					    engine->name, timeout_ms);
	}

	/*
	 * Use delayed put since a) we mostly expect a flurry of TLB
	 * invalidations so it is good to avoid paying the forcewake cost and
	 * b) it works around a bug in Icelake which cannot cope with too rapid
	 * transitions.
	 */
	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
	mutex_unlock(&gt->tlb_invalidate_lock);
}