intel_gt.c 14.8 KB
Newer Older
1 2 3 4 5
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2019 Intel Corporation
 */

6
#include "debugfs_gt.h"
7
#include "i915_drv.h"
8
#include "intel_context.h"
9
#include "intel_gt.h"
10
#include "intel_gt_clock_utils.h"
11
#include "intel_gt_pm.h"
12
#include "intel_gt_requests.h"
13
#include "intel_mocs.h"
14
#include "intel_rc6.h"
15
#include "intel_renderstate.h"
16
#include "intel_rps.h"
17
#include "intel_uncore.h"
18
#include "intel_pm.h"
19
#include "shmem_utils.h"
20

21
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
22
{
23 24 25
	gt->i915 = i915;
	gt->uncore = &i915->uncore;

26 27 28
	spin_lock_init(&gt->irq_lock);

	INIT_LIST_HEAD(&gt->closed_vma);
29
	spin_lock_init(&gt->closed_lock);
30

31
	intel_gt_init_reset(gt);
32
	intel_gt_init_requests(gt);
33
	intel_gt_init_timelines(gt);
34
	intel_gt_pm_init_early(gt);
35 36

	intel_rps_init_early(&gt->rps);
37
	intel_uc_init_early(&gt->uc);
38
}
39

40
void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
41
{
42
	gt->ggtt = ggtt;
43 44
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static void init_unused_ring(struct intel_gt *gt, u32 base)
{
	struct intel_uncore *uncore = gt->uncore;

	intel_uncore_write(uncore, RING_CTL(base), 0);
	intel_uncore_write(uncore, RING_HEAD(base), 0);
	intel_uncore_write(uncore, RING_TAIL(base), 0);
	intel_uncore_write(uncore, RING_START(base), 0);
}

static void init_unused_rings(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	if (IS_I830(i915)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
		init_unused_ring(gt, SRB2_BASE);
		init_unused_ring(gt, SRB3_BASE);
	} else if (IS_GEN(i915, 2)) {
		init_unused_ring(gt, SRB0_BASE);
		init_unused_ring(gt, SRB1_BASE);
	} else if (IS_GEN(i915, 3)) {
		init_unused_ring(gt, PRB1_BASE);
		init_unused_ring(gt, PRB2_BASE);
	}
}

int intel_gt_init_hw(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	int ret;

	gt->last_init_time = ktime_get();

	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);

	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));

	if (IS_HASWELL(i915))
		intel_uncore_write(uncore,
				   MI_PREDICATE_RESULT_2,
				   IS_HSW_GT3(i915) ?
				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);

	/* Apply the GT workarounds... */
	intel_gt_apply_workarounds(gt);
	/* ...and determine whether they are sticking. */
	intel_gt_verify_workarounds(gt, "init");

	intel_gt_init_swizzling(gt);

	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(gt);

	ret = i915_ppgtt_init_hw(gt);
	if (ret) {
		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
		goto out;
	}

	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(&gt->uc);
	if (ret) {
		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
		goto out;
	}

	intel_mocs_init(gt);

out:
	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
	return ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
{
	intel_uncore_rmw(uncore, reg, 0, set);
}

static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
{
	intel_uncore_rmw(uncore, reg, clr, 0);
}

static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
{
	intel_uncore_rmw(uncore, reg, 0, 0);
}

static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
{
	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
	GEN6_RING_FAULT_REG_POSTING_READ(engine);
}

void
intel_gt_clear_error_registers(struct intel_gt *gt,
			       intel_engine_mask_t engine_mask)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
	u32 eir;

	if (!IS_GEN(i915, 2))
		clear_register(uncore, PGTBL_ER);

	if (INTEL_GEN(i915) < 4)
		clear_register(uncore, IPEIR(RENDER_RING_BASE));
	else
		clear_register(uncore, IPEIR_I965);

	clear_register(uncore, EIR);
	eir = intel_uncore_read(uncore, EIR);
	if (eir) {
		/*
		 * some errors might have become stuck,
		 * mask them.
		 */
		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
		rmw_set(uncore, EMR, eir);
		intel_uncore_write(uncore, GEN2_IIR,
				   I915_MASTER_ERROR_INTERRUPT);
	}

179 180 181 182
	if (INTEL_GEN(i915) >= 12) {
		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
	} else if (INTEL_GEN(i915) >= 8) {
183 184 185 186 187 188
		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
	} else if (INTEL_GEN(i915) >= 6) {
		struct intel_engine_cs *engine;
		enum intel_engine_id id;

189
		for_each_engine_masked(engine, gt, engine_mask, id)
190 191 192 193 194 195 196 197 198 199
			gen8_clear_engine_error_register(engine);
	}
}

static void gen6_check_faults(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 fault;

200
	for_each_engine(engine, gt, id) {
201 202
		fault = GEN6_RING_FAULT_REG_READ(engine);
		if (fault & RING_FAULT_VALID) {
203 204 205 206 207 208 209 210 211 212
			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
				"\tAddr: 0x%08lx\n"
				"\tAddress space: %s\n"
				"\tSource ID: %d\n"
				"\tType: %d\n",
				fault & PAGE_MASK,
				fault & RING_FAULT_GTTSEL_MASK ?
				"GGTT" : "PPGTT",
				RING_FAULT_SRCID(fault),
				RING_FAULT_FAULT_TYPE(fault));
213 214 215 216 217 218 219
		}
	}
}

static void gen8_check_faults(struct intel_gt *gt)
{
	struct intel_uncore *uncore = gt->uncore;
220 221 222 223 224 225 226 227 228 229 230 231
	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
	u32 fault;

	if (INTEL_GEN(gt->i915) >= 12) {
		fault_reg = GEN12_RING_FAULT_REG;
		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
	} else {
		fault_reg = GEN8_RING_FAULT_REG;
		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
	}
232

233
	fault = intel_uncore_read(uncore, fault_reg);
234 235 236 237
	if (fault & RING_FAULT_VALID) {
		u32 fault_data0, fault_data1;
		u64 fault_addr;

238 239 240
		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);

241 242 243
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

244 245 246 247 248 249 250 251 252 253 254
		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
			"\tAddr: 0x%08x_%08x\n"
			"\tAddress space: %s\n"
			"\tEngine ID: %d\n"
			"\tSource ID: %d\n"
			"\tType: %d\n",
			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
			GEN8_RING_FAULT_ENGINE_ID(fault),
			RING_FAULT_SRCID(fault),
			RING_FAULT_FAULT_TYPE(fault));
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	}
}

void intel_gt_check_and_clear_faults(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;

	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(i915) >= 8)
		gen8_check_faults(gt);
	else if (INTEL_GEN(i915) >= 6)
		gen6_check_faults(gt);
	else
		return;

	intel_gt_clear_error_registers(gt, ALL_ENGINES);
}
272 273 274

void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
{
275
	struct intel_uncore *uncore = gt->uncore;
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	intel_wakeref_t wakeref;

	/*
	 * No actual flushing is required for the GTT write domain for reads
	 * from the GTT domain. Writes to it "immediately" go to main memory
	 * as far as we know, so there's no chipset flush. It also doesn't
	 * land in the GPU render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour, until Cannonlake
	 * that was!).
	 */

	wmb();

299
	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
300 301
		return;

302
	intel_gt_chipset_flush(gt);
303

304
	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
305
		unsigned long flags;
306

307
		spin_lock_irqsave(&uncore->lock, flags);
308 309
		intel_uncore_posting_read_fw(uncore,
					     RING_HEAD(RENDER_RING_BASE));
310
		spin_unlock_irqrestore(&uncore->lock, flags);
311 312
	}
}
313 314 315 316 317 318 319

void intel_gt_chipset_flush(struct intel_gt *gt)
{
	wmb();
	if (INTEL_GEN(gt->i915) < 6)
		intel_gtt_chipset_flush();
}
320

321 322
void intel_gt_driver_register(struct intel_gt *gt)
{
323
	intel_rps_driver_register(&gt->rps);
324 325

	debugfs_gt_register(gt);
326 327 328
}

static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
329 330 331 332 333 334 335
{
	struct drm_i915_private *i915 = gt->i915;
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int ret;

	obj = i915_gem_object_create_stolen(i915, size);
336
	if (IS_ERR(obj))
337 338 339 340 341 342 343 344 345 346 347 348
		obj = i915_gem_object_create_internal(i915, size);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
		return PTR_ERR(obj);
	}

	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

349
	ret = i915_ggtt_pin(vma, 0, PIN_HIGH);
350 351 352
	if (ret)
		goto err_unref;

353 354
	gt->scratch = i915_vma_make_unshrinkable(vma);

355 356 357 358 359 360 361
	return 0;

err_unref:
	i915_gem_object_put(obj);
	return ret;
}

362
static void intel_gt_fini_scratch(struct intel_gt *gt)
363 364 365
{
	i915_vma_unpin_and_release(&gt->scratch, 0);
}
366

367 368 369
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
{
	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
370
		return &i915_ppgtt_create(gt)->vm;
371 372 373 374
	else
		return i915_vm_get(&gt->ggtt->vm);
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
static int __engines_record_defaults(struct intel_gt *gt)
{
	struct i915_request *requests[I915_NUM_ENGINES] = {};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	/*
	 * As we reset the gpu during very early sanitisation, the current
	 * register state on the GPU should reflect its defaults values.
	 * We load a context onto the hw (with restore-inhibit), then switch
	 * over to a second context to save that default register state. We
	 * can then prime every new context with that state so they all start
	 * from the same default HW values.
	 */

	for_each_engine(engine, gt, id) {
		struct intel_renderstate so;
		struct intel_context *ce;
		struct i915_request *rq;

396 397 398
		/* We must be able to switch to something! */
		GEM_BUG_ON(!engine->kernel_context);

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		err = intel_renderstate_init(&so, engine);
		if (err)
			goto out;

		ce = intel_context_create(engine);
		if (IS_ERR(ce)) {
			err = PTR_ERR(ce);
			goto out;
		}

		rq = intel_context_create_request(ce);
		if (IS_ERR(rq)) {
			err = PTR_ERR(rq);
			intel_context_put(ce);
			goto out;
		}

		err = intel_engine_emit_ctx_wa(rq);
		if (err)
			goto err_rq;

		err = intel_renderstate_emit(&so, rq);
		if (err)
			goto err_rq;

err_rq:
		requests[id] = i915_request_get(rq);
		i915_request_add(rq);
		intel_renderstate_fini(&so);
		if (err)
			goto out;
	}

	/* Flush the default context image to memory, and enable powersaving. */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
		err = -EIO;
		goto out;
	}

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct i915_request *rq;
440
		struct file *state;
441 442 443 444 445

		rq = requests[id];
		if (!rq)
			continue;

446 447 448 449 450
		if (rq->fence.error) {
			err = -EIO;
			goto out;
		}

451
		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
452
		if (!rq->context->state)
453 454
			continue;

455 456 457 458
		/* Keep a copy of the state's backing pages; free the obj */
		state = shmem_create_from_object(rq->context->state->obj);
		if (IS_ERR(state)) {
			err = PTR_ERR(state);
459 460
			goto out;
		}
461
		rq->engine->default_state = state;
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	}

out:
	/*
	 * If we have to abandon now, we expect the engines to be idle
	 * and ready to be torn-down. The quickest way we can accomplish
	 * this is by declaring ourselves wedged.
	 */
	if (err)
		intel_gt_set_wedged(gt);

	for (id = 0; id < ARRAY_SIZE(requests); id++) {
		struct intel_context *ce;
		struct i915_request *rq;

		rq = requests[id];
		if (!rq)
			continue;

		ce = rq->context;
		i915_request_put(rq);
		intel_context_put(ce);
	}
	return err;
}

static int __engines_verify_workarounds(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err = 0;

	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return 0;

	for_each_engine(engine, gt, id) {
		if (intel_engine_verify_workarounds(engine, "load"))
			err = -EIO;
	}

502 503 504 505
	/* Flush and restore the kernel context for safety */
	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
		err = -EIO;

506 507 508 509 510 511 512 513 514 515 516 517 518
	return err;
}

static void __intel_gt_disable(struct intel_gt *gt)
{
	intel_gt_set_wedged_on_init(gt);

	intel_gt_suspend_prepare(gt);
	intel_gt_suspend_late(gt);

	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
}

519 520 521 522
int intel_gt_init(struct intel_gt *gt)
{
	int err;

523
	err = i915_inject_probe_error(gt->i915, -ENODEV);
524 525 526
	if (err)
		return err;

527 528 529 530 531 532 533 534 535
	/*
	 * This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);

536 537
	intel_gt_init_clock_frequency(gt);

538 539 540 541
	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
	if (err)
		goto out_fw;

542 543
	intel_gt_pm_init(gt);

544 545 546
	gt->vm = kernel_vm(gt);
	if (!gt->vm) {
		err = -ENOMEM;
547
		goto err_pm;
548 549
	}

550 551 552 553
	err = intel_engines_init(gt);
	if (err)
		goto err_engines;

554 555 556
	err = intel_uc_init(&gt->uc);
	if (err)
		goto err_engines;
557 558 559

	err = intel_gt_resume(gt);
	if (err)
560
		goto err_uc_init;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

	err = __engines_record_defaults(gt);
	if (err)
		goto err_gt;

	err = __engines_verify_workarounds(gt);
	if (err)
		goto err_gt;

	err = i915_inject_probe_error(gt->i915, -EIO);
	if (err)
		goto err_gt;

	goto out_fw;
err_gt:
	__intel_gt_disable(gt);
	intel_uc_fini_hw(&gt->uc);
err_uc_init:
	intel_uc_fini(&gt->uc);
err_engines:
	intel_engines_release(gt);
	i915_vm_put(fetch_and_zero(&gt->vm));
err_pm:
	intel_gt_pm_fini(gt);
585
	intel_gt_fini_scratch(gt);
586 587 588 589
out_fw:
	if (err)
		intel_gt_set_wedged_on_init(gt);
	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
590
	return err;
591 592 593 594
}

void intel_gt_driver_remove(struct intel_gt *gt)
{
595 596
	__intel_gt_disable(gt);

597
	intel_uc_driver_remove(&gt->uc);
598 599

	intel_engines_release(gt);
600 601 602 603
}

void intel_gt_driver_unregister(struct intel_gt *gt)
{
604
	intel_rps_driver_unregister(&gt->rps);
605 606 607 608 609 610 611

	/*
	 * Upon unregistering the device to prevent any new users, cancel
	 * all in-flight requests so that we can quickly unbind the active
	 * resources.
	 */
	intel_gt_set_wedged(gt);
612 613 614 615
}

void intel_gt_driver_release(struct intel_gt *gt)
{
616 617 618 619 620 621
	struct i915_address_space *vm;

	vm = fetch_and_zero(&gt->vm);
	if (vm) /* FIXME being called twice on error paths :( */
		i915_vm_put(vm);

622
	intel_gt_pm_fini(gt);
623 624 625
	intel_gt_fini_scratch(gt);
}

626
void intel_gt_driver_late_release(struct intel_gt *gt)
627
{
628 629 630
	/* We need to wait for inflight RCU frees to release their grip */
	rcu_barrier();

631
	intel_uc_driver_late_release(&gt->uc);
632
	intel_gt_fini_requests(gt);
633
	intel_gt_fini_reset(gt);
634
	intel_gt_fini_timelines(gt);
635
	intel_engines_free(gt);
636
}