ksz_common.c 30.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4
/*
 * Microchip switch driver main logic
 *
5
 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 7 8 9
 */

#include <linux/delay.h>
#include <linux/export.h>
10
#include <linux/gpio/consumer.h>
11 12 13 14 15 16
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
17
#include <linux/of_device.h>
18
#include <linux/of_net.h>
19 20 21
#include <net/dsa.h>
#include <net/switchdev.h>

22
#include "ksz_common.h"
23

24 25
#define MIB_COUNTER_NUM 0x20

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
struct ksz_stats_raw {
	u64 rx_hi;
	u64 rx_undersize;
	u64 rx_fragments;
	u64 rx_oversize;
	u64 rx_jabbers;
	u64 rx_symbol_err;
	u64 rx_crc_err;
	u64 rx_align_err;
	u64 rx_mac_ctrl;
	u64 rx_pause;
	u64 rx_bcast;
	u64 rx_mcast;
	u64 rx_ucast;
	u64 rx_64_or_less;
	u64 rx_65_127;
	u64 rx_128_255;
	u64 rx_256_511;
	u64 rx_512_1023;
	u64 rx_1024_1522;
	u64 rx_1523_2000;
	u64 rx_2001;
	u64 tx_hi;
	u64 tx_late_col;
	u64 tx_pause;
	u64 tx_bcast;
	u64 tx_mcast;
	u64 tx_ucast;
	u64 tx_deferred;
	u64 tx_total_col;
	u64 tx_exc_col;
	u64 tx_single_col;
	u64 tx_mult_col;
	u64 rx_total;
	u64 tx_total;
	u64 rx_discards;
	u64 tx_discards;
};

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static const struct ksz_mib_names ksz88xx_mib_names[] = {
	{ 0x00, "rx" },
	{ 0x01, "rx_hi" },
	{ 0x02, "rx_undersize" },
	{ 0x03, "rx_fragments" },
	{ 0x04, "rx_oversize" },
	{ 0x05, "rx_jabbers" },
	{ 0x06, "rx_symbol_err" },
	{ 0x07, "rx_crc_err" },
	{ 0x08, "rx_align_err" },
	{ 0x09, "rx_mac_ctrl" },
	{ 0x0a, "rx_pause" },
	{ 0x0b, "rx_bcast" },
	{ 0x0c, "rx_mcast" },
	{ 0x0d, "rx_ucast" },
	{ 0x0e, "rx_64_or_less" },
	{ 0x0f, "rx_65_127" },
	{ 0x10, "rx_128_255" },
	{ 0x11, "rx_256_511" },
	{ 0x12, "rx_512_1023" },
	{ 0x13, "rx_1024_1522" },
	{ 0x14, "tx" },
	{ 0x15, "tx_hi" },
	{ 0x16, "tx_late_col" },
	{ 0x17, "tx_pause" },
	{ 0x18, "tx_bcast" },
	{ 0x19, "tx_mcast" },
	{ 0x1a, "tx_ucast" },
	{ 0x1b, "tx_deferred" },
	{ 0x1c, "tx_total_col" },
	{ 0x1d, "tx_exc_col" },
	{ 0x1e, "tx_single_col" },
	{ 0x1f, "tx_mult_col" },
	{ 0x100, "rx_discards" },
	{ 0x101, "tx_discards" },
};

static const struct ksz_mib_names ksz9477_mib_names[] = {
	{ 0x00, "rx_hi" },
	{ 0x01, "rx_undersize" },
	{ 0x02, "rx_fragments" },
	{ 0x03, "rx_oversize" },
	{ 0x04, "rx_jabbers" },
	{ 0x05, "rx_symbol_err" },
	{ 0x06, "rx_crc_err" },
	{ 0x07, "rx_align_err" },
	{ 0x08, "rx_mac_ctrl" },
	{ 0x09, "rx_pause" },
	{ 0x0A, "rx_bcast" },
	{ 0x0B, "rx_mcast" },
	{ 0x0C, "rx_ucast" },
	{ 0x0D, "rx_64_or_less" },
	{ 0x0E, "rx_65_127" },
	{ 0x0F, "rx_128_255" },
	{ 0x10, "rx_256_511" },
	{ 0x11, "rx_512_1023" },
	{ 0x12, "rx_1024_1522" },
	{ 0x13, "rx_1523_2000" },
	{ 0x14, "rx_2001" },
	{ 0x15, "tx_hi" },
	{ 0x16, "tx_late_col" },
	{ 0x17, "tx_pause" },
	{ 0x18, "tx_bcast" },
	{ 0x19, "tx_mcast" },
	{ 0x1A, "tx_ucast" },
	{ 0x1B, "tx_deferred" },
	{ 0x1C, "tx_total_col" },
	{ 0x1D, "tx_exc_col" },
	{ 0x1E, "tx_single_col" },
	{ 0x1F, "tx_mult_col" },
	{ 0x80, "rx_total" },
	{ 0x81, "tx_total" },
	{ 0x82, "rx_discards" },
	{ 0x83, "tx_discards" },
};

141
const struct ksz_chip_data ksz_switch_chips[] = {
142 143 144 145 146 147 148 149 150
	[KSZ8795] = {
		.chip_id = KSZ8795_CHIP_ID,
		.dev_name = "KSZ8795",
		.num_vlans = 4096,
		.num_alus = 0,
		.num_statics = 8,
		.cpu_ports = 0x10,	/* can be configured as cpu port */
		.port_cnt = 5,		/* total cpu and user ports */
		.ksz87xx_eee_link_erratum = true,
151 152 153
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
154
		.stp_ctrl_reg = 0x02,
155 156 157 158
		.supports_mii = {false, false, false, false, true},
		.supports_rmii = {false, false, false, false, true},
		.supports_rgmii = {false, false, false, false, true},
		.internal_phy = {true, true, true, true, false},
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	},

	[KSZ8794] = {
		/* WARNING
		 * =======
		 * KSZ8794 is similar to KSZ8795, except the port map
		 * contains a gap between external and CPU ports, the
		 * port map is NOT continuous. The per-port register
		 * map is shifted accordingly too, i.e. registers at
		 * offset 0x40 are NOT used on KSZ8794 and they ARE
		 * used on KSZ8795 for external port 3.
		 *           external  cpu
		 * KSZ8794   0,1,2      4
		 * KSZ8795   0,1,2,3    4
		 * KSZ8765   0,1,2,3    4
		 * port_cnt is configured as 5, even though it is 4
		 */
		.chip_id = KSZ8794_CHIP_ID,
		.dev_name = "KSZ8794",
		.num_vlans = 4096,
		.num_alus = 0,
		.num_statics = 8,
		.cpu_ports = 0x10,	/* can be configured as cpu port */
		.port_cnt = 5,		/* total cpu and user ports */
		.ksz87xx_eee_link_erratum = true,
184 185 186
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
187
		.stp_ctrl_reg = 0x02,
188 189 190 191
		.supports_mii = {false, false, false, false, true},
		.supports_rmii = {false, false, false, false, true},
		.supports_rgmii = {false, false, false, false, true},
		.internal_phy = {true, true, true, false, false},
192 193 194 195 196 197 198 199 200 201 202
	},

	[KSZ8765] = {
		.chip_id = KSZ8765_CHIP_ID,
		.dev_name = "KSZ8765",
		.num_vlans = 4096,
		.num_alus = 0,
		.num_statics = 8,
		.cpu_ports = 0x10,	/* can be configured as cpu port */
		.port_cnt = 5,		/* total cpu and user ports */
		.ksz87xx_eee_link_erratum = true,
203 204 205
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
206
		.stp_ctrl_reg = 0x02,
207 208 209 210
		.supports_mii = {false, false, false, false, true},
		.supports_rmii = {false, false, false, false, true},
		.supports_rgmii = {false, false, false, false, true},
		.internal_phy = {true, true, true, true, false},
211 212 213 214 215 216 217 218 219 220
	},

	[KSZ8830] = {
		.chip_id = KSZ8830_CHIP_ID,
		.dev_name = "KSZ8863/KSZ8873",
		.num_vlans = 16,
		.num_alus = 0,
		.num_statics = 8,
		.cpu_ports = 0x4,	/* can be configured as cpu port */
		.port_cnt = 3,
221 222 223
		.mib_names = ksz88xx_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
224
		.stp_ctrl_reg = 0x02,
225 226 227
		.supports_mii = {false, false, true},
		.supports_rmii = {false, false, true},
		.internal_phy = {true, true, false},
228 229 230 231 232 233 234 235 236 237 238
	},

	[KSZ9477] = {
		.chip_id = KSZ9477_CHIP_ID,
		.dev_name = "KSZ9477",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
		.phy_errata_9477 = true,
239 240 241
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
242
		.stp_ctrl_reg = 0x0B04,
243 244 245 246 247 248 249 250
		.supports_mii	= {false, false, false, false,
				   false, true, false},
		.supports_rmii	= {false, false, false, false,
				   false, true, false},
		.supports_rgmii = {false, false, false, false,
				   false, true, false},
		.internal_phy	= {true, true, true, true,
				   true, false, false},
251 252 253 254 255 256 257 258 259 260 261
	},

	[KSZ9897] = {
		.chip_id = KSZ9897_CHIP_ID,
		.dev_name = "KSZ9897",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
		.phy_errata_9477 = true,
262 263 264
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
265
		.stp_ctrl_reg = 0x0B04,
266 267 268 269 270 271 272 273
		.supports_mii	= {false, false, false, false,
				   false, true, true},
		.supports_rmii	= {false, false, false, false,
				   false, true, true},
		.supports_rgmii = {false, false, false, false,
				   false, true, true},
		.internal_phy	= {true, true, true, true,
				   true, false, false},
274 275 276 277 278 279 280 281 282 283
	},

	[KSZ9893] = {
		.chip_id = KSZ9893_CHIP_ID,
		.dev_name = "KSZ9893",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x07,	/* can be configured as cpu port */
		.port_cnt = 3,		/* total port count */
284 285 286
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
287
		.stp_ctrl_reg = 0x0B04,
288 289 290 291
		.supports_mii = {false, false, true},
		.supports_rmii = {false, false, true},
		.supports_rgmii = {false, false, true},
		.internal_phy = {true, true, false},
292 293 294 295 296 297 298 299 300 301 302
	},

	[KSZ9567] = {
		.chip_id = KSZ9567_CHIP_ID,
		.dev_name = "KSZ9567",
		.num_vlans = 4096,
		.num_alus = 4096,
		.num_statics = 16,
		.cpu_ports = 0x7F,	/* can be configured as cpu port */
		.port_cnt = 7,		/* total physical port count */
		.phy_errata_9477 = true,
303 304 305
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
306
		.stp_ctrl_reg = 0x0B04,
307 308 309 310 311 312 313 314
		.supports_mii	= {false, false, false, false,
				   false, true, true},
		.supports_rmii	= {false, false, false, false,
				   false, true, true},
		.supports_rgmii = {false, false, false, false,
				   false, true, true},
		.internal_phy	= {true, true, true, true,
				   true, false, false},
315 316 317 318 319 320 321 322 323 324
	},

	[LAN9370] = {
		.chip_id = LAN9370_CHIP_ID,
		.dev_name = "LAN9370",
		.num_vlans = 4096,
		.num_alus = 1024,
		.num_statics = 256,
		.cpu_ports = 0x10,	/* can be configured as cpu port */
		.port_cnt = 5,		/* total physical port count */
325 326 327
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
328
		.stp_ctrl_reg = 0x0B04,
329 330 331 332
		.supports_mii = {false, false, false, false, true},
		.supports_rmii = {false, false, false, false, true},
		.supports_rgmii = {false, false, false, false, true},
		.internal_phy = {true, true, true, true, false},
333 334 335 336 337 338 339 340 341 342
	},

	[LAN9371] = {
		.chip_id = LAN9371_CHIP_ID,
		.dev_name = "LAN9371",
		.num_vlans = 4096,
		.num_alus = 1024,
		.num_statics = 256,
		.cpu_ports = 0x30,	/* can be configured as cpu port */
		.port_cnt = 6,		/* total physical port count */
343 344 345
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
346
		.stp_ctrl_reg = 0x0B04,
347 348 349 350
		.supports_mii = {false, false, false, false, true, true},
		.supports_rmii = {false, false, false, false, true, true},
		.supports_rgmii = {false, false, false, false, true, true},
		.internal_phy = {true, true, true, true, false, false},
351 352 353 354 355 356 357 358 359 360
	},

	[LAN9372] = {
		.chip_id = LAN9372_CHIP_ID,
		.dev_name = "LAN9372",
		.num_vlans = 4096,
		.num_alus = 1024,
		.num_statics = 256,
		.cpu_ports = 0x30,	/* can be configured as cpu port */
		.port_cnt = 8,		/* total physical port count */
361 362 363
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
364
		.stp_ctrl_reg = 0x0B04,
365 366 367 368 369 370 371 372
		.supports_mii	= {false, false, false, false,
				   true, true, false, false},
		.supports_rmii	= {false, false, false, false,
				   true, true, false, false},
		.supports_rgmii = {false, false, false, false,
				   true, true, false, false},
		.internal_phy	= {true, true, true, true,
				   false, false, true, true},
373 374 375 376 377 378 379 380 381 382
	},

	[LAN9373] = {
		.chip_id = LAN9373_CHIP_ID,
		.dev_name = "LAN9373",
		.num_vlans = 4096,
		.num_alus = 1024,
		.num_statics = 256,
		.cpu_ports = 0x38,	/* can be configured as cpu port */
		.port_cnt = 5,		/* total physical port count */
383 384 385
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
386
		.stp_ctrl_reg = 0x0B04,
387 388 389 390 391 392 393 394
		.supports_mii	= {false, false, false, false,
				   true, true, false, false},
		.supports_rmii	= {false, false, false, false,
				   true, true, false, false},
		.supports_rgmii = {false, false, false, false,
				   true, true, false, false},
		.internal_phy	= {true, true, true, false,
				   false, false, true, true},
395 396 397 398 399 400 401 402 403 404
	},

	[LAN9374] = {
		.chip_id = LAN9374_CHIP_ID,
		.dev_name = "LAN9374",
		.num_vlans = 4096,
		.num_alus = 1024,
		.num_statics = 256,
		.cpu_ports = 0x30,	/* can be configured as cpu port */
		.port_cnt = 8,		/* total physical port count */
405 406 407
		.mib_names = ksz9477_mib_names,
		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
		.reg_mib_cnt = MIB_COUNTER_NUM,
408
		.stp_ctrl_reg = 0x0B04,
409 410 411 412 413 414 415 416
		.supports_mii	= {false, false, false, false,
				   true, true, false, false},
		.supports_rmii	= {false, false, false, false,
				   true, true, false, false},
		.supports_rgmii = {false, false, false, false,
				   true, true, false, false},
		.internal_phy	= {true, true, true, true,
				   false, false, true, true},
417 418
	},
};
419
EXPORT_SYMBOL_GPL(ksz_switch_chips);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
		const struct ksz_chip_data *chip = &ksz_switch_chips[i];

		if (chip->chip_id == prod_num)
			return chip;
	}

	return NULL;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static int ksz_check_device_id(struct ksz_device *dev)
{
	const struct ksz_chip_data *dt_chip_data;

	dt_chip_data = of_device_get_match_data(dev->dev);

	/* Check for Device Tree and Chip ID */
	if (dt_chip_data->chip_id != dev->chip_id) {
		dev_err(dev->dev,
			"Device tree specifies chip %s but found %s, please fix it!\n",
			dt_chip_data->dev_name, dev->info->dev_name);
		return -ENODEV;
	}

	return 0;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
			  struct phylink_config *config)
{
	struct ksz_device *dev = ds->priv;

	config->legacy_pre_march2020 = false;

	if (dev->info->supports_mii[port])
		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);

	if (dev->info->supports_rmii[port])
		__set_bit(PHY_INTERFACE_MODE_RMII,
			  config->supported_interfaces);

	if (dev->info->supports_rgmii[port])
		phy_interface_set_rgmii(config->supported_interfaces);

	if (dev->info->internal_phy[port])
		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
			  config->supported_interfaces);
472 473 474

	if (dev->dev_ops->get_caps)
		dev->dev_ops->get_caps(dev, port, config);
475 476 477
}
EXPORT_SYMBOL_GPL(ksz_phylink_get_caps);

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
void ksz_r_mib_stats64(struct ksz_device *dev, int port)
{
	struct rtnl_link_stats64 *stats;
	struct ksz_stats_raw *raw;
	struct ksz_port_mib *mib;

	mib = &dev->ports[port].mib;
	stats = &mib->stats64;
	raw = (struct ksz_stats_raw *)mib->counters;

	spin_lock(&mib->stats64_lock);

	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast;
	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast;

	/* HW counters are counting bytes + FCS which is not acceptable
	 * for rtnl_link_stats64 interface
	 */
	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;

	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
		raw->rx_oversize;

	stats->rx_crc_errors = raw->rx_crc_err;
	stats->rx_frame_errors = raw->rx_align_err;
	stats->rx_dropped = raw->rx_discards;
	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
		stats->rx_frame_errors  + stats->rx_dropped;

	stats->tx_window_errors = raw->tx_late_col;
	stats->tx_fifo_errors = raw->tx_discards;
	stats->tx_aborted_errors = raw->tx_exc_col;
	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
		stats->tx_aborted_errors;

	stats->multicast = raw->rx_mcast;
	stats->collisions = raw->tx_total_col;

	spin_unlock(&mib->stats64_lock);
}
EXPORT_SYMBOL_GPL(ksz_r_mib_stats64);

void ksz_get_stats64(struct dsa_switch *ds, int port,
		     struct rtnl_link_stats64 *s)
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port_mib *mib;

	mib = &dev->ports[port].mib;

	spin_lock(&mib->stats64_lock);
	memcpy(s, &mib->stats64, sizeof(*s));
	spin_unlock(&mib->stats64_lock);
}
EXPORT_SYMBOL_GPL(ksz_get_stats64);

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
void ksz_get_strings(struct dsa_switch *ds, int port,
		     u32 stringset, uint8_t *buf)
{
	struct ksz_device *dev = ds->priv;
	int i;

	if (stringset != ETH_SS_STATS)
		return;

	for (i = 0; i < dev->info->mib_cnt; i++) {
		memcpy(buf + i * ETH_GSTRING_LEN,
		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
	}
}
EXPORT_SYMBOL_GPL(ksz_get_strings);

551
static void ksz_update_port_member(struct ksz_device *dev, int port)
552
{
553 554 555 556
	struct ksz_port *p = &dev->ports[port];
	struct dsa_switch *ds = dev->ds;
	u8 port_member = 0, cpu_port;
	const struct dsa_port *dp;
557
	int i, j;
558

559 560 561 562 563 564 565 566 567 568 569 570
	if (!dsa_is_user_port(ds, port))
		return;

	dp = dsa_to_port(ds, port);
	cpu_port = BIT(dsa_upstream_port(ds, port));

	for (i = 0; i < ds->num_ports; i++) {
		const struct dsa_port *other_dp = dsa_to_port(ds, i);
		struct ksz_port *other_p = &dev->ports[i];
		u8 val = 0;

		if (!dsa_is_user_port(ds, i))
571
			continue;
572 573
		if (port == i)
			continue;
574
		if (!dsa_port_bridge_same(dp, other_dp))
575
			continue;
576 577
		if (other_p->stp_state != BR_STATE_FORWARDING)
			continue;
578

579
		if (p->stp_state == BR_STATE_FORWARDING) {
580 581 582 583
			val |= BIT(port);
			port_member |= BIT(i);
		}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		/* Retain port [i]'s relationship to other ports than [port] */
		for (j = 0; j < ds->num_ports; j++) {
			const struct dsa_port *third_dp;
			struct ksz_port *third_p;

			if (j == i)
				continue;
			if (j == port)
				continue;
			if (!dsa_is_user_port(ds, j))
				continue;
			third_p = &dev->ports[j];
			if (third_p->stp_state != BR_STATE_FORWARDING)
				continue;
			third_dp = dsa_to_port(ds, j);
			if (dsa_port_bridge_same(other_dp, third_dp))
				val |= BIT(j);
		}

603
		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
604
	}
605 606

	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
607 608
}

609 610 611 612 613 614
static void port_r_cnt(struct ksz_device *dev, int port)
{
	struct ksz_port_mib *mib = &dev->ports[port].mib;
	u64 *dropped;

	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
615
	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
616 617 618 619 620 621
		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
					&mib->counters[mib->cnt_ptr]);
		++mib->cnt_ptr;
	}

	/* last one in storage */
622
	dropped = &mib->counters[dev->info->mib_cnt];
623 624

	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
625
	while (mib->cnt_ptr < dev->info->mib_cnt) {
626 627 628 629 630 631 632 633 634 635
		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
					dropped, &mib->counters[mib->cnt_ptr]);
		++mib->cnt_ptr;
	}
	mib->cnt_ptr = 0;
}

static void ksz_mib_read_work(struct work_struct *work)
{
	struct ksz_device *dev = container_of(work, struct ksz_device,
636
					      mib_read.work);
637 638 639 640
	struct ksz_port_mib *mib;
	struct ksz_port *p;
	int i;

641
	for (i = 0; i < dev->info->port_cnt; i++) {
642 643 644
		if (dsa_is_unused_port(dev->ds, i))
			continue;

645 646 647 648 649 650 651 652 653 654 655
		p = &dev->ports[i];
		mib = &p->mib;
		mutex_lock(&mib->cnt_mutex);

		/* Only read MIB counters when the port is told to do.
		 * If not, read only dropped counters when link is not up.
		 */
		if (!p->read) {
			const struct dsa_port *dp = dsa_to_port(dev->ds, i);

			if (!netif_carrier_ok(dp->slave))
656
				mib->cnt_ptr = dev->info->reg_mib_cnt;
657 658 659
		}
		port_r_cnt(dev, i);
		p->read = false;
660 661 662 663

		if (dev->dev_ops->r_mib_stat64)
			dev->dev_ops->r_mib_stat64(dev, i);

664 665 666
		mutex_unlock(&mib->cnt_mutex);
	}

667
	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
668 669 670 671 672 673
}

void ksz_init_mib_timer(struct ksz_device *dev)
{
	int i;

674 675
	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);

676 677 678
	for (i = 0; i < dev->info->port_cnt; i++) {
		struct ksz_port_mib *mib = &dev->ports[i].mib;

679
		dev->dev_ops->port_init_cnt(dev, i);
680 681 682 683

		mib->cnt_ptr = 0;
		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
	}
684 685 686
}
EXPORT_SYMBOL_GPL(ksz_init_mib_timer);

687
int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
688 689
{
	struct ksz_device *dev = ds->priv;
690
	u16 val = 0xffff;
691

692
	dev->dev_ops->r_phy(dev, addr, reg, &val);
693 694 695

	return val;
}
696
EXPORT_SYMBOL_GPL(ksz_phy_read16);
697

698
int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
699 700 701
{
	struct ksz_device *dev = ds->priv;

702
	dev->dev_ops->w_phy(dev, addr, reg, val);
703 704 705

	return 0;
}
706
EXPORT_SYMBOL_GPL(ksz_phy_write16);
707

708 709
void ksz_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode,
		       phy_interface_t interface)
710 711 712 713 714
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p = &dev->ports[port];

	/* Read all MIB counters when the link is going down. */
715
	p->read = true;
716 717 718
	/* timer started */
	if (dev->mib_read_interval)
		schedule_delayed_work(&dev->mib_read, 0);
719 720 721
}
EXPORT_SYMBOL_GPL(ksz_mac_link_down);

722
int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
723 724 725
{
	struct ksz_device *dev = ds->priv;

726 727 728
	if (sset != ETH_SS_STATS)
		return 0;

729
	return dev->info->mib_cnt;
730
}
731
EXPORT_SYMBOL_GPL(ksz_sset_count);
732

733 734 735 736 737 738 739 740 741 742 743
void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *buf)
{
	const struct dsa_port *dp = dsa_to_port(ds, port);
	struct ksz_device *dev = ds->priv;
	struct ksz_port_mib *mib;

	mib = &dev->ports[port].mib;
	mutex_lock(&mib->cnt_mutex);

	/* Only read dropped counters if no link. */
	if (!netif_carrier_ok(dp->slave))
744
		mib->cnt_ptr = dev->info->reg_mib_cnt;
745
	port_r_cnt(dev, port);
746
	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
747 748 749 750
	mutex_unlock(&mib->cnt_mutex);
}
EXPORT_SYMBOL_GPL(ksz_get_ethtool_stats);

751
int ksz_port_bridge_join(struct dsa_switch *ds, int port,
752
			 struct dsa_bridge bridge,
753 754
			 bool *tx_fwd_offload,
			 struct netlink_ext_ack *extack)
755
{
756 757 758
	/* port_stp_state_set() will be called after to put the port in
	 * appropriate state so there is no need to do anything.
	 */
759

760
	return 0;
761
}
762
EXPORT_SYMBOL_GPL(ksz_port_bridge_join);
763

764
void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
765
			   struct dsa_bridge bridge)
766
{
767 768 769
	/* port_stp_state_set() will be called after to put the port in
	 * forwarding state so there is no need to do anything.
	 */
770
}
771
EXPORT_SYMBOL_GPL(ksz_port_bridge_leave);
772

773
void ksz_port_fast_age(struct dsa_switch *ds, int port)
774 775 776
{
	struct ksz_device *dev = ds->priv;

777
	dev->dev_ops->flush_dyn_mac_table(dev, port);
778
}
779
EXPORT_SYMBOL_GPL(ksz_port_fast_age);
780

781 782
int ksz_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb,
		      void *data)
783 784
{
	struct ksz_device *dev = ds->priv;
785
	int ret = 0;
786 787 788 789 790
	u16 i = 0;
	u16 entries = 0;
	u8 timestamp = 0;
	u8 fid;
	u8 member;
791 792 793
	struct alu_struct alu;

	do {
794 795 796 797 798
		alu.is_static = false;
		ret = dev->dev_ops->r_dyn_mac_table(dev, i, alu.mac, &fid,
						    &member, &timestamp,
						    &entries);
		if (!ret && (member & BIT(port))) {
799
			ret = cb(alu.mac, alu.fid, alu.is_static, data);
800
			if (ret)
801
				break;
802
		}
803 804 805 806
		i++;
	} while (i < entries);
	if (i >= entries)
		ret = 0;
807 808 809

	return ret;
}
810
EXPORT_SYMBOL_GPL(ksz_port_fdb_dump);
811

812
int ksz_port_mdb_add(struct dsa_switch *ds, int port,
813 814
		     const struct switchdev_obj_port_mdb *mdb,
		     struct dsa_db db)
815 816 817
{
	struct ksz_device *dev = ds->priv;

818 819
	if (!dev->dev_ops->mdb_add)
		return -EOPNOTSUPP;
820

821
	return dev->dev_ops->mdb_add(dev, port, mdb, db);
822
}
823
EXPORT_SYMBOL_GPL(ksz_port_mdb_add);
824

825
int ksz_port_mdb_del(struct dsa_switch *ds, int port,
826 827
		     const struct switchdev_obj_port_mdb *mdb,
		     struct dsa_db db)
828 829 830
{
	struct ksz_device *dev = ds->priv;

831 832
	if (!dev->dev_ops->mdb_del)
		return -EOPNOTSUPP;
833

834
	return dev->dev_ops->mdb_del(dev, port, mdb, db);
835
}
836
EXPORT_SYMBOL_GPL(ksz_port_mdb_del);
837

838
int ksz_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy)
839 840 841
{
	struct ksz_device *dev = ds->priv;

842 843 844
	if (!dsa_is_user_port(ds, port))
		return 0;

845 846
	/* setup slave port */
	dev->dev_ops->port_setup(dev, port, false);
847

848 849 850
	/* port_stp_state_set() will be called after to enable the port so
	 * there is no need to do anything.
	 */
851 852 853

	return 0;
}
854
EXPORT_SYMBOL_GPL(ksz_enable_port);
855

856
void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
857 858 859 860
{
	struct ksz_device *dev = ds->priv;
	struct ksz_port *p;
	u8 data;
861 862 863
	int reg;

	reg = dev->info->stp_ctrl_reg;
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

	ksz_pread8(dev, port, reg, &data);
	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);

	switch (state) {
	case BR_STATE_DISABLED:
		data |= PORT_LEARN_DISABLE;
		break;
	case BR_STATE_LISTENING:
		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
		break;
	case BR_STATE_LEARNING:
		data |= PORT_RX_ENABLE;
		break;
	case BR_STATE_FORWARDING:
		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
		break;
	case BR_STATE_BLOCKING:
		data |= PORT_LEARN_DISABLE;
		break;
	default:
		dev_err(ds->dev, "invalid STP state: %d\n", state);
		return;
	}

	ksz_pwrite8(dev, port, reg, data);

	p = &dev->ports[port];
	p->stp_state = state;

	ksz_update_port_member(dev, port);
}
EXPORT_SYMBOL_GPL(ksz_port_stp_state_set);

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
					   int port, enum dsa_tag_protocol mp)
{
	struct ksz_device *dev = ds->priv;
	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;

	if (dev->chip_id == KSZ8795_CHIP_ID ||
	    dev->chip_id == KSZ8794_CHIP_ID ||
	    dev->chip_id == KSZ8765_CHIP_ID)
		proto = DSA_TAG_PROTO_KSZ8795;

	if (dev->chip_id == KSZ8830_CHIP_ID ||
	    dev->chip_id == KSZ9893_CHIP_ID)
		proto = DSA_TAG_PROTO_KSZ9893;

	if (dev->chip_id == KSZ9477_CHIP_ID ||
	    dev->chip_id == KSZ9897_CHIP_ID ||
	    dev->chip_id == KSZ9567_CHIP_ID)
		proto = DSA_TAG_PROTO_KSZ9477;

	return proto;
}
EXPORT_SYMBOL_GPL(ksz_get_tag_protocol);

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
			    bool flag, struct netlink_ext_ack *extack)
{
	struct ksz_device *dev = ds->priv;

	if (!dev->dev_ops->vlan_filtering)
		return -EOPNOTSUPP;

	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
}
EXPORT_SYMBOL_GPL(ksz_port_vlan_filtering);

int ksz_port_vlan_add(struct dsa_switch *ds, int port,
		      const struct switchdev_obj_port_vlan *vlan,
		      struct netlink_ext_ack *extack)
{
	struct ksz_device *dev = ds->priv;

	if (!dev->dev_ops->vlan_add)
		return -EOPNOTSUPP;

	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
}
EXPORT_SYMBOL_GPL(ksz_port_vlan_add);

int ksz_port_vlan_del(struct dsa_switch *ds, int port,
		      const struct switchdev_obj_port_vlan *vlan)
{
	struct ksz_device *dev = ds->priv;

	if (!dev->dev_ops->vlan_del)
		return -EOPNOTSUPP;

	return dev->dev_ops->vlan_del(dev, port, vlan);
}
EXPORT_SYMBOL_GPL(ksz_port_vlan_del);

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
int ksz_port_mirror_add(struct dsa_switch *ds, int port,
			struct dsa_mall_mirror_tc_entry *mirror,
			bool ingress, struct netlink_ext_ack *extack)
{
	struct ksz_device *dev = ds->priv;

	if (!dev->dev_ops->mirror_add)
		return -EOPNOTSUPP;

	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
}
EXPORT_SYMBOL_GPL(ksz_port_mirror_add);

void ksz_port_mirror_del(struct dsa_switch *ds, int port,
			 struct dsa_mall_mirror_tc_entry *mirror)
{
	struct ksz_device *dev = ds->priv;

	if (dev->dev_ops->mirror_del)
		dev->dev_ops->mirror_del(dev, port, mirror);
}
EXPORT_SYMBOL_GPL(ksz_port_mirror_del);

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static int ksz_switch_detect(struct ksz_device *dev)
{
	u8 id1, id2;
	u16 id16;
	u32 id32;
	int ret;

	/* read chip id */
	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
	if (ret)
		return ret;

	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
	id2 = FIELD_GET(SW_CHIP_ID_M, id16);

	switch (id1) {
	case KSZ87_FAMILY_ID:
		if (id2 == KSZ87_CHIP_ID_95) {
			u8 val;

			dev->chip_id = KSZ8795_CHIP_ID;

			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
			if (val & KSZ8_PORT_FIBER_MODE)
				dev->chip_id = KSZ8765_CHIP_ID;
		} else if (id2 == KSZ87_CHIP_ID_94) {
			dev->chip_id = KSZ8794_CHIP_ID;
		} else {
			return -ENODEV;
		}
		break;
	case KSZ88_FAMILY_ID:
		if (id2 == KSZ88_CHIP_ID_63)
			dev->chip_id = KSZ8830_CHIP_ID;
		else
			return -ENODEV;
		break;
	default:
		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
		if (ret)
			return ret;

		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
		id32 &= ~0xFF;

		switch (id32) {
		case KSZ9477_CHIP_ID:
		case KSZ9897_CHIP_ID:
		case KSZ9893_CHIP_ID:
		case KSZ9567_CHIP_ID:
		case LAN9370_CHIP_ID:
		case LAN9371_CHIP_ID:
		case LAN9372_CHIP_ID:
		case LAN9373_CHIP_ID:
		case LAN9374_CHIP_ID:
			dev->chip_id = id32;
			break;
		default:
			dev_err(dev->dev,
				"unsupported switch detected %x)\n", id32);
			return -ENODEV;
		}
	}
	return 0;
}

1048
struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
1049 1050 1051 1052
{
	struct dsa_switch *ds;
	struct ksz_device *swdev;

1053
	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
1054 1055 1056
	if (!ds)
		return NULL;

1057 1058 1059
	ds->dev = base;
	ds->num_ports = DSA_MAX_PORTS;

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
	if (!swdev)
		return NULL;

	ds->priv = swdev;
	swdev->dev = base;

	swdev->ds = ds;
	swdev->priv = priv;

	return swdev;
}
EXPORT_SYMBOL(ksz_switch_alloc);

1074 1075
int ksz_switch_register(struct ksz_device *dev,
			const struct ksz_dev_ops *ops)
1076
{
1077
	const struct ksz_chip_data *info;
1078
	struct device_node *port, *ports;
1079
	phy_interface_t interface;
1080
	unsigned int port_num;
1081
	int ret;
1082
	int i;
1083 1084 1085 1086

	if (dev->pdata)
		dev->chip_id = dev->pdata->chip_id;

1087 1088 1089 1090 1091 1092
	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
						  GPIOD_OUT_LOW);
	if (IS_ERR(dev->reset_gpio))
		return PTR_ERR(dev->reset_gpio);

	if (dev->reset_gpio) {
1093
		gpiod_set_value_cansleep(dev->reset_gpio, 1);
1094
		usleep_range(10000, 12000);
1095
		gpiod_set_value_cansleep(dev->reset_gpio, 0);
1096
		msleep(100);
1097 1098
	}

1099
	mutex_init(&dev->dev_mutex);
1100
	mutex_init(&dev->regmap_mutex);
1101 1102 1103
	mutex_init(&dev->alu_mutex);
	mutex_init(&dev->vlan_mutex);

1104 1105 1106
	ret = ksz_switch_detect(dev);
	if (ret)
		return ret;
1107

1108 1109 1110 1111 1112 1113 1114
	info = ksz_lookup_info(dev->chip_id);
	if (!info)
		return -ENODEV;

	/* Update the compatible info with the probed one */
	dev->info = info;

1115 1116 1117
	dev_info(dev->dev, "found switch: %s, rev %i\n",
		 dev->info->dev_name, dev->chip_rev);

1118 1119 1120 1121
	ret = ksz_check_device_id(dev);
	if (ret)
		return ret;

1122 1123
	dev->dev_ops = ops;

1124
	ret = dev->dev_ops->init(dev);
1125 1126 1127
	if (ret)
		return ret;

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	dev->ports = devm_kzalloc(dev->dev,
				  dev->info->port_cnt * sizeof(struct ksz_port),
				  GFP_KERNEL);
	if (!dev->ports)
		return -ENOMEM;

	for (i = 0; i < dev->info->port_cnt; i++) {
		spin_lock_init(&dev->ports[i].mib.stats64_lock);
		mutex_init(&dev->ports[i].mib.cnt_mutex);
		dev->ports[i].mib.counters =
			devm_kzalloc(dev->dev,
				     sizeof(u64) * (dev->info->mib_cnt + 1),
				     GFP_KERNEL);
		if (!dev->ports[i].mib.counters)
			return -ENOMEM;
	}

	/* set the real number of ports */
	dev->ds->num_ports = dev->info->port_cnt;

1148 1149 1150
	/* Host port interface will be self detected, or specifically set in
	 * device tree.
	 */
1151
	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
1152
		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
1153
	if (dev->dev->of_node) {
1154 1155
		ret = of_get_phy_mode(dev->dev->of_node, &interface);
		if (ret == 0)
1156
			dev->compat_interface = interface;
1157 1158 1159
		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
		if (!ports)
			ports = of_get_child_by_name(dev->dev->of_node, "ports");
1160 1161 1162 1163 1164
		if (ports)
			for_each_available_child_of_node(ports, port) {
				if (of_property_read_u32(port, "reg",
							 &port_num))
					continue;
1165 1166
				if (!(dev->port_mask & BIT(port_num))) {
					of_node_put(port);
1167
					return -EINVAL;
1168
				}
1169 1170 1171
				of_get_phy_mode(port,
						&dev->ports[port_num].interface);
			}
1172 1173
		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
							 "microchip,synclko-125");
1174 1175 1176 1177 1178 1179
		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
							     "microchip,synclko-disable");
		if (dev->synclko_125 && dev->synclko_disable) {
			dev_err(dev->dev, "inconsistent synclko settings\n");
			return -EINVAL;
		}
1180 1181 1182 1183 1184 1185 1186 1187
	}

	ret = dsa_register_switch(dev->ds);
	if (ret) {
		dev->dev_ops->exit(dev);
		return ret;
	}

1188
	/* Read MIB counters every 30 seconds to avoid overflow. */
1189
	dev->mib_read_interval = msecs_to_jiffies(5000);
1190 1191 1192 1193

	/* Start the MIB timer. */
	schedule_delayed_work(&dev->mib_read, 0);

1194
	return 0;
1195 1196 1197 1198 1199
}
EXPORT_SYMBOL(ksz_switch_register);

void ksz_switch_remove(struct ksz_device *dev)
{
1200
	/* timer started */
1201 1202
	if (dev->mib_read_interval) {
		dev->mib_read_interval = 0;
1203
		cancel_delayed_work_sync(&dev->mib_read);
1204
	}
1205

1206
	dev->dev_ops->exit(dev);
1207
	dsa_unregister_switch(dev->ds);
1208 1209

	if (dev->reset_gpio)
1210
		gpiod_set_value_cansleep(dev->reset_gpio, 1);
1211

1212 1213 1214 1215 1216 1217
}
EXPORT_SYMBOL(ksz_switch_remove);

MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
MODULE_LICENSE("GPL");